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Abstract

In generalized Nash equilibrium (GNE) seeking problems over physical networks such as power grids, the

enforcement of network constraints and time-varying environment may bring high computational costs. Developing

online algorithms is recognized as a promising method to cope with this challenge, where the task of computing

system states is replaced by directly using measured values from the physical network. In this paper, we propose an

online distributed algorithm via measurement feedback to track the GNE in a time-varying networked resource

sharing market. Regarding that some system states are not measurable and measurement noise always exists, a

dynamic state estimator is incorporated based on a Kalman filter, rendering a closed-loop dynamics of

measurement-feedback driven online algorithm. We prove that, with a fixed step size, this online algorithm converges

to a neighborhood of the GNE in expectation. Numerical simulations validate the theoretical results.

Keywords: Generalized Nash equilibrium, Distributed optimization, Online optimization, Feedback-based

optimization, State estimation, Sharing market

1 Introduction
1.1 Background

Generalized Nash Game (GNG) problems have received

increasing attentions in recent years. For non-cooperative

game models, the key problem is how to seek the Gener-

alized Nash equilibrium (GNE), especially in a distributed

manner. Distributed GNE seeking algorithms have been

widely utilized in ever-growing fields, such as power sys-

tems [1–3], communication networks [4, 5], multi-cloud

systems [6, 7] and autonomous driving [8]. By exchanging

partial information with direct neighbors through a com-

munication network, each player makes his own strategy

individually and achieves the GNE after certain rounds
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of iterations. During iteration, the private information of

players is largely protected.

Considering GNGs on physical networks, say, a net-

worked power market, it may take a high computational

cost to obtain system states, which follows the Kirch-

hoff law and depends on different operations. It turns

to be much more challenging when parameters of the

physical network are time-varying. In this context, tradi-

tional distributed algorithms will be inadequate to cope

with such situations and online algorithms via measure-

ment feedback provide a promising alternative. Instead

of being numerically computed, system states are directly

measured from the physical system and fed back to drive

the online algorithm, rendering a closed-loop algorithm

via measurement feedback. In this way, the algorithm

can remarkably relieve the computational burden and

respond much faster to the time-varying environment. It
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can further allow to construct online tracking algorithms

of GNEs in time-varying environments.

To enable measurement-feedback based online algo-

rithms for GNE tracking, two issues need to be consid-

ered. On the one hand, some system states may not be

measurable. On the other hand, the measurements always

suffer from noise, which may undermine the convergence

of an online algorithm. In this regard, state estimation

(SE) is often used to refine raw measurements in practice,

which works well to mitigate the negative effects of Gaus-

sian noise. In this paper, we develop ameasurement-based

online distributed GNE tracking algorithm with a Kalman

filter based dynamic SE.

1.2 Related works

1.2.1 Distributed GNE seeking

In reference [9], a Nesterov-based algorithm was pro-

posed to seek the GNE of an energy sharing game among

prosumers, where the proposed algorithm showed better

convergence performance than two classical distributed

methods: the alternating direction method of multipli-

ers (ADMM) and the gradient descent method. Refer-

ences [10, 11] separately studied the distributed forward-

backward algorithm for GNE seeking. The former studied

a stochastic GNG, while the latter formulated an asyn-

chronous algorithm paradigm. Reference [12] proved the

convergence of a fully distributed GNE seeking method

based on the continuous-time consensus and primal-dual

gradient dynamics in a partial-information scenario. To

tackle a general convex set without an analytic expression,

reference [13] proposed a consensus and gradient projec-

tion based method to seek an ε-GNE. In reference [14],

a multi-cluster game with nonsmooth payoff functions

was solved by a projected differential inclusion algorithm,

where the correctness and convergence were proved by

using the Lyapunov stability theory.

Distributed GNE seeking methods mentioned above

are all offline algorithms. Although reference [15] has

attempted to formulate an online algorithm to cope with

the time-varying future cost function, the measurement

feedback has not been well studied.

1.2.2 Online algorithm viameasurement feedback

In reference [16], an online gradient projection algo-

rithm was proposed with the measurement as an implicit

power flow solution. A varying penalty coefficient was

used to guarantee the satisfaction of power flow equations

and operational constraints during iteration. Reference

[17] formulated a novel online approximate optimization

problem based on the quasi-Newton L-BFGS-B method

with the measured zero- and first-order information. Ref-

erence [18] was a distributed version of [17] based on

the distributed interior-point method. In reference [19],

an online implementation method was introduced to

adjust the time-varying environment in an asynchronous

paradigm. To cope with the incomplete measurable sys-

tem states, reference [20] used a weighted least squares

state estimator as feedback and formulated a closed-loop

distributed primal-dual gradient algorithm in a single-

period optimization problem. For a multi-period prob-

lem with random process noise, reference [21] utilized a

dynamic SE based on the Kalman filter in a centralized

gradient projection method, where the seeking perfor-

mance of the dynamic SE was theoretically proved to

converge to the offline optimal solution in expectation.

The works mentioned above all consider online algo-

rithms in global cost optimization problems, whereas the

non-cooperative game model with the online algorithm

via measurement feedback has not been addressed. This

paper aims to partially fill this gap.

1.3 Contributions

The major contributions of this paper are two-fold:

1. Model and Algorithm. We formulate a resource

sharing market on the physical network as a GNG. To

seek the GNE, an online distributed tracking algorithm

of the GNE (ODT-GNE) via measurement feedback

is proposed based on primal-dual gradients. Measure-

ments from the physical network are utilized as the

feedback of the online gradient method, which forms

a closed-loop algorithm. To cope with the challenge

caused by immeasurable system states and measure-

ment noise, a dynamic SE based on Kalman filter is

deployed. To the best of our knowledge, it is the first

time that the closed-loop online algorithm viameasure-

ment feedback with dynamic SE is investigated in GNE

seeking problems.

2. Convergence Analysis. We prove that, with a fixed

step size, the ODT-GNE algorithm converges to a

neighborhood of the GNE. It is non-trivial to analyze

the convergence of the online closed-loop algorithm

due to the complex coupling of the gradient-based

method, the market clearing, the measurement feed-

back, the SE, and the physical system equations. Hence

we alternatively establish an offline algorithm as a base-

line. We characterize the gap between the GNE and

the fixed point of the offline algorithm, and then prove

the convergence of the online algorithm to the offline

algorithm.

1.4 Organization

The rest of this paper is organized as follows. Section 2

formulates the GNG model as a resource sharing market.

In Section 3, the online distributed GNE Seeking algo-

rithm via measurement feedback is proposed based on

its offline version. Section 4 proves the convergence of

the proposed online distributed GNE seeking algorithm.
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Section 5 gives numerical results and Section 6 concludes

this paper.

Notations: In this paper, we use Rn
R
n
+ to denote the

n-dimensional (nonnegative) Euclidean space. For a col-

umn vector x ∈ R
n (matrix A ∈ R

m×n), xT AT denotes

its transpose. For x, y ∈ R
n, we denote the inner prod-

uct by x, y = xTy, and the 2-norm by x =
√

x, x .

For a vector x ∈ R
n, xi stands for the ith entry. col {xi}i∈I

stacks the vectors xi as a new column vector in the order

of the index set I . For a matrix B ∈ R
m×n, B , B),

tr(B), and Bi stand for its 2-norm, minimal eigenvalue,

trace, and the ith column vector, respectively. Denote by

0n, 1n ∈ R
n, 0m,n, 1m,n ∈ R

m×n, and In ∈ R
n×n the vec-

tors of all zeros and ones, the matrices of all zeros and

ones, and the identical matrix. For a closed convex set

⊂ R
n, we define the projection of x ∈ R

n onto

as [x] := argminy∈ y − x . Specially, denote by [x]+
the projection onto R

n
+. This projection operator is non-

expansive, i.e., [x] − y ≤ x − y , ∀x, y ∈ R
n. For

a set ⊂ R
n and a vector x ∈ , the normal cone is

defined as N (x) := y ∈ R
n| y, z − x ≤ 0, ∀z ∈ .

2 Generalized Nash gamewith network
constraints

2.1 Resource sharing market on physical networks

We focus on the resource sharingmarket with the physical

network constraint, which consists of three levels: mar-

ket, prosumers, and network levels. The structure is pre-

sented in Fig. 1. Prosumers make transactions through the

market and then sharing resources through the physical

network.

The set of prosumers denoted byN = {1,...., n}. Denote
by xi the prosumer i’s volume of trade (xi > 0 means he is

a producer and sells resources to themarket, xi < 0means

he is a consumer and buys resources from the market).

The market clearing price p (x) is defined as

p (x) = p0 − a

i

xi (1)

where a > 0 is the price elasticity coefficient, x =
col {xi}i∈N ∈ R

n is the strategy vector, and p0 is the

nominal price.

At time t, the prosumer decides his transaction by solv-

ing the following individual subproblem

min
xi

fi (xi, x−i) = cix
2
i + dixi + ei − p (x) xi (2a)

s.t. xi ∈ Xi = xi, xi (2b)

Bx ≤ bt (2c)

where the subscribe −i means all prosumers in N except

i, cix
2
i + dixi + ei is the generation cost for a producer

(the disutility for a consumer), the quadratic coefficient

Fig. 1 The structure of the resource sharing market on a physical

network

ci > 0, (2c) is the network constraint at time t, the con-

stant matrix B ∈ R
m×n depends on the network topology

and parameters, bt ∈ R
m is a time-varying vector.

The network constraint can be reformed as

z = B x + gt (3a)

B z ≤ h (3b)

where z ∈ R
p is the system state vector, B ∈ R

p×n and

B ∈ R
m×p are constant matrices. Obviously B = B B and

bt = h − B gt .

At time t, the problem (2) is a generalized Nash game,

which consists of the following elements: 1) the set of play-

ers N ; 2) the strategy xi in the strategy set X+
i,t (x−i) :=

Xi ∩ xi ∈ R|Bx ≤ bt ; 3) the payoff fi (xi, x−i).

DefineX := i∈NXi andX
+
t := X ∩ x ∈ R

n|Bx ≤ bt .

We make the following assumption on the problem.

Assumption A1:

1. The market clearing price is always positive, i.e.,

p0 − a i xi > 0.

2. The problem is always feasible (X+
t = ∅, ∀t), i.e.,

there exists an xt in X such that Bxt ≤ bt holds.

2.2 Existence and uniqueness of GNE

In this subsection, we define a special GNE of the game

(2) and prove the existence and uniqueness of the GNE.

Definition 1 (Generalized Nash Equilibrium) A strategy

x∗ ∈ X+
t is a GNE of the game (2), if ∀i ∈ N
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f x∗
i , x

∗
−i ≤ f xi, x

∗
−i , ∀xi ∈ X+

i,t x∗
−i

Define the Lagrangian

Li,t x,λ(i) = cix
2
i + dixi + ei − p (x) xi + λT

(i) (Bx − bt)

where λ(i) ∈ R
m
+ is the Lagrangian multiplier (shadow

price) vector of (2c). From Definition 1, the GNE of

the problem (2) satisfies the following KKT condition

[22, Thm. 3.25]

0 ∈ 2(ci + a)x∗
i + di − p0 + a

j=i

x∗
j + BT

i λ∗
(i) + NXi x∗

i

0m ≤ λ∗
(i) ⊥ bt − Bx∗ ≥ 0m

The GNG commonly has a low-dimensional manifold

set of GNE, instead of isolated points. In this paper, we

focus on a specific GNE, where all prosumers have the

identical Lagrangian multiplier vector, i.e., λ = λ(1) =
... = λ(n). The practical significance is to impose the same

shadow price on prosumers associated with the network

constraints.

Definition 2 (Generalized Nash Equilibrium) At time t,

x∗
t is a specific GNE of (2) with the identical Lagrangian

multiplier vector λ
∗
t , which satisfies

0 ∈ 2(ci + a)x∗
i,t + di − p0 + a

j=i

x∗
j,t + BT

i λ
∗
t + NXi x∗

i

(5a)

0m ≤ λ
∗
t ⊥ bt − Bx∗

t ≥ 0m (5b)

Hereafter, the GNE of (2) means the one satisfying

Definition 2.

Then we prove the existence and uniqueness of the

GNE. We have the following proposition.

Proposition 1 Suppose Assumption A1 holds. For ∀t,
there exists a unique GNE x∗

t (satisfying Definition 2 ) for

the GNG (2). Moreover, x∗
t is the unique GNE if and only if

it is the unique optimal solution of the following problem

min
x

1

2
xTAx + d − p0

T
x (6a)

s.t. x ∈ X (6b)

Bx ≤ bt (6c)

where d = col {di}i∈N , p0 = p01n, and

A = 2diag {ci}i∈N + aIn + a1n,n

Proof Under Assumption A1, the problem (6) is feasi-

ble and the quadratic coefficient matrix A > 0, meaning

the existence and uniqueness of the optimal solution.

Then the optimal solution must satisfy the KKT condition

[22, Thm. 3.25]

0n ∈ Ax + d − p0 + BTµ + NX (x) (7a)

0m ≤ µ ⊥ bt − Bx ≥ 0m (7b)

where µ ∈ R
m is the Lagrangian multiplier vector of (6c).

Note that (7) is exactly the compact form of (5). Hence

the GNE of (2) is equivalent to the optimal solution of (6),

which completes the proof.

At the GNE, denote by p∗
t = p0 − a i x

∗
i,t the market

clearing price and F∗
t = i fi x∗

i , x
∗
−i the total cost.

3 Distributed GNE seeking algorithm
In this section, an offline distributed GNE seeking algo-

rithm and its online tracking version are proposed.

3.1 Offline distributed GNE seeking

In this subsection, we propose an offline distributed

GNE seeking algorithm based on the primal-dual gradient

method. Firstly, we add a regularization term −φ λ 2 /2

to the Lagrangian, where φ > 0 is a constant parameter.

This improvement contributes to the convergence perfor-

mance of first-order gradient algorithms. The introduced

error will be discussed later.

The regularized Lagrangian is defined as

L
φ
i,t (x,λ) = cix

2
i + dixi + ei − p (x) xi + λT (Bx − bt) −

φ

2
λ 2

Then we have the following offline distributed GNE

seeking algorithm as

xi,k+1 = xi,k − α (2ci + a) xi,k + BT
i λk + di − pk

Xi

(8a)

λk+1 = [λk + α (Bxk − φλk − bt)]+ (8b)

pk+1 = p0 − a

i

xi,k+1 (8c)

where α > 0 is the constant step size. For brevity,

eliminate the p item and get the compact form as

xk+1 = xk − α Axk + BTλk + d − p0
X

(9a)

λk+1 = [λk + α (Bxk − φλk − bt)]+ (9b)

Define the stacked vector u := xT ,λT and the opera-

tor Gt : R
n+m → R

n+m as

Gt :
x

λ
→ Ax + BTλ + d − p0

−Bx + φλ + bt
(10)

Then the offline algorithm can be described by

u ← Ftu

where the operator Ft : R
n+m → R

n+m is defined as

Ft : u → [u − αGtu]X×R
m
+

(11)
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3.2 Online distributed GNE tracking

In order to alleviate the computational burden, the online

distributed GNE seeking algorithm is proposed based on

the measurement of the system states instead of com-

putation. In addition, there may be several issues in the

measurement, for instance, some system states may not

be measurable and large measurement error may exist.

Hence the state estimation is utilized to refine the raw

measured data.

By subtracting the time-varying network Eq. (3a), we

build the system dynamic equation as

zt = zt−1 + B (xt − xt−1) + ωz,t (12)

where ωz,t = gt − gt−1 is the random process noise

representing the time-varying condition of the system.

Define the measured value vector y ∈ R
q. Consider the

following linearized SE as

yt = Hzt + ωy,t (13)

where H ∈ R
q×p is the constant observation matrix and

ωy,t ∈ R
q is the random measurement noise.

A dynamic SE with Kalman filter is presented as

zt = (I − KtH) zt−1 + B (xt − xt−1) + Ktyt (14a)

Pt = (I − KtH) (Pt−1 + z) (14b)

Kt = (Pt−1 + z)H
T H (Pt−1 + z)H

T + y

−1

(14c)

where zt ∈ R
p is the estimated system state vector, Pt ∈

R
p×p is the estimate covariance matrix, and Kt ∈ R

p×q is

Kalman gain matrix.

We make the following assumption on the dynamic

system with SE.

Assumption A2:

1 For ∀t, the process noise ωz,t is a Gaussian with the

known probability distribution ωz,t ∼ N(0, z).

2 The measurement noise ωy,t is a Gaussian with the

known probability distribution ωy,t ∼ N(0, y).

3 The observation matrix H has full-column rank.

4 The estimate covariance matrix Pt is lower and upper

bounded, i.e., there exist constant parameters

ρm, ρM > 0 such that ρmI ≤ Pt ≤ ρMI,∀t.
5 The Kalman gain matrix Kt is upper bounded by

Kt ≤ σ ,∀t. Therefore, I − KtH is also bounded by

I − KtH ≤ 1 + σ H ,∀t.

The estimated system states zt are utilized in the updat-

ing of λ as

λt+1 = λt + α B zt − h − φλt + (15)

Then we define the online algorithm

ut+1 ← Ftut

Algorithm 1ODT-GNE Algorithm

Initialization: Step size α > 0, initial trade volume x0 ∈
X , initial Lagrangian multiplier λ0 ≥ 0, initial estimate

covariance matrix P0, initial Kalman gain matrix K0.

For each time t = {1, 2, ...}
S1: The market operator measures the value yt and esti-

mates the system states zt by (14).

S2: The market operator receives prosumers’ trade vol-

umes and sets the clearing price pt by (1). He also

updates the network constraint price λt by (15).

S3: The market operator sends the network constraint

price BT
i λt and the clearing price pt to each prosumer i.

S4: Prosumer i receives the prices, updates his trade vol-

ume xi,t by (8a), and then carries out the trade in the

physical system.

S5:Wait until the next time slot and go to S1.

where Ft : R
n+m → R

n+m of Ft is defined as

Ft :
x

λ
→ x

λ
− α

Ax + BTλ + d − p0

φλ − B zt + h
X×R

m
+

The concrete algorithm is presented in Algorithm 1 and

the algorithm framework is shown in Fig. 2. Denote by

pt = p0 − a i xi,t the market clearing price and Ft =
i fi xi,t , x−i,t the total cost at time slot t.

4 Convergence analysis
It takes three steps to transfer the original GNG (2) into

the ODT-GNE algorithm:

• Unifying the Lagrangian multiplier. The GNE can

be a low-dimensional manifold consists of infinite

number of non-isolated equilibrium and we hope to

identify a unique point (GNE, defined in Definition 2)

on the manifold, where all prosumers enjoy an

identical Lagrangian multiplier λ.
• Regularization term. A quadratic regularization

term of λ is added in the Lagrangian to formulate the

offline GNE seeking algorithm, which introduces a

certain error.

Fig. 2 The framework of the online algorithm
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• Online reformation. An ODT-GNE algorithm is

reformed based on the offline version, where the

process and measurement noises introduce errors.

In this section, we bound the errors of the second and

third steps, respectively, and then present the main result

of GNE tracking performance.

4.1 Error of regularization

In this subsection, we prove that Ft is a contractive map-

ping operator, and then show that the offline algorithm

converges to a neighborhood of the GNE. We begin with

two lemmas on Gt . Define cm = mini ci and cM = maxi ci.

Lemma 1 Suppose Assumption A1 holds. Gt is M-

strongly monotone with M = min {2cm + a,φ}.

Proof . For ∀u, v ∈ R
n+m, we have

(Gtu − Gtv)
T (u − v)

= (u − v)T
A 0n,m

0m,n φIm
(u − v) + (u − v)T

0n,n BT

−B 0m,m

(u − v)

= (u − v)T
A 0n,m

0m,n φIm
(u − v)

≥min {2cm + a,φ u − v 2

(16)

where the second term of (16) equals to 0. The proof

is completed directly from the definition of the strongly

monotone operator.

Lemma 2 Suppose Assumption A1 holds. Gt is L-

Lipschitz continuous with L = max {2cM + a + Na,φ} +
B .

Proof . For ∀u, v ∈ R
n+m, we have

Gtu − Gtv

≤ A 0n,m
0m,n φIm

+ 0n,n BT

−B 0m,m
u − v

= (max {2cM + a + Na,φ} + B ) u − v

which completes the proof.

Then we give the Lipschitz continuity of Ft , which

implies it is a contractive mapping.

Lemma 3 Suppose Assumption A1 holds. If the step size

satisfies

0 < α <
2M

L2
(17)

then Ft is β-Lipschitz continuous (contractive mapping)

with

β = 1 − 2αM + α2L2, 0 < β < 1 (18)

Proof . For ∀u, v ∈ R
n+m, we have

Ftu − Ftv
2

= [u − αGtu]X×R
m
+

− [v − αGtv]X×R
m
+

2

≤ (u − v) − α (Gtu − Gtv)
2

= u − v 2 − 2α (Gtu − Gtv)
T (u − v) + α2 Gtu − Gtv

2

≤ 1 − 2αM + α2L2 u − v 2

where the first inequality follows from the non-

expansiveness of projection and the second one holds

from Lemmas 1 and 2.

Then we have the following proposition immediately by

the Banach fixed-point theorem.

Proposition 2 Suppose Assumption A1 holds. If the step

size satisfies 0 < α < 2M/L2, there exists a unique fixed

point denoted by u∗
t = x∗T

t ,λ∗T
t

T
, i.e., Ftu

∗
t = u∗

t . More-

over, start with an arbitrary point u(0) ∈ R
n+m, define a

sequence {uk} by uk+1 = Ftut , and then uk → u∗
t .

Then we can present the gap between the fixed point

of the offline algorithm and the GNE. Define u∗
t =

x∗T
t ,λ

∗T
t

T
.

Theorem 1 Suppose Assumption A1 holds. If the step

size satisfies 0 < α < 2M/L2, then the gap between the

fixed point of the offline algorithm (11) and the GNE of (2)

is presented as

x∗
t − x∗

t ≤ u∗
t − u∗

t ≤
αφ

1 − β
λ

∗
t

Proof . Define a new operator Ft : R
n+m → R

n+m as

Ft :
x

λ
→ x

λ
− α

Ax + BTλ + d − p0

bt − Bx
X×R

m
+

The KKT condition (7) shows that u∗
t is the unique fixed

point of Ft . Then we have
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x∗
t − x∗

t ≤ u∗
t − u∗

t

= Ftu
∗
t − Ftu

∗
t

≤ Ftu
∗
t − Ftu

∗
t + Ftu

∗
t − Ftu

∗
t

≤β u∗
t − u∗

t + α
0n

φλ
∗
t

=β u∗
t − u∗

t + αφ λ
∗
t

≤βh u∗
t − u∗

t +
1 − βh

1 − β
αφ λ

∗
t

≤
αφ

1 − β
λ

∗
t (h → ∞)

where the second inequality holds from the triangle

inequality and the third one follows from Lemma 3, the

non-expansiveness of projection, and definitions ofFt and

Ft , repeating the third inequality h − 1 times builds the

fourth one, and letting h → ∞ completes the proof.

Remark 1 The error caused by the regularization term

is proportional to the coefficient φ and the step size α.

On the one hand, with appropriate values of φ and α, the

accuracy of the algorithm can be well preserved. On the

other hand, adding the regularization term can improve

the convergences of dual-based gradient algorithms [23].

4.2 Error of online measurement

In this subsection, we prove that the ODT-GNE algorithm

converges to the fixed point of the offline algorithm. We

start with two lemmas about the time-varying system.

Lemma 4 Suppose Assumption A1 holds. For ∀t, the
operator Ft satisfies

Ft+1u − Ftu ≤ α B ωz,t+1 , ∀u ∈ R
n+m

Proof . From the definition of Ft and Gt , we have

Ft+1u − Ftu

= [u − αGt+1u]X×R
m
+

− [u − αGtu]X×R
m
+

≤ (u − αGt+1u) − (u − αGtu)

=α Gt+1u − Gtu

=α
0n
bt+1 − bt

=α h − B gt+1 − h − B gt

≤α B gt+1 − gt

=α B ωz,t+1

which completes the proof.

Lemma 5 Suppose Assumption A1 holds. If the step size

satisfies 0 < α < 2M
L2

, then we have

u∗
t+1 − u∗

t ≤
α B

1 − β
ωz,t+1

Proof . From the optimality of u∗
t , we have

u∗
t+1 − u∗

t

= Ft+1u
∗
t+1 − Ftu

∗
t

≤ Ftu
∗
t+1 − Ftu

∗
t + Ft+1u

∗
t+1 − Ftu

∗
t+1

≤β u∗
t+1 − u∗

t + α B ωz,t+1

≤βh u∗
t+1 − u∗

t +
1 − βh

1 − β
α B ωz,t+1

≤
α B

1 − β
ωz,t+1 (h → ∞)

where the first inequality yields from the triangle inequal-

ity, the second one follows from Lemmas 3 and 4, repeat-

ing the second inequality h− 1 times builds the third one,

and letting h → ∞ completes the proof.

Thenwe characterize the gap between online and offline

operators by zt − zt , the error of system state estima-

tion.

Lemma 6 Supposing Assumption A1 holds. For ∀u ∈
R
n+m, we have

Ftu − Ftu ≤ α B zt − zt

Proof . The result directly follows from (3) and defini-

tions of Ft and Ft .

Lemma 7 Supposing Assumption A2 holds. We have

E zt − zt
2 ≤ ϕ2 (1 − δ)t E z0 − z0

2 + ζ 2

where the parameters are defined as

ϕ = ρM/ρm

δ < min ρm inf
t

HT H (Pt + z)H
T + y

−1
H , 1

ζ =
tr y + tr ( z)

δ
sup
t

max Kt
2 , I − KtH

2

1
2

Proof . The result directly follows from [21, 24].

Then we prove that the online algorithm converges to a

neighborhood of the offline fixed point in expectation.

Theorem 2 Suppose Assumptions A1 and A2 hold. If the

step size satisfies
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0 < α <
2M

L2

then we have

E ut − u∗
t ≤ βt

E u0 − u∗
0 + tξ t−1C1 + 1 − βt C2

t→∞−→ C2

where the parameters are defined as

ξ = max β ,
√
1 − δ

C1 = α B ϕ E z0 − z0
2

C2 =
α B

1 − β
ζ +

√
tr ( z)

1 − β

Proof . From the optimality of u∗
t , we have

E ut+1 − u∗
t+1

(a)
≤E ut+1 − u∗

t + E u∗
t+1 − u∗

t

(b)
≤E Ftut − Ftu

∗
t +

α B

1 − β
E ωz,t+1

(c)
≤E Ftut − Ftu

∗
t + E Ftut − Ftut +

α B

1 − β
tr ( z)

(d)
≤βE ut − u∗

t + α B E zt − zt + α B

√
tr ( z)

1 − β

(e)
≤βE ut − u∗

t + α B E zt − zt
2 + α B

√
tr ( z)

1 − β

(f )
≤βE ut − u∗

t + α B ϕ (1 − δ)
t
2 E z0 − z0

2

+ α B ζ +
√
tr ( z)

1 − β

(g)
≤βt+1

E u0 − u∗
0 + α B ϕ

t

τ=0

βt−τ (1 − δ)
τ
2 E z0 − z0

2

+
1 − βt+1

1 − β
α B ζ +

√
tr ( z)

1 − β

(h)
≤βt+1

E u0 − u∗
0 + α B ϕ (t + 1) ξ t E z0 − z0

2

+
1 − βt+1

1 − β
α B ζ +

√
tr ( z)

1 − β

→
α B

1 − β
ζ +

√
tr ( z)

1 − β
(t → ∞)

where (a) yields from the triangle inequality, (b) fol-

lows from Lemma 5 and definitions of ut+1 and u∗
t ,

(c) holds from the triangle inequality and E ωz,t+1 ≤

E ωz,t+1
2 =

√
tr ( z), (d) yields from Lemmas 3 and

6, (e) follows from E X ≤ E X 2, (f ) holds from

Lemma 7, (g) is derived by repeating (f ) t times, and (h)

follows from the definition of ξ = max β ,
√
1 − δ .

Remark 2 Theorem 2 justifies the convergence of the

ODT-GNE algorithm. The error of the online algorithm

depends on three parts: 1) the initial deviation of pri-

mal and dual variables E u0 − u∗
0 ; 2) the initial error

of system state estimation E z0 − z0
2; 3) the covariance

matrices of process and measurement noises y, z. The

coefficients of the first and second terms decrease to 0,

while the third one remains. If the system is noiseless, i.e.,

tr y = tr ( z) = 0, the remained term C2 vanishes,

and hence the ODT-GNE algorithm converges exactly to

the curves of u∗
t , which indicates the generality of our

results.

4.3 Main result

The combination of Theorems 1 and 2 formulates the

following theorem that characterizes the tracking perfor-

mance of the ODT-GNE algorithm.

Theorem 3 Suppose Assumptions A1 and A2 hold. If the

step size satisfies

0 < α <
2M

L2

then we have

E ut − u∗
t ≤ βt

E u0 − u∗
0 + tξ t−1C1 + 1 − βt C2 +

αφ

1 − β
λ

∗
t

Proof . The result directly follows from the triangle

inequality ut − u∗
t ≤ ut − u∗

t + u∗
t − u∗

t and The-

orems 1 and 2.

5 Illustrative example
In this section, we validate the online distributed algo-

rithm in the real-time energy sharing market of the distri-

bution network considering the bus voltage control.

5.1 Energy sharing in distribution networks

Prosumers share energy through the distribution system,

which may cause the violations of bus voltages. We first

formulate the physical model and then show that it follows

our primal GNG model (2).

Prosumers decide their traded energy xi in the strategy

set Xi. xi means that the prosumer sells energy and the

power is injected into the distribution network. Other-

wise, the prosumer buys energy and the power flows out

from the distribution network. The relation between bus

voltages and prosumers’ decisions can be described by the

LinDistFlow model [16, 19] as

for j ∈ Ni,

Pij = Pdj,t − xj +
k∈Nj

Pjk (19a)

Qij = Qd
j,t +

k∈Nj

Qjk (19b)

zj = zi − rijPij − xijQij (19c)
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where Pdj,t ,Q
d
j,t , vj and xj are the inelastic active and loads,

the magnitude of bus voltage, and the traded energy of

prosumer at bus j, zi = v2i /2 is the vector of the half

squared magnitude of voltage, rij, xij,Pij,Qij, and lij are the

resistance, reactance, active and reactive power, and the

squared magnitude of current through the line i, j , Nj is

the set of j’s child buses.

By eliminating Pij and Qij, we have the compact form of

the LinDistFlow model as

z = z0 − R Pd
t − x − XQd

t

= Rx + z0 − RPd
t − XQd

t

= B x + gt (20)

where the constant matrices R and X are derived from rij
and xij, respectively.

The bus voltages should be limited in a range z, z , i.e,

In
−In

z ≤ z

−z

or, B z ≤ h (21)

Formulas (20) and (21) jointly constitute the network

constraint (2c). Noting that (2a) and (2b) are originally

suitable, the energy sharing market of the distribution

network follows the GNG model (2).

For the measurement feedback, we assume that mea-

surement devices are only installed in a part of buses

denoted by N− ⊂ N . For i ∈ N−, the measured values

consists of the bus voltage vi and the line power Pij,Qij.

Then we have the measurement equations as

[zi]m = v2i /2 m
= zi + ωzi , i ∈ N−

sij m
= rijPij + xijQij m

= zi − zj + ωsij , j ∈ Ni or i ∈ Nj

where the second equation holds from (19c).

Define the measured value vector y = [zi]m, sij m
,

the measurement noise ωy = ωzi ,ωsij , which derives the

measurement equation

y = Hz + ωy

The analyses above show that our online distributed

GNE tracking algorithm can be used in the energy sharing

market of the distribution network.

5.2 Settings

The test system in this paper is the IEEE 14-bus system

with eight prosumers and four measurement devices. The

topology of the distribution network is presented in Fig. 3,

where prosumers are at buses 2,5,7,8,9,11,12, and 13, while

measurement devices are at buses 2,5,6, and 8. The voltage

of the point of common coupling is v0 = 1.03 p.u.. The

parameters of base loads and distribution lines are taken

from MatPower [25]. All parameters are given in the p.u.

Fig. 3 The topology of the IEEE 14-bus system

form and the nominal power is 1000MVA. The upper and

lower bounds of bus voltages are 1.05 p.u. and 0.95 p.u.,

respectively. The parameters of prosumers are provided

in Table 1. The nominal market clearing price p0 = 0.3

and the price elasticity coefficient a = 0.5. The step size

α = 0.005 and the regularization coefficient φ = 0.005.

The simulation is run within 30minutes with the 1-second

time scale.

The studies are carried out on a desktop with Intel

i7-10700 CPU and 16 GB memory. The simulation plat-

form is MATLAB 2016B and commercial solver CPLEX

is utilized to solve the formulated problems with the

intermediary toolbox YALMIP.

5.3 Results

In this subsection, we validate the algorithm in the IEEE

14-bus distribution network. We obtain 100 results by

running the simulation 100 times. In the following figures,

lightly painted areas represent the possible regions of the

results, while the dark bold curves are the mean values of

these 100 results.

Figure 4 shows the norms of the GNE curve x∗
t and

the real strategy generated by the ODT-GNE algorithm

xt , and their deviation. It is clear that the deviation

decays very quickly, verifying the convergence result in

Theorem 2. After about 5 min, the GNE tracking results

show the acceptable performance.

Table 1 The parameters of prosumers

Bus xi xi ci di ei

2 −0.05 −0.01 80 4.8 0.072

5 0 0.16 3 0.04 0

7 0 0.14 2 0.25 0

8 −0.08 −0.04 120 14.4 0.432

9 0 0.11 4 0.10 0

11 −0.07 −0.03 100 10.0 0.250

12 0 0.12 2.5 0.16 0

13 0 0.11 4 0.10 0
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Fig. 4 The curves of strategies: the GNE x∗
t and xt generated by ODT-GNE

Compared with the GNE tracking performance, the

error of the total cost of prosumers in the GNE is much

smaller. As can be seen in Fig. 5, the cost in the GNE and

the cost generated by the ODT-GNE algorithm are quite

close. In most time slots, the relative error of cost is not

more than 0.05%.

The curves of the market clearing prices display a sim-

ilar phenomenon as the total cost. In Fig. 6, the market

clearing price generated by the ODT-GNE algorithm con-

verges quickly to the price in the GNE. After about 5 min,

the relative error is limited within 10% and the mean value

is only 2%.

As can be seen in Fig. 7, the deviation curves of the

real system states and the estimated values validate the

accuracy of the dynamic SE with the Kalman filter. Dur-

ing the first 5 min, the estimation error converges rapidly.

After 5 min, the dynamic SE displays the remarkable per-

formance on combating process and measurement noises

and tracking the system states, which verifies Lemma 7.

The relative error of the system state estimation is not

more than 0.01%, as time goes by.

Figure 8 shows the real bus voltage profiles of all 13

buses. The bus voltages rarely violate the bounds which

are marked by red dotted lines in the figure. Bus voltages

are well regulated within the network constraint, although

the system is severely variant, the system state is not

entirely observable, and the measurement is disturbed by

the random noise.

6 Conclusion
In this paper, we have studied the online distributed

tracking algorithm of the GNE of the resource sharing

market on the physical network. To this end, we have

combined the distributed GNE seeking method and the

measurement with SE together to formulate a closed-loop

algorithm. The measurement of system states relieves the

Fig. 5 The curves of the total costs: F∗
t in the GNE and Ft generated by ODT-GNE
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Fig. 6 The curves of the market clearing prices: p∗
t in the GNE and pt generated by ODT-GNE

Fig. 7 The deviation of the real system state vector zt and its estimated value zt

Fig. 8 The curves of real bus voltages vt
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computational cost and improves the GNE tracking per-

formance on the time-varying physical network. We have

proved that the online closed-loop algorithm converges

to a neighborhood of the GNE in expectation. Numer-

ical simulation verifies the tracking performance of the

online distributed GNE tracking algorithm via measure-

ment feedback.

It is expected that this work could provide useful

insights and facilitate the implementations of online algo-

rithms via measurement feedback in GNGs, which would

inspire more applications in a wide broad of fields.
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