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Humans display remarkable flexibility in their behavior. Like other 
animals, we guide our behavior through direct experience, but we 
can also infer the likely consequences of actions that have never been 
taken1,2. Through generalizing principles and applying them to new 
situations3,4, we can predict new relationships and statistical struc-
tures in our environment and use these to estimate the value of new 
events1,5,6. Although some progress has been made in uncovering 
the brain regions that underlie these complex abilities1,3–7, little or 
no progress has been made in understanding how neuronal networks 
support these complex computations, partly because it is unclear to 
what extent such computations exist in species in which we can readily  
measure single-cell activity.

One potential mechanism that allows for upcoming events to be 
evaluated involves using past experience to predict consequences of 
future possible scenarios. In rodents, hippocampal firing sequences at 
choice points predict or ‘preplay’ the forthcoming environment8, and 
the likely outcomes of their decision can later be decoded in the orbito-
frontal cortex9. In contrast, when choosing between novel options, 
there is no direct experience from which to preplay and evaluate 
future options. However, it is possible that the representation of an 
upcoming novel outcome may be constructed by combining multiple 
distinct relevant experiences, preplayed simultaneously.

To test these predictions, we required access to the information 
content of neural populations underlying the representation of a novel 
experience. Despite the poor spatial resolution of functional magnetic 
resonance imaging (fMRI), there are well-validated strategies that can 
reveal underlying cellular representations. For example, fMRI adapta-
tion takes advantage of the fact that activated cellular ensembles in 
a voxel show a relative suppression in their activity in response to 
repetition of a stimulus to which they recently responded. Despite 
ambiguity in the biophysical mechanism underlying repetition sup-
pression10,11, when combined with careful experimental design the 

technique allows for inferences to be made about the underlying neu-
ronal representations12,13.

We used fMRI adaptation to probe the neural representation of a 
novel food reward. We hypothesized that, if the representation of a 
novel food was constructed by explicit combination of multiple dis-
tinct experiences, we would observe fMRI adaptation when subjects 
evaluated a novel reward immediately after evaluating a component 
ingredient. Furthermore, if multiple experiences were replayed simul-
taneously, plasticity might result between the underlying neuronal 
assemblies. Hence, experiences used to construct the same novel good 
would later adapt to each other. Lastly, we hypothesized that this com-
plex construction process would not be required after an independent 
neuronal representation of the novel good had been established. We 
should therefore observe a reduction in each adaptation effect after 
allowing the subjects to either experience the novel good directly 
or simulate the novel good repeatedly. This repetition suppression 
procedure allowed us to probe the neural mechanisms that underlie 
human capacity for flexible, online, value construction.

RESULTS
Deciding between novel goods
We created 13 novel goods whose values were unknown to the sub-
jects (Fig. 1). However, each good was a novel combination of two 
different familiar foods (Fig. 1a). Participants were given the oppor-
tunity to observe these novel goods without being allowed to sample 
them by either taste or smell.

To first establish that these goods activate known value-related 
brain regions, we measured fMRI activity in 19 subjects while they 
evaluated and chose from pairs of these novel goods (Fig. 1b). After 
the scan session, subjects performed a Becker-DeGroot-Marschak 
(BDM) auction14 that allowed us to measure subjects’ constructed 
value for each good. Consistent with reports in simpler valuation 
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Prior experience is critical for decision-making. It enables explicit representation of potential outcomes and provides training 
to valuation mechanisms. However, we can also make choices in the absence of prior experience by merely imagining the 
consequences of a new experience. Using functional magnetic resonance imaging repetition suppression in humans, we examined 
how neuronal representations of novel rewards can be constructed and evaluated. A likely novel experience was constructed by 
invoking multiple independent memories in hippocampus and medial prefrontal cortex. This construction persisted for only a 
short time period, during which new associations were observed between the memories for component items. Together, these 
findings suggest that, in the absence of direct experience, coactivation of multiple relevant memories can provide a training 
signal to the valuation system that allows the consequences of new experiences to be imagined and acted on.
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contexts, we observed a signal that correlated 
with the value of the chosen option in a net-
work of brain regions that included ventral 
and dorsal medial prefrontal cortex (vmPFC 
and dmPFC, respectively), and posterior  
cingulate cortex (mPFC: P = 0.001 familywise 
error (FWE) corrected on cluster level, peak 
t17 = 6.30; Fig. 2a). The involvement of both vmPFC and dmPFC is 
of particular interest given that the task required subjects to con-
struct and evaluate a model of a future outcome. This involvement 
accords with recent evidence that vmPFC encodes value prefer-
ence for executable choices and dmPFC does so for choices that are  
modeled abstractly7.

To evaluate these novel goods, subjects could not rely on pre-learnt 
values. Thus, their only recourse was to construct, online, an expec-
tation of the compound’s value from knowledge of the individual 
components. A key question is whether subjects constructed a novel 
representation of the compound by explicitly combining the repre-
sentations of each component and, if so, which brain regions support 
this construction process. We reasoned that this construction process 
could be measured using fMRI adaptation. Activity relating to the 
construction of the compound value would be suppressed when pre-
ceded by a related component if, and only if, the subject had engaged 
the neuronal ensembles of the components when constructing a  
representation of the compound.

Constructing representations of novel goods using memories
For every participant, we selected 2 of the 13 novel compounds, here 
referred to as AB and CD, each consisting of two familiar individual 
components (A and B, C and D) that subjects had tasted immediately 
before the experiment (Fig. 1a). To avoid visual confounds in a later 
analysis, we trained subjects to associate each of the six component 
and compound foods (A, B, C, D, AB and CD) with two different 
abstract shapes (Fig. 1c). Participants trained extensively on these 
associations between food items and abstract shapes. In the final  
block of trials, the mean accuracy was 97.8%, with a mean reaction 
time of 845.2 ms.

On each trial in the scanner, we presented a distinct shape that 
served as an instruction cue for subjects to elicit an explicit mental 
representation of the associated food (Fig. 1d). The key comparison 
of interest here was the brain activity elicited by novel goods when 
preceded by related components (for example, A or B followed by AB) 
compared with novel goods when preceded by unrelated components 
(for example, C or D followed by AB).

Early in the experiment (block 1 of 3), we observed fMRI adapta-
tion between the representation of novel goods and their constituent 

components in both mPFC (P < 0.001, FWE corrected on cluster 
level, peak t18 = 4.45; Fig. 2b) and bilateral hippocampus (t18 = 2.55,  
P = 0.010 using region of interest (ROI) analysis; Online Methods and 
Fig. 2b). These two brain regions are components of a network that is 
commonly activated in studies of value7,15–18, episodic memory4,19,20 
and spatial navigation12. Our result implies that these brain regions 
construct a value representation of a novel item from component 
memories, and do so by simultaneously engaging neuronal represen-
tations of these components.

Plasticity between simultaneously active memories
If this is the case then it follows that during the construction of the 
compound good AB, the neuronal ensembles representing compo-
nents A and B should be simultaneously active. We reasoned that this 
simultaneous activity, which first occurred during the stimulus-item 
training phase before scanning, would induce experience-dependent 
plasticity between cellular elements in these two ensembles—a plastic-
ity evident in the scanning trials as a shadow of this value construction 
process. For example, after constructing a representation of ‘tea-jelly 
dessert’, we reasoned that cellular representations of tea would induce 
activity in jelly-preferring ensembles and vice versa. This can also be 
tested using fMRI adaptation, which predicts a differential effect for 
components that were part of the same compound compared with 
components that were not. Indeed, when we compared early trials of 
A that were preceded by B to those that were preceded by C, we again 
found relative suppression in mPFC activity (P = 0.014, FWE cor-
rected on cluster level, peak t18 = 4.24; Fig. 2c), but not hippocampus 
(t18 = 0.34, P = 0.367 using ROI analysis, Online Methods).

Notably, across all three blocks, the extent to which individual par-
ticipants showed adaptation between related components in mPFC, 
and in the hippocampus, was predicted by the average value of the 
novel items (mPFC, r = 0.47 and P = 0.040; hippocampus, r = 0.58 
and P = 0.010), but not component items (mPFC, r = −0.05, P = 0.833; 
hippocampus, r = −0.09, P = 0.730). This suggests that the mechanism 
underlying this suppression occurred during the earlier construction 
of the novel good and not during the participant’s elicitation of the 
component item at the time that this signal was measured. Indeed, in 
both structures, the correlation with the value of the novel good sur-
vived the removal of any signal attributable to the component values 
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Figure 1 Experimental design. (a) We made 
13 novel goods from the combination of two 
familiar food types that had not previously 
been tasted together. Two examples are shown 
here: avocado and raspberry smoothie (AB) and 
tea-jelly (CD). (b) Participants made binary 
decisions between the novel goods while in 
the scanner. (c) Prior to entering the scanner, 
two of the novel goods were chosen for each 
participant. Participants learned to associate 
each of these novel goods and their respective 
components with two abstract stimuli. (d) In 
the scanner, participants vividly imagined the 
sensory properties of the food items in response 
to each abstract stimulus presented.
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(mPFC, r = 0.51, P = 0.015, Fig. 2d; hippocampus, r = 0.60, P = 0.004; 
Fig. 2e and Supplementary Fig. 1). Together, these findings support 
value-dependent plasticity in related components as a consequence 
of coactivation during construction of the novel goods.

It is important to note that these three de facto tests of mPFC func-
tion (valuation, construction and plasticity) do not rely on the same 
data. Despite slight differences in thresholded peak locations of the 
two adaptation effects, they showed similar patterns of activity in 
mPFC (Fig. 2f). mPFC can therefore evaluate novel goods by con-
structing explicit representations of expected outcomes from familiar 
components, a process that engenders plasticity between simultane-
ously active component representations.

The influence of sensory experience upon construction
We then asked whether consummatory exposure to the novel goods 
would reduce a need to construct value online. To test this idea, we 
repeated the experiment in a second group of 20 subjects with one 
important difference. This second group (familiar) was given a single 
sample of each of the 13 novel compound goods to taste before the 
experiment. Notably, both groups underwent the same item-stimulus 
learning task before entering the scanner, and there was no significant 
difference between groups in reaction time or accuracy on the final block 

of trials during the learning task (P > 0.150; Supplementary Table 1).  
Any difference between the two groups in the representation or evalu-
ation of novel goods could therefore be attributed to the effect of 
sensory exposure.

We first assessed value effects during decision trials. Both groups 
showed similar consistency in their choices (Supplementary Fig. 2). 
As was the case for the unfamiliar group, the familiar group encoded 
chosen value activity in a network of value-related brain regions that 
included mPFC (Fig. 3a). In both groups, the neural activity observed 
in mPFC was consistent with a role for this brain region in the evalu-
ation of compound goods (Fig. 3b,c).

To determine whether this single experience was enough to reduce 
a need for online value construction, we compared adaptation effects 
across the two groups. To avoid selection bias, we used ROIs derived 
from whole-brain adaptation effects averaged across both adapta-
tion contrasts in the two groups (Online Methods and Fig. 4a,b). 
A between-group comparison in these ROIs revealed significant 
differences in the adaptation effects between the familiar and unfa-
miliar participants in both mPFC (group × condition interaction, 
P = 0.018, F1,144 = 5.76, three-way ANOVA, Online Methods) and 
hippocampus (group × adaptation type × condition interaction,  
P = 0.035, F1,144 = 4.52, three-way ANOVA, Online Methods). 

Figure 2 Neural correlates of constructing and 
evaluating a novel good. (a) While participants 
made binary choices between novel goods, 
the mPFC (extending into dmPFC) encoded 
chosen value. (b) The mPFC and hippocampus 
showed repetition suppression to a novel good 
when preceded by a related component (for 
example, tea-jelly preceded by tea) compared 
with when preceded by an unrelated component 
(for example, tea-jelly preceded by avocado). 
(c) The mPFC showed repetition suppression to 
a component food item when preceded by the 
related component (for example, tea preceded 
by jelly) compared with when preceded by an 
unrelated component (for example, tea preceded 
by avocado). (d,e) In mPFC and hippocampus, 
a significant positive correlation was revealed 
between the amount of suppression between 
related components (across all blocks) and the 
average value participants assigned to the novel 
goods (after removing effects attributable to the 
value of the components; for mPFC: r = 0.51,  
P = 0.015; hippocampus, r = 0.60, P = 0.004), 
respectively. (f) Both adaptation effects showed 
comparable effect size across the ventral-to-
dorsal gradient of mPFC (mean ± s.e.m. across 
participants). The locations of the ROIs are shown and the effect size for both adaptation measures was scaled such that the peak value was equal to 1. 
There was no significant difference between the two adaptation effects at any point on this gradient (P > 0.300 for all ROIs).
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Figure 3 Sensory exposure to a novel good: 
comparison between the unfamiliar and  
familiar groups during the decision-making  
task. (a) In the familiar group, the mPFC 
correlated with chosen value during the 
decision-making task (thresholded at  
P < 0.01, uncorrected for visualization).  
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groups of participants during the decision 
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Using post hoc two-sample t tests to decompose these interactions, 
we found that, relative to the unfamiliar group, the familiar group 
showed reduced adaptation between the novel goods and their related 
components in mPFC (group difference: trend, t18 = 1.70, P = 0.053;  
Fig. 4c) and in the hippocampus (group difference: t18 = 3.11,  
P = 0.003; Fig. 4c). Furthermore, the familiar group did not show 
plasticity in mPFC between the representation of the constituent  
components of a novel good (group difference: t18 = 1.96, P = 0.033, 
Fig. 4c). Crucially, there was no significant difference between groups 
in their ability to accurately elicit the correct representations during 
the imagination task (group comparison of accuracy, P = 0.82; reac-
tion time, P = 0.89) or in the average subjective value assigned to any 
of the novel goods used in the adaptation task (P > 0.05 for all assigned 
novel goods; Supplementary Fig. 3). This result therefore suggests 
that even a single previous experience of a good is sufficient to reduce 
a requirement for online value construction. This is particularly nota-
ble given that extensive experience is required to reduce goal-oriented 
behavior and establish habitual actions21.

Temporal dynamics of the construction mechanism
If experiential and constructed valuation use distinct neural mecha-
nisms, it is possible that the value construction mechanism could 
itself substitute for a direct experience and train experiential valuation 
mechanisms. As the experiment progressed, subjects gained substan-
tial experience in constructing the representation of the novel good. 
We asked whether, after multiple previous simulations of an experi-
ence, it was still necessary to construct and evaluate the representation 
of novel goods anew on each trial. Alternatively, were values learned 
despite participants never having experienced the novel good? As 
our experiment extended over three separate blocks, we were able to 
study changes in value construction–related adaptation effects over 
time (Figs. 5 and 6).

Previous studies have found that goal-directed choice mechanisms 
exhibit marked differences early and late in choice experiments17. We 
used a three-way ANOVA (Online Methods) to identify attenuation 
of adaptation effects in mPFC and hippocampus in the unfamiliar 
group across the scanning session (block × condition interaction for 
mPFC, P = 0.004, F1,144 = 8.44; block × adaptation-type interaction 
for hippocampus, P = 0.011, F1,144 = 6.56). Post hoc t tests comparing 
block 1 with all remaining blocks revealed a significant reduction in 
adaptation over time of a novel good to its related component (mPFC, 
t18 = 2.12, P = 0.024; hippocampus, t18 = 2.13, P = 0.024; Fig. 5a) 
and in the plasticity between related components (mPFC, t18 = 1.85,  
P = 0.041; but not hippocampus, t18 = 0.81, P = 0.785; Fig. 6a).

To ensure that sensitivity to the construction process was main-
tained across the duration of the experiment, we also considered 
temporal dynamics of other adaptation effects and of value signals 
encoded on decision trials. In the unfamiliar group, both adaptation 
in mPFC to repetition of any item (but not stimulus) and adaptation 
in visual areas to repetition of a stimulus did not show a reduction 
over time (one-tailed paired t tests, t18 = 0.46, P = 0.326; Fig. 5a;  
t18 = 0.50, P = 0.312; Supplementary Fig. 4a). Furthermore, the cho-
sen value signal encoded by mPFC also did not reduce over time, but 
instead remained consistent across sessions (Fig. 3c). In addition, per-
formance on the imagination task improved across blocks (Fig. 5b,c). 
Rather than a loss of sensitivity, this suggests that the diminishing 
adaptation effects demonstrate that simulated experience is sufficient 

x = 0
z = 10

x = 22

(A→AB) < (C→AB) (A→B) < (C→B) (A→AB) < (C→AB)

a b

c

E
ffe

ct
 s

iz
e 

(a
.u

.)

1.5

2.0

0.5

–0.5

0

1.0

Unfamiliar
Familiar

*

*

Figure 4 Sensory exposure to a novel good: comparison between the 
unfamiliar and familiar groups during construction of a novel good.  
(a) ROI used to compare mPFC adaptation effects. (b) ROI used to 
compare hippocampus adaptation effects. (c) In mPFC, the familiar 
group showed less adaptation between the novel goods and their related 
components (left, P = 0.053, trend) and significantly less adaptation 
between related components (middle, P = 0.033; both extracted from 
the ROI shown in a). In the hippocampus, the familiar group showed 
significantly less adaptation between the novel goods and their related 
components (right, P = 0.008, extracted from ROIs shown in b).  
*P < 0.05. Data are presented as mean ± s.e.m. across participants.

a

B1
B2 and B3

2.0

*

1.5

1.0

(A→AB) < (C→AB) (A→AB) < (C→AB) (A→A) < (C→A)

E
ffe

ct
 s

iz
e 

(a
.u

.)

0.5

0

*

b
100

80

60

40

P
er

ce
nt

ag
e 

ac
cu

ra
cy

20

0
B1 B2 B3
Component Compound

B1 B2 B3

c 3

2

1

R
ea

ct
io

n 
tim

e 
(s

)

0
B1 B2 B3
Component Compound

B1 B2 B3

Figure 5 In the absence of sensory exposure, 
there was evidence for the construction 
mechanism only in early trials: block 1 compared  
with blocks 2 and 3 for unfamiliar subjects.  
(a) There was significantly less adaptation in 
blocks 2 and 3 between the novel goods and their 
related components in mPFC and hippocampus, 
respectively (left and middle, P = 0.024 each; 
ROIs are shown). There was no significant 
reduction across time in the mPFC adaptation  
of a component item to itself when predicted 
by two different stimuli (right, P = 0.326, ROI 
is shown). (b,c) On the imagination task, the 
unfamiliar group showed an increase in accuracy 
(b) and a decrease in reaction time (c) across 
blocks. *P < 0.05. Data are presented as mean ± 
s.e.m. across participants.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1496	 VOLUME 16 | NUMBER 10 | OCTOBER 2013 nature neurOSCIenCe

a r t I C l e S

to establish an independent representation of the novel good that no 
longer needs to be reconstructed anew on each trial.

Despite the overall reduction of cross-component suppres-
sion over the course of the experiment, this was not true for com-
ponents that had been used to construct high-value novel goods. 
When averaging across the final two blocks, both the mPFC and 
hippocampus showed a significant positive correlation with the 
value of the compound items (mPFC, r = 0.64, P = 0.002; hippo-
campus, r = 0.63, P = 0.003, Fig. 6b,d and Supplementary Fig. 5), 
after accounting for variance explained by the value of the compo-
nent items in both cases. A median split of participants according 
to the value assigned to the novel goods subsequently verified that 
there was long-lasting plasticity in mPFC and hippocampus in the 
final two blocks for those participants who attributed high, but not 
low, values to the novel goods (mPFC: high, t8 = 2.84, P = 0.022; 
high versus low, t8 = 2.68, P = 0.028; hippocampus: high, t8 = 3.52,  
P = 0.008; high versus low, t8 = 5.36, P < 0.001; Fig. 6c,e). Suggestive 
evidence that value-dependent adaptation between related compo-
nent items emerged later in hippocampus relative to mPFC (Fig. 6c,e) 
could not be verified statistically (t8 = 1.30, P = 0.229). Together, these 
results suggest that the plasticity is long-lasting if value is attributed 
to the original association.

DISCUSSION
The role of memory in prospective evaluation and inference has been 
emphasized in both animals22 and humans3,4,20. Simulation and pre-
play can be used to explore an internal model of the environment 
and evaluate anticipated outcomes8,23. However, the neural mecha-
nisms by which these processes are achieved have remained unclear,  
particularly in circumstances in which anticipated outcomes have not 
previously been experienced. We used repetition suppression in fMRI 
to reveal a neuronal mechanism that supports prospective representa-
tion and evaluation of novel experiences.

Repetition suppression has been used extensively in sensory brain 
regions to probe the information content of neural activations and, 
more recently, in more frontal brain regions, including orbitofrontal  
cortex24. However, a number of different hypotheses have been 
 proposed to explain the underlying physiological mechanisms behind 
the phenomenon, including fatigue, sparse coding and predictive  

coding10,25–27. Although there is not yet a consensus on which mecha-
nism provides the most appropriate explanation for the phenomenon, 
the consequences of this ambiguity are mitigated when used in a care-
fully controlled experimental design, as all models make the same  
prediction: if a neural population is sensitive to a particular feature 
or dimension, then suppression will occur in response to a repetition 
of this feature, but not others.

The repetition suppression procedure that we used was designed 
to allow interrogation of the underlying representation of a novel 
reward. By asking people to imagine and evaluate novel rewards in 
the scanner, we found that the neural representation of a novel reward 
was dependent on representations of multiple related and previously 
experienced rewards. Our data suggest that neuronal networks can 
construct a novel experience by simultaneous activation of multiple 
previous memories so that this constructed experience may be evalu-
ated. Although signals in the anterior hippocampus were found to be 
related to construction, those in mPFC were related to both construc-
tion and valuation.

Crucially, unlike other goal-directed decision mechanisms that have 
been reported21,23,28,29, we only found evidence for a construction 
mechanism when subjects had no direct experience of an outcome, 
and even then only fleetingly. It is therefore possible that constructed 
value can provide a substitute for direct experience and train the expe-
riential goal-directed systems that have been studied previously. This 
training signal may be considered analogous to off-line training of 
an habitual system that makes use of simulations from an internal 
goal-directed model23,30–32. Whereas the teaching signal provided to a 
habitual system replicates, or fine tunes, previous sensory experience, 
the teaching signal provided to a goal-directed system may establish 
an internal model of the future world by repeated imagination of a 
novel experience.

During the construction process, a second repetition suppression 
effect was observed between distinct and previously unassociated 
memories that contributed to the construction. This effect implies that 
the neural representation of related, compared with unrelated, compo-
nent items became more similar as a consequence of the pre-scan train-
ing task, during which the participants were first exposed to the novel 
compounds. Notably, given that the suppression was not observed 
in the familiar group, it seems highly unlikely that this suppression 

Figure 6 In the absence of sensory exposure, 
repetition suppression between related 
components was maintained across the  
duration of the experiment only if participants 
assigned high value to the compound goods.  
(a) Participants from the unfamiliar group 
showed significant reduction in adaptation 
between related components over time in  
mPFC, but not hippocampus (P = 0.041 and  
P = 0.785, respectively, ROIs are shown).  
(b,d) The correlations shown in Figure 2 were 
also significant in mPFC (b) and hippocampus 
(d) when considering suppression effects 
between related components in blocks 2 and 
3 alone: the amount of suppression across 
participants correlated positively with the 
average value of the compound goods (mPFC,  
r = 0.64, P = 0.002; hippocampus, r = 0.63,  
P = 0.003). (c,e) A median split of participants 
into those that assigned high and low values 
to the compound goods revealed significant 
suppression between related components in blocks 2 and 3 only in those participants who assigned high value (c, mPFC, High, P = 0.022; High versus 
Low, P = 0.028; e, hippocampus, High, P = 0.008; High versus Low, P < 0.001). *P < 0.05. Data are presented as mean ± s.e.m. across participants.
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effect reflects inherent similarity between related compared with 
unrelated components. Rather, the most plausible explanation for 
this change is that, through repeated representation of a novel com-
pound, previously unrelated memories were recruited simultaneously,  
inducing a form of plasticity between the underlying representations 
of necessary components.

In both brain regions involved in construction, the mPFC and hippo-
campus, plasticity between related components was dependent on 
the value of the novel compounds, but not the value of components. 
This value dependence effect suggests that the representations of the 
component memories were simultaneously present during valuation 
of the novel compounds. A number of different mechanistic expla-
nations may underlie this dependency. For example, the occurrence 
of greater blood oxygen level–dependent activity at the time of pair-
ing may induce more plasticity or, when representing a higher value 
compound, the enhanced availability of neuromodulators, such as 
dopamine, may serve to facilitate plasticity.

Given that on average participants showed a reduction over time 
in the initial plasticity observed in mPFC, with comparable dynam-
ics to the construction mechanism, it must be acknowledged that it 
remains ambiguous whether the adaptation observed between related 
components reflects classical Hebbian plasticity or even occurs in the 
same regions as those in which the repetition suppression is observed. 
However, those participants who assigned high value to the novel 
goods showed plasticity in mPFC that outlasted the construction 
process. In the hippocampus, where plasticity was not observed early 
on in the experiment, the same participants showed plasticity late in 
the experiment. Thus, the extent to which neural representations of 
related components became more similar to one another, but also the 
durability of the effect, was dependent on value attributed to the novel 
compounds. Irrespective of the underlying nature of the plasticity, 
the influence of compound value on component memories therefore 
supports the claim that these representations are paired together at 
the time of construction of the novel compounds.

The mPFC is regularly activated in studies of valuation17,18,33–36, 
and is particularly notable among such reward-related regions for the 
flexibility of the value signals that it contains. These computations 
may, for example, rely on an understanding of the complex structure 
of the environment5, the generalization of concepts learned in differ-
ent situations3 or the integration of several disparate sources of infor-
mation37. If subjects are asked to ignore all of their own experiences 
and preferences and to instead guess what a very different individual 
would choose, mPFC value signals can immediately reflect the prefer-
ences of this new individual7,38. Such online evaluation is a hallmark 
property of goal-directed choices, which are frequently contrasted 
with habitual or overlearned choices in studies of animal and human 
behavior6,21,23,29,39,40. Previous studies of goal-oriented behavior 
have, however, focused on situations in which values are known, but 
must be associated with a particular course of action by inferring the  
structure of the world1,23,29. Our data suggest that mPFC can combine 
previous experiences to construct prospective outcomes de novo on 
each trial and can then evaluate these constructed outcomes.

Hippocampal preplay mechanisms are known to be important sub-
strates for goal-directed spatial decisions in rodents8,41, and hippo-
campal value signals can be recorded in situations in which outcomes 
must be inferred from knowledge of relationships between stimuli 
in the world1,42. Notably, hippocampal activity is often recorded in 
concert with a network involving mPFC in studies of spatial memory 
and scene construction12,19,43. Consistent with the proposed function 
of memory in prospective inference44,45, the formation of associative 
links46,47 and constructive episodic simulation48,49, our data suggest 

that hippocampal activity can also have an active role in constructing 
de novo experiences in non-spatial contexts.

These findings show that a potential new experience can be pro-
spectively represented and evaluated by invoking multiple memories  
simultaneously in hippocampus and mPFC. By highlighting this 
neuronal mechanism, we provide a unique insight into the neuronal 
computations underlying flexible behaviors that dominate human 
decision-making and that are difficult to study in animal models.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. 39 healthy volunteers participated in the fMRI experiment and 
were assigned to one of two groups (unfamiliar and familiar) by drawing from 
Matlab’s pseudo-random number generator. One participant (from the familiar 
group) was excluded from all further analyses because of poor performance (less 
than 80% accuracy on task performance during any one session). All remaining 
participants (19 unfamiliar participants with mean age of 28.0, 13 females, and  
19 familiar participants with mean age of 27.3, 10 females) were included in fur-
ther analyses with the exception of one participant (from the unfamiliar group) 
who was excluded from analysis of the decision task as a result of parameter 
estimates being more than 3.5 s.d. away from the group mean. The final sample 
size was comparable to that commonly used in fMRI studies. All participants 
refrained from eating for 2 h before the start of the experiment. The study was 
approved by the University College London ethics committee (ref. number 
3486/001) and all participants gave informed written consent.

Behavioral training. 13 different novel food combinations, or goods, were  
presented to the participants along with their names: tea-jelly, tomato-jam,  
popcorn-jelly beans, beetroot-custard, onion-mints, pea-mousse, olive- 
strawberry, pesto-nutella, spinach-pineapple smoothie, raspberry-avocado 
smoothie, vanilla-salt, yogurt-pretzels and coffee-yogurt. Each good was formed 
by combining two familiar component food types that had not previously been 
tasted together (Fig. 1a). The experimenter chose two novel goods, AB and CD, 
for each participant, under the constraint that the participant liked all four indi-
vidual component foods (A and B, C and D) from which the two novel goods 
were formed. All participants were given a small sample of the components  
(A, B, C, D) to eat, but only participants in the familiar group were allowed to 
taste, smell and handle the novel goods.

The experimenter randomly assigned two abstract pink shapes to each novel 
good (AB and CD) and to their respective components (Fig. 1c). Participants 
were then actively trained on the 12 stimulus-item pairings using a reaction time 
task. On each trial, 1 of the 12 abstract shapes was shown for 400 ms before all 
six possible items were presented in randomized positions across the screen. 
Participants were instructed to press the button associated with the correct item 
as quickly and accurately as possible. Participants were required to continue 
with this stimulus-item learning task until their average reaction time per block 
approached 800 ms with 100% accuracy.

Scanning. While in the scanner, participants performed two different tasks,  
a decision-making task and an imagination task. The tasks were evenly divided 
across the three 20-min scan sessions with 26 decision trials and 240 imagination 
trials in each session.

During the decision task, participants performed 78 choice trials. On each trial, 
photographs of two novel goods were shown on the screen and participants were 
given four seconds to evaluate the two options, before being prompted to indicate 
their preference (Fig. 1b). To encourage veridical evaluation, participants agreed 
to eat the chosen food from one of their decision trials (chosen at random by the 
computer) after exiting the scanner.

During the imagination task, an abstract pink shape was presented for 800 ms 
on each trial and this served as an instruction cue to vividly imagine the food 
item associated with the shape (Fig. 1d). The inter-trial interval was selected 
from a truncated gamma distribution with a mean of 2.5 s. The trials were sorted 
into seven principal categories with 32 trials of each category per scan session, 
presented in a randomized order. The seven different categories were as follows: 
(1) novel good preceded by related component (AB preceded by A), (2) novel 
good preceded by unrelated component (AB preceded by C), (3) component 
preceded by the related component (A preceded by B), (4) any food item pre-
ceded by another unrelated food item in the same category, such as component 
preceded by unrelated component or novel good preceded by the other novel 
good (A preceded by C, or AB preceded by CD), (5) any food item (component 
or novel good) preceded by the same food item, but predicted by a different 
abstract stimulus (A preceded by A, or AB preceded by AB), (6) any food item 
(component or novel good) preceded by the same food item and predicted by the 
same abstract stimulus (A preceded by A, or AB preceded by AB), (7) abstract 
stimulus which had no association with a food outcome preceded by itself. The 
remaining 16 trials were necessary to ensure equal numbers of trials in each of 
the seven conditions.

Of particular interest for our analysis were conditions 1–4. We reasoned that 
neuronal assemblies that used the components to construct the novel goods 
would show adaptation (reduced response) in (1) relative to (2). Furthermore, 
if imagination of a component caused activation of the related component,  
we would expect reduced response in (3) relative to (4).

For each scan session, 14 yes or no questions were randomly presented  
during the imagination task. Each question concerned properties of the  
food associated with the abstract shape on the last trial; for example, ‘Was the 
outcome salty?’ Participants received £0.50 for each correct response. The adjec-
tives used were chosen to encourage participants to elicit multisensory repre-
sentations of each item, and concerned the appearance, texture, taste and smell 
of the food items.

Post-scan behavioral task. At the end of the scanning session, after participants 
had not eaten for a total of 5 h, they were sold one of the novel goods using  
a BDM auction procedure14, using a previously reported protocol50. The BDM is 
known to elicit a measure of a participant’s willingness to pay for a good35, thereby 
providing a measure of subjective value for each novel good.

fmRI data acquisition and pre-processing. T2*-weighted echo-planar images 
(EPIs) with blood oxygen level–dependent contrast were acquired using a  
32-channel head coil on a 3Tesla Trio MRI scanner (Siemens). A special sequence 
was used to minimize signal drop-out in the orbitofrontal cortex (OFC) region and 
included an echo time (TE) of 70 ms, a tilt of 30° relative to the rostro-caudal axis 
and a local z-shim with a moment of −0.4 mT/m ms applied to the OFC region.  
To achieve whole-brain coverage, we used 43 2-mm-thick transverse slices with an 
inter-slice gap of 1 mm and in-plane resolution of 3 × 3 mm, and collected slices in 
an ascending order. This led to a repetition time of 3.01 s. In each session, roughly 
430 volumes were collected (~20 min) and the first five volumes were discarded 
to allow for T1 equilibration effects. A field map with dual echo-time images 
(TE1 = 10 ms, TE2 = 14.76 ms, whole brain coverage, voxel size 3 × 3 × 3 mm)  
and a single T1-weighted structural image with 1 × 1 × 1 mm voxel resolution was 
acquired for each participant to correct for geometric distortions and co-register 
the EPIs, respectively.

Preprocessing and statistical analyses were carried out using SPM8 (Wellcome 
Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm). After discarding  
the first five volumes, images were corrected for signal bias, realigned to the  
first volume, corrected for distortion using field maps, normalized to a stand-
ard EPI template and smoothed using an 8-mm full-width at half maximum 
Gaussian kernel.

data analysis. Images were analyzed in an event-related manner using a general 
linear model (GLM) involving 32 explanatory variables. 26 explanatory variables 
corresponded to conditions 1–6, which were further divided into the different 
food types. Four additional explanatory variables described the ‘no-outcome’ 
trials, the time of question presentation, the response to question and the time of 
evaluation during the decision trials. Two parametric regressors were included, 
corresponding to the participant’s subjective value of the two novel goods and 
time locked to the onset the decision trials. An additional 23 nuisance regres-
sors were included in the GLM to account for motion-related artifacts and  
physiological noise.

The primary aim of our analysis was to identify the neural mechanism  
underlying the construction of a novel good. To detect brain regions involved 
in evaluating the novel goods, we looked for activity modulated by chosen 
value during the decision task. To detect brain regions involved in constructing  
the novel goods (component to compound), we used the contrast [(AB pre-
ceded by C) − (AB preceded by A)], averaging across all possible permutations  
(that is, explanatory variables (2) − (1)). To detect plasticity effects between  
the related components (component to component), we used the contrast  
[(A preceded by C) − (A preceded by B)], again averaging across all possible 
permutations (that is, explanatory variables (4) − (3)). To detect brain regions 
showing adaptation to repeated item, but not stimulus (item to self), we used 
the contrast [(item preceded by different item) − (item preceded by itself but 
paired with a different stimulus)] (that is, explanatory variables (4) − (5)). To 
detect brain regions showing adaptation to repeated stimulus (stimulus adapta-
tion), we used the contrast [(stimulus preceded by different stimulus and different 
item) − (stimulus preceded by itself)] (that is, explanatory variables (4) − (6)). 
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The contrast images of all participants were entered into a second-level random 
effects analysis.

For our initial analyses, we assessed contrasts using whole-brain FWE  
corrected statistical significance. The cluster defining threshold was P < 0.01 
uncorrected and the corrected significance level defined as P < 0.05. In the unfa-
miliar group, effects in mPFC were significant at the FWE corrected cluster level 
(Fig. 2a–c). To statistically assess hippocampal activity in our contrasts of interest 
(which did not survive cluster-based FWE thresholding), we tested the average 
signal from within an ROI. This ROI approach was also used to test for a differ-
ence in mPFC signal across groups and across task blocks and to test for repetition 
suppression effects in visual regions.

All ROIs were defined from contrasts that were orthogonal to the contrasts 
of interest to allow statistical tests to be performed in an unbiased fashion. To 
define an ROI in the hippocampi, we used the contrast identifying adaptation of 
‘item-to-self ’ averaged across all blocks (thresholded at P < 0.01 uncorrected). 
A hippocampal ROI was first defined from the unfamiliar group alone (Fig. 2b) 
and then from the average of both groups (Figs. 4b, 5a and 6a). To assess all con-
struction related adaptation effects in mPFC, across groups and between blocks, 
we defined an ROI from the average of the two construction related contrasts 
(component to compound and component to component) from both groups and 
across all blocks (thresholded at P < 0.001 uncorrected; Figs. 4a, 5a and 6a).

To compare the value signals in mPFC encoded by the two groups during the 
decision task, an ROI was defined from the average of the contrast for chosen 
value across the two groups (thresholded at P < 0.01 uncorrected; Fig. 3b). To 
investigate whether adaptation of component ‘item-to-self ’ in mPFC reduced 
across the duration of the experiment, an ROI was defined using the ‘item-to-self ’ 
contrast when including only component trials, and averaged across all blocks 
in the unfamiliar group (thresholded at P < 0.01 uncorrected; Fig. 5a). A final 
ROI was defined in visual regions to test the specificity and temporal dynamics 
of adaptation effects, and defined from a contrast identifying a main effect to 
any visual event, averaged across all blocks (thresholded at P < 0.01 uncorrected; 
Supplementary Fig. 4b). Note that differences between blocks or groups are,  
by definition, orthogonal to the group and block average effect.

The ROIs were then used to extract parameter estimates (Figs. 3c, 4c, 5a and 
6a,c,d) to test for significance between groups and across time. To assess differ-
ences between groups, we used a three-way ANOVA to test for a main effect of and 
an interaction between: group, unfamiliar/familiar; adaptation type, component- 
to-compound/component-to-component; condition, control/adaptation trial 
specific to the relevant adaptation type. To assess difference across time, we used 
a three-way ANOVA to test for a main effect of and an interaction between: block,  
block 1/block 2 and 3; adaptation type, component-to-compound/component- 
to-component; condition, control/adaptation trial specific to the relevant adapta-
tion type. Post hoc t tests were then used to decompose the results of the ANOVA, 
using one-tailed t tests to assess changes in signal in a group, and one-tailed 
two sample t tests to assess differences across groups. The Kolmogorov-Smirnov 
goodness-of-fit hypothesis test was used to check that data were approximately 
normally distributed.

In the unfamiliar group, first a partial correlation was performed between 
component-to-component suppression effects and the average value partici-
pants assigned to the two novel goods (during the BDM), after removing signal 
attributable to the component value (Figs. 2d,e and 6b,d). The adaptation signal 
was extracted from mPFC ROI shown in Figures 4a, 5a, and 6a, and the hippo-
campus ROI shown in Figures 4b, 5a and 6a, averaged across all blocks (Fig. 2d,e) 
and then repeated using the adaptation signal from the final two blocks of trials 
(Fig. 6b,d). The former correlations were compared with one between adaptation 
effect size and average component value, using a similar partial correlation with 
average component value after removing effects attributable to compound value 
(Supplementary Fig. 1). One participant was excluded from these correlations 
due to missing data for the value of items. Finally, participants were divided using 
a median split according to high and low value attributed to the novel goods, and 
two-tailed t tests and two-tailed paired t tests used to assess adaptation in the latter 
two blocks between related components after variance attributable to the average 
component value had been removed.

50. Harris, A., Adolphs, R., Camerer, C. & Rangel, A. Dynamic construction of stimulus 
values in the ventromedial prefrontal cortex. PLoS ONE 6, e21074 (2011).
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