
Data Min Knowl Disc

https://doi.org/10.1007/s10618-017-0546-6

Online estimation of discrete, continuous, and

conditional joint densities using classifier chains

Michael Geilke1
· Andreas Karwath1

·

Eibe Frank2
· Stefan Kramer1

Received: 18 December 2015 / Accepted: 9 November 2017

© The Author(s) 2017

Abstract We address the problem of estimating discrete, continuous, and conditional

joint densities online, i.e., the algorithm is only provided the current example and

its current estimate for its update. The family of proposed online density estimators,

estimation of densities online (EDO), uses classifier chains to model dependencies

among features, where each classifier in the chain estimates the probability of one

particular feature. Because a single chain may not provide a reliable estimate, we also

consider ensembles of classifier chains and ensembles of weighted classifier chains.

For all density estimators, we provide consistency proofs and propose algorithms to

perform certain inference tasks. The empirical evaluation of the estimators is conducted

in several experiments and on datasets of up to several millions of instances. In the

discrete case, we compare our estimators to density estimates computed by Bayesian

structure learners. In the continuous case, we compare them to a state-of-the-art online

Responsible editor: Hendrik Blockeel.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10618-

017-0546-6) contains supplementary material, which is available to authorized users.

B Michael Geilke

geilke@informatik.uni-mainz.de

Andreas Karwath

karwath@informatik.uni-mainz.de

Eibe Frank

eibe@cs.waikato.ac.nz

Stefan Kramer

kramer@informatik.uni-mainz.de

1 Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany

2 Department of Computer Science, The University of Waikato, Hamilton 3240, New Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-017-0546-6&domain=pdf
https://doi.org/10.1007/s10618-017-0546-6
https://doi.org/10.1007/s10618-017-0546-6

M. Geilke et al.

density estimator. Our experiments demonstrate that, even though designed to work

online, EDO delivers estimators of competitive accuracy compared to other density

estimators (batch Bayesian structure learners on discrete datasets and the state-of-

the-art online density estimator on continuous datasets). Besides achieving similar

performance in these cases, EDO is also able to estimate densities with mixed types

of variables, i.e., discrete and continuous random variables.

Keywords Data streams · Density estimation · Classifier chains · Inference

1 Introduction

Density estimation is a well-known problem, which has received considerable attention

in the offline (or batch) setting. With the emergence of data streams, the necessity of

online density estimation has arisen, i.e., the need for density estimates that can be

updated on a per-instance-basis and enable the representation of large amounts of data

in a compact way. There is some recent work in this area (Lambert et al. 1999; Kristan

and Leonardis 2010; Kristan et al. 2011; Kim and Scott 2012; Zhou et al. 2003; Wu

et al. 2014), but it focuses on the online estimation of continuous densities, which

is not suitable for datasets with mixed attribute types. Please notice that we use the

term density estimation to refer to the estimation of probability masses, densities, and

mixtures thereof.

In this paper, an extension of work we presented previously (Geilke et al. 2013), we

propose and evaluate a family of online density estimators, called EDO (Estimation

of Densities Online), which are suitable for the online estimation of discrete densities,

continuous densities, conditional densities, and any mixture of them. They are designed

to represent the densities in a compact way and also enable inference tasks. These

inference facilities can be used to perform data mining without having access to the

data stream (Geilke et al. 2014), which has several benefits: (1) Run-time: Many

problems such as itemset mining become computationally expensive if performed

on large amounts of data. With density estimates, these algorithms can operate on a

compact representation of the data. In previous work (Geilke et al. 2014), we have

shown that the density estimates presented in this paper provide sufficient information

for this task. (2) Privacy: Since the algorithms operate on density estimates without

incorporating any data from the data stream, the task of density estimation can be

decoupled from the data mining or machine learning task. This allows companies to

provide other entities with a view of their data without giving access to their data. (3)

Unknown task: The decoupling has the additional benefit that the target data mining

task does not need to be known at the time of collecting the data, as the density

estimate is not specific to any task. The estimates simply represent the data and provide

corresponding inference operations.

As this paper is an extension of a conference paper (Geilke et al. 2013), we distin-

guish between contributions already made in the conference paper and new ones:

Conference:

– We propose the use of classifier chains (CCs) and ensembles of classifier chains

(ECCs) for the estimation of discrete densities.

123

Online estimation of joint densities using classifier chains

– We introduce the use of ensembles of classifier chains to the world of unsupervised

online learning.

– We propose ensembles of weighted classifier chains (EWCCs) as an alternative to

regular, unweighted classifier chains. Our experiments show that EWCCs exhibit

favorable behavior in many settings.

– We provide consistency proofs for the density estimators employing classifier

chains, ensembles of classifier chains, and ensembles of weighted classifier chains.

– To illustrate potential applications of the estimated densities, we present inference

algorithms that process queries based upon them.

Journal:

– We extend a method for conditional density estimation (Frank and Bouckaert 2009)

to the online setting and employ this method to estimate continuous variables of

joint densities.

– We generalize some of the inference algorithms presented in the conference version

of this paper, and add an algorithm that incorporates soft evidence into Hoeffding

trees. Moreover, we briefly show that the inference tasks proposed in this paper

are also supported by the continuous density estimators we propose.

– The experiments extend and complement previous experiments in order to provide

deeper insights into the online density estimators; we focus on stationary environ-

ments and do not consider changing data distributions as in the conference paper.

Furthermore, all experiments are conducted with a broader range of datasets—in

the synthetic cases (datasets generated from Bayesian networks with up to ten

nodes) as well as in the real-world cases (eight real-world datasets).

The remainder of the paper is structured as follows. First, we formally define the

problem addressed in this paper (Sect. 2), discuss related work (Sect. 3), and explain

tools that we use throughout this paper (Sect. 4). Subsequently, we present the online

density estimator for discrete densities (Sect. 5), the online density estimator for den-

sities with mixed types of random variables (Sect. 6), and describe how inference tasks

can be performed (Sect. 7). In Sect. 8, we present and discuss an extensive set of exper-

iments, which have been conducted on synthetic and real-world data. Conclusions are

drawn in Sect. 9.

2 Problem statement

Let f (X1, . . . , Xm | Y1, . . . , Yl) be a joint density where the random variables are

discrete, continuous, or a mixture thereof. In this paper, we address online density

estimation from data streams stream(f), where the xi ∈ stream(f) are drawn inde-

pendently and identically distributed (iid) from f .1 Additionally, we define inference

operations that allow users to perform queries regarding the density of the data stream.

An online density estimator together with these inference operations will be called a

1 Below we define the problem in a more general way to consider also drift and recurrent distributions, but

we focus only on the most fundamental problem of estimating a single distribution from a stream in this

paper.

123

M. Geilke et al.

probabilistic condensed representation of data. For a formal definition of the problem,

we introduce the notion of online density estimation in this section and then describe

the inference operations that need to be supported by an online density estimator to

be called a probabilistic condensed representation of data.

2.1 Online density estimation

Strictly speaking, probability distributions of continuous variables are defined by a

density function, whereas probability distributions of discrete variables are defined

in terms of probability masses. However, for reasons of readability, we use the term

density to refer to probability masses, densities, and mixtures thereof.

Let X be a random variable with a set of possible outcomes values(X). We call a

random variable continuous if it can take on any value in the range [a; b] for a, b ∈
values(X). Otherwise, we call the random variable discrete. The joint density over

random variables X1, . . . , Xm is a function f , such that

Pr(X1 ∈ [a1; b1], . . . , Xm ∈ [am; bm]) :=
∫ b1

a1

· · ·
∫ bm

am

f (x1, . . . , xm) dx1 · · · dxm

and f is a non-negative Lebesgue-integrable function. To model probability masses

of discrete variables, we rewrite them using the Dirac delta function δ and obtain

f (X) =
∑|V |

i=1 Pr(X = vi) · δ(X − vi) in the univariate case (Chakraborty 2008),

where V = {v1, . . . , v|V |} = values(X). In case the density is conditioned on some

random variables Y1, . . . , Yl , we write f (X1, . . . , Xm | Y1, . . . , Yl). Given a joint

density f defined over variables X1, . . . , Xm , an instance of f is a variable assignment

X1 = v1, . . . , Xm = vm , such that vi ∈ values(X i) for 1 ≤ i ≤ m. For reasons of

readability, we also denote variable assignments X1 = v1, . . . , Xm = vm as x.

Definition 1 Let F := { f i (X1, . . . , Xm | Y1, . . . , Yl) | 1 ≤ i ≤ k ∈ N} be a set of

joint densities. A data stream of f ∈ F , denoted as stream(f), is a possibly infinite

sequence of instances x1, x2, x3, . . . , xN that are drawn according to the probability

distribution induced by f , and stream(f)[1 : N] is the sequence x1, x2, x3, . . . , xN .

A data stream over F , denoted as stream(F), is a possibly infinite sequence of

instances stream(F) := stream(f j1)[1 : N j1] ◦ stream(f j2)[1 : N j2] ◦ . . ., where

f ji ∈ F and ji , N ji ∈ N.

The process of finding an estimate for the current density of a data stream is called

online density estimation. We assume that the stream is generated from a finite number

of densities and generally seek consistent estimators, i.e., estimators that approach

these densities with increasing numbers of instances per density.

Definition 2 Let F := { f i (X1, . . . , Xm | Y1, . . . , Yl) | 1 ≤ i ≤ k ∈ N} be a set of

joint densities and let stream(F) be a data stream over F . An algorithm is called

online density estimator, if

1. it receives this sequence instance by instance,

2. it has a limited amount of memory Mem, and,

123

Online estimation of joint densities using classifier chains

3. after receiving an instance xi , it produces a density estimate f̂i .

The process of estimating the current density of a data stream by an online density

estimator is called online density estimation.

Although Definition 2 describes the general behavior of an online density estimator

and the given constraints that have to be fulfilled, it makes no statement of how well

the estimate represents the true density f . Without such a statement, however, the user

has no guarantees what is actually represented. Therefore, similarly to the definition

of other estimators known from statistics, we will define additional properties for

online density estimates that provide this feedback. The most relevant property in the

context of this paper is the consistency, which states whether f̂ truthfully represents

f in the limit. We express it by measuring the expected loss of f̂ given f , i.e.,

KLcond(f, f̂) =
∑

y f̂ (y) ·
∑

x f̂ (x | y) · ln
f̂ (x|y)
f (x|y)

= E f (log(f (x | y)) − log(f̂ (x |
y))) = E f (log(f) − log(f̂)), which is also known as the conditional relative entropy

or the conditional Kullback–Leibler divergence.

Definition 3 An online density estimator is said to be consistent, if for all f ∈
F : KLcond(f, f̂N)

N→∞−→ 0 on the stream of instances stream(f h1)[1 : Nh1] ◦
stream(f h2)[1 : Nh2] ◦ . . . with hi ∈ { ji ∈ N | f ji = f }, and

∑

Nhi
→ ∞.

Remark 1 Notice that this definition also takes data streams with recurrent densities

into account. If drifts in the data distribution are detected properly, one can provide a

consistent density estimate by maintaining an estimate for each f ∈ F and estimat-

ing the corresponding transition probabilities for each pair (fi , f j) ∈ F × F . The

challenge lies in splitting the data stream into segments and correctly associating these

segments with the underlying densities. Each time the data distribution changes, the

appropriate density estimate becomes active and receives the forthcoming instances

until another drift occurs.

Example 1 Let F := { f1, f2, f3, f4} be a set of densities and xi,1, xi,2, . . . be a

stream of instances over F that is generated from the fi and divided into 5 segments.

Then

x1,1, . . . , x1,N1
︸ ︷︷ ︸

f1

, x2,1, . . . , x2,N2
︸ ︷︷ ︸

f2

, x3,1, . . . , x3,N3
︸ ︷︷ ︸

f3

, x2,N2+1, . . . , x2,N2+N4
︸ ︷︷ ︸

f2

, x3,N3+1, . . .
︸ ︷︷ ︸

f3

.

The consistency property demands that, for all f ∈ F , the estimator approaches

the true density, if
∑

hi ∈{ ji ∈N| f ji = f } Nhi
→ ∞. For f1, f2, f4, this condition does

not apply, because there are only finitely many instances, i.e., N1, N2 + N4, and 0.

Hence, the density estimator can only be consistent with respect to the densities F ′ =
{ f3} ⊂ F . For f3, { ji ∈ N | f ji = f3} = {3, 5} and N3 + N5 → ∞, which means

that the estimator has to approach the true density on x3,1, . . . , x3,N3 , x3,N3+1, . . . for

increasing numbers of instances.

Remark 2 Property (2) of Definition 2 ensures that the density estimator does not

simply store all the instances. Property (3) of Definition 2 requires that there is always

123

M. Geilke et al.

a density estimate for the given sequence of instances, and the consistency demands

that the densities from F are approached with increasing numbers of instances.

Remark 3 In a data stream, the transition from one density to another is called drift

in the literature. It can be abrupt (i.e., an immediate switch) or gradual (i.e., there is

a transition phase). For reasons of readability, we only modeled streams with abrupt

drifts, but one can easily extend the definition for gradual drifts. In the latter case,

there would be transition phases between two stream segments:

stream(f ji)[1 : N ji] ◦ transi tion(f ji , f ji+1 , Ti) ◦ stream(f ji+1)[1 : N ji+1
],

where transi tion(f ji , f ji+1 , Ti) := x1, x2, . . . , xTi
with xi ∈ values(X1) × . . . ×

values(Xm) and 1 ≤ i ≤ Ti . While the definition above is general enough to cover

also drift and recurrent distributions, we focus on the most fundamental case of non-

drifting data streams in the remainder of this paper and present detailed theoretical

and empirical properties in this setting and for one specific approach. For a density

estimator always adapting to the current data distribution, i.e. adapting to drift, we

refer the reader to Geilke et al. (2013). For a density estimator modeling the history

of possibly recurrent data distributions, we refer the reader to Geilke et al. (2015).

Remark 4 If Definition 2 is modified as follows: (1) k = 1, (2) N ∈ N, (3) the first

property is removed, (4) the second property is modified to: Mem is a limited amount

of memory that is large enough to store the model, some temporary variables, and

N instances, (5) the third property is removed, and (5) the algorithm only produces

an estimate f̂N , then we call the corresponding process offline density estimation.

In the literature, it is typically known as density estimation, because online density

estimation emerged only several decades later.

2.2 Inference

As we assume that users are not only interested in the full density but also specific parts

of it, we also require infrastructure to pose queries on the densities such as drawing

instances, incorporating hard evidence, incorporating soft evidence, marginalizing out

variables, and determining the density value of an instance (with respect to the given

evidence). In order to illustrate these inference operations, we consider three scenarios,

which we call inference scenarios:

1. Let f be a joint density defined on variables X := {X1, . . . , Xm}. Further, let

Y := {Y1, . . . , Yl} ⊂ X and Z := {Z1, . . . , Zm′} ⊂ X be subsets with Y ∩ Z = ∅.

Then we can determine a new density

f ′(Z1, Z2, . . . , Zm′ | Y1 = y1, . . . , Yl = yl), (1)

where y j ∈ values(Y j), j ∈ [1; l].
2. Let f , X , and Z be as in 1. Further, let Y be a variable of X for which the user

knows that it takes value y1 with probability p1, value y2 with probability p2,

123

Online estimation of joint densities using classifier chains

. . . , and value y|values(Y)| with probability p|values(Y)|. Then we determine a new

density

f ′(Z1, Z2, . . . , Zm′ | Y ′), (2)

where Y ′ takes the value y j with probability p j , j ∈ [1; |values(Y)|].
3. Let f be as in Setting 1 and θ be a user-defined value that is between 0 and 1 in

the discrete case and greater than 0 in the continuous case. Then we determine a

new density f ′, such that, for T =
∑

x′: f (x′)≥θ f (x′), f ′(x) equals
f (x)
T

for all

instances x with f (x) ≥ θ , and f ′(x) = 0 for all other instances. The continuous

case is defined analogously.

In Setting 1, the user has hard evidence for certain features and is interested in the

density defined over the features Z1, . . . , Zm′ . The situation in Setting 2 is almost

the same as in Setting 1, but instead of hard evidence only soft evidence is available.

In Setting 3, we determine a density that contains all instances exceeding a certain

probability. Notice that for the first two settings Y ∪ Z is not necessarily X , but could

be a proper subset.

Density estimators supporting these inference operations constitute a probabilistic

condensed representation of data on which data mining tasks can be performed such

as pattern mining (Geilke et al. 2014). To support these inference operations, we

propose online algorithms for estimating probabilistic condensed representations of

f (X1, . . . , Xm |Y1, . . . , Yl) from data streams using classifier chains.

3 Related work

The paper focuses on non-parametric density estimation (Table 1). Non-parametric

density estimation is a well-established problem that has received a lot of attention

in the offline setting. This includes recent work based on decision trees, so-called

density estimation trees (Ram and Gray 2011). The tree structure of those trees serves

as a mechanism to partition the feature space into regions with similar density, which

are estimated by piecewise constant estimators in the leaves. A similar approach was

pursued by Davies and Moore (2002) as part of a conditional density estimator. Here, a

tree represents a conditional density and the leaves may contain non-constant densities.

Work towards the estimation of conditional densities has been pursued among others

by Holmes et al. (2012), Frank and Bouckaert (2009), and Buchwald et al. (2010). The

approach by Frank and Bouckaert is the corner stone of the online density estimator

for continuous densities proposed in this paper. In order to obtain a conditional density

estimate of a given variable X , they discretize X and employ a classifier providing

class probability estimates for the discretization bins. Subsequently, these probability

estimates are used as weights to construct a density estimate (e.g., using a kernel

density estimator or mixture models). This approach has recently been used by Rau

et al. (2015) to estimate redshift density functions.

Multivariate density estimation has been tackled using many different techniques.

For example, Vapnik and Mukherjee (1999) employed support vector machines (SVM)

to perform density estimation. They approached the problem by solving the integral

over the density function using SVMs. More frequent approaches for multivariate

123

M. Geilke et al.

Table 1 An overview of related methods is summarized in this table. For each method, we provide infor-

mation on the setting (i.e., whether it is an offline or online estimator) and what kind of densities can be

estimated

Method Setting Multivariate Conditional Variable types

Ram and Gray (2011) Offline Yes No Mixed

Davies and Moore (2002) Yes Yes Continuous

Wang and Wang (2015) Yes No

Kim and Scott (2012) Yes No

Elgammal et al. (2003) Yes No

Peherstorfer et al. (2014) Yes No

Liu et al. (2007) Yes No

Holmes et al. (2012) No Yes

Frank and Bouckaert (2009) No Yes

Buchwald et al. (2010) No Yes

Raykar and Duraiswami (2006) No No

Sheather and Jones (1991) No No

Kristan and Leonardis (2010) Online Yes No Continuous

Kristan et al. (2011) Yes No

Wu et al. (2014) Yes No

Lambert et al. (1999) Yes No

Zhou et al. (2003) Yes No

EDO Yes Yes Mixed

By Multivariate, we mean f (X1, . . . , Xm), by Conditional, we mean f (X1, . . . , Xm | Y1, . . . , Yl), and

by Variable Types, we mean whether the random variables are discrete and / or continuous. The method

proposed in this paper is EDO

densities are mixture models (Wang and Wang 2015) and kernel density estimates

(Hwang et al. 1994; Scott and Sain 2004). Both assume that the density is generated

from several random processes that build the given random process. Each component

is usually represented by a parametric model such as a Gaussian density, which is

influenced by the mean and its variance. The variance is a smoothing parameter, which

is generally denoted as the bandwidth in kernel density estimates. The bandwidth can

have a large impact on the quality of the overall density estimate, which is one of

the main reasons that it has received a lot of attention in the past, see for example

Raykar and Duraiswami (2006) or Sheather and Jones (1991) in the univariate case.

The problem of bandwidth selection is even more challenging in the multivariate case

(Wang and Wang 2015).

Kernel density estimation is also the predominant direction of research on online

variants of density estimation developed so far. For example, Kristan and Leonardis

(2010), Kristan et al. (2011), and Kim and Scott (2012) proposed a method yielding

results that are comparable to corresponding batch approaches. Their online kernel

density estimator, called oKDE, constantly re-estimates the bandwidth of the kernels

and compresses the kernels if necessary. Lambert et al. (1999) suggested a density

estimator employing multipole expansions to achieve fast or even constant update

123

Online estimation of joint densities using classifier chains

time of the density estimate. Efficient density estimation was also the aim of other

kernel based density estimators, e.g., the ones proposed by Zhou et al. (2003) and

Elgammal et al. (2003).

Datasets with many instances were the focus in an approach by Peherstorfer et al.

(2014). They proposed to use a sparse grid to describe the density estimate, where

basis functions are not centered on the instances but at grid points. Partitioning the

space of the data instances was also the main focus of the RS-Forest approach by Wu

et al. (2014). They used a forest of trees, where each tree partitioned the space based

on one of the data stream variables. Datasets with many attributes have been tackled

among others by Liu et al. (2007). They exploited certain sparsity assumptions to

represent multivariate densities of high-dimensional data.

Another aspect of density estimation is the set of properties that are fulfilled by

the density estimate. For example, for financial data, the median of the data is often

more important than the mean (Hall and Presnell 1999), which is often not the focus

of density estimates such as kernel density estimators. To address this problem, some

authors target density estimation under constraints, e.g., Hall and Presnell (1999) and

Cheng et al. (1999).

4 Background

In this section, we introduce the concepts that are relevant for this paper. In particu-

lar, we briefly describe online learning and describe two tools that we use to model

densities in an online fashion, namely Hoeffding Trees (Domingos and Hulten 2000)

and probabilistic classifier chains (Dembczynski et al. 2010).

4.1 Online learning

Online learning emerged from the context of function learning (Littlestone 1987).

Motivated by positive learning results on classes of Boolean functions (Valiant 1984),

Littlestone (1987) proposed a problem setting in which learning is not performed on a

separate training set but instance by instance. In his particular case, there is a learner

L and a class of Boolean functions F . From this class, the learner is supposed to

learn an unknown function f : {0, 1}n → {0, 1} from instances belonging to f , i.e.,

x ∈ {0, 1}n with f (x) ∈ {0, 1}. The instances are provided in rounds to L , such

that L first receives an instance x, makes a prediction for f (x), and then receives the

actual value of f (x). To assess the performance of L , one can measure the number of

mistakes.

Later on, many different variations of this setting have been proposed and analyzed

(Blum 1996; Cesa-Bianchi and Lugosi 2006). One example is the prediction from

expert advice framework, in which an unknown sequence is predicted by a forecaster

with the help of experts. In this framework, there is a variable X that can take certain

values, values(X). The set of all possible values is called the outcome space, and the

set of all possible values predicted by the forecaster is called the decision space, D.

Similarly to the online setting described above, the forecaster has to predict the next

element of the sequence, xN . But this time, there are several experts E who provide

123

M. Geilke et al.

predictions of their own and the forecaster has access to them. Hence, the forecaster can

examine the predictions of the experts before making a final decision, x̂F . When the true

value is revealed, predictions are scored with a given loss function loss : X×D → R+,

so that the forecaster knows the correct answer and also knows which experts were

actually correct. The goal of the forecaster is to minimize its regret with respect to

all experts, i.e., minimizing
∑N

i=1

∑

E∈E loss(x̂F,i , xi) − loss(x̂E,i , xi), where x̂F,i

is the prediction of the forecaster for the element xi and x̂E,i is the corresponding

prediction of the expert E .

In this paper, we will use an existing online learning algorithm to improve our own

estimates. If the density estimate is an ensemble of consistent density estimates, one

can use the so-called simulatable experts from the online learning setting to speed up

the convergence of the density estimate (see Sect. 5.4).

4.2 Hoeffding trees

Hoeffding trees are an extension of decision trees bringing tree classifiers to the world

of data streams. The primary difference is the sequential training of the tree that is

achieved by using the Hoeffding bound to make split decisions. A split decision is

no longer made by evaluating a heuristic measure on the full dataset, denoted by G,

but by evaluating a heuristic measure based on the current counts of variable values,

denoted by Ĝ. Since only a subset of the data has been observed at the time of a

split decision, one can only estimate the true heuristic measure, thereby introducing a

certain error ε. In order to correct for this error and to make a decision that holds with

high confidence, the Hoeffding bound provides an estimate for ε that holds with high

confidence: Let Xa and Xb be the random variables that have the highest and second

highest values with respect to Ĝ. A split is performed if

Ĝ(Xa) − Ĝ(Xb) >

√

R2 · ln(1/δ)

2 · N
,

where R is the range of the heuristic measure, 1 − δ is the probability that ε is correct,

and N is the number of instances. Several extensions of this basic idea lead to the

VFDT (Very Fast Decision Tree learner) system, which has later been implemented

as part of the MOA framework (Bifet et al. 2010).

4.3 Classifier chains

Probabilistic classifier chains (Dembczynski et al. 2010), which are based on the deter-

ministic chains proposed by Read et al. (2011), are used in multi-label classification

to model the dependencies between the labels and exploiting them for improving the

prediction (Dembczynski et al. 2012; Kumar et al. 2013; Dembczynski et al. 2016).

Similarly to the online density estimator proposed in this paper, they use the product

rule to split the joint density into smaller parts, i.e.,

123

Online estimation of joint densities using classifier chains

f (X1, . . . , Xm | Y1, . . . , Yl) = f1(X1, . . . , Xm) ·
l

∏

i=2

fi (X1, . . . , Xm, Y1, . . . , Yl−1)

and then use classifiers such as decision trees to estimate the fi , where X1, . . . , Xm

are the features and Y1, . . . , Yl are the labels that have to be predicted. So far, how-

ever, classifier chains have not been considered in the context of computing density

estimates from data stream. In particular, there are no density estimates that are based

on classifier chains and allow to perform inference tasks that are interesting from a

density perspective, e.g., drawing instances, providing evidence, or marginalizing out

variables.

5 Online density estimation using classifier chains

To enable online estimation of densities, we employ classifier chains to model

dependencies between random variables. It not only factors the density into smaller—

hopefully easier to understand—parts but also enables the application of a broad range

of fast and efficient univariate online density estimators. In this section, we discuss how

to obtain estimate f̂ for a density f (X1, . . . , Xm | Y1, . . . , Yl), where X1, . . . , Xm and

Y1, . . . , Yl are discrete. An extension to mixed types of random variables is presented

in Sect. 6.

5.1 Online density estimation using classifiers

The online density estimators proposed in this paper represent joint densities using

classifiers. They build on the product rule and express a joint density f (X1, . . . , Xm |
Y1, . . . , Yl) as a product of conditional densities, such that

f (X1, . . . , Xm | Y1, . . . , Yl) = f1(X1 | Y1, . . . , Yl)

·
m

∏

i=2

fi (X i | Y1, . . . , Yl , X1, . . . , X i−1)

and each of the factors can be represented by a classifier providing class probability

estimates. Although several types of classifiers would be suitable for this purpose, we

will solely focus on Hoeffding trees (Domingos and Hulten 2000), since they are able

to deal with data streams, facilitate the application of inference operations (see Sect. 7),

and are suitable for the goal of online density estimation, i.e., the minimization of the

KL-divergence. The latter may be surprising at first, since Hoeffding trees use heuristic

measures such as the information gain or Gini index to find a well-performing structure.

However, the heuristic measure only affects the size of the tree and how quickly the

estimator provides good estimates, whereas minimizing the KL-divergence is ensured

by the law of large numbers (see Sect. 5.5).

Because a single density estimator may not provide a reliable estimate, we also apply

ensemble techniques (see Sect. 5.3) and weight the ensemble members according to

123

M. Geilke et al.

their current performance using the log-likelihood (see Sect. 5.4). As in the case of

Hoeffding trees, this will not affect the consistency of the estimator but only the

number of instances that are required to provide good estimates as early as possible.

The KL-divergence is still minimized, since every ensemble member minimizes the

KL-divergence (see Sect. 5.5).

5.2 Classifier chains

As a first step, we provide an algorithm that employs a single classifier chain to

determine a density estimate. Let f (X1, . . . , Xm | Y1, . . . , Yl) be a density with

discrete random variables. Then we can apply the product rule and obtain the following

equality:

f (X1, . . . , Xm | Y1, . . . , Yl) = f1(X1 | Y1, . . . , Yl)

·
m

∏

i=2

fi (X i | Y1, . . . , Yl , X1, . . . , X i−1). (3)

In other words, in order to model the density f , it is sufficient to model the density

f1(X1 | Y1, . . . , Yl) and the densities fi (X i | Y1, . . . , Yl , X1, X2, . . . , X i−1), i ∈
{2, . . . , m}. To model the individual densities fi , 1 ≤ i ≤ m, we employ classifiers that

return class probability estimates. In particular, we employ Hoeffding trees (Domingos

and Hulten 2000), which provide the probability masses of the classes of X i . The

Hoeffding trees allow us to estimate the density in an online fashion. In case the density

changes over time, one can employ classifiers that are able to deal with concept drift

such as the Concept-adapting Very Fast Decision Tree learner (Hulten et al. 2001), but

we do not investigate this scenario in this paper.

Based on the classifier chain implied by Eq. 3, the proposed algorithm initializes

the base classifiers for f1, . . . , fm . When the algorithm receives an example (y, x)

from an instance stream, it produces m instances, where instance i contains the fea-

tures Y1, . . . , Yl , X1, . . . , X i . The instance (y, x1) is forwarded to the classifier for f1

and the example (y, x1, . . . , xi) is forwarded to the classifier for fi , i ∈ {1, . . . , m}.
Subsequently, each classifier processes its example and updates its current estimate.

5.3 Ensembles of classifier chains

The product on the right-hand side of Eq. 3 is only one way to represent the discrete

joint density—there are many other possibilities. Let π : {1, . . . , m} → {1, . . . , m}
be a bijective mapping. Then

f1(Xπ(1) | Y1, . . . , Yl) ·
m

∏

i=2

fi (Xπ(i) | Y1, . . . , Yl , Xπ(1), . . . , Xπ(i−1)) (4)

is an equivalent representation of f (X1, . . . , Xm | Y1, . . . , Yl). In other words, we

simply use a different ordering of the features to represent the discrete joint density,

123

Online estimation of joint densities using classifier chains

Fig. 1 On the left, the figure shows a Bayesian network representing a joint density with six discrete

variables. On the right are three possible orderings of the variables plus the corresponding number of

interdependencies of the Bayesian network that are represented in the correct ordering (i.e., xi ≤ x j in the

chain if there is a sequence of directed edges xi → · · · → x j in the Bayesian network). As illustration, we

highlighted the interdependencies represented by the last variable ordering

which then results in a different classifier chain. Although all such products represent

the same joint density assuming the true conditional density estimates are known,

the ordering may be important for the performance of our classifiers: Ideally, the

ordering enables the classifiers to exploit conditional independence relationships, so

that some of the features can be disregarded. Figure 1 provides an illustration for this

statement. On the left is an Bayesian network with six variables. On the right are

three possible orderings of the variables. Dependent on the variable ordering, certain

interdependencies of the Bayesian network can be represented by the corresponding

classifier chain. The remaining interdependencies can only be respected by learning

inverse relationships (X6 → X2 instead of X2 → X3 together with X3 → X6),

which potentially makes learning more difficult for the classifier. The experiments in

Sect. 8.1 provide evidence for this claim.

Hence, to increase robustness, we consider a second algorithm that generates several

classifier chains and combines their estimates to a single density estimate. This algo-

rithm, which generates ensembles of classifier chains, simply samples chains from the

set of possible feature orderings at random and averages the density estimates obtained.

Although the number of possible orderings is exponential in the number of fea-

tures, ensembles do not seem to require an exponential number of chains. In a set of

experiments (see Sect. 8.1), we found that more than 10 classifier chains only yielded

negligible improvements—if any. This is in line with other results from the ensemble

literature. Bauer and Kohavi (1999) and Frank and Kramer (2004) reported, for exam-

ple, that ensembles of at most 25 respectively 20 ensemble members were sufficient

to obtain a solution sufficiently close to the optimum.

5.4 Ensembles of weighted classifier chains

An ensemble of classifier chains computes the average over all classifier chains, thereby

compensating for chains with insufficient performance. If we were able to weight

the chains according to their current performance, it could further improve the den-

sity estimation of the ensemble. One possible approach is the exponentiated gradient

investment strategy (EG investment strategy) (Cesa-Bianchi and Lugosi 2006), known

123

M. Geilke et al.

Algorithm 1: Updating the weights of classifier chains

Input: Let cc1, . . . , cck be classifier chains. Further, let (wt [1], . . . , wt [k]) ∈ R
k be the

corresponding weight vector and (yt+1, xt+1) be the current instance.

// a parameter controlling the weight update

1 η ← (c/C) ·
√

(8 · ln k)/N

// the current density values

2 for i = 1, . . . , k do

3 p[i] ← fcci
.densi tyV alue(yt+1, xt+1)

4 end

// the weight update

5 wp ←
∑k

j=1 wt [j] · p[j]
6 for i = 1, . . . , k do

7 wt+1[i] ← wt [i] · exp(η · p[i]/wp)
∑k

j=1 wt [j] · exp(η · p[j]/wp)

8 end

from the area of online learning, which is an investment strategy for the portfolio selec-

tion problem. The general setting is a stock market consisting of k stocks. Each day,

a so-called market vector st+1 := (st+1[1], . . . , st+1[k]) ∈ R
k
+ is released, where

st+1[i] := st+1[i]
st [i] is the relative price of the i-th stock, i.e., the increase of the price

compared to the previous trading day. Based on this market vector, the investor is

allowed to re-distribute her wealth among the k stocks every day, so that her wealth

is maximized over a period of N trading days. The success of a strategy is measured

as the relative gain or loss per trading day. When multiplied over all trading days,

this yields the so-called wealth factor, which is used to compare investment strate-

gies. Assuming that the market vectors are IID, the wealth factor of the best possible

investment strategy (according to Cesa-Bianchi and Lugosi 2006; Cover and Thomas

2006) divided by the EG investment strategy is bounded by C
c

·
√

N
2

ln(m), where c

is the smallest observed value and C is the largest observed value (Cesa-Bianchi and

Lugosi 2006).

Algorithm 1 applies the EG investment strategy to the problem of weighting clas-

sifier chains. It is basically a re-interpretation of the portfolio selection as a method

to weight ensemble members. In line 1, the parameter η is defined, which controls

weight update for each chain. Cesa-Bianchi and Lugosi (2006) proposed to set η to

(c/C) ·
√

(8 · ln k)/N (line 1), where c is the smallest value observed for p[i] and C

is largest value, 1 ≤ i ≤ k. c and C can both be estimated based on some initial buffer

and can also be updated over time. The remaining part of the algorithm performs the

weight update. In lines 2–4, the current density value of each chain is calculated. In

lines 5–8, the next weight vector is computed as proposed by Cesa-Bianchi and Lugosi

(2006).

If we have to compute the probability of an instance, we select only those classifier

chains whose weight does not deviate more than a certain percentage from the highest

weight (for this paper, we allow a deviation of 30%). This last step is supposed to

reduce the influence of poorly performing classifier chains (see Sect. 8.1). Then we

simply combine the probabilities of the individual classifier chains with respect to

123

Online estimation of joint densities using classifier chains

their weights, renormalizing again as necessary. Notice that the ensemble of weighted

classifier chains that we just proposed is just one way of introducing weights into

classifier chains. For instance, one can also use the weights to rank the classifier chains

and pick the best or the three best classifier chains to construct a density estimate.

5.5 Consistency

In the context of density estimation, the aim is to obtain consistent estimators, where

the estimate approaches the true density with increasing numbers of instances. In the

following, we prove that the estimators from the previous section fulfill this property.

As each of them can be combined with many different base classifiers, the proof will

be independent of a specific base classifier. Instead, we will prove that the estimators

are consistent as long as the base classifiers are.

First, we consider estimators employing a single classifier chain. We show that the

conditional KL-divergence of the density f and its estimate f̂ tends to 0 for increasing

numbers of instances.

Proposition 1 Let f be a discrete joint density with f (x | y) = f1(x1 | y) · . . . ·
fm(xm | y, x1, . . . , xm−1). Further, let f̂ be an estimator employing a single classifier

chain, and let f̂i be the estimate of the i-th classifier in the classifier chain. If the

number of instances tends to infinity and KLcond(fi , f̂i) → 0, for all i ∈ [1; m], then

KLcond(f, f̂) → 0.

Proof For increasing numbers of instances, we will prove that KLcond(f, f̂) → 0, if

KLcond(fi , f̂i) → 0 for all i ∈ [1; n] (in the following,
∑

x is a shorthand for the sum

over all possible values of the vector x):

KLcond(f, f̂) =
∑

y

f̂ (y) ·
∑

x

f̂ (x | y) · ln
f̂ (x | y)

f (x | y)

=
∑

y

f̂ (y) ·
∑

x

f̂ (x | y) · ln
f̂1(x1 | y) ·

∏m
i=2 f̂i (xi | y, x1, . . . , xi−1)

f1(x1 | y) ·
∏m

i=2 fi (xi | y, x1, . . . , xi−1)

Since ln(a · b) = ln(a) + ln(b), K L(f, f̂) can be written as

KLcond(f, f̂) =
∑

y

f̂ (y) ·
∑

x

f̂ (x | y) · ln
f̂1(x1 | y) ·

∏m
i=2 f̂i (xi | y, x1, . . . , xi−1)

f1(x1 | y) ·
∏m

i=2 fi (xi | y, x1, . . . , xi−1)

=
∑

y

f̂ (y) ·
∑

x

f̂ (x | y) ·
m

∑

i=1

ln
f̂i (xi | y, x1, . . . , xi−1)

fi (xi | y, x1, . . . , xi−1)

=
m

∑

i=1

∑

y

f̂ (y) ·
∑

x

f̂ (x | y) · ln
f̂i (xi | y, x1, . . . , xi−1)

fi (xi | y, x1, . . . , xi−1)

123

M. Geilke et al.

By definition, f̂ (x | y) = f̂1(x1 | y) · . . . · f̂m(xm | y, x1, . . . , xm−1) and, therefore,

the following equalities hold for each i in the above sum:

∑

y

f̂ (y) ·
∑

x

f̂ (x | y) · ln
f̂i (xi | y, x1, . . . , xi−1)

fi (xi | y, x1, . . . , xi−1)

=
∑

y

f̂ (y) ·
∑

x

⎛

⎝

m
∏

j=1

f̂ j (x j | y, x1, . . . , x j−1)

⎞

⎠ · ln
f̂i (xi | y, x1, . . . , xi−1)

fi (xi | y, x1, . . . , xi−1)

=
∑

y

f̂ (y) ·
∑

x

⎛

⎝

m
∏

j=1, j �=i

f̂ j (x j | y, x1, . . . , x j−1)

⎞

⎠ ·

f̂i (xi | y, x1, . . . , xi−1) · ln
f̂i (xi | y, x1, . . . , xi−1)

fi (xi | y, x1, . . . , xi−1)

≤
∑

y

f̂ (y) ·
∑

x

f̂i (xi | y, x1, . . . , xi−1) · ln
f̂i (xi | y, x1, . . . , xi−1)

fi (xi | y, x1, . . . , xi−1)

= KLcond(fi , f̂i),

where
∏m

j=1, j �=i f̂ j (x j | y, x1, . . . , x j−1) has been replaced by 1 in the last but one

step, which is possible, since 0 ≤
∏m

j=1, j �=i f̂ j (x j | y, x1, . . . , x j−1) ≤ 1. Also notice

that f (y) = fi (y) for all i ∈ [1; n], i.e., each classifier uses the same estimator for y.

Hence, if KLcond(fi , f̂i) → 0 for all i ∈ [1; n], then KLcond(f, f̂) → 0. ⊓⊔

Thus, estimators employing a single classifier chain are consistent as long as the

underlying base classifiers are. However, proving this property for individual base

classifiers is not always easy. A Hoeffding tree with Majority Class leaf classifiers,

for example, partitions the instances by the attributes based on which splits took place

and the values of the attributes. If the Hoeffding tree constitutes a complete tree, then,

according to the law of large numbers, the leaf classifiers approach the true class

probabilities of each partition with increasing numbers of instances. Otherwise, the

consistency property is fulfilled if there is a stream prefix of length N0 ∈ N, such that,

for each branch of that tree, no further pruning takes place and either

– there is no further attribute on which the leaf node can be split, or

– for each path from the root to a leaf, any series of further splits does not change

the distribution of the partition belonging to this path.

Next, we extend the statement of Proposition 1 to estimators employing an ensemble

of (weighted) classifier chains.

Proposition 2 Let f be a discrete joint density with f (y, x) = f1(x1 | y)·. . .· fm(xm |
y, x1, . . . , xm−1). Further, let f̂ be an estimator employing an ensemble of (weighted)

classifier chains, and let f̂i, j be the estimate of the j-th classifier in the i-th classifier

chain. If the number of instances tends to infinity and KLcond(fi , f̂i) → 0 for all

i ∈ [1; k] and j ∈ [1; m], then KLcond(f, f̂) → 0.

123

Online estimation of joint densities using classifier chains

Proof Follows immediately from the definition of an ensemble of (weighted) classifier

chains and Proposition 1. Each classifier chain provides a consistent estimate, so the

weights of the classifier chains do not affect the consistency of the ensemble. ⊓⊔

6 Mixed types of random variables

In the previous section, we described a framework for estimating conditional joint den-

sities using classifier chains. To estimate the conditional densities fi (X i | Y1, . . . , Yl ,

X1, . . . , X i−1), which result from applying the product rule, we employed Hoeffding

trees acting as class probability estimator for the X i . As the Hoeffding trees can only

handle discrete X i , we can only employ them for densities where X i is discrete and

the Yi are discrete and / or continuous. Densities where X i is a continuous random

variable cannot be handled so far.

Since the factors in Eq. 3 are independent from each other, the univariate density

estimators can be mixed arbitrarily. Hence, we can employ Hoeffding trees for the fi

where X i is discrete and some other univariate density estimator for the fi where X i

is continuous. The first case has been already described in Sect. 5. In this section, we

propose a density estimator for the latter case.

6.1 Class probability estimators

To provide an estimate for densities fi (X i | Y1, . . . , Yl , X1, . . . , X i−1) where X i is a

continuous random variable, we extend a method proposed by Frank and Bouckaert

(2009). They proposed a batch algorithm that estimates conditional densities using

class probability estimators. For a variable X and a set of variables Y , they discretize

the range of X , weight each instance according to the likelihood of falling into a certain

bin of this discretization given the variables in Y , and create an estimate for f (X | Y)

using these weights. Hence, the instantiations x j are basically reweighted in order to

respect that X is conditioned on the variables in Y . For a specific value x j of X , the

weight is computed as follows:

w(x j | Y) = N ·
p(cx j

| Y)

Ncx j

(5)

Here, cx j
is the bin to which x j belongs, N is the total number of instances, and Ncx j

is

the number of instances falling into cx j
. Afterwards, one can choose an estimator for

f (X | Y). Frank and Bouckaert considered an univariate normal estimator, a kernel

estimator, and a histogram estimator. Their experiments showed that overall the kernel

estimator provides the best performance, which is why we use this estimator for our

purpose. It is given by a sum over all target values:

fkernel(x | Y) = 1

N

N
∑

j=0

w(x j | Y) · N (x; x j , σ
2
kernel) . (6)

123

M. Geilke et al.

bin0 bin1 bink

Fig. 2 bin0, bin1, . . . , bink are the bins, and the highlighted regions are the soft borders. For the data

points that lie in the highlighted regions, it is unclear whether they belong to bin bin j or to bin bin j+1,

i ∈ [0; k − 1]

The kernel bandwidth σkernel is computed using estimators for the mean and vari-

ance: σkernel = σI

N 1/4 with σ 2
I = 1

N

∑N
j=0 w(x j |Y) · (x j − μI)

2 and μI =
1
N

∑N
i=0 w(x j |Y) · x j . Corresponding online versions simply rely on a sufficiently

large number of previously seen instances (e.g., 100 or 1000 instances). This provides

good estimates and takes into account possible concept drifts.

To return to our initial problem, this means that an online version of these estimators

would be sufficient to estimate those fi in Eq. 3 for which X i is continuous. But to

obtain an online estimator, we have to solve two problems. First, we need to compute

the weights in an online fashion, and, second, we need to regularly reduce the number

of summands in Eq. 6, since this number grows with the number of instances.

For computing the weights in an online fashion, we will present an algorithm that

discretizes the range of X i and present classifiers that provide class probability esti-

mates. We will extend a discretization method for data streams that has been proposed

by Gama and Pinto (2006) (Sect. 6.2) and extend Hoeffding trees to deal with this dis-

cretization method (Sect. 6.3). In order to reduce the number of summands in Eq. 6, we

adapt a compression method proposed by Goldberger and Roweis (2004) (Sect. 6.4).

6.2 Discretization

First we deal with the problem of discretizing the target variable X i in an online fashion.

The algorithm by Gama and Pinto approaches the discretization for data streams using

two layers. The first layer consists of a large number of intervals—many more than

needed for the final discretization. Whenever the number of values within an interval

exceeds a user-defined threshold, the bin is split into two bins or, if it is the first or last

interval, a new bin is added. The second layer represents the final discretization. It is

triggered by the user and enables an equal-width or equal-frequency discretization by

merging the many smaller intervals into bigger intervals.

With more and more data points, the positions of the interval borders change—

substantially in the beginning and more subtly later. Hence, there are data points that

can be used more safely, as it is unlikely that they will switch to another bin, and

there are data points for which it is unclear in which bin they will end up. For the

Hoeffding tree, however, it is crucial to know to which class a data point has to be

assigned. Otherwise, split decisions cannot be made with high confidence. Therefore,

we extend the approach by Gama and Pinto and propose to classify data points into

safe-to-use and not safe-to-use using Chernoff bounds. Regions containing the latter

data points will be called soft borders (see Fig. 2 for an illustration).

Assuming that the range of the target variable X i is [0; 1], the soft borders are

computed as described by Algorithm 2. It is based on an existing discretization

123

Online estimation of joint densities using classifier chains

Algorithm 2: computeSoftBorders

Input: Confidence level θ , an initial equal-frequencey discretization with k bins d = (b0, . . . , bk),

instances I

Output: d = (b0, l1, b1, u1, . . . , lk , bk , uk)

1 for 1 ≤ j ≤ k do

2 create a random variable V that is 1 if a value lies in [0; b j] and 0 otherwise

3 p ←
∑ j

0 |bini |
∑k

0 |bini |
4 l ← find the minimal 0 < λT ≤ 1 using a binary search, such that

Pr [T < (1 − λT) · μ] < e
−

μλ2
T

2 < θ ,

where μ = |I | · p and T is the sum of independent Bernoulli trials with probabilities

Pr(T j = 0) = 1 − p, Pr(T j = 1) = p.

5 l j ← b j − l

6 u ← find the minimal 0 < λT ≤ 1 using a binary search, such that

θ < Pr [T > (1 + λ) · μ] <

[

eλ

(1 + λ)(1+λ)

]μ

,

where μ = |I | · p and T is the sum of independent Bernoulli trials with probabilities

Pr(T j = 0) = 1 − p, Pr(T j = 1) = p.

7 u j ← b j + u

8 end

9 return d = (b0, l1, b1, u1, . . . , lk , bk , uk)

d = (b0, . . . , bk) of X i , which is maintained by the equal-width or equal-frequency

discretization method described above. This discretization can only take previously

seen instances into account, so that future instances are possibly not represented cor-

rectly. In order to also account for these, we consider b j as the mean of the probability
∑ j

0 |bini |
∑k

0 |bini |
and use Chernoff bounds for the expected deviation from this mean. In par-

ticular, we consider the sequence of previously seen instances as a sequence of binary

random variables Z1, Z2, . . . , Z N , i.e., iid Bernoulli experiments. Each Z j has a suc-

cess probability of

∑ j
0 |bini |

∑k
0 |bini |

, which corresponds to the expected position of b j in the

interval [0; 1] for an equal-frequency discretization. Together with the expected proba-

bility of the Z j , a lower bound l and an upper bound u can be determined by computing

the corresponding Chernoff bounds with confidence level θ . From the resulting esti-

mates, we obtain the starting and end point of the soft border: b j − u and b j − l.

Theorem 1 shows the correctness of the described procedure.

Theorem 1 Let θ ∈ [0; 1], let k be a user-defined number of intervals, and let

d = (b0, l1, b1, u1, . . . , lk, bk, uk) be a discretization produced by Algorithm 2 for

confidence level θ . Then l j and u j , 1 ≤ j ≤ k, are lower and upper bounds for b j

that hold with confidence level θ .

123

M. Geilke et al.

Proof First, we project the interval [b0; bk] to [0; 1]. Now, consider an arbitrary border

b j that is projected to the interval [0; 1], which we denote by b′
j . We design a coin

flipping experiments with a two-sided coin for some instance inst : A is the event that

inst is smaller than or equal to b j . B is the event that inst is greater than b j . Hence,

the probability of A is

∑ j
0 |bini |

∑k
0 |bini |

, the probability of B is 1 − Pr(A).

Using Chernoff bounds, we then compute the lower and upper bounds for b j , which

are l j and u j . Making worst- and best-case assumptions, we obtain

x ∈ [b j−1 + u j−1; b j − l j], (7)

which means that x belongs to bin b j with confidence level θ . Afterwards, (b j − l j)

is the lower bound of b j and (b j + u j) the upper bound. All instances smaller than

(b j − l j) and larger than (b j−1 + u j−1) can be discarded, and we simply store the

number of elements falling into this interval. Instances that lie between the lower and

upper bound of b j have to be stored. ⊓⊔
Hence, all values that are not in some interval [l j ; u j] can be used safely. For the

remaining values, we cannot say in which bin they will finally end up. Therefore, we

store them until we can make a decision. The safe-to-use values are not stored. We

simply count how many times they are observed.

In extreme cases, it could happen that we have to store too many instances, because

a lot of values may fall into soft border regions. In this situation, we could extend the

approach proposed above by discretizing the border intervals and keeping statistics

about them. In the end, we obtain an approximation that is memory-efficient.

Although we can use soft borders to classify instances into safe-to-use and not-safe-

to-use, there is still a certain chance that this classification is wrong. By construction,

the soft borders guarantee that the corresponding border lies within the specified

interval with confidence level θ . Hence, the theoretical error of this classification is

1 − θ . In combination with Hoeffding trees that perform their split decisions with

another confidence level θ ′, the overall error per split decision is (1−θ ·θ ′). This error

is then propagated along the paths in the Hoffding tree, until it stops at a leaf. However,

this error is not propagated to other Hoeffding trees, since the trees are independent

from each other—at least for the density estimation.

6.3 Extension of Hoeffding trees

Based on the discretization proposed in the previous subsection, we modify the split

criterion of Hoeffding trees (Hulten et al. 2001). Hoeffding trees use a heuristic mea-

sure to make split decisions. Typical examples are the information gain and the Gini

index. To decide whether to split a given leaf node, the Hoeffding tree algorithm usu-

ally determines the attributes A and B with the highest and second highest observed

G, respectively. Afterwards, a split is performed if

G(A) − G(B) >

√

R2 ln(1/δ)

2 · N

123

Online estimation of joint densities using classifier chains

and A is not the null attribute, where R is the range of the variable, 1 − δ is the

confidence level, N is the number of instances, and the null attribute is a pseudo

attribute for pre-pruning.

We modify this condition by only providing the counts of safe-to-use regions.

Hence, data points from the soft borders are simply disregarded. Alternatively, one

could also base the split decision on worst-case assumptions of the soft border dis-

cretization. For example, the tree only branches on a leaf if branching would take place

in any possible scenario of setting the borders of the discretization to the lower and

upper bounds of the soft borders. However, this increases the run-time of the Hoeffding

tree, since many possible scenarios have to be considered.

6.4 Compression

Since the number of instances is constantly growing, we need to perform some kind of

compression to keep the number of summands of our kernel density estimator small

(see Eq. 6). To tackle this problem, we cluster the summands and merge all summands

within one cluster into a single one.

For the clustering, we employ the MStream algorithm, which has been proposed by

Wan and Wang (2010). It is an online algorithm that is able to handle evolving data

streams and consists of two components: an online and an offline component. The

online component maps data points into a hyperspace. If two points are mapped to the

same point in the hyperspace, they are considered to belong to the same micro-cluster.

The offline component is responsible for merging the micro-clusters into a final clus-

tering, where two clusters are merged if their distance is below some user-defined

threshold.

The final clustering only specifies which data points can be grouped together. It

does not make a statement about how to combine the kernels into a smaller number of

kernels. Therefore, we propose to merge all kernels within one cluster to a single kernel.

However, as we seek to maintain a proper representation of the data, we cannot perform

this compression arbitrarily. For example, simply choosing a single representative of

the summands would skew the contribution of the cluster. The same is true for choosing

a representative and adding up the weights—though to a lesser extent.

To solve this problem, we employ a method proposed by Goldberger and Roweis

(2004). They compress a mixture g =
∑r

i=1 αi gi to a mixture with fewer components

h =
∑r ′

j=1 β j h j by applying a mapping π with π : {1, . . . , r} → {1, . . . , r ′}. Using

this method, we obtain the compressed kernel as follows: hπ =
∑r ′

j=1 βi g
π
j with

hπ
j = N (μ′

j , �
′
j) (8)

β j =
∑

i∈π−1(j)

αi (9)

μ′
j = 1

β j

∑

i∈π−1(j)

αiμi (10)

�′
j = 1

β j

∑

i∈π−1(j)

αi (�i + (μi − μ′
j) · (μi − μ′

j)
T) (11)

123

M. Geilke et al.

In our case, r ′ is 1, and i ∈ π−1(j) can be replaced by i = 1, . . . , r . Hence, the

summands are compressed to

(
r

∑

i=1

αi

)

· N (μ′
1, �

′
1) (12)

Since the αi , 1 ≤ i ≤ r , are not scalars but depend on the class probability

estimators,
∑r

i=1 αi cannot be computed at the time of compressing the summands.

However, as X i has been discretized, we can keep a vector t := (t1, t2, . . . , tk), where

k is the number of bins and ti is the number of data points that fell into bin ci , 1 ≤ i ≤ k.

With this information, we can rewrite
∑r

i=1 αi as
∑k

i=1 ti · w(ci | Y). As a result, we

obtain a compact representation of the weights that can be evaluated when required.

6.5 Consistency

In Sect. 5.5, we have shown that EDO density estimates are consistent as long as the

underlying base estimators are. In the discrete case, we employed Hoeffding trees and

argued that certain assumptions are necessary to ensure their consistency. The same

is true for the continuous case, as we will explain below.

The proposed online kernel density estimator consists of several components: a

discretization, a conditional class estimator, and a compression algorithm. For the

discretization, it is easy to see that it converges to a fixed binning with increasing

numbers of instances. Hence, at some point, the binning does not change anymore

and the consistency of the conditional class estimator only depends on the underlying

algorithm, which we already discussed in Sect. 5.5.

With this assumption, the proposed kernel density estimator would be consistent if

limN→∞ N · σkernel = ∞ (Wied and Weißbach 2012). However, this does not hold,

since the compression limits the number of kernels and the bandwidth computation is

limited to a fixed window. To solve these issues, it suffices to update the bandwidth

with every new instance and to remove the limitation on the number of kernels. This

way, compression can still take place, but we only compress kernels that are in a certain

vicinity. If this vicinity is sufficiently small, the density estimator becomes consistent,

as limN→∞ N · σkernel = ∞. However, this comes at the cost of increased memory

requirements and a higher sensitivity to concept drifts.

7 Inference

The algorithms presented in the previous sections yield density estimators providing a

compact representation of the density. In its current state, however, information about

the density value of a given instance can only be obtained with respect to the full

density. This can severely limit the use of the estimate, as the user’s interests probably

change over time (e.g., the user is only interested in a subset of the random variables

after analyzing the density estimate).

123

Online estimation of joint densities using classifier chains

Algorithm 3: Incorporating evidence for Hoeffding tree estimators

Input: estimator f̂ , random variables X1, . . . , Xm , evidence for random variable Y where Y [k] has

probability pk

Output: updated estimator

1 for n in nodes(f̂) do

2 if randomV ariable(n) = Y then

3 (e1, . . . , e|values(Y)|) ← edges(n)

4 for 1 ≤ k ≤ |values(Y)| do

5 weight (ek) ← pk/weight (ek)

6 end

7 end

8 end

To overcome this limitation, we propose to extend density estimates to so-called

probabilistic condensed representations of data, which are density estimators together

with infrastructure to pose queries on the densities. Among the most basic queries are

inference operations such as drawing instances, incorporating hard evidence, incor-

porating soft evidence, marginalizing out variables, and determining the density value

of an instance (with respect to the given evidence). On a higher level, these can be

combined to more complex tasks such as pattern mining, as previously presented in

another paper (Geilke et al. 2014).

In this section, we present algorithms for the aforementioned inference operations

and distinguish two cases: (1) the density estimators are employed with the base esti-

mators proposed in this paper (e.g., Hoeffding trees) and (2) different base estimators

are employed that do not necessarily support inference. For the first case, we exploit

the base estimators and perform most of the operations on top them. For the second

case, we do not take knowledge of the base estimators into account and provide general

procedures. These are less effective but can be used as a backup in case the first case

is not applicable. Please notice that, for reasons of readability, we consider densities

f (X1, . . . , Xm). All results can be easily extended to f (X1, . . . , Xm | Y1, . . . , Yl).

7.1 Hoeffding trees as base estimator

7.1.1 Incorporating evidence

Hard evidence and soft evidence can directly be incorporated into Hoeffding trees.

If hard evidence Y = y is given, we can simply disable or remove all branches of

variable Y that correspond to a value that is not equal to y. If soft evidence Y ′ is given,

where Y ′ takes the value Y ′[k] with probability pk , k ∈ [1; |values(Y)|], we have to

make two changes to the structure of the Hoeffding trees: First, the edges are extended

by weights representing the fraction of instances that passed through the edge divided

by the instances that passed through the node. Second, the class distribution of the

leaf classifiers is corrected according to the given soft evidence. If the weight of the

edge is q and the soft evidence of the edge is p, then
p
q

is the multiplier for that edge.

The multipliers of all edges on the path from the edge with the soft evidence down to

123

M. Geilke et al.

Algorithm 4: Drawing instances from an ensemble

Input: estimator f̂ := [(w1, cc1), . . . , (wk , cck)] with k chains, where w j are the weights and cc j

are the chains, random variables X1, . . . , Xm

Output: inst drawn from f̂

// select chain determining the ordering of the variables

1 cc ← draw chain according to (w1, . . . , wk)

// draw attribute values

2 for Xi ∈ Xπcc(1)
, . . . , Xπcc(m)

do

3 disti ← (0 | 1 ≤ j ≤ values(Xi))

4 for 1 ≤ j ≤ k do

5 let f j be the factor of cc j with target variable Xi

6 disti ← disti + w j · f j (Xi | X1 = x1, . . . , Xi−1 = xi−1)

7 end

8 normali ze(disti)

9 xi ← draw value from disti (using Algorithm 5)

10 end

11 return (x1, . . . , xm)

the leaf classifier are first multiplied and then multiplied with each value of the class

distribution (see Algorithm 3).

Theorem 2 Let f̂ be a density estimate for a density f (X1, . . . , Xm), Y be a random

variable, and (pk | 1 ≤ k ≤ |values(Y)|) be soft evidence given for Y . Algorithm 3

correctly modifies f̂ to incorporate the soft evidence.

Proof Let d = f (x1, . . . , xm)be the density value of an instance x = (x1, x2, . . . , xm).

The estimator f̂ computes d by following the corresponding paths in the conditional

density estimates f̂i (xi | x1, . . . , xi−1) from the root to a leaf, 1 ≤ i ≤ m. In the

following, we will show that the soft evidence is correctly incorporated into each f̂i .

Let f̂i be arbitrary. Then there is a path n1, e1, n2, er , . . . , eL , nL+1, such that n j

are the nodes 1 ≤ j ≤ L , e j are the edges, 1 ≤ j ≤ L , n1 is the root of f̂i , nL+1 are

the values of the target variable, and ∃ j ∈ N : randomV ariable(n j) = Y . Due to

the structure of f̂i , the density value di = f̂i (xi | x1, . . . , xi−1) can be expressed as

di = weight (e1) · . . . · weight (eL). By multiplying weight (e j) with
pk

weight (ek)
, as

defined in Line 5 of Algorithm 3, one obtains di = weight (e1) · . . . · weight (ek−1) ·
pk · weight (ek+1) · . . . · weight (eL), which means that the soft evidence of Y is

correctly reflected in di . ⊓⊔

7.1.2 Drawing instances

If we need to draw an instance from an online density estimator that uses a sin-

gle classifier chain, we simply iterate over the classifiers from f1(X1) to fm(Xm |
X1, . . . , Xm−1), draw an estimate from each classifier, sample a value based on the

distribution obtained, and use the output as input for the next classifier.

Although it is straightforward to obtain a density estimate for a particular instance

from the ensemble, it is no longer straightforward to generate data samples based

on the estimated density. The simple process that can be used in the case of a single

123

Online estimation of joint densities using classifier chains

chain no longer applies, as every chain has a different variable ordering. Therefore, the

instance will be drawn based on a single ordering and the other densities will be adapted

using marginalization (see Algorithm 4). At the beginning, the algorithm randomly

selects an ordering Xπcc(1)
, . . . , Xπcc(m)

based on the classifier chains in the ensemble

(line 1). In principle, one could use any ordering, but the chains are more accurate

when using their own ordering (e.g., in case some instances have been discarded

due to split decisions). Based on Xπcc(1)
, . . . , Xπcc(m)

, the algorithm draws the values

iteratively from f1(Xπcc(1)
) to fm(Xπcc(m)

| Xπcc(1)
, . . . , Xπcc(m−1)

) by marginalizing

out the variables Xπcc(i+1)
, . . . , Xπcc(m)

for each conditional density with target variable

Xπcc(i)
. As a result, we obtain a probability distribution for each variable Xπcc(i)

and for

each ensemble member, which are then combined to a single probability distribution

disti for each Xπcc(i)
(lines 3–8), 1 ≤ i ≤ m. Finally, the value for each Xπcc(i)

can be

drawn from disti .

Theorem 3 Let f̂ = [(w1, cc1), . . . , (wk, cck)] be the k chains of an estimate f̂

for the density f (X1, . . . , Xm), where w j are the weights and cc j are the chains.

Algorithm 4 draws instances according to f , if f̂ is a consistent estimate and the

number of training instances approaches infinity.

Proof Let x = (x1, . . . , xm) be an arbitrary instance. We will show that x is drawn

according to f (X1, . . . , Xm), if f̂ is a consistent estimate for f . According to the

product rule, every ordering of variables represents f equally well, i.e.,

f (X1, . . . , Xm) = f1(Xπ(1)) ·
m

∏

i=1

fi (Xπ(i) | Xπ(1), . . . , Xπ(i−1)),

where π : {1, . . . , m} → {1, . . . , m} is a one-to-one mapping. Hence, if f̂ is a

consistent estimate, Line 1 can be considered a heuristic without an effect on the

correctness of the algorithm, and Line 3 through 8 compute the the weighted average

over all classifier chains for all variables, which is only affected by the marginalization

in Line 6.

The marginalization, on the other hand, is described by Algorithm 5 and is a breadth-

first search through the Hoeffding tree where all matching paths are combined: Each

branch of the tree represents a partition of the variable-value space. When marginal-

izing out variables X \Z := {Z1, . . . , Zm′} for a conditional density estimate f̂i , a

variable X ∈ X \Z can take any value in values(X), so that the density values of all

paths starting at a node n with randomV ariable(n) ∈ X \Z have to be considered

and the density values of the corresponding leaves have to be combined. By performing

a breadth-first search and averaging over these leaves, one obtains the density value

of f̂i (Zi | Z1, . . . , Zm′), which is exactly what Algorithm 5 does. ⊓⊔

7.2 Marginalization

When it comes to marginalizing out variables, there are only a few special cases in

which the current structure can be manipulated to represent the marginal density. The

123

M. Geilke et al.

Algorithm 5: Marginalization for drawing instances

Input: estimator f̂ := [(w1, cc1), . . . , (wk , cck)] with k chains, where w j are the weights and cc j

are the chains, random variables Z := {Z1, . . . , Zm′ }
Output: inst drawn from f̂

1 nodes ← [] ; // tuples consisting of a weight and the corresponding

node

2 for 1 ≤ j ≤ k do

3 let f1, . . . , fm be the factors of cc j

4 for 1 ≤ i ≤ m with Xi ∈ Z do

5 distribution ←
(

1
|values(Xi)| , . . . ,

1
|values(Xi)|

)

6 nodes ← {(w j , root (cc))}
// a breadth-first search to find all matching nodes

7 do

8 nodes′ ← []
// only one child is possible, because we have evidence for

randomV ariable(n)

9 while (w, n) ∈ nodes with randomV ariable(n) ∈ Z do

10 (w′, n′) ← child matching evidence

11 nodes′ ← nodes′\{(w, n)}
12 nodes′ ← nodes′ ∪ {(w′, n′)}
13 end

// every child is possible, because there is no evidence

for randomV ariable(n)

14 for (w, n) ∈ nodes with randomV ariable(n) /∈ Z do

15 if isLea f (n) == f alse then

// add all children to nodes′
16 for edge ∈ edges(n) do

17 nodes′ ← nodes′ ∪ {(w · weight (edge), target Node(edge))}
18 end

19 else

20 distribution ← distribution + w · distribution(n)

21 end

22 end

23 nodes ← nodes′

24 while nodes �= {};
25 z j ← draw value according to normali ze(distribution)

26 end

27 end

28 return (z1, . . . , zm′)

problem lies with the children of the variable to be marginalized out, as it can easily

happen that inner nodes of tree become a forest: For example, if there is a variable

X i ∈ X with X i /∈ Z where the descendant of X i for its value v1 is D1 and the

descendant of X i for its value v2 is D2, then it may easily happen that D1 ∩ D2 = ∅.

Hence, there are no common variables on which the branches can be merged, and we

end up with a forest instead of a single tree. Even if it were possible to find a common

root, we would only have the instance counters for the target variable but not of the

underlying instances.

Therefore, we propose to perform marginalizations on the fly, i.e., it is performed

while drawing instances or computing density values. This can be achieved by aggre-

123

Online estimation of joint densities using classifier chains

gating all paths from the root to the leaves that match the requirements. Algorithm 5

demonstrates this idea at the example of drawing instances. The algorithm basically

iterates over all relevant Hoeffding trees of the ensemble (some trees are not relevant,

because their target variable is not an element of Z). Then for each node, two cases

need to be distinguished: (1) The node can only have one successor, because we have

a value for the random variable of that node. (2) The node has all its children as suc-

cessor, because no value is given for the random value of that node. In this fashion, the

algorithm visits the nodes until it reaches a leaf. At the leaf some relevant information

is extracted, which is the distribution of the target variable in the case of drawing

instances, and aggregated with the other leaves of that tree.

7.3 Continuous base estimators

Since the continuous base estimator presented in Sect. 6 are based on a slightly mod-

ified Hoeffding tree, which does not clash with the inference operations, most of the

algorithms presented in the previous subsections can be easily extended:

Evidence With a slight modification evidence is already supported due to the Hoeffd-

ing tree (i.e., the class probability estimator). We only need to correct the Ncx j
to

comply with the evidence.

Drawing Instances Iterate over all Gaussians, draw a value x ′
i from each Gaussian

N (x; xi , σ
2
kernel), and compute

1

N

∑N
i=0 w(xi | X) · x ′

i .

Marginalization is already supported.

7.4 Arbitrary base estimator

7.4.1 Incorporating evidence

If the density estimator is not based on Hoeffding trees, we pursue a more general

approach, which is independent from the base estimator and only requires the two

operations: drawing instances and computing density values. Since both of these oper-

ations are fast in the presented framework, we can train a new density estimator that

fulfills the desired properties. It suffices to draw instances and discard all those which

do not match the evidence. The training is finished as soon as the new density esti-

mator differs not more than d percent from the original density estimate on the most

recent sample in terms of log-likelihood and at least m instances have been used for

training. The parameter m ensures that enough instances have reached the new density

estimator. A more detailed description is given by Algorithm 6. Please notice that the

notation follows that of soft evidence, but we can simulate hard evidence by giving a

123

M. Geilke et al.

Algorithm 6: Incorporating evidence for arbitrary base estimators

Input: estimator f̂ , random variables X1, . . . , Xm , evidence Y1, . . . , Yl where Y j [k] has probability

pk , minimum number of training instances m (e.g., 10,000), allowed deviation of the average

log-likelihood d (e.g., 10%)

Output: updated estimator

1 f̂ ′ ← initialize density estimator

2 counter ← 0

3 L L , L L ′ ← 0

4 do

// Requirements imposed on instance given by evidence

5 for 1 ≤ j ≤ l do

6 v j ← Y j [k] where k is drawn according to (pk | k ∈ [1 : |values(Y j)|])
7 end

// Sample an instance fullfilling these requirements

8 do

9 inst ← sample instances from f̂

10 f̂ ′.update(inst)

11 L L ← L L - log(e.densi tyV alue(inst))

12 L L ′ ← L L ′ - log(e′.densi tyV alue(inst))

13 while inst[Y j] �= v j , j ∈ [1 : l];
14 count ← counter + 1

15 while
L L ′ − L L

L L
< d ∧ counter < m;

16 return f̂ ′

probability of 1 to the hard evidence and set the probability of the remaining values

to 0.

Due to this general approach with only few requirements imposed on the base esti-

mators, the algorithm is less effective in some cases. If the evidence makes an unlikely

value likely, this easily requires a tremendous number of instances—especially if one

assigns a high probability to a value that actually has a low probability. Moreover, it

can no longer be guaranteed that the sequence of instances is independent, which is

often a requirement for the base classifiers.

7.4.2 Marginalization

Even for arbitrary base estimators, marginalizing out variables can be performed quite

efficiently: First, the hard or soft evidence is set in the density estimator e, such that all

instances drawn from e respect the given evidence. Then a new density estimator e′ is

initialized and trained with N instances from e. Before the instances are forwarded to e′,
all variables are removed that are supposed to be marginalized out. After processing N

instances, the resulting density estimator is returned. This procedure is easily extended

to ensembles of (weighted) classifier chains by adding an outer loop iterating over the

classifier chains.

123

Online estimation of joint densities using classifier chains

7.5 Inference scenarios

In Sect. 2, we proposed three inference scenarios to illustrate the inference operations

imposed on a probabilistic condensed representation. In the following, we will show

how these operations can be used to answer the queries described in the inference

scenarios.

To evaluate Eqs. 1 and 2 of the first two inference scenarios, there are two main

tasks that need to be performed: (1) specifying the variables Yi (either to specify values

or to specify the probabilities of specific values), and (2) marginalizing out variables

from X \{Z1, . . . , Zm′}. In the context of Bayesian networks, both tasks are usually

performed by operating on conditional probability tables. Here, we perform these tasks

on the estimators presented in the previous sections. With Algorithms 3 and 4, both

tasks are already taken care of.

For Inference Scenario 3, we need to infer a density from our current estimate that

only contains instances exceeding a certain probability θ . For that purpose, we do the

following:

1. Draw instances from the current density estimate.

2. Check whether the value of the density estimate for this instance exceeds θ . If

yes, use this instance to train the new target distribution. Otherwise, disregard this

instance and go to 1.

As stopping criterion, we need a condition that guarantees a certain quality of the

resulting density estimate. For that purpose, we compute how many instances need

to be observed, so that an instance with probability θ1 + ε is included in a sample

of size N , where ε is a small, positive number close to 0. Hence, using the upper

Chernoff bound, the sample size can be computed with high confidence by computing

the most extreme deviation from the mean N · (θ1 +ε). Using this sample size, we can

then decide whether all relevant instances should have been drawn from the density

estimate already.

Given a confidence level 0 < θ2 < 1 and a λ > 0, we can apply the Chernoff bound

(Motwani and Raghavan 1995) and compute the minimal N , such that

θ2 < Pr [X > (1 + λ) · μ] <

[
eλ

(1 + λ)(1+λ)

]μ

,

where μ = N · (θ1 + ε) and and X is the sum of independent Poisson trials with

Pr(X = 0) = 1 − θ1 − ε, Pr(X = 1) = θ1 + ε. For continuous random variable, θ

is treated as a density value instead of a probability.

8 Evaluation

In this section, we evaluate the algorithms presented in Sects. 5, 6, and 7 on synthetic

and real-world data. To facilitate comparisons with other methods, we will focus on

joint densities, i.e., f (X1, . . . , Xm). Conditional densities are not explicitly evaluated,

but as they constitute a key component of the proposed density estimators, they are

responsible for their overall performance.

123

M. Geilke et al.

The algorithms have been implemented as part of the MiDEO framework2 (Mining

Density Estimates inferred Online), which is based on MOA (version 2013.11) (Bifet

et al. 2010). To improve readability, we introduce some notation to refer to specific

variants: E DDOT (L) and EC DOT (L), where T ∈ {CC, ECC, EWCC}, and L ∈
{MC, N B, N B A}. E DDOT (L) represents online density estimators for discrete joint

densities, and EC DO represents online density estimators for densities with mixed

random variables. The index denotes the type of density estimator, which is either an

estimator employing a classifier chain (CC), an estimator employing an ensemble of

classifier chains (ECC), or an estimator employing an ensemble of weighted classifier

chains (EWCC). If T is not specified, it refers to all types. The L specifies the leaf

classifier of the HoeffdingTree, which is MajorityClass (MC), NaiveBayes (NB), or

NaiveBayes adaptive (NBA).

In order to compare the performance of the online density estimators to existing

ones, we integrated Bayesian structure learners from the bnlearn package (Scutari

2010).3 At the time of writing, it contained

– Constraint-based algorithms: Grow-Shrink (GS), Incremental Association (IAMB),

Interleaved-IAMB (Inter-IAMB), Fast-IAMB

– Score-based algorithms: Hill-Climbing greedy search (HC), Tabu Search (TABU)

– Hybrid algorithms: Max-Min Hill Climbing (MMHC), Two-Phase Restricted

Maximization (RSMAX2)

– Local discovery algorithms: ARACNE, Max-Min Parents and Children (MMPC),

Semi-Interleaved Hiton-PC (SIHPC), Chow-Liu

The networks returned by these algorithms possibly contain undirected arcs. There-

fore, we employ the pdag2dag method to direct these arcs before estimating the

conditional probability tables (CPT). They are estimated by the fit method of the

Bayesian network, for which two alternatives are provided: maximum likelihood (mle)

and Bayesian aposteriori (bayes). For mixed densities, we employed the implementa-

tion of oKDE by Kristan et al. (2011), which is one of the few online density estimators

for multivariate densities. Its implementation is publicly available (MATLAB).

In order to compare the density estimates, we used the KL-divergence for small

and medium-sized synthetic datasets and the log-likelihood (LL) for larger synthetic

datasets and real-world data. Although it is not necessary to compute KL-divergence

to compare density estimates, it has the advantage of providing information how close

the density estimate is to the true density. Unfortunately, computing the KL-divergence

is computationally expensive, since we have to consider every possible combination of

feature values. For instance, if we have a Bayesian network with 8 nodes and 7 values

each, then there are already 78 = 5,764,801 combinations, for each of which we have

to compute the probability given by the estimate. This computation is very expensive,

so that we can only consider discrete joint densities with a small number of nodes and

a small number of node values. [Notice that, in order to avoid rounding errors, we

computed the KL-divergence using logarithms (Mann 2006)]. In case of real-world

2 https://github.com/geilke/mideo.

3 Please notice that we also compared the online density estimator with a corresponding batch version. The

results are available in Online Resource 1.

123

https://github.com/geilke/mideo

Online estimation of joint densities using classifier chains

Table 2 The table shows some properties of the data that has been used in this paper

Data Type #Attributes #Instances

Bayesian networks synthetic 4–10 100

Bayesian networks 4–10 1000

Bayesian networks 4–10 10,000

Movielens Discrete 23 49,282

Pokerhand 11 1,025,015

US census 68 2,458,285

Letter Continuous 17 19,999

Electricity 9 45,313

Shuttle 10 58,000

Adult Mixed 15 30,163

Covertype 54 581,012

We distinguish four types of data: synthetic, discrete, continuous, and mixed. The latter is used for datasets

that contain discrete and continuous variables

data, we distinguished two cases: For EDDO, we divided the dataset into training and

test set, forwarded the instances from the training set to the estimators, and computed

the log-likelihood on the test set. For ECDO, we computed the average log-likelihood

prequentially, i.e., the log-likelihood of a given instance has been computed before

using it for training. The instances used to compute the initial estimator (the first 100)

were excluded from this computation.

The properties of the data that we used are summarized in Table 2. The Bayesian net-

works were randomly generated using the random.graphmethod of the bnlearn

package. Its parameter method was set to melancon, which uses a Markov chain

to draw acyclic, directed graphs uniformly at random (Melançon and Philippe 2004).

The Bayesian networks had between 4 and 10 nodes, for each of which 15 networks

were considered. From these discrete joint densities, we drew N instances with N

being one of the values of {102, 103, 104}.

8.1 Chain orderings and ensemble size

As discussed in Sect. 5.3, the ordering of the chain could have an effect on the perfor-

mance of the density estimator. In our first experiment, we analyze the influence of

the variable ordering with respect to the performance of the online density estimates.

We randomly picked 15 Bayesian networks with seven nodes and computed the KL-

divergence of 1000 randomly chosen classifier chains for the leaf classifiers MC, NB,

and NBA.

Some representative results of this experiment are given in Fig. 3 (for the remaining

results, see Online Resource 2). In all of the presented cases, we observe large differ-

ences between the best and the worst classifier chain, which range between roughly

0.2 and 0.65. The percentage of chains performing generally well and chains perform-

ing generally poorly varies substantially between the different Bayesian networks and

123

M. Geilke et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65

p
e

rc
e

n
ta

g
e

 o
f

c
la

s
s
if
ie

r
c
h

a
in

s

KL-divergence

CC MC
CC NB

CC NBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

p
e

rc
e

n
ta

g
e

 o
f

c
la

s
s
if
ie

r
c
h

a
in

s

KL-divergence

CC MC
CC NB

CC NBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

p
e

rc
e

n
ta

g
e

 o
f

c
la

s
s
if
ie

r
c
h

a
in

s

KL-divergence

CC MC
CC NB

CC NBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.45 0.5 0.55 0.6 0.65 0.7

p
e

rc
e

n
ta

g
e

 o
f

c
la

s
s
if
ie

r
c
h

a
in

s

KL-divergence

CC MC
CC NB

CC NBA

Fig. 3 Each plot shows the performance of 1000 E DDOCC density estimators for a single randomly-

generated Bayesian network with 7 nodes. On the x-axis is the KL-divergence, and on the y-axis is the

percentage of classifier chains having a smaller or equal KL-divergence

also depends on the base classifiers. For MC, the top-left plot shows roughly 30% of

the chains performing relatively poorly and the rest performing well. For MC in the

bottom-right plot, the opposite can be observed. Generally, the performance of NB

and NBA seems to be more stable, so that the differences are rather small (an excep-

tion is NB in the bottom-left plot). The smoothness of the NB and NBA curves can

be explained by the way MC classifies instances. Since MC only takes the majority

class into account, the differences in the class distributions that are affected by minor

changes in the chain orderings often have only a small effect. Hence, several classifier

chains can have the same performance.

From the plots, we can conclude that employing a single classifier chain will gener-

ally be less effective compared to an ensemble of classifier chains employing several

classifier chains. As the idea of ensembles of classifier chains is to compensate for

classifier chains with poor performance and the probability of drawing a good classifier

chain is rather high in this experiment, we assume that a small ensemble size should

be sufficient to achieve good performance. For further investigations of this matter,

we conduct another experiment and analyze how many chains are necessary to com-

pensate for poorly performing chains. For this purpose, we generated 100 Bayesian

networks with seven nodes and computed the KL-divergence for the ensemble sizes

1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35. Each ensemble was trained with 102, 103, 104, 105

instances.

123

Online estimation of joint densities using classifier chains

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
C

C
-1

E
C

C
-2

E
C

C
-3

E
C

C
-4

E
C

C
-5

E
C

C
-1

0

E
C

C
-1

5

E
C

C
-2

0

E
C

C
-2

5

E
C

C
-3

0

E
C

C
-3

5

K
L

-d
iv

e
rg

e
n

c
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
C

C
-1

E
C

C
-2

E
C

C
-3

E
C

C
-4

E
C

C
-5

E
C

C
-1

0

E
C

C
-1

5

E
C

C
-2

0

E
C

C
-2

5

E
C

C
-3

0

E
C

C
-3

5

Fig. 4 The figure shows the KL-divergence of ensemble estimators with various ensemble sizes. It shows

the performance of E DDOECC (MC) (left) and E DDOECC (N B A) (right) trained on 100,000 instances

from Bayesian networks with 7 nodes

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 20 40 60 80 100

d
if
fe

re
n

c
e

 w
.r

.t
.
K

L
-d

iv
e

rg
e

n
c
e

ECC-10

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 20 40 60 80 100

ECC-10

Fig. 5 The figure shows a direct comparison of ECC-1 with ECC-10 using NBA as leaf classifier when

trained with 1000 (left) and 100,000 (right) instances from from Bayesian networks with 7 nodes. The

x-axis of the plots shows the individual runs of the estimators. The y-axis shows the difference with respect

to the KL-divergence

Figure 4 shows the performance of the ensemble estimators when trained on

Bayesian networks having 7 nodes and 105 instances. As stated earlier, more than ten

chains do not seem to provide substantial performance gains—at least for the given

synthetic data. In some cases, even four classifier chains seem to sufficient, which is

probably due to the large number of classifier chains showing a good performance.

How the number of instances affects the performance of the ensemble is shown

in Fig. 5, which provides a head-to-head comparison of ECC-10 and ECC-1 when

trained on 103 respectively 105 instances, i.e., K L(ECC-10) − K L(ECC-1). In both

cases, ECC-10 performs better than ECC-1 in the majority of cases. But the differences

between the two estimators are rather large, if only few instances are available (plot on

the left), and are rather small, if many instances are available (plot on the right). Hence,

the more instances are available, the less important is the ordering of the variable. This

is in line with our earlier discussion on the variable ordering: From a theoretical point

of view, every ordering is equivalent. But some variable interdependencies are more

difficult to represent by the base estimators, if only few training instances are available.

123

M. Geilke et al.

 bn-4-100

 bn-5-100

 bn-6-100

 bn-7-100

 0
 2
 4
 6
 8
 10
 12
 14
 16

 bn-4-1000

 bn-5-1000

 bn-6-1000

 bn-7-1000

 0
 2
 4
 6
 8
 10
 12
 14
 16

bn-4-10000

bn-5-10000

bn-6-10000

bn-7-10000

 0
 2
 4
 6
 8
 10
 12
 14
 16

bn-4-1000

bn-5-1000

bn-6-1000

bn-7-1000

bn-8-1000

bn-9-1000

bn-10-1000

E
D

D
O

C
C

(M
C

)

E
D

D
O

E
C

C
(M

C
)

E
D

D
O

E
W

C
C

(M
C

)

E
D

D
O

C
C

(N
B

)

E
D

D
O

E
C

C
(N

B
)

E
D

D
O

E
W

C
C

(N
B

)

E
D

D
O

C
C

(N
B

A
)

E
D

D
O

E
C

C
(N

B
A

)

E
D

D
O

E
W

C
C

(N
B

A
)

h
c
 b

a
y
e

s

ta
b

u
 b

a
y
e

s

rs
m

a
x
2

 b
a

y
e

s

m
m

h
c
 b

a
y
e

s

m
m

p
c
 b

a
y
e

s

s
i.
h

it
o

n
.p

c
 b

a
y
e

s

a
ra

c
n

e
 b

a
y
e

s

c
h

o
w

.l
iu

 b
a

y
e

s

g
s
 b

a
y
e

s

ia
m

b
 b

a
y
e

s

fa
s
t.

ia
m

b
 b

a
y
e

s

in
te

r.
ia

m
b

 b
a

y
e

s

h
c
 m

le

ta
b

u
 m

le

rs
m

a
x
2

 m
le

m
m

h
c
 m

le

m
m

p
c
 m

le

s
i.
h

it
o

n
.p

c
 m

le

a
ra

c
n

e
 m

le

c
h

o
w

.l
iu

 m
le

g
s
 m

le

ia
m

b
 m

le

fa
s
t.

ia
m

b
 m

le

in
te

r.
ia

m
b

 m
le

 0

 2

 4

 6

 8

 10

 12

 14

 16

Fig. 6 The plots show the average rank (lower is better, i.e, blue is better) of different EDDO density

estimators compared to 12 Bayesian structure learners, which use either mle or bayes to estimate the a

posteriori probabilities of the CPTs. In the three plots at the top, each estimator has been trained with 102,

103, or 104 instances on datasets generated from Bayesian networks with 4–7 nodes (the datasets are denoted

as bn-#nodes-#instances). As performance measure, the KL-divergence has been used. In the plot at the

bottom, each estimator has been trained with 103 instances on datasets generated from Bayesian networks

with 4–10 nodes. As performance measure, the average log-likelihood has been used (Color figure online)

8.2 Discrete densities

In this subsection, we compare EDDO to 12 Bayesian structure learners on synthetic

and real-world datasets. Especially on the synthetic data, we expect the Bayesian

structure learners to be a strong competitor, as they process the instances in an offline

fashion and the data is generated from Bayesian networks.

The synthetic datasets are generated from Bayesian networks with between 4 and

10 nodes. For node sizes between 4 and 7, we computed the KL-divergence and the

average log-likelihood. For Bayesian networks with 8 to 10 nodes, we only compute

the average log-likelihood due to run-time constraints. As visible in the result plots

(see bn-[4|5|6|7]-1000 in Fig. 6), the ranking of the given methods is affected by

the performance measure. The KL-divergence includes every possible instance in the

computation of the performance measure, whereas the average log-likelihood mea-

sures the performance on the instances available for testing. However, this does not

affect the general trends that we observe for EDDO—although it can affect the ranking

among the Bayesian structure learners.

123

Online estimation of joint densities using classifier chains

The results are summarized in Fig. 6. Generally, Bayesian structure learners show

a better performance when either the networks underlying the datasets are small or

many instances are available, which is due to the conditional probability tables of the

networks. Each combination of parent values is represented in the table and in order

to estimate the probabilities of each combination, sufficient numbers of instances

are required.4 For this reason, EDDO performs better on datasets originating from

networks with 7 nodes than from networks with only 4 nodes, compared with Bayesian

structure learners. This observation is further supported by the plot at the bottom of

Fig. 6, where the number of nodes in the Bayesian networks were increased up to 10.

The larger and the more complex the Bayesian network, the better the performance of

EDDO compared to the Bayesian structure learners—at least for MC as leaf classifier.

For leaf classifiers following the Bayesian principle, the situation is different. For a

fixed number of instances, they first perform better when the networks become more

complex. However, if the networks become too complex, this trend is reversed. This

is probably due to its independence assumption, which is requires more instances to

represent the density equally well.

Additionally, we compared EDDO with the Bayesian structure learner on three

publicly available datasets: Movielens, Pokerhand, and US Census. In order to ensure

that the instances are IID, we randomized the dataset and repeated the evaluation 15

times. Since Movielens and US Census have a larger number of attributes (23 and 68

respectively), some of the Bayesian structure learners were not able to finish within

12 h. If this affected only one run, we excluded this run. Otherwise, we removed the

Bayesian structure learner.

The results are summarized in Fig. 7. On every dataset, the EDDO density esti-

mators perform better on average than all Bayesian structure learners. Similar to the

synthetic datasets, Bayesian structure learners show a good performance when many

instances and only few attributes are available (Pokerhand dataset), and show a worse

performance on datasets with many attributes and relatively few instances—few in

terms of possible variable-value combinations. On the Pokerhand dataset, the benefits

of ensembles of classifier chains and ensembles of weighted classifier chains are nicely

illustrated. ECC shows a substantial improvement over CC, and EWCC in turn shows

a further improvement over ECC. We also observe that the variance of E DDOECC

and E DDOEWCC is lower than the variance of most Bayesian structure learners.

8.3 Continuous and mixed densities

In our last experiment, we compare EDO with a state-of-the-art online density estima-

tor for continuous densities,5 oKDE (see Sect. 3). For EDO, we set its internal buffer

size to 100 instances, the maximal number of kernels to 20,000, and the confidence

4 Please note that the problem of having too few examples for accurately estimating the CPTs could be less

prominent when the CPTs are replaced by decision trees (Friedman and Goldszmidt 1996; Su and Zhang

2006).

5 Unfortunately, even after several emails, the authors of RS-Forest did not respond to our request to share

their program.

123

M. Geilke et al.

-23

-22.5

-22

-21.5

-21

-20.5

-20

lo
g

-l
ik

e
lih

o
o

d

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

lo
g

-l
ik

e
lih

o
o

d

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

E
D

D
O

C
C

(M
C

)

E
D

D
O

E
C

C
(M

C
)

E
D

D
O

E
W

C
C

(M
C

)

E
D

D
O

C
C

(N
B

)

E
D

D
O

E
C

C
(N

B
)

E
D

D
O

E
W

C
C

(N
B

)

E
D

D
O

C
C

(N
B

A
)

E
D

D
O

E
C

C
(N

B
A

)

E
D

D
O

E
W

C
C

(N
B

A
)

h
c
 b

a
y
e

s

ta
b

u
 b

a
y
e

s

rs
m

a
x
2

 b
a

y
e

s

m
m

h
c
 b

a
y
e

s

m
m

p
c
 b

a
y
e

s

s
i
h

it
o

n
 p

c
 b

a
y
e

s

a
ra

c
n

e
 b

a
y
e

s

c
h

o
w

 l
iu

 b
a

y
e

s

g
s
 b

a
y
e

s

ia
m

b
 b

a
y
e

s

fa
s
t
ia

m
b

 b
a

y
e

s

in
te

r
ia

m
b

 b
a

y
e

s

h
c
 m

le

ta
b

u
 m

le

rs
m

a
x
2

 m
le

m
m

h
c
 m

le

m
m

p
c
 m

le

s
i
h

it
o

n
 p

c
 m

le

a
ra

c
n

e
 m

le

c
h

o
w

 l
iu

 m
le

g
s
 m

le

ia
m

b
 m

le

fa
s
t
ia

m
b

 m
le

in
te

r
ia

m
b

 m
le

lo
g

-l
ik

e
lih

o
o

d

Fig. 7 EDDO density estimators compared to 12 Bayesian structure learners, which use either mle or bayes

to estimate the a posteriori probabilities of the CPTs. Each estimator has been trained on the first half of

the datasets [(Pokerhand (top), Movielens (middle), and US Census (bottom)]. The average log-likelihood

has been measured on the second half

123

Online estimation of joint densities using classifier chains

 9.2

 9.4

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 11

3
 b

in
s

5
 b

in
s

1
0

 b
in

s

1
5

 b
in

s

2
0

 b
in

s

o
K

D
E

lo
g

-l
ik

e
lih

o
o

d

-26

-25

-24

-23

-22

-21

-20

3
 b

in
s

5
 b

in
s

1
0

 b
in

s

1
5

 b
in

s

2
0

 b
in

s

o
K

D
E

lo
g

-l
ik

e
lih

o
o

d

-27.8

-27.6

-27.4

-27.2

-27

-26.8

-26.6

-26.4

3
 b

in
s

5
 b

in
s

1
0

 b
in

s

1
5

 b
in

s

2
0

 b
in

s

o
K

D
E

lo
g

-l
ik

e
lih

o
o

d

-65

-64.5

-64

-63.5

-63

-62.5

-62

-61.5

-61

-60.5

-60

3
 b

in
s

5
 b

in
s

1
0

 b
in

s

1
5

 b
in

s

2
0

 b
in

s

lo
g

-l
ik

e
lih

o
o

d

Fig. 8 E DOCC (MC) compared with oKDE on the datasets Electricity (top left), Shuttle (top right),

Letter (bottom left), and Covertype (bottom right). On the y-axis is the average log-likelihood (computed

prequentially). i bins with i ∈ {3, 5, 10, 15, 20} stands for the number of bins used for discretizing the class

attribute

for the soft borders to 90%. In order to study how the number of bins for discretizing

the class attribute affects the performance of EDO, we set this parameter to 3, 5, 10,

15, and 20, respectively.

As datasets, we selected Electricity, Shuttle, Letter, Adult, and Covertype. Unfor-

tunately, oKDE was not able to complete a single job within 12 h on the Covertype

dataset and showed warnings regarding matrix computations on the Adult dataset.

Therefore, we excluded these datasets from the comparison. In case of the Covertype

dataset, the run-time issues can be explained by the large number of variables. The

problems with the Adult dataset can be explained by the many discrete variables (note

that we converted these variables to a numeric representation).

The results are summarized in Fig. 8 and Online Resource 3. With the exception of

the Shuttle dataset, EDO performs better or equally well compared to oKDE, if at least

five bins are used. On the Shuttle dataset, EDO discards up to 1443 instances due to

the soft border computations, which probably leads to less accurate class probability

estimators and thereby to a less accurate estimate. On the Electricity dataset, the

performances of the estimators are comparable with slight advantage for EDO. The

poor performance of oKDE on the Letter dataset can be explained by the values

taken by the variables. They are mostly small integer values, so that the dataset acts

more as a discrete than a continuous dataset. On the remaining datasets only EDO is

able to provide results either due to runtime constraints or due to internal errors of

oKDE.

123

M. Geilke et al.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 5000 10000 15000 20000 25000 30000 35000 40000 45000

lo
g

-l
ik

e
lih

o
o

d

number of instances

< 1000 kernels
< 10000 kernels
< 15000 kernels
< 20000 kernels

-65

-64

-63

-62

-61

 0 100000 200000 300000 400000 500000

lo
g

-l
ik

e
lih

o
o

d

number of instances

< 10000 kernels
< 15000 kernels
< 20000 kernels

Fig. 9 These plots illustrate the behavior of EDO when different levels of compression are used to reduce

the number of kernels. On the left is the electricity dataset, on the right the covertype dataset. < k means

that a compression takes place, if there are more than k kernels

Regarding the number of bins, we observe that more bins are generally beneficial for

the performance of EDO and that 10 bins is a good compromise between performance

and memory usage. The only exception is the Electricity dataset, where all estimators

are roughly on the same level and five bins seem to be sufficient for separating the

values of the variables. When the number of bins is getting to large, EDO tends to

decrease in its performance again. This can be explained by fewer instances per bin,

which leads to fewer training instances for the conditional class probability estimators.

Another reason are the number of discarded instances due to the soft borders. In our

experiments, the number of these instances usually range between a couple of instances

and 1443 instances.

EDO is performing regular compressions to keep the number of kernels low. In

order to analyze the behavior of EDO with respect to these compressions, we set the

maximal number of kernels to 10,000, 15,000, and 20,000, which means that EDO

performs a compression as soon as the corresponding limit is reached. Its behavior is

illustrated with two plots (see Fig. 9): On the Electricity dataset, the prequential log-

likelihood is constantly improving for a kernel limit of 10,000 kernels or more, which

shows that compression is working and does not substantially affect the accuracy of

the estimate. As opposed to that, we observe a substantial decrease on the Covertype

dataset whenever a compression takes place. This happens when the number of ker-

nels is too low compared to the possible number of combinations, i.e., the instance

space. Especially the Covertype dataset with its many attributes has a high-dimensional

instances space. If only few instances are observed for large subregions of that instance

space, EDO will compress all kernels in that region to meet the kernel limit—even

if they are rather unrelated. As a consequence, EDO will predict the density values

in that region less accurately. To solve this issue, one could increase the maximum

number of kernels to make the aforementioned subregions more dense before another

compression takes place. The effects of this proposal are nicely illustrated in Fig. 9 for

the Electricity dataset. Whereas a kernel limit of 1000 leads to a constant decrease of

EDO’s performance, 10,000 kernels or more lead to a constant improvement. Hence,

by increasing the kernel limit, we can counteract the issues caused by a compression.

However, as this problem is an instance of the curse of dimensionality, EDO will run

out of memory, if the density has too many variables.

123

Online estimation of joint densities using classifier chains

-25

-20

-15

-10

-5

 0

 5

 10

 15

 5000 10000 15000 20000 25000 30000 35000 40000 45000

lo
g

-l
ik

e
lih

o
o

d

number of instances

< 10000 kernels

Fig. 10 EDO exploits the assumption that the instance of the stream are iid. What happens if this is not the

case is shown at the example of the Electricity dataset. The gray area represents the range in which EDO is

performing, if the data is iid

All in all, the proposed density estimator performs well on the selected datasets and

can deal with purely continuous datasets as well as with datasets exhibiting discrete

and continuous variables. The performance is, however, dependent on the number of

maximally allowed kernels, which depends on the underlying instance space.

8.4 Non-IID data streams

EDO is making the assumption that the instances are drawn IID from the target dis-

tribution. This happens in two places: for split decisions in the Hoeffding trees and

for the soft borders. What happens if this assumption is violated is shown in Fig. 10,

where we considered the original data stream instead of a randomized version. Here,

the performance of the density estimate becomes very unstable and varies a lot, since

the split decisions of the Hoeffding trees are no longer guaranteed to be correct with

high confidence.

Towards the end of the stream, the performance becomes more stable again and

is roughly in the range of the IID data stream. This indicates that a larger number of

instances could help to counteract the non-IIDness of the data stream. In fact, if there

is no data distribution drift, the structure of the Hoeffding trees will become more and

more fixed after a while, so that only the probability masses in the leaves would be

changed. Even if this structure is not an ideal partitioning of the space, the density

estimator will still approach the true density according to the law of large numbers.

However, this has two disadvantages: (1) the produced trees are possibly substantially

larger than necessary and (2) for small numbers of instances, the density estimate

is probably very inaccurate (as illustrated in Fig. 10). To avoid these problems and

to handle non-iid data streams with EDO, one could model temporal dependencies

between the instances using additional features (e.g., Zliobaite et al. 2015) and shuffle

instances batch-wise.

123

M. Geilke et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

d
e

n
s
it
y
 v

a
lu

e

true density

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

d
e

n
s
it
y
 v

a
lu

e

true density

Fig. 11 The plots illustrate the density values of instances with marginalized out variables on the Movielens

and the US Census dataset. On the x-axis is the frequency of the instance, and on the y-axis is the estimated

density value

8.5 Inference operations

If Algorithms 3, 4, and 5 are used to perform inference, their results are mainly

dependent on the accuracy of the density estimate. In the following, we briefly illustrate

how much the result deviates from the actual frequencies by generating instances with

marginalized out variables. For this purpose, we take a density estimate f̂ and draw

1000 instances as follows:

1. select an integer m′ from [1; 0.5 · m] uniformly at random,

2. select a subset Z from X of size s uniformly at random (i.e., the variables X \Z
will be marginalized out from f̂),

3. draw 100 instances from f̂ (Z1, . . . , Zm′) with Zi ∈ Z , 1 ≤ i ≤ m′,
4. go to Step 1 until 1000 instances have been generated.

Figure 11 illustrates the results of this experiment on the datasets Movielens and US

Census. If the density estimate would correspond to the frequencies of the instances,

all dots would lie on the gray line, meaning that the density value equals the true

density. On the Movielens dataset, the density values generally only deviate slightly

from the true density, where the deviation is smaller for large density values and larger

for small density values. This is in line with our expectations, since instances with a

smaller density value occur less often and are therefore often missing when making

split decision in the Hoeffding trees. This is further supported by the US Census dataset.

Compared to its instance space, the number of available instances is relatively low, so

that instances with a low density value are occasionally not represented accurately in

the tree (observe the large deviation for a density value below 0.5).

9 Conclusions

In this paper, we proposed a family of online algorithms to estimate joint densities

with discrete variables, continuous variables, or both. In particular, we considered three

variations: one that uses a random classifier chain, one that uses an ensemble of random

classifier chains, and one that uses an ensemble of weighted random classifier chains.

123

Online estimation of joint densities using classifier chains

We proved the consistency of their estimates and proposed algorithms to perform

certain inference tasks. The results of the experiments showed that their performance

on synthetic data and real-world data is competitive to offline density estimators in the

discrete case and to a state-of-the-art online density estimator in the continuous case.

In addition to the ability to represent joint densities, the estimators enable basic

inference tasks that can be combined to perform complex data mining and machine

learning tasks (Geilke et al. 2014). In the future, we would like to pursue this direction

further and study which tasks can be addressed by operating on density estimates

without having access to the original data. It would also be interesting to see whether

a general framework can be designed that allows to specify properties of density

estimates with respect to specific domains (constraint-based density estimation).

Acknowledgements We would like to thank the editor and the anonymous reviewers for their comments.

They improved the presentation, readability, and quality of this paper substantially. We are particularly grate-

ful to the anonymous reviewer who proposed the exponentiated gradient investment strategy for weighting

the classifier chains.

References

Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting,

and variants. Mach Learn 36(1–2):105–139

Bifet A, Holmes G, Pfahringer B, Kranen P, Kremer H, Jansen T, Seidl T (2010) MOA: massive online

analysis, a framework for stream classification and clustering. J Mach Learn Res Proc Track 11:44–50

Blum A (1996) On-line algorithms in machine learning. In: Proceedings of the workshop on On-line

Algorithms, Dagstuhl. Springer, pp 306–325

Buchwald F, Girschick T, Frank E, Kramer S (2010) Fast conditional density estimation for quantitative

structure-activity relationships. In: Proceedings of the twenty-fourth AAAI conference on artificial

intelligence, pp 1268–1273

Cesa-Bianchi N, Lugosi G (2006) Prediction, learning, and games. Cambridge University Press, Cambridge

Chakraborty S (2008) Some applications of dirac’s delta function in statistics for more than one random

variable. Appl Appl Math Int J (AAM) 3(1):4254

Cheng MY, Gasser T, Hall P (1999) Nonparametric density estimation under unimodality and monotonicity

constraints. J Comput Graph Stat 8(1):1–21

Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley, New York

Davies S, Moore AW (2002) Interpolating conditional density trees. In: Uncertainty in artificial intelligence,

pp 119–127

Dembczynski K, Cheng W, Hüllermeier E (2010) Bayes optimal multilabel classification via probabilistic

classifier chains. In: International conference on machine learning, pp 279–286

Dembczynski K, Waegeman W, Hüllermeier E (2012) An analysis of chaining in multi-label classification.

In: Proceedings of the 20th European conference on artificial intelligence (ECAI 2012), pp 294–299

Dembczynski K, Kotlowski W, Waegeman W, Busa-Fekete R, Hüllermeier E (2016) Consistency of prob-

abilistic classifier trees. In: Proceedings of the 2016 European conference on machine learning and

knowledge discovery in databases (ECML PKDD 2016), pp 511–526

Domingos P, Hulten G (2000) Mining high-speed data streams. In: Knowledge discovery and data mining,

pp 71–80

Elgammal A, Duraiswami R, Davis LS (2003) Efficient kernel density estimation using the fast gauss

transform with applications to color modeling and tracking. IEEE Trans Pattern Anal Mach Intell

25:1499–1504

Frank E, Bouckaert RR (2009) Conditional density estimation with class probability estimators. In: Pro-

ceedings of first Asian conference on machine learning, pp 65–81

Frank E, Kramer S (2004) Ensembles of nested dichotomies for multi-class problems. In: Proceedings of

the 21st international conference of machine learning, pp 305–312

123

M. Geilke et al.

Friedman N, Goldszmidt M (1996) Learning bayesian networks with local structure. In: Proceedings of the

twelfth annual conference on uncertainty in artificial intelligence (UAI ’96), pp 252–262

Gama J, Pinto C (2006) Discretization from data streams: applications to histograms and data mining. In:

SAC, pp 662–667

Geilke M, Karwath A, Frank E, Kramer S (2013) Online estimation of discrete densities. In: Proceedings

of the 13th IEEE international conference on data mining, pp 191–200

Geilke M, Karwath A, Kramer S (2014) A probabilistic condensed representation of data for stream mining.

In: Proceedings of the 2014 international conference on data science and advanced analytics (DSAA

2014), IEEE, pp 297–303

Geilke M, Karwath A, Kramer S (2015) Modeling recurrent distributions in streams using possible worlds.

In: Proceedings of the 2015 international conference on data science and advanced analytics (DSAA

2015), pp 1–9

Goldberger J, Roweis ST (2004) Hierarchical clustering of a mixture model. Adv Neural Inf Process Syst

17:505–512

Hall P, Presnell B (1999) Density estimation under constraints. J Comput Graph Stat 8(2):259–277

Holmes MP, Gray AG, Isbell CL Jr (2012) Fast nonparametric conditional density estimation. CoRR

arXiv:abs/1206.5278

Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Knowledge discovery

and data mining, pp 97–106

Hwang JN, Lay SR, Lippman A (1994) Nonparametric multivariate density estimation: a comparative study.

IEEE Trans Signal Process 42(10):2795–2810

Kim J, Scott CD (2012) Robust kernel density estimation. J Mach Learn Res 13:2529–2565

Kristan M, Leonardis A (2010) Online discriminative kernel density estimation. In: International conference

on pattern recognition, pp 581–584

Kristan M, Leonardis A, Skocaj D (2011) Multivariate online kernel density estimation with gaussian

kernels. Pattern Recogn 44(10–11):2630–2642

Kumar A, Vembu S, Menon AK, Elkan C (2013) Beam search algorithms for multilabel learning. Mach

Learn 92(1):65–89

Lambert CG, Harrington SE, Harvey CR, Glodjo A (1999) Efficient on-line nonparametric kernel density

estimation. Algorithmica 25(1):37–57

Littlestone N (1987) Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm.

Mach Learn 2(4):285–318

Liu H, Lafferty JD, Wasserman LA (2007) Sparse nonparametric density estimation in high dimensions

using the rodeo. In: Proceedings of the eleventh international conference on artificial intelligence and

statistics, pp 283–290

Mann TP (2006) Numerically stable hidden Markov model implementation. HMM Scaling Tutor, pp 1–8.

Melançon G, Philippe F (2004) Generating connected acyclic digraphs uniformly at random. Inf Process

Lett 90(4):209–213

Motwani R, Raghavan P (1995) Randomized algorithms. Cambridge University Press, New York

Peherstorfer B, Pflüger D, Bungartz H (2014) Density estimation with adaptive sparse grids for large data

sets. In: Proceedings of the 2014 SIAM international conference on data mining, pp 443–451

Ram P, Gray AG (2011) Density estimation trees. In: Knowledge discovery and data mining, pp 627–635

Rau MM, Seitz S, Brimioulle F, Frank E, Friedrich O, Gruen D, Hoyle B (2015) Accurate photometric red-

shift probability density estimation—method comparison and application. Monthly Notices R Astron

Soc 452(4):3710–3725

Raykar VC, Duraiswami R (2006) Fast optimal bandwidth selection for kernel density estimation. In:

Proceedings of the sixth SIAM international conference on data mining, pp 524–528

Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn

85(3):333–359

Scott DW, Sain SR (2004) Multi-dimensional density estimation. Elsevier, Amsterdam, pp 229–263

Scutari M (2010) Learning Bayesian networks with the bnlearn R package. J Stat Softw 35(3):1–22

Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density esti-

mation. J R Stat Soc Ser B (Methodol) 53(3):683–690

Su J, Zhang H (2006) Full Bayesian network classifiers. In: Proceedings of the twenty-third international

conference on machine learning, pp 897–904

Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134–1142

123

http://arxiv.org/abs/abs/1206.5278

Online estimation of joint densities using classifier chains

Vapnik V, Mukherjee S (1999) Support vector method for multivariate density estimation. In: Neural infor-

mation processing systems, pp 659–665

Wan R, Wang L (2010) Clustering over evolving data stream with mixed attributes. J Comput Inf Syst

6:1555–1562

Wang X, Wang Y (2015) Nonparametric multivariate density estimation using mixtures. Stat Comput

25(2):349–364

Wied D, Weißbach R (2012) Consistency of the kernel density estimator: a survey. Stat Papers 53(1):1–21

Wu K, Zhang K, Fan W, Edwards A, Yu PS (2014) RS-forest: a rapid density estimator for streaming

anomaly detection. In: Proceedings of the 14th international conference on data mining, pp 600–609

Zhou A, Cai Z, Wei L, Qian W (2003) M-kernel merging: towards density estimation over data streams.

In: Proceedings of the eighth international conference on database systems for advanced applications,

IEEE computer society, pp 285–292

Zliobaite I, Bifet A, Read J, Pfahringer B, Holmes G (2015) Evaluation methods and decision theory for

classification of streaming data with temporal dependence. Mach Learn 98(3):455–482

123

	Online estimation of discrete, continuous, and conditional joint densities using classifier chains
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Online density estimation
	2.2 Inference

	3 Related work
	4 Background
	4.1 Online learning
	4.2 Hoeffding trees
	4.3 Classifier chains

	5 Online density estimation using classifier chains
	5.1 Online density estimation using classifiers
	5.2 Classifier chains
	5.3 Ensembles of classifier chains
	5.4 Ensembles of weighted classifier chains
	5.5 Consistency

	6 Mixed types of random variables
	6.1 Class probability estimators
	6.2 Discretization
	6.3 Extension of Hoeffding trees
	6.4 Compression
	6.5 Consistency

	7 Inference
	7.1 Hoeffding trees as base estimator
	7.1.1 Incorporating evidence
	7.1.2 Drawing instances

	7.2 Marginalization
	7.3 Continuous base estimators
	7.4 Arbitrary base estimator
	7.4.1 Incorporating evidence
	7.4.2 Marginalization

	7.5 Inference scenarios

	8 Evaluation
	8.1 Chain orderings and ensemble size
	8.2 Discrete densities
	8.3 Continuous and mixed densities
	8.4 Non-iid data streams
	8.5 Inference operations

	9 Conclusions
	Acknowledgements
	References

