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Abstract. Dealing with high-dimensional input spaces, like visual in-
put, is a challenging task for reinforcement learning (RL). Neuroevolution
(NE), used for continuous RL problems, has to either reduce the prob-
lem dimensionality by (1) compressing the representation of the neural
network controllers or (2) employing a pre-processor (compressor) that
transforms the high-dimensional raw inputs into low-dimensional fea-
tures. In this paper we extend the approach in [16]. The Max-Pooling
Convolutional Neural Network (MPCNN) compressor is evolved online,
maximizing the distances between normalized feature vectors computed
from the images collected by the recurrent neural network (RNN) con-
trollers during their evaluation in the environment. These two interleaved
evolutionary searches are used to find MPCNN compressors and RNN
controllers that drive a race car in the TORCS racing simulator using
only visual input.
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1 Introduction

Most approaches to scaling neuroevolution to tasks that require large networks,
such as those processing video input, have focused on indirect encodings where
relatively small neural network descriptions are transformed via a complex map-
ping into networks of arbitrary size [4, 7, 10, 13,15,23].

A different approach to dealing with high-dimensional input which has been
studied in the context of single-agent RL (i.e. TD [25], policy gradients [24], etc.),
is to combine action learning with an unsupervised learning (UL) preprocessor or
“compressor” which provides a lower-dimensional feature vector that the agent
receives as input instead of the raw observation [5, 8, 12, 17, 19–21]. The UL
compressor is trained on the high-dimensional observations generated by the
learning agent’s actions, that the agent then uses as a state representation to
learn a value function.

In [3], the first combination of UL and evolutionary reinforcement learn-
ing was introduced where a single UL module is trained on data generated by
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entire population as it interacts with environment (which would normally be
discarded) to build a representation that allows evolution to search in a rel-
atively low-dimensional feature space. This approach attacks the problem of
high-dimensionality from the opposite direction compared to indirect encoding:
instead of compressing large networks into short genomes, the inputs are com-
pressed so that smaller networks can be used.

In [16], we scaled up this Unsupervised Learning – Evolutionary Reinforce-
ment Learning (UL-ERL) approach to the challenging reinforcement learning
problem of driving a car in the TORCS simulator using vision from the driver’s
perspective as input. The high-dimensional images were compressed down to just
three features by a Max-Pooling Convolutional Neural Network (MPCNN; [2,22])
that allowed an extremely small (only 33 weights) recurrent neural network con-
troller to be evolved to drive the car successfully. The MPCNN was itself trained
separately off-line using images collected previously while driving the car man-
ually around the training track.

In this paper, the feature learning and control learning are interleaved as
in [3]. Both the MPCNN, acting as the sensory preprocessor (compressor), and
the recurrent neural network controllers are evolved simultaneously in separate
populations, with the images used to train the MPCNNs being taken from the
driving trials of the evolving controllers rather than being collected manually a

priori.
The next section describes the MPCNN architecture that is used to compress

the high-dimensional vision inputs. Section 3 covers our method—the UL-ERL
framework applied to visual TORCS race car driving domain. Section 4 presents
the experiments in the TORCS race car driving, which are discussed in section 5.

2 Max-Pooling Convolutional Neural Networks

Convolution Neural Networks [6, 18] are deep hierarchical networks that have
recently become the state-of-the-art in image classification due to the advent of
fast implementations on graphics card multiprocessors (GPUs) [1]. CNNs have
two parts: (1) a deep feature detector consisting of alternating convolutional and
down-sampling layers, and (2) a classifier that receives the output of the final
layer of the feature detector.

Each convolutional layer ℓ, has a bank of mℓ×nℓ filters, F ℓ, where mℓ is the
number input maps (images), Iℓ, to the layer, and nℓ is the number of output
maps (inputs to the next layer). The i-th output map is computed by:

Iℓ+1
i = σ





mℓ

∑

j=1

Iℓj ∗ F
ℓ
ij



 , i = 1..nℓ, ℓ = 1, 3, 5...,

where ∗ is the convolution operator, F ℓ
ij is the i-th filter for the j-th map and

σ is a non-linear squashing function (e.g. sigmoid). Note that ℓ is always odd
because of the subsampling layers between each of the convolutional layers.
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The downsampling layers reduce resolution of each map. Each map is par-
titioned into non-overlapping blocks and a value from each block is used in the
output map. Themax-pooling operation used here subsamples the map by simply
taking the maximum value in the block as the output, making these networks
Max-Pooling CNNs [2, 22].

The stacked alternating layers transform the input into progressively lower
dimensional abstract representations that are then classified, typically using a
standard feed-forward neural network that has an output neuron for each class.
The entire network is usually trained using a large training set of class-labeled
images via backpropagation [18]. Figure 2 illustrates the particular MPCNN
architecture used in this paper. It should be clear from the figure that each
convolution layer is just a matrix product where the matrix entries are filters
and convolution is used instead of multiplication.

3 Method: Online MPC-RNN

The Online MPC-RNN method for evolving the controller and the compressor
at the same time is overviewed in figure 1. The controller is evolved in the
usual way (i.e. neuroevolution; [26]), but instead of accessing the observations
directly, it receives feature vectors of much lower dimensionality provided by the
unsupervised compressor, which is also evolved.

The compressor is trained on observations (images) generated by the actions
taken by candidate controllers as they interact with the environment. Here, un-
like in [16] where the compressor was pre-trained off-line, the loop is closed by
simultaneously evolving the compressor using the latest observations (images)
of the environment that are provoked by the actions taken by the evolving con-
trollers.

For the compressor, a deepmax-pooling convolutional neural network (MPCNN)
is used. These networks are normally trained to perform image classification
through supervised learning using enormous training sets. Of course, this re-
quires a priori knowledge of what constitutes a class. In a general RL setting,
we may not know how the space of images should be partitioned. For example,
how many classes should there be for images perceived from the first-person
perspective while driving the TORCS car? We could study the domain in detail
to construct a training set that could then be used to train the MPCNN with
backpropagation. However, we do not want the learning system to rely on task-
specific domain knowledge, so, instead, the MPCNN is evolved without using a
labeled training set. A set of k images is collected from the environment, and
then MPCNNs are evolved to maximize the fitness:

fk = min(D) + mean(D), (1)

where D is a list of all Euclidean distances,

di,j = ‖fi − fj‖, ∀i > j,
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Fig. 1. Overview of the online TORCS controller evolution in the online UL-ERL
scheme. At each time-step, a raw 64×64 grayscale (saturation plane) pixel image,
taken from the driver’s perspective, is transformed to features by the Max-Pooling
Convolutional Neural Network (MPCNN) compressor. The features are used by the
candidate RNN controller to drive the car by steering, accelerating and braking. Two
evolutionary algorithms are interleaved to simultaneously optimize both the controller
and compressor. The current implementation uses the CoSyNE algorithm: CoSyNEk

for the MPCNN, CoSyNEc for the RNN controllers, using the best MPCNN found by
CoSyNEk.

between k normalized feature vectors {f1 . . . fk} generated from k images in the
training set by the MPCNN encoded in the genome.

This fitness function forces the evolving MPCNNs to output feature vectors
that are spread out in feature space, so that when the final, evolved MPCNN pro-
cesses images for the evolving controllers, it will provide enough discriminative
power to allow them to take correct actions.

4 Visual TORCS Experiments

The goal of the task is to evolve a recurrent neural network controller and
MPCNN compressor that can drive the car around a race track.

The visual TORCS environment is based on TORCS version 1.3.1. The simu-
lator had to be modified to provide images as input to the controllers (a detailed
description of modifications is provided in [16]). The most important changes
involve decrease of the control frequency from 50Hz to 5Hz, and removal of the
“3-2-1-GO” sequence from the beginning of each race.
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Fig. 2. Example Max-Pooling Convolutional Neural Network (MPCNN) with 8 layers
alternating between convolution (C) and downsampling (MP; using max-pooling). The
first layer convolves the input 64×64 pixel image with a bank of 10×10 filters producing
10 maps of size 63×63, that are down-sampled to 21×21 by MP layer 2. Layer 3
convolves each of these 10 maps with a filter, sums the results and passes them through
the nonlinear function f , producing 10 maps of 20×20 pixels each, and so on until the
input image is transformed to just 3 features that are passed to the RNN controller,
see Figure 1.

4.1 Setup

The MPCNN compressors and RNN controllers are evolved in a coupled system,
alternating every four generations between two separate CoSyNE [9] algorithms,
denoted CoSyNEk for the MPCNNs, and CoSyNEc for the RNN controllers.

The process starts by first evolving the controllers. In each fitness evalua-
tion, the candidate controller is tested in two trials, one on the track shown
in figure 1, and one on its mirror image. A trial consists of placing the car at
the starting line and driving it for 25 s of simulated time, resulting in a maxi-
mum of 125 time-steps at the 5Hz control frequency. At each control step a raw
64× 64 pixel image (saturation plane only), taken from the driver’s perspective
is passed through an initially random MPCNN compressor which generates a
3-dimensional feature vector that is fed into a simple recurrent neural network
(SRN) with 3 hidden neurons, and 3 output neurons (33 total weights). The
first two outputs, o1, o2, are averaged, (o1 + o2)/2, to provide the steering signal
(−1 = full left lock, 1 = full right lock), and the third neuron, o3, controls the
brake and throttle (−1 = full brake, 1 = full throttle). All neurons use sigmoidal
activation functions.

The fitness of the controllers use by CoSyNEc is computed by:

fc = d−
3m

1000
+

vmax

5
− 100c , (2)

where d is the distance along the track axis measured from the starting line, vmax

is maximum speed, m is the cumulative damage, and c is the sum of squares of



6 Koutńık et al.

0 1 10 50

Generation

Fig. 3. Evolving MPCNN features. Each plot shows the feature vectors for each of the
40 training images collected at the given generation of CoSyNEk on the unit sphere.
Initially (generation 0), the features are clustered together. After just a few generations
spread out so that the MPCNN discriminates more clearly between the images. The
features stabilize after generation 50.

the control signal differences, divided by the number of control variables, 3, and
the number simulation control steps, T :

c =
1

3T

3
∑

i

T
∑

t

[oi(t)− oi(t− 1)]2. (3)

The maximum speed component in equation (2) forces the controllers to
accelerate and brake efficiently, while the damage component favors controllers
that drive safely, and c encourages smoother driving. Fitness scores roughly
correspond to the distance traveled along the race track axis. Each individual
is evaluated both on the track and its mirror image to prevent the RNN from
blindly memorizing the track without using the visual input. The original track
starts with a left turn, while the mirrored track starts with a right turn, forcing
the network to use the visual input to distinguish between tracks. The final
fitness score is the minimum of the two track scores (equation 2).

After four generations of CoSyNEc, CoSyNEk starts. First, a population
of MPCNNs with 8 layers, alternating between convolution and max-pooling
operations (see figure 2 and Table 1) is initialized with random kernel weights
uniformly distributed between −1.5 and 1.5). The MPCNNs are then evolved for
four generations using 40 randomly selected images from the previous CoSyNEc

phase to compute the fitness function fk (equation 1).
Each 64×64 pixel image is processed by a candidate MPCNN by convolving

it with each of the 20 filters in layer 1, to produce 20 63× 63 feature maps, each
of which is reduced down to 21× 21 by the first max-pooling layer (2). These 20
features are convolved again by layer 3, max-pooled in layer 4, and so on, until
the image is reduced down to just 3 1-dimensional features which are fed to the
controller. This architecture has a total of 3583 kernel coefficients (weights). All
MPCNN layers used scaled tanh transfer function.
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Layer Type m n #maps map size

1 C 1 20 20 63× 63

2 MP - - 20 21× 21

3 C 20 20 20 20× 20

4 MP - - 20 10× 10

5 C 20 20 20 9× 9

6 MP - - 20 3× 3

7 C 20 20 3 2× 2

8 MP - - 3 1× 1
Table 1. MPCNN topology. The table summarizes the MPCNN architecture used;
type of a layer, where C is for convolutional, MP for max-pooling, dimensions of the
filter bank m and n, number of output maps and their resolution.

Fig. 4. Evolved visual features. Each inset shows the image at a particular point on the
track and the 3-dimensional feature vector produced by the MPCNN after its evolution
finished.

At the end of the four generations, the best compressor in the population
becomes the compressor for the controllers in the next round of CoSyNEc.
CoSyNEk and CoSyNEc continue to alternate until a sufficiently fit controller
is found, with 20% of the training images being replaced by new ones selected
at random in each iteration of CoSyNEk. Both MPCNN compressors and con-
trollers are directly encoded into real-valued genomes, and the population size
of both CoSyNEs was 100, with a mutation rate of 0.8.

4.2 Results

We report just 2 runs because a single run of 300 generations of both CoSyNEc

and CoSyNEk takes almost 80 hours on an 8-core machine1 (running 8 evalu-
ations in parallel). The fitness, fc, reached 509.1 at generation 289 for run no.

1 AMD FX 8120 8-core, 16 GB RAM, nVidia GTX-570
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controller d [m] vmax [km/h]

olethros 570 147

bt 613 141

berniw 624 149

tita 657 150

inferno 682 150

visual RNN [14] 625 144

MPC-RNN [16] 547 97

Online MPC-RNN 489 91
Table 2. Maximum distance, d, in meters and maximum speed, vmax, in kilometers per
hour achieved by hand-coded controllers that come with TORCS which enjoy access to
the state variables (the five upper table entries), a million-weight RNN controller that
drives using pre-processed 64×64 pixel images as input, evolved indirectly in the Fourier
domain, MPC-RNN, where the MPCNN is trained offline from manually collected
images [16] and the Online MPC-RNN agent that collects the MPCNN training images
automatically.

1 and 495.5 at generation 145 for run no. 2, where a generation refers to one
generation of each CoSyNE. Table 2 compares the distance travelled and maxi-
mum speed of the best controller with the offline-evolved MPCNN controller [16],
a large RNN controller evolved in frequency domain [14], and the hand-coded
controllers that come with the TORCS package.

The performance of Online MPC-RNN is not as good as its offline variant,
but the controllers still approach a fitness of 500, which allows them to complete
a lap and continue driving without crashing. The controllers with the pre-trained
MPCNN drive slightly better because of possibly two reasons (1) the MPCNN
compressor, that improves online does not reach the optimum and (2) as the
compressor evolves together with the RNN controller, the weights of the con-
troller have to be updated after each compressor change due to different features
that it provides. The hand-coded controllers are much better since they enjoy
an access to the car telemetry and features like distances to the track edges.

Figure 3 shows the evolution of the MPCNN feature vectors for each of the
40 images in the training set, in one of the two runs. As the features evolve
they very quickly move away from each other in the feature space. While simply
pushing the feature vectors apart is no guarantee of achieving maximally infor-
mative compressed representations, this simple, unsupervised training procedure
provides enough discriminative power in practice to get the car safely across the
finish line.

5 Discussion

The results show that it is not necessary to undertake the complicated procedure
of collecting the images manually by driving the car and training the compressor
beforehand. The MPCNN compressor, trained online from images gathered is
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good enough for a small RNN with 33 weights to be evolved efficiently to solve
the driving control task.

Another approach would be to combine the controllers and compressors
within a single directly-encoded genome, but one can expect this to run even
longer. Also, instead of using an MPCNN with fitness fk, the collected images
could be used to train autoencoders [11] that would be forced to generated suit-
able features.

The presented framework is more general than just a TORCS driving sys-
tem. It remains to be seen whether the agents can be plugged into some other
environment, collect the images on the fly and train the controllers to perform
the desired task. The TORCS control signal is only 3-dimensional, future ex-
periments will apply Online MPC-RNN to higher-dimensional action spaces like
the 41-DOF iCub humanoid, to perform manipulation tasks using vision.
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