
1

Online Dynamic Graph Drawing
Yaniv Frishman and Ayellet Tal

Abstract—This paper presents an algorithm for drawing a
sequence of graphs online. The algorithm strives to maintain
the global structure of the graph and thus the user’s mental
map, while allowing arbitrary modifications between consecutive
layouts. The algorithm works online and uses various execution
culling methods in order to reduce the layout time and handle
large dynamic graphs. Techniques for representing graphs on
the GPU allow a speedup by a factor of up to 17 compared to
the CPU implementation. The scalability of the algorithm across
GPU generations is demonstrated. Applications of the algorithm
to the visualization of discussion threads in Internet sites and to
the visualization of social networks are provided.

Index Terms—Graph layout, GPU.

I. INTRODUCTION

Graph drawing addresses the problem of constructing geomet-

ric representations of graphs [1]. It has applications in a variety

of areas, including software engineering, software visualization,

databases, information systems, decision support systems, biol-

ogy, chemistry and social networks.

Many applications require the ability of dynamic graph draw-

ing, i.e., the ability to modify the graph [1]–[3], as illustrated in

Figure 1. Sample applications include financial analysis, network

visualization, security, social networks, and software visualiza-

tion. The challenge in dynamic graph drawing is to compute a

new layout that is both aesthetically pleasing as it stands and fits

well into the sequence of drawings of the evolving graph. The

latter criterion has been termed preserving the mental map [4] or

dynamic stability [2].

Most existing algorithms address the problem of offline dy-

namic graph drawing, where the entire sequence of graphs to

be drawn is known in advance [3], [5], [6]. This gives the

layout algorithm information about future changes in the graph,

which allows it to optimize the layouts generated across the entire

sequence. For instance, the algorithm can leave place in order

to accommodate a node that appears later in the sequence. In

contrast, very little research has addressed the problem of online

dynamic graph drawing, where the graph sequence to be laid out

is not known in advance [7], [8].

This paper proposes an online algorithm for dynamic layout

of graphs. It attempts to maintain the user’s mental map, while

computing fast layouts that take the global graph structure into

account. The algorithm, which is based on force directed layout

techniques, controls the displacement of nodes according to the

structure and changes performed on the graph. By taking special

care in order to represent the graph in a GPU-efficient manner,

the algorithm is able to make use of the GPU to significantly

accelerate the layout.

This paper makes the following contributions. First, a novel,

efficient algorithm for online dynamic graph drawing is presented.
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It spends most of the execution time on the parts of the graph

being modified. Second, it is shown how the heaviest part of the

algorithm, performing force directed layout, can be implemented

in a manner suitable for execution on the GPU. This allows us

to significantly shorten the layout time. For example, incremental

drawing of a graph of 32,000 nodes takes 0.704 seconds per

layout. Finally, two information visualization applications of the

algorithm are presented. The first is the visualization of the

evolution over time of discussion threads in Internet sites. In

this application, illustrated in Figure 1, nodes represent users

and edges represent messages sent between users in discussion

forums. The second application is the visualization of the growth

of a social network, shown in Figure 9. Here, nodes represent

users and edges represent connections between friends.

The rest of the paper is organized as follows. Section II

discusses related work. Section III formally defines the problem

and gives an overview of key algorithm ideas. Section IV presents

the algorithm in detail. Section V discusses our implementation.

Section VI presents results. Section VII discusses an application

to Internet discussion threads visualization. Section VIII presents

an application to the visualization of social networks. Section IX

concludes the paper. A preliminary version of this research was

presented in [9].

II. RELATED WORK

Various methods for graph drawing have been proposed , such

as hierarchical, planar, circular, orthogonal, and force directed

layout [1], [10]. Our algorithm builds on force directed layout [1],

where forces are applied to nodes according to the graph structure

and the layout is determined by convergence to a minimum

stress configuration. Force directed algorithms are able to produce

aesthetic layouts of general graphs, but may be computationally

expensive.

Some algorithms have been proposed to perform static force

directed layouts of large graphs [11]. In [12] coarser representa-

tions of the graph are recursively built using the edge collapse

operation. The algorithm in [13] coarsens the graph using an

approximation of the k-center problem. In [14] a quadtree is

used to accelerate the layout. In [15] a maximum independent

set filtration is used for coarsening. FM3 [16] uses a clever

O(N log N) approximation of the all-pairs repulsive forces for

N nodes. In [17] a simplified energy function, allowing a more

robust mathematical treatment, is used. In [18] a high dimensional

embedding of the graph is used.

Several algorithms address the problem of offline dynamic

graph drawing, where the entire sequence is known in advance.

In [3], a meta-graph built using information from the entire graph

sequence, is used in order to maintain the mental map. In [6],

a stratified, abstracted version of the graph is used. The nodes

are topologically sorted into a tree–like structure (before layout)

in order to expose interesting features. An offline force directed

algorithm is used in [5] in order to create 2D and 3D animations
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Fig. 1. Snapshots from the threads1 graph sequence, visualizing discussion threads at http://www.dailytech.com, left to right. Node labels in red show user
names, edges link users replying to posted comments. Up to 119 users are shown. Discussion topics, marked as blue A n nodes, include GPUs (A 4864,
A 4285), chipsets (A 4637, A 4425, A 4538 and A 4866) and CPUs (A 4589). A total of 144 messages are visualized.

of evolving graphs. Creating smooth animation between changing

sequences of graphs is addressed in [19].

A few algorithms have been proposed to address the online

dynamic graph drawing problem, where the graph sequence is

not known in advance. An approach based on Bayesian networks

is described in [20]. A cost function that takes both aesthetic and

stability considerations into account, is defined in [8]. Unfortu-

nately, computing this function is very expensive (45 seconds for

a 63 node graph). An algorithm for visualizing dynamic social

networks is discussed in [21]. Drawing constrained graphs has

also been addressed. Incremental drawing of DAGs (directed

acyclic graphs) is discussed in [2]. In [7] dynamic drawing of

clustered graphs is addressed. Dynamic drawing of orthogonal

and hierarchical graphs is discussed in [22]. The current paper

aims at producing online layouts of general graphs efficiently.

In recent years, GPUs have been successfully applied to numer-

ous problems outside of classical computer graphics [23]. Protein

folding [24] and simulation of deformable bodies using mass-

spring systems [25], [26] are related to our application. However,

while the mass-spring algorithms take only nodes connected by

edges into account, the force directed algorithm considers all the

nodes when calculating the force exerted on a node. GPUs have

also been used to simulate gravitational forces [27], where an

approximate force field is used to calculate forces. A GPU-based

implementation of the MDS (multidimensional scaling) algorithm

is discussed in [28]. Accelerating static graph drawing on the GPU

has been addressed by several authors [29]–[31]. A GPU accel-

erated force directed layout algorithm using an Euler method is

presented in [30]. Although a very large acceleration is achieved,

the complexity of the underlying algorithm is O(|E| + |V |2) for

|E| edges and |V | nodes. In [31] spectral partitioning is used

to create a hierarchy of graphs. The focus of the current paper,

however, is on creating stable layouts of changing graphs.

III. OVERVIEW

Given, online, a series of undirected graphs G0 =

(V0, E0), G1 = (V1, E1), . . . , Gn = (Vn, En), the goal of the

algorithm is to produce a sequence of layouts L0, L1, . . . , Ln,

where Li is a straight-edge drawing of Gi. The updates Ui that can

be performed between successive graphs Gi−1 and Gi, include

adding or removing vertices and edges.

A key issue in dynamic graph drawing is the preservation of

the mental map, i.e. the stability of the layouts [4]. This is an

important consideration since a user looking at a graph drawing

becomes gradually familiar with the structure of the graph. The

quality of the layout can be evaluated by measuring the movement

of the nodes between successive layouts, which should be small,

especially in unchanged areas of the graph. In addition, each

layout in the sequence should satisfy the standard requirements

from static graph layouts, such as minimization of edge crossings,

avoidance of node overlaps and layout symmetry [1].

Among the different classes of graph drawing algorithms, the

force directed algorithm class [1], [10] is a natural choice in our

case, for several reasons. First, different layout criteria can be

easily integrated into these algorithms. Second, in some of these

algorithms, it is possible to update node positions in parallel,

thus making it possible to efficiently employ the GPU’s parallel

computation model. Finally, it is possible to use a convergence

scheme that resembles simulated annealing, in which nodes are

slowly frozen into position [32]. This is suitable for use in

dynamic layout, where nodes have different scales of movement.

Our algorithm utilizes several key ideas. In order to maintain

the mental map, we perform the following. First, nodes are

initially placed using local graph properties and information from

the previous layout. Second, a movement flexibility degree is

assigned to each node, according to the changes in the graph.

This allows the algorithm to “focus” on nodes that may have large

displacements. Third, an approach similar to simulated annealing

is used, where the graph slowly freezes into its final position.

Fourth, the changes between graphs are smoothly animated. In

order to reduce the layout time while maintaining layout quality,

the graph is partitioned so that forces from distant nodes can

be approximated, and the GPU is used to accelerate the layout.

Moreover, in order to quickly compute aesthetic layouts, a multi-

level force directed scheme is used.

IV. ALGORITHM

Given a sequence of graphs G0, . . . Gn, our algorithm computes

layouts L0, . . . Ln. This section describes the algorithm in detail.
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We begin with describing how the online dynamic layouts Li, i ≥

1 are computed, given Li−1 and Gi. Next, we discuss the

algorithm used to compute the initial layout L0.

A. Computing Dynamic Layouts

Given a set of undirected graphs G1, G2 . . . Gn, the goal of the

dynamic algorithm is to compute online layouts L1, L2, . . . Ln.

Algorithm 1 is used to compute the layouts. Figure 2 visualizes

the main steps of the algorithm. We elaborate on these steps

below.

Algorithm 1 Dynamic layout of graph Gi, i ≥ 1

input: Gi, Li−1 output: Li

1) Merging: Merge layout Li−1 and graph Gi to produce an

initial layout.

2) Pinning: Assign pinning weights to the nodes, which control

the allowed displacement of each node.

3) Coarsening: Set C0 = Gi. Compute C1, C2, . . . , Ccoarsest

where Ck+1 = edge collapse(Ck). Set l = coarsest.

4) Compute a geometric partitioning of the nodes of C l.

5) Perform incremental layout of Cl. If l = 0 goto step 7 and

use the layout of C0 as Li (the layout of Gi).

6) Interpolation: Update the initial layout of C l−1 using the

layout of Cl. Set l = l − 1, goto step 4.

7) Animation: Smoothly morph Li−1 into Li.

Merging (Step 1): Computing a good initial position is vital

for reducing the layout time and maintaining dynamic stability

[15], [33]. The coordinates of nodes that exist both in Gi−1 and

in Gi are copied from Li−1. Nodes in Gi that do not exist in Gi−1

are assigned coordinates while considering local graph properties,

as follows.

Each un–positioned node v is examined in turn. Let PN(v)

be the set of neighbors of node v ∈ Vi that have already

been assigned a position. If v has at least two positioned

neighbors, v is placed at their weighted barycenter: pos(v) =
1

|PN(v)|

∑

u∈PN(v)

pos(u). If v has a single positioned neighbor, u,

then v is positioned along the line between pos(u) and the center

of the bounding box of Li−1. This procedure is performed in a

BFS (breadth–first search) manner, starting from the positioned

nodes. The nodes that cannot be placed by this procedure are

placed in a circle around the center of the bounding box of Li−1.

A Positioning score Γ(v) ∈ [0, 1] is assigned to each node,

based on the method used to position it. These scores indicate the

“confidence” in the node’s position. The higher the positioning

score, the better the initial placement is considered. The scores

are used to control the movement of nodes, as described in Step 2.

The highest score is assigned to nodes whose neighborhood has

not changed between Gi−1 and Gi, since we are most confident

with their positions. A lower score is assigned to nodes that are

positioned according to two or more neighbors. An even lower

score is assigned to nodes positioned according to one neighbor.

Finally, the lowest score is assigned to nodes for which no good

initial guess is known, and are therefore placed near the center of

the bounding box of the graph. In our implementation, scores of 1,

0.25, 0.1 and 0 are assigned to nodes positioned according to their

coordinates at Li−1, at the barycenter of two or more neighbors,

according to one neighbor (in a direction pointing away from the

center of the bounding box of the graph), and at the center of

the bounding box of Li−1, respectively. Figure 2 (b) shows an

example of computing the positioning score Γ. Note that darker

nodes, with a lower Γ are relatively localized. These changes are

propagated to the reset of the graph in the next step.

Pinning (Step 2): After all the nodes are placed, their pinning

weights, wpin(v) ∈ [0, 1], which reflect the stiffness in the

positions of the nodes, are computed [6], [7], [20]. The position

of a node with a pinning weight 1 is fixed during layout, while a

node with a pinning weight 0 is completely free to move during

layout.

Pinning weights are assigned using two sweeps. The first

sweep, which is local, uses information regarding the positioning

scores Γ of the node and its neighbors:

wpin(v) = α · Γ(v) + (1 − α)
1

degree(v)

∑

u:(u,v)∈E

Γ(u).

Taking the neighbors of v into account amounts to performing

low pass filtering of the pinning weights, according to graph

connectivity information. This mimics the creation of flexible

ligaments in the graph around areas that were modified. Using

a higher α value will reduce the influence of the neighbors of a

node on its displacement. In our implementation α = 0.6.

In the second sweep, the local changes are propagated, in order

to create a global effect. A BFS-type algorithm assigns each node

a distance-to-modification measure, as follows. The distance-zero

node set, D0, is defined as the union of the set of nodes with

a pinning weight of less than one and the set of nodes adjacent

to an edge that was either added or removed from Gi−1. The

distance-one set, D1, is defined as the subset of nodes in V \D0

adjacent to a node in D0. In general, Di is the subset of nodes not

yet marked, which are adjacent to a node in Di−1. This process

continues until all the nodes in V are assigned to one of the sets

D0, D1, · · · , Ddmax. Note that according to this definition, the

nodes in set Di, i ≥ 1 were assigned wpin ≡ 1 in the first sweep.

In the second sweep, as described below, some of these nodes are

assigned a lower pinning weight. This gives the layout algorithm

more flexibility in adopting to changes in the graph.

Pinning weights are assigned to nodes based on their distance-

to-modification. In particular, nodes that are farther than some

cutoff distance dcutoff , are assigned a pinning weight of one,

thus remaining fixed, since they are far away from areas of the

graph that were changed. The movement of other nodes depend

on the set Di they belong to. This is done as follows. Given

dcutoff = k∗dmax, the nodes in Di, i ∈ [1, dcutoff ] are assigned

pinning weights:

wpin = (winitial
pin )(1−

i
dcutoff

)
.

This assignment creates a decaying effect in which nodes far-

ther away from D0 are assigned higher pinning weights. The

constant winitial
pin is used to determine the decay in pinning

weight. The nodes in Dj+1 are assigned a pinning weight that

is (winitial
pin )(

−1

dcutoff
)
times the pinning weight of nodes in Dj .

Note that a larger k results in a more global effect, possibly

trading layout stability for better layout quality (since nodes are

more free to move). Setting a higher winitial
pin will make the

graph more rigid, thus limiting the displacement of nodes already

existing in the previous layout. In our implementation k = 0.5

and winitial
pin = 0.35.
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(a) Previous layout, Li−1 (b) After merging, showing positioning score Γ(v)

(c) After merging, showing pinning weight wpin(v) (d) Final layout of Li, showing partitions

Fig. 2. Dynamic layout steps: (a) previous layout, Li−1 (b) merged graph (Step 1), color coded according to the positioning score Γ(v). Brighter nodes
have a higher Γ. Here, nodes with Γ ∈ {0.1, 0.25, 1} are shown. (c) Pinning weights wpin(v) (Step 2). Brighter color corresponds to a higher wpin(v) (d)
Final layout (Step 5), color coded according to the partitioning (Step 4)

Figure 2 (c) shows an example of computing the pinning

weights. Note how the local changes in (b) are propagated to

a larger portion of the graph. Also note the decaying effect as

the distance from the modified part, in the middle of the graph,

increases. This reflects the requirement that nodes further from the

changed areas should undergo fewer modifications during layout.

While pinning weights were proposed in the past [6], the

approach taken here is different. In the current paper pinning

weights are used as part of setting the allowed displacement of

nodes, prior to computing the layout. This controls the movement

flexibility of each node. In [6], nodes are displaced according to

a combination of two different forces. The relative strength of the

forces is determined by weights that are modified as the layout

iterations progress.

Coarsening (Step 3): In this step a series of reduced versions

of the graph, which include initial positions, are constructed.

These are used to compute increasingly detailed ”skeletons” of

the final layout. At each level, given a fine graph, a coarser

representation is constructed by performing a series of edge

collapse operations. This is done by replacing two connected

nodes and the edge between them by a single node, whose weight

is the sum of the weights of the nodes being replaced. The pinning

weight of the new node is set to the geometric mean of the pinning

weights of the replaced nodes. The new node is placed at the

weighted average position of the corresponding fine nodes, biased

according to their weights. The weights of the edges are updated

accordingly. (The weight of a node/edge in the finest graph is 1.)

The order of the edge collapse operations is determined as

follows. First, nodes, which are candidates to be eliminated, are

sorted by their degree (so as to eliminate low-degree nodes first).

An adjacent edge of an un-paired low-degree node is chosen for

collapse by maximizing the following measure:
w(u,v)
w(v)

+
w(u,v)
w(u)

,

where w(x) is the weight of node x and w(x, y) is the weight

of edge (x, y). This function helps to preserve the topology of
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fracdone = 0 , K = 0.1, t = K ∗
√

|V |, λ = 0.9

do iteration count times,

update partitioning (Alg. 1 Step 4, Alg. 2 Step 3) if required

parallel foreach partition Pi ∈ P ,

(1) calculate partition center of gravity CG(Pi) =

∑

v∈Pi

pos(v)

|Pi|
parallel foreach node v, v ∈ Pi where fracdone > wpin(v),

(2) F
repl
int (v) =

∑

u∈Pi,u6=v

K2 pos(v)−pos(u)
‖pos(v)−pos(u)‖2

(3) F
repl
ext (v) =

∑

Pj∈P,Pj 6=Pi

K2|Pj |
pos(v)−CG(Pj)

‖pos(v)−CG(Pj)‖2

(4) F
repl
tot (v) = F

repl
int (v) + F

repl
ext (v)

(5) F attr(v) =
∑

u:(u,v)∈E

‖pos(u)−pos(v)‖(pos(u)−pos(v))
K

parallel foreach node v where fracdone > wpin(v),

(6) F total(v) = F
repl
tot (v) + F attr(v)

(7) posnew(v) = pos(v) +
F total(v)

‖F total(v)‖
min(t, ‖F total(v)‖)

t∗ = λ, fracdone+ = iteration count−1

Fig. 3. Parallel force directed layout algorithm

the graph by “uniformly” collapsing highly connected nodes.

Coarsening is used in [12], where a different ordering of the edge

collapse operations is used.

In our implementation, the coarsening stops either when the

graph is reduced to several hundred nodes or after four coarsening

steps. Coarsening further may lead to diminishing results due to

the inaccuracy in the computed pinning weights of the coarse

graph.

Geometric partitioning (Step 4): The partitioning step is used

to accelerate the layout step, discussed below. There are three

requirements that should be satisfied by partitioning. First, the

partitions should be geometrically localized, thus the nodes in

each partition should be relatively close to each other. This will let

us represent each partition using a single ”heavy” node. Second,

the number of nodes in each partition should be similar. This

is important in order to achieve good load balance between the

parallel processors of the GPU, as discussed in Section V. Third,

the algorithm should be fast.

We have chosen to use a KD-tree-type partitioning. The al-

gorithm works top down. Given the positions of all nodes, they

are sorted according to the X coordinate and the index of the

median node is located. The nodes are partitioned into two sets:

one with indices below the median and one with indices equal or

greater to the median index. The algorithm proceeds recursively

with the two subsets. This time, sorting is performed according to

the Y coordinate. The algorithm alternates between computing the

median X and Y coordinates. The recursive subdivision terminates

when the size of the subset is below the required partition

size. Figure 2 (d) shows an example of computing a geometric

partitioning of a graph.

Layout (Step 5): This step of the algorithm computes the

layout. Our algorithm builds on the basic Fruchterman-Reingold

(FR) force directed algorithm [32], which is modified, so as to

make it suitable both for incremental layout and for efficient im-

plementation on the GPU. The basic algorithm is thus modified in

three ways. First, an approximate force model is used in order to

speedup the calculation. Second, node pinning allows individual

control over the movement of each node. Third, the algorithm is

reformulated in a manner suitable for efficient implementation on

the GPU.

Figure 3 outlines our algorithm. The input is a graph G =

(V, E) decomposed into partitions Pi, nodes with initial place-

ment pos(v), and their pinning weights wpin(v). The output is

the positions for all nodes. The key idea of the algorithm is to

converge into a minimal energy configuration, which usually leads

to aesthetically pleasing layouts.

The initialization of the algorithm includes setting the optimal

geometric node distance K (that affects the scale of the graph),

the initial annealing temperature t, the temperature decay constant

λ, and the fraction of the iterations done fracdone ∈ [0, 1].

Partitioning is used to accelerate the algorithm. Instead of

calculating all-pair repulsive forces, as is customary, approximate

forces are calculated. An exact calculation is performed only for

nodes contained in the same partition, while an approximate cal-

culation is performed for nodes belonging to different partitions.

The center of gravity is found for each partition Pi and is used

to replace the nodes in Pi.

Our experiments show that there is flexibility in the number

of nodes in each partition, e.g. Figure 4 shows that using twenty

times fewer nodes in each partition has little effect on the final

layout. Moreover, it is not necessary to re-partition at every

iteration, except for the initial iterations of the initial layout (Algo-

rithm 2, Step 4), where the nodes may have a high displacement.

During the incremental layout, the merge stage (Algorithm 1,

Step 1) already gives a good approximation of the final layout.

In cases where there are large changes between consecutive

graphs, performing several re-partitioning steps may improve the

results. These cases can be identified using the following formula:
1

|V |

∑

v∈V

(1−wpin(v)), whose value is proportional to the changes

performed to the graph. This is so since the number of iterations

during which each node v moves, is proportional to (1−wpin(v))

(see Figure 3).

The key to efficient implementation of this algorithm on the

GPU is deciding which nodes will be processed by the paral-

lel foreach loops. In order to reduce layout time and maintain

dynamic stability, only some of the nodes are displaced in each
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(a) 0.5
√

|V | partitions (b) 10
√

|V | partitions

Fig. 4. Partition size effect on layout, graph bcsstk31, |V | = 35588, |E| =
572916

layout iteration. For each node v, wpin(v) is compared to the

current fraction of layout iterations done, fracdone. Only nodes

that satisfy fracdone > wpin(v) are processed. This makes it

possible to control the relative displacement of nodes. Nodes with

a low pinning weight will be displaced during more iterations of

the algorithm. Thus, the pinning weight, assigned according to

the changes performed in the vicinity of each node, controls the

stability of node locations. Because the allowed displacement is

decreased from one iteration to the next, setting a higher pinning

weight limits the total displacement of nodes.

Using this method, the algorithm spends computation time only

on nodes which should be displaced in each layout iteration. The

amount of work done depends on the changes performed to the

graph. Areas which did not change are not processed, thereby

reducing the layout time. It is often possible to accelerate the

incremental layout time by a factor of two using this technique.

The algorithm computes the total force acting on each node

in several steps. First, the centers of gravity of all partitions are

computed. Next, the set of active nodes, which are allowed to

be displaced in the current iteration, is determined. For each

such node, the repulsive forces F
repl
int , F

repl
ext and the attractive

force F attr acting on it, are calculated. Finally, the nodes are

displaced by an amount bounded by the current temperature of

the algorithm, which slowly decays, mimicking particles freezing

into position.

Interpolation (Step 6): In this stage the computed layout of

graph Cl is interpolated and used to update the initial layout of

the higher-resolution graph Cl−1. Given a node v ∈ Cl−1, which

was mapped to node p ∈ Cl, node v is displaced by the following

amount:

(1 − wpin(v))
A(Bboxold(Cl))

A(Bboxnew(Cl))
(pos

new(p) − pos
old(p)),

where A(Bboxold(Cl)) is the area of the bounding box of graph

Cl computed during the coarsening step, A(Bboxnew(Cl)) is the

area computed during the layout step, posold(p) is the position of

node p computed during the coarsening step and posnew(p) is the

position of p computed during the layout step. The motivation for

using this formula is as follows. The amount 1−wpin(v) is used to

displace nodes according to their pinning weights. Nodes with a

higher pinning weight are allowed a smaller displacement. Doing

so helps maintain the stability of the graph. Nodes with a lower

pinning weight are allowed greater flexibility in order to compute

a high-quality layout. The displacement is scaled according to

the change in the area of the coarser Cl due to the layout step.

Finally, node v is displaced according to the movement of the

corresponding lower-resolution node p.

Morphing (Step 7): The old layout Li−1 is morphed into the

new layout Li. The animation, showing a gradual change, helps

the user maintain the mental map of the graph. Node positions

are linearly interpolated. Removed nodes and edges fade out, then

the nodes and edges move to their new position and finally added

nodes and edges fade into view.

Complexity: The asymptotic complexity of the merging, pin-

ning, coarsening and interpolation steps is O(|E| + |V |). The

complexity of the partitioning step is O(|V |·log(|V |)): finding the

median is linear at each level in the partition tree which contains

O(log|V |) levels. Assuming that each partition contains Cs nodes,

the running time of each layout iteration is O(|E| + |V | · (Cs +
|V |
Cs

)). This expression is minimized when Cs =
√

|V |, resulting

in a total complexity of O(|E| + |V |1.5). When |E| ≈ |V |, the

dominating term is |V |1.5. Although this may look relatively high,

the simplicity of the calculation and its parallel implementation

on the GPU give good results, as discussed in Section VI. We

use 50 layout iterations [12].

B. Computing the Initial Layout L0

Algorithm 2 is used to compute a static layout of the first graph,

G0. This algorithm uses a multi-level force directed scheme in

order to quickly compute an aesthetic layout. Both the Kamada-

Kawai (KK) [34] and Fruchterman-Reingold (FR) [32] algorithms

are employed. We elaborate on the steps of the algorithm below.

Algorithm 2 Static layout of the first graph, G0

input: G0 output: L0

1) Coarsening: Set C0 = G0. Compute C1, C2, . . . , Ccoarsest

where Ck+1 = edge collapse(Ck). Set l = coarsest.

2) Perform KK layout of Ccoarsest.

3) Compute a geometric partitioning of the graph nodes.

4) Perform layout of Cl. Update the partitioning (step 3) every

few iterations. If l = 0 terminate and use the layout of C0

as L0 (the layout of G0).

5) Interpolate the layout of Cl to form an initial layout for

Cl−1. Set l = l − 1, goto step 3.

Coarsening (Step 1): A similar method to Algorithm 1, Step 3

is utilized to create a series of reduced versions of the graph,

which are used to compute increasingly detailed ”skeletons” of

the final layout. The coarsening continues recursively until a small

graph of several hundred nodes is created. This graph is then

efficiently handled in the next step and is used as a basis of a series

of resolution-increasing layouts. Note that unlike the incremental

case, initial coordinates for the constructed graphs Ck, are not

available.

KK layout (Step 2): The KK algorithm [34] is used to compute

a force-directed layout of the coarsest graph, Ccoarsest. This

algorithm is used in conjunction with the FR [32] force-directed

algorithm (in Step 4) in order to produce an aesthetic layout.

While the KK algorithm is good at producing a good placement

from an arbitrary initial position, the FR algorithm produces a

”smoother” layout, is quicker, but is more sensitive to the initial

conditions given to it. Hence, combining the algorithms gives a

fast and aesthetic result. In our implementation 2000 iterations

of the KK algorithm are performed. Note that during incremental

layout (Section IV-A) combining our multi-level approach while
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reusing the previous layout as a starting point gives fast and good

results without incurring KK’s performance penalty.

Geometric partitioning (Step 3): The same algorithm as in

step 4 of Algorithm 1 (Section IV-A) is used here.

FR layout (Step 4): In this step we perform force-directed

layout of the current graph in the hierarchy, C l. The algorithm

is described in detail in Step 5 of Algorithm 1 (Section IV-A).

Unlike the dynamic case, here pinning weights are not used and

all nodes are free to move in every layout iteration. In order to get

improved results, we update the node partitioning (Step 3) several

times during the layout. The center of gravity of each partition is

updated every iteration, though. The algorithm terminates when

the layout of C0 = G0 is computed.

Interpolation (Step 5): In this stage the existing layout of C l

is interpolated to form an initial layout for the higher-resolution

Cl−1. Nodes in Cl−1 are initially placed near the position of their

parent in Cl.

V. IMPLEMENTATION

This section discusses the implementation of the algorithm. As

will be shown in Section VI, performing incremental layout, i.e.

Algorithm 1, Step 5, (and similarly Algorithm 2, Step 4) on the

GPU can significantly accelerate the overall running time of the

algorithm. Therefore, in this section we focus on describing the

GPU implementation of this step.

On the GPU, parallel computation is achieved by rendering

graphics primitives that cover several pixels. The GPU runs a

program called a kernel program for each pixel candidate, called

a fragment. The key to high performance on the GPU is using

multiple fragment processors, which operate in parallel. The GPU

suits uniformly structured data, such as matrices. The challenge

is representing graphs, which are unstructured, in a manner that

makes efficient use of GPU resources.

Implementing static force directed layout on the GPU has been

discussed in [31]. While the algorithm used here for static layout

is different, the GPU implementation is similar. This section

reviews the GPU implementation and focuses on the changes

needed for dynamic layout.

Several textures are used on the GPU to represent the graph:

the textures represent the nodes, the partitions, the edges, and the

forces. The location texture holds the (x,y) positions of all the

nodes in the graph. Each graph node has a corresponding (u,v)

index in the texture. As shown in Figure 5 (a), the nodes in each

partition are stored in a rectangular region in the location texture.

Bucket-sort is performed on the pinning weights of the nodes

in each partition. Nodes are placed into the texture in a left to

right, top to bottom order, according to the bucket they belong

to, as shown in Figure 5 (b). The number of buckets is set to

the number of iterations of the layout algorithm. Sorting creates

contiguous regions of nodes with similar wpin values. This allows

the algorithm to control the set of nodes whose positions are

updated at every layout iteration. Using appropriate rendering

commands, the GPU is instructed to process only the relevant

nodes in each iteration, as discussed below.

The partition center of gravity texture holds the current (x,y)

coordinates of the center of gravity of each partition. Graph edges

are represented using the neighbors texture and the adjacency

texture. The adjacency texture contains lists of (u, v) pointers

into the location texture, representing the neighbors of each node.

The neighbors texture holds for each node v, a pointer into

Fig. 5. Sorting nodes by pinning weight wpin on the GPU. (a) : A location
texture separated to regions, color coded by the partition each node belongs
to. (b) : Nodes in each region are sorted from low wpin to high wpin.

the adjacency texture, to the coordinates of the first neighbor

of the node. Pointers to additional neighboring nodes are stored

in consecutive locations in the adjacency texture. The neighbors

texture also holds the degree of each node. The forces computed

during layout are stored in two textures: the attractive force

texture and the repulsive force texture. The attractive force texture

contains for each node the sum of the attractive forces F attr

exerted on it by its neighbors. The repulsive force texture holds

the sum of repulsive forces, both by nodes in the same partition

– F
repl
int and by the other partitions in the graph – F

repl
ext .

The overall storage complexity is O(|V |+ |E|): every node and

edge is stored a fixed number of times. Each node is represented

as four 32-bit floating-point values in the following textures:

location (two textures), forces (two textures) and neighbors. Each

edge is represented twice in the adjacency texture (once for each

of the nodes in its endpoints), whose entries are also four 32-bit

floating-point numbers. Due to performance reasons, information

about the graph partitions is stored in three textures holding four

32-bit floating-point numbers each. These textures have the same

size as the textures representing nodes.

Hence, in the current implementation, a total of 32 32-bit num-

bers are stored per node and 8 32-bit numbers are stored per edge

in the different textures. This amounts to about 8MB of texture

memory for the fe pwt graph with (V, E) = (32045, 112395).

Modern graphics cards have hundreds of megabytes of texture

memory, making accommodation of very large graphs possible.

Note that for implementation ease, textures holding four 32-bit

numbers are used in all cases. This in not always required, and

can further reduce the memory footprint.

Computing each layout iteration is done in several steps, which

are implemented as kernel programs that run on the GPU. The

partition CG kernel calculates the center of gravity of each parti-

tion, as shown in the line numbered (1) in Figure 3. The repulse

kernel calculates the repulsive forces exerted on each node. This

kernel first calculates for each fragment it processes, the internal

forces, e.g. forces exerted by nodes contained in the partition

that the fragment belongs to. Then, it approximates the forces

by all other partitions. See lines (2)-(4) in Figure 3. The attract

kernel is used to calculate the attractive forces caused by graph

edges. For each node, the kernel accesses the neighbors texture in

order to get a pointer into the adjacency texture, which contains

the (u,v) location texture coordinates of the node’s neighbors.

For each neighboring node, the attractive force is calculated and

accumulated. This corresponds to line (5) in Figure 3. Finally, the

anneal kernel calculates the total force on each node, F total, and
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graph rimzu threads1 threads2 newcomb 3elt fe pwt

metric ∆pos |U total| ∆pos |U total| ∆pos |U total| ∆pos |U total| ∆pos |U total| ∆pos |U total|

non-incr 31.4 4418 1.45 39.2 1.06 9.72 0.48 1.82 25.9 2.73x105 105.5 9.59x105

basic-incr 4.62 4435 0.333 40.4 0.297 9.81 0.221 1.81 2.3 3.06x105 10.7 9.37x105

ours 0.274 3418 0.042 30.3 0.048 5.55 0.099 1.94 0.968 2.79x105 3.62 8.1x105

TABLE I

LAYOUT QUALITY - VALUES ARE AVERAGES FOR A SEQUENCE OF LAYOUTS

Graph avg. avg. 3GHz Pentium + 7900GS GPU 2.4GHz Core 2 + 8800GTS GPU
name |V | |E| initial layout dynamic layout initial layout dynamic layout

CPU CPU+GPU CPU CPU+GPU CPU CPU+GPU CPU CPU+GPU

3elt 4097 10468 2.72 1.49 0.764 0.249 1.72 1.27 0.436 0.2

4elt 14588 40176 17.6 2.98 5.91 0.777 10.4 2.22 3.38 0.39

bcsstk31 32715 48495 50.4 9.28 21.2 4.74 34 9.61 12.1 1.38

fe pwt 32045 112395 47.7 6.03 21 2.1 28.8 4.27 12 0.704

TABLE II

GRAPH SEQUENCE INFORMATION AND RUNNING TIME [SEC.]. RUNNING TIMES OF THE CPU ONLY AND GPU-ACCELERATED IMPLEMENTATION OF THE

ALGORITHM ARE SHOWN. ALL TIMES SHOWN ARE TOTAL RUNNING TIMES FOR COMPUTING A LAYOUT. DYNAMIC LAYOUT TIMES ARE AVERAGED OVER

A SEQUENCE OF LAYOUTS.

displaces nodes accordingly, as shown in lines (6),(7) in Figure 3.

This kernel updates a second copy of the location texture. This

double buffering is required since the GPU can not read and write

to the same texture.

In total, the partition CG kernel performs O(|V |) operations;

the repulse kernel performs O(|V |1.5) operations; the attract

kernel performs O(|E|) operations; and the anneal kernel O(|V |)

operations. On the GPU, the computations executed in each

kernel, are run in parallel. Since, as discussed below, only some of

the nodes are operated on during each layout iteration, in practice

the average number of operations performed by each kernel is

lower than the maximum values presented above.

Recall that the nodes in each partition are sorted according to

wpin, as shown in Figure 5 (b). This allows us to control the nodes

processed in each layout iteration, thus spending GPU time only

on the nodes which should move. Before each layout iteration,

for each rectangular texture region representing a partition of

the graph, the rows which contain nodes for which fracdone >

wpin(v) are determined. A set of quadrilaterals which cover the

corresponding parts of each region are rendered. This instructs

the GPU to process only these nodes. OpenGL display lists are

used in order to efficiently send these rendering commands to

the GPU. Note that this method operates on a per-row basis,

potentially causing a small amount of extra fragments to be

processed for each region. The processing of these extra fragments

is avoided by conditionally updating the location of a node only

if fracdone > wpin(v).

Note that our implementation does not require copying data

from GPU memory (textures) to CPU memory while performing

the layout iterations. Keeping the data on the graphics card en-

ables full utilization of the GPUs compute and memory bandwidth

resources.

VI. RESULTS

Two criteria are used to measure the quality of the resulting

dynamic layouts: average displacement of nodes between each

pair of successive layouts and potential energy. The first criterion

measures the stability of the layout. The second criterion judges

the quality of the layout. Lower energy (in absolute value) implies

low stress in the graph, corresponding to a good layout. The

energy U is derived from the relation ~F = −∇U . Hence, given

the force ~F , the energy can be derived by integrating. Given two

nodes at positions ~u,~v, connected by an edge , the attractive force

acting along the edge is

~F
attr =

1

K
‖~u − ~v‖(~u − ~v) = −∇U

attr
,

hence

U
attr =

−1

3K
‖~u − ~v‖3

.

The repulsive force between two nodes is

~F
repl =

−(~u − ~v)

‖~u − ~v‖2
K

2 = −∇U
repl

,

hence

U
repl =

1

2
K

2
log(‖~u − ~v‖2).

The total energy is computed by summing over all edges and over

all node pairs: U total = Uattr + Urepl , e.g.

U
total =

∑

u:(u,v)∈E

−1

3K
‖~u−~v‖3 +

∑

u,v∈V,u6=v

1

2
K

2 log(‖~u−~v‖2).

Other static graph layout quality criteria are indirectly handled by

the underlying force directed algorithm. Note that other criteria

have also been used to measure mental map preservation. For

example the orthogonal ordering of nodes [4].

The quality of the layout is compared to two algorithms. The

first is a force-directed non-incremental algorithm that lays each

graph in the sequence independently. This algorithm, which is

expected to produce the best layouts since it has no constraints,

is used to check the quality of our dynamic layouts. The second

is a variant of our dynamic algorithm which does not use pinning

weights (e.g. wpin ≡ 0). This algorithm demonstrates that simply

using the previous placement is insufficient for generating stable

layouts. Note that the running time of these two algorithms is

much higher than the running time of our algorithm since they

process all nodes in each layout iteration.

Several well–known graphs (3elt, 4elt, fe pwt, bcsstk31) are

used to demonstrate our algorithm [38]. The dynamic sequences

are generated by performing random changes on the graphs,

modifying |E| and |V | by up to 15%. In addition, the sequences

marked threads1,2 and Rimzu come from real data, discussed
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Fig. 6. Snapshots from layouts of the 3elt sequence (|V | ≈ 4000, |E| ≈
10, 500), left-to-right, top-to-bottom

in Sections VII, VIII. Figure 6 shows a few snapshots from the

dynamic graph layout of 3elt.

Another example is Newcomb’s fraternity data [35], which

represents friendship relations between college students. This

data was visualized using the SoNIA tool for social network

visualization [21], [36], [37]. As discussed in [21], the Newcomb

data is best visualized by the peer-influence (PI) algorithm of

SoNIA, where nodes are displaced according to forces exerted

by neighbors.

Table I shows average results for the layout quality metrics.

(Lower values are better.) The ∆pos column shows the average

displacement of nodes and the |U total| column shows the absolute

value of the potential energy of the graph. It is clear that

our incremental algorithm outperforms the other algorithms and

maintains dynamic stability. The potential energies achieved by all

algorithms are similar, demonstrating that the quality of layouts

computed by our algorithm is good. In some cases (like fe pwt)

the two incremental algorithms surprisingly perform better than

the static one. This is due to the fact that the force-directed

algorithm finds a local minimum which depends on the initial

conditions, which are different for each algorithm used here. In

summary, the results demonstrate that our algorithm computes

aesthetic layouts while decreasing the movements of the nodes.

This reduction does not come at the expense of layout quality. The

algorithm tries to maintain the structure of the graph, using node

pinning to propagate changes across the graph, allowing for new

landmarks to be created, while at the same time maintaining the

mental map. Note that compared to the algorithm of [9], using a

multi-level incremental algorithm somewhat reduces the stability

of the layout. However, this gives the algorithm an opportunity

to calculate a higher quality layout.

Fig. 7. Snapshots from the layouts of the newcomb fraternity data [35]. Left:
our algorithm. Right: SoNIA algorithm [36], [37], used in [21].

Figure 7 shows a comparison of the SoNIA layouts using

the PI algorithm and our layouts. As can be seen, one of the

advantages of our algorithm is the greater stability in node posi-

tions, especially when only the edges of the graph are modified.

Although both SoNIA and our algorithm are based on force-

directed methods, the more sophisticated initial placement and

pinning algorithms help improve the results.

For our performance tests we used two computers. The first is

a PC with a 3 GHz Pentium IV CPU and an NVIDIA 7900GS

GPU. The second is a newer PC with a 2.4 GHz Intel Core 2

Duo E6600 CPU and an NVIDIA 8800GTS GPU. Our algorithm

was implemented using C++, Cg and OpenGL.

Table II gives information about the graph sequences and

running times - when using only the CPU and when using the

GPU to accelerate the computation. As can be seen in the table,

our GPU implementation provides a significant speedup compared
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Fig. 8. Snapshots from the threads2 graph sequence, visualizing discussion threads at http://www.dailytech.com, left to right, top to bottom. 109 messages
from 86 users in 5 discussion threads are shown. Discussion topics, marked as blue A n nodes, include computer games (A 5054), nuclear fusion (A 5027),
low-cost PCs (A 5060), Windows/Linux switch (A 5069) and Christmas e-shopping (A 5082) .

to the CPU. Using the older 7900GS GPU, a speedup of up to 10

times is achieved. Using the newer and faster 8800GTS GPU, the

speedup increases to up to 17 times, compared to the latest CPU.

Due to the high ratio of arithmetic operations to memory accesses,

the algorithm is compute and not memory bound. Therefore,

as demonstrated in the comparison between the PCs, the GPU

implementation of the algorithm is scalable.

Focusing on the part of the algorithm that runs on the GPU

leads to interesting insights. For the fe pwt graph, the average

time for computing the FR incremental layout stage using the

7900GS GPU was 1.66 seconds. Using the 8800GTS GPU, the

time dropped to 0.417 seconds. This represents a significant

performance increase between GPU generations (∼ 4 times),

which is larger than the performance increase between the CPU

generations [23]. The speedup is achieved while taking into

account the overhead of instructing the GPU to perform the

layouts, which can be significant in the coarser graphs. The

speedup of performing the last layout stage (on the finest graph)

is about 8 times.

There are several factors contributing to the increase in per-

formance between the GPUs. The new GPU has a different

architecture, which is better suited for dealing with graphs. Due

to its smaller branch granularity, a smaller penalty is encountered

when dealing with non-uniform data, such as graphs. In addition,

the 8800GTS uses a scalar architecture, which is more efficient

here, since the algorithm deals mostly with 2D and 1D quantities.

Finally, the new GPU has more raw compute power.

VII. APPLICATION TO DISCUSSION THREAD VISUALIZATION

We applied our algorithm to the visualization of Internet dis-

cussion forums. We collected data from several discussion threads

at http://www.dailytech.com . This site contains various

hi-tech related news items. The discussion threads visualized

contain the comments people make on the news items. In the

graph, each node represents a user. Edges are constructed between

the user adding a comment and users which replied to that

comment. Each discussion thread is represented by a node labeled

A n where n is the discussion thread number (corresponding to

a news item).

In order to create the visualization, shown in Figures 1 and 8,

several steps are executed. First, the graph is transformed into a

connected graph, as required by the graph layout algorithm. This

is achieved by adding an invisible root node and connecting it with

invisible edges to all the A n nodes representing the discussion

threads. The connected graph is then handed to the incremental

layout algorithm.

Second, in order to improve the visualization of the computed

layout sequence, overlapping between node labels is addressed.

A set of bounding boxes of drawn node labels is maintained and

updated after each label is drawn. If a new label to be drawn

intersects any of the bounding boxes of already drawn labels, it is

drawn at the background – farther away from the viewer and with

a lighter color. Doing so prevents the new label from occluding

the text of any previously drawn labels. If a new label does not

intersect any of the existing labels, it is drawn in the foreground.

Before each node label is drawn, a rectangle with the same color
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as the background is drawn behind the node label. This is done

so each pixel will display the text of a single label (preventing

overlaps).

Third, during animation, the nodes are drawn in a specific

order which is designed to visualize the interesting features of

the evolving graph sequence more clearly. The labels of important

nodes should receive priority when drawn. These include nodes

with a high degree, acting as central nodes and in the graph, and

nodes whose neighborhood in the graph has changed. Each node

is assigned a score. Nodes with a higher score are rendered before

nodes with a lower score. This reduces the probability that an

important node’s label will be occluded. The score of each node

v is set to score(v) = degree(v) + β · degree change(v), where

degree change(v) is the change of the degree of node v between

the current and previous graphs. The score helps emphasize the

main features of the evolving graph sequence. The constant β can

be changed by the user. Its default value is 2.

Figure 1 shows a sample visualization of 7 discussion threads

with 119 users. Although during visualization the graph more than

doubles, our layout manages to preserve the mental map. Several

insights can be gained from the visualization. Clusters are evi-

dent around the A n nodes, representing each discussion thread.

As time progresses, more clusters, representing new discussion

threads, become visible. There are clusters of various sizes –

correlating to threads drawing different levels of attention. Some

users post messages on several threads while others discuss only

one topic. Some users are very active and post many messages,

acting as central nodes in the graph. The degree of nodes

representing such users increases over time and they contribute

to the connectivity of the graph. Some users, who are drawn at

the boundaries of the graph, contribute only one comment.

As a second example we studied the latest headlines section of

the website. We selected five items, appearing over a span of three

days, from seemingly unrelated fields: computer games, nuclear

fusion, low-cost PCs, Windows/Linux switch and Christmas e-

shopping. The number of comments for each article varied from

15 to 31. A total of 86 users contributed to the discussion threads.

Figure 8 presents several snapshots from the animation sequence

showing the evolution of these discussion threads over time. A

movie showing the visualization is available in the supplementary

material.

Looking at the visualization, several conclusions can be drawn.

The graph is initially partitioned into disconnected clusters, repre-

senting nuclear fusion, low-cost PCs and computer games. Later,

connections start to appear in the graph. The threads discussing

low-cost PCs and Windows/Linux switch are highly connected.

Some connections exist between these clusters and the computer

game cluster. Surprisingly, several users discussing nuclear fusion

join both the computer games and Windows/Linux switch threads.

Good correlation also exists between nuclear fusion and the

Christmas e-shopping discussion.

VIII. APPLICATION TO SOCIAL NETWORK VISUALIZATION

Our algorithm was applied to the visualization of the growth of

social networks. We used data from the social network at http:

//www.rimzu.com. In this network, new users can register

after receiving an invitation from an existing user. Each user is

able to list a set of friends among the members of the network.

In the visualization, users are represented as nodes. Edges link

each user to his/her friends.

Figure 9 shows a visualization of the growth of this network.

The visualization shows a period in time where the network grew

considerably, from 216 nodes to 962 nodes. The visualization

was created by constructing the graph of the network at equally

spaced intervals in time. As in the Internet threads visualization, a

dummy invisible root node was added in order to make the graph

connected.

Several properties of the network are evident from the created

visualization. The graph has dozens of connected components.

The fact that the graph is not connected is surprising since

members are able to join the network only after receiving an

invitation. There are many users who joined the network but did

not list any friends. They are represented as a cluster of nodes

with degree zero (no edges). There are components of varying

complexity in the network. Some are very simple, connecting

a handful of nodes, while others are large and highly connected.

Several tree-like components are visible. These correspond to one

user with several friends who are not linked between themselves.

There is one large component which exists from the beginning of

the visualization.

Coloring the nodes by age reveals more information on the

graph. Some components of the graph were created in a relatively

short time frame. Others, such as the large component on the right,

grow continuously.

Note how the algorithm manages to compute a stable, mental-

map preserving layout of the dynamic graph sequence while at the

same time providing meaningful layouts from which the insights

discussed above can be extracted. This is especially challenging

due to the large growth of the network in the period visualized. A

movie showing the visualization is available in the supplementary

material.

IX. CONCLUSION

We have presented an online algorithm for dynamic layout of

graphs, whose goal is to efficiently compute stable and aesthetic

layouts. The algorithm has several key ideas. First, a good initial

layout is computed. Second, the allowed displacement of nodes

is controlled according to the changes applied to the graph. In

particular, each node is assigned an individual convergence sched-

ule. Third, the global interactions in the graph are approximated

in order to maintain the structure of the graph and compute an

aesthetic layout. Fourth, a multi-level scheme is used in order

to compute high-quality layouts. Last but not least, the GPU is

used to accelerate the algorithm, requiring the representation of

unstructured graphs in an ordered manner that fits the GPU.

It has been demonstrated that the algorithm computes an

aesthetic layout, while reducing displacement and maintaining

the user’s mental map between layout iterations. Our GPU im-

plementation of the algorithm performs up to 17 times faster

than the CPU version. We have applied our algorithm to the

visualization of discussion threads on the Internet and to social

network visualization.

There are several avenues for future research. An interesting

research direction is the extension of the algorithm to drawing

multi-level clustered graphs. Finding ways to implement more

parts of the algorithm on the GPU will help accelerate the

computation. Improving the algorithm used for morphing between

layouts can further help in maintaining the mental map.
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Fig. 9. Snapshots from the Rimzu graph sequence, visualizing the social network at http://www.rimzu.com, left to right, top to bottom. Nodes represent
users and edges represent connections between users. In the visualization the graph grows from V=216, E=544 to V=962, E=1561. Nodes are colored by age
in a red → yellow → green scale.
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