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ABSTRACT

One of the key problems in reinforcement learning is bal-
ancing exploration and exploitation. Another is learning and
acting in large or even continuous Markov decision processes
(MDPs), where compact function approximation has to be
used. In this paper, we provide a practical solution to ex-
ploring large MDPs by integrating a powerful exploration
technique, Rmax, into a state-of-the-art learning algorithm,
least-squares policy iteration (LSPI). This approach com-
bines the strengths of both methods, and has shown its ef-
fectiveness and superiority over LSPI with two other popular
exploration rules in several benchmark problems.

Categories and Subject Descriptors
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Learning; I.2.8 [Computing Methodologies]: Artificial
IntelligenceProblem Solving, Control Methods, and Search

General Terms

Algorithms
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1. INTRODUCTION
One of the key problems in reinforcement learning [24]

is the exploration-exploitation tradeoff, which strives to bal-
ance two competing types of behavior of an autonomous
agent in an unknown environment: the agent can either
make use of its current knowledge about the environment
to maximize its cumulative reward (i.e., to exploit), or sac-
rifice short-term rewards to gather information about the
environment (i.e., to explore) in the hope of increasing fu-
ture long-term return.

Exploration can be framed as a dual control problem, and
(in principle) can be solved optimally in a Bayesian man-
ner. However, this approach is in general computationally
intractable (e.g., [10, 19]). Despite the recent advances in
finding approximate solutions with less computation time,
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these techniques have not been shown to scale well to larger
problems. Therefore, this paper only considers non-Bayesian
approaches. Thrun [25] surveyed a number of popular explo-
ration rules, but little can be said about their performance
guarantees. In fact, some of them have provably poor per-
formance in certain situations. Recently, there has been
a growing interest in formally analyzing the sample com-
plexity of exploration [13] in finite-state Markovian environ-
ments [8, 15]. This line of work has significantly advanced
understanding of the exploration-exploitation dilemma, but
has not been merged with approaches for function approxi-
mation needed for scaling up except in limited cases [22].

In contrast, this paper is concerned with intelligent explo-
ration in large or even continuous environments where com-
pact function approximation has to be used. In particular,
we propose a practical solution by integrating a powerful ex-
ploration technique, Rmax [8], into a state-of-the-art learn-
ing algorithm, least-squares policy iteration (LSPI) [17].
Our approach enjoys the strengths of both methods: on the
one hand, it borrows ideas from Rmax to actively explore
the state space; on the other hand, LSPI acts as an efficient
learner and planner. Based on finite training samples, these
two elements together produce a policy that either reduces
uncertainty about the environment, or exploits the current
knowledge to maximize utility of the agent.

The paper is organized as follows. Section 2 introduces
notation for Markov decision processes and reinforcement
learning. Section 3 reviews LSPI and a few representative
exploration strategies in the literature. Section 4 studies ex-
ploration in large state spaces, and proposes the LSPI-Rmax
algorithm. We briefly discuss a few implementation issues
and also relate this algorithm to several existing works. The
effectiveness of our approach is then demonstrated in a series
of experiments on four benchmark RL problems in Section 5.
Finally, we conclude the paper in Section 6.

2. PRELIMINARIES
We consider environments modeled as Markov decision

processes [20], or MDPs for short. An MDP M can be de-
scribed as a five-tuple 〈S, A, T, R, γ〉, where S is a set of
states, A is a finite set of actions, T is the transition func-
tion with T (s, a, s′) denoting the probability of reaching s′

from s by taking action a, R is a bounded reward function
with R(s, a) ∈ [Rmin, Rmax] denoting the expected imme-
diate reward gained by taking action a in state s for some
constants Rmin and Rmax, and γ ∈ [0, 1] is a discount factor.

A deterministic policy π maps states to actions; that is,
π : S → A. Given a policy π, we define the state-value
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function, V π(s), as the expected cumulative reward received
by executing π starting from state s. Similarly, the state–
action value function, Qπ(s, a), is the expected cumulative
reward received by taking action a in state s and follow-
ing π thereafter. It is known that [20] the optimal value
functions exist: V ∗ = maxπ V π and Q∗ = maxπ Qπ; fur-
thermore, the greedy policy with respect to Q∗ is optimal,
where a greedy policy πQ with respect to a value function Q
is one that selects actions with maximum Q-values; namely,
πQ(s) = argmaxa Q(s, a). Because of the bounded reward
function and the discount factor, the value functions must be
bounded as well: Rmin/(1 − γ) ≤ Qπ(s, a) ≤ Rmax/(1 − γ).

Given the complete model of a finite MDP (i.e., the five
tuple), standard algorithms exist for finding the optimal
value function and the optimal policy, including linear pro-
gramming, value iteration, and policy iteration [20]. How-
ever, if the transition and/or reward functions are unknown,
the agent has to learn the optimal value function or policy
by interacting with the environment. This problem is also
called reinforcement learning [24].

3. PREVIOUS WORK
In this section, we discuss relevant literature, especially

the building blocks of our work, including LSPI and a num-
ber of representative exploration strategies.

3.1 LSPI
LSPI is well-known for its excellent performance in data

efficiency and has succeeded in a number of challenging con-
trol problems such as riding a simulated bicycle [17]. It
adopts the approximate policy-iteration framework [4] and
uses a model-free version of least-squares temporal difference
learning (LSTD) [5, 7] as a subroutine for policy evaluation.
Like LSTD, LSPI is highly efficient in utilizing training sam-
ples and operates directly in a linear function space defined
by a given set of features φ: Qθ(s, a) = θT · φ(s, a), where
the feature function φ maps state–actions to a feature vector
of k components, and θ is the coefficient vector.

LSPI is arguably the most competitive reinforcement-
learning algorithm available in large environments. Being
an approximate policy-iteration algorithm, LSPI is theoreti-
cally sound [4]. It completely avoids learning rates and does
not suffer from the problem of divergence in value functions,
which is a risk many algorithms with function approxima-
tion have to face [2, 6].

In its original form, LSPI is an off-line algorithm, in the
sense that it requires a fixed set of training samples as in-
put and returns a policy as output [17]. Lagoudakis and
Parr suggested using truncated random walks from random
start states to collect training samples and to feed them
to LSPI, leaving the online exploration problem open [17].
Their sample-collection approach, however, is not always ap-
plicable in practice, especially when the agent cannot be re-
set. Meanwhile, an online agent has to decide wisely how to
collect samples autonomously, while random walks could be
inefficient or even disastrous.

In the next subsection, we introduced a few simple-to-
implement heuristics for online exploration, which can be
combined with LSPI in a straightforward way. In Sec-
tion 4.1, we show how to augment the original LSPI with
more efficient exploration strategy that is motivated by re-
cent advances in sample-efficient reinforcement learning.

3.2 Exploration in MDPs
The simplest and most popular exploration rule is prob-

ably ε-greedy : the agent chooses the greedy action with re-
spect to its value function with probability 1 − ε, and a
random action with probability ε. An alternative approach,
called counter-based exploration, has shown empirical ad-
vantages over ε-greedy in some problems [25]. It requires a
threshold m, and a counter c is maintained for each (s, a)
pair that remembers how many times action a has been
taken in state s. When the agent is in state s, it randomly
picks action a such that c(s, a) < m; if no such action exists,
a greedy action is chosen. Both ε-greedy and counter-based
methods can be shown to be inefficient in some problems.

The E3 family of exploration algorithms explicitly alter-
nates exploration and exploitation phases [14, 15], in which
metric E3 is probably the most relevant to the this paper
within this family. It makes two assumptions: the local
modeling assumption requires that an accurate local model
be available (with high probability) given enough samples
in that local region; the approximate planning assumption
requires that an approximate planner be able to return a
near-optimal policy for a state, given access to a generative
model. It is proved that, with high probability, after a poly-
nomial number of steps, these E3 algorithms will terminate
with a near-optimal policy for the currently occupied state.

Another approach with similar formal guarantees is
Rmax [8], which implements the optimism-in-the-face-of-
uncertainty principle. Like the counter-based method,
Rmax has a threshold m and maintains a counter for each
(s, a) pair for the same purpose. Unlike the counter-based
method, Rmax constructs an internal model (known as the

empirical known-state MDP) M̂K = 〈S, A, T̂ , R̂, γ〉 as fol-
lows. If c(s, a) ≥ m, then (s, a) is called known, and
Rmax uses relevant samples to build maximum-likelihood
estimates R̂K(s, a) and T̂K(s, a, ·). Otherwise, (s, a) is un-
known, and Rmax considers it maximally rewarding for-
ever to take a in s; precisely, it sets R̂(s, a) = Rmax and

T̂ (s, a, s) = 1. A known-state MDP MK is similar to M̂K

except that its reward and transition functions for known
state–actions are identical to those of M . With this trick,
Rmax provides a simple yet powerful solution to balance
exploration and exploitation.

4. EXPLORATION IN LARGE MDPS
We now study the problem of exploration in MDPs with

large state spaces. By the technique of discretization, a
large state space can be partitioned into a much smaller
set of aggregated states. Under certain assumptions, solv-
ing the smaller MDP gives a near-optimal solution to the
original, large MDP [9]. Thus, we may first discretize the
state space and then apply techniques for finite MDPs to
obtain a near-optimal policy. Unfortunately, discretization
suffers from the curse of dimensionality. Instead, we will use
LSPI with linear function approximation, which is feasible
in large problems because of generation.

Exploration rules for finite MDPs can be extended to LSPI
when it is applied online. For example, LSPI with ε-greedy
exploration picks a greedy action with probability 1−ε and a
random action with probability ε; counter-based exploration
can be generalized in a pretty straightforward way: instead
of counting the number of times action a has been tried in
the current state s, we may count the number of times a has
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been tried in states close to s, where “closeness” is measured
by a pre-defined distance metric and is problem-specific. In
the following section, we describe a more complicated, on-
line variant of LSPI that is motivated by Rmax. The basic
idea is to generalize the optimism-in-the-face-of-uncertainty
principle of Rmax to LSPI in continuous state spaces.

4.1 LSPI-Rmax

As a first step toward combining LSPI with Rmax-
style exploration, we modified the concept of known state–
action pairs to continuous state spaces. Our approach re-
quires a distance function that computes the dissimilarity
(or distance) between two state–action pairs: d : (S ×
A) × (S × A) → R+. Let εd ≥ 0 and m > 0 be two
predefined constants. Given a set of sample transitions
D = {〈si, ai, ri, s

′
i〉}, a pair (s, a) is called (εd, m)-known

if |{(si, ai) | d(s, a, si, ai) ≤ εd}| ≥ m. In words, the algo-
rithm has seen at least m samples in D that are εd-close to
(s, a). Furthermore, a state s is called (εd, m)-known if (s, a)
is (εd, m)-known for every action a.

With this notion, we are now ready to present LSTD-
Rmax (Algorithm 1), a variant of LSTD that assigns max-
imum value to unknown states and unknown state–action
pairs. If both (s, a) and s′ are (εd, m)-known, LSTD-Rmax
operates exactly as LSTD (steps 7—9). If (s, a) is (εd, m)-
known but s′ is not, then we pretend s′ is a goal state whose
value is the largest possible, that is, Rmax/(1 − γ). There-
fore, the return of (s, a) is the sum of the immediate reward,
r, and the pretended discounted value of s′, γRmax/(1− γ);
this corresponds to steps 10—12 that encourage the agent to
further explore the neighborhood of s′. Similarly, when (s, a)
is not (εd, m)-known, the return of this state–action pair is
treated as Rmax/(1 − γ), which results in steps 15—16. Fi-
nally, since solutions found by LSTD-Rmax are biased by
the sample distribution in the input sample set D, steps 18
to 21 add artificial samples to (s, a′) pairs so that untried
actions a′ in s are preferred when a nearby state is visited
in the future. These state–action pairs also have the largest
possible value, Rmax/(1 − γ).

With LSTD-Rmax as a building block, we can com-
plete the full online learning algorithm, LSPI-Rmax, whose
generic form is given in Algorithm 2. In this algorithm,
the agent always chooses greedy actions with respect to its
current value-function estimate. When new training sam-
ples are added to the sample set D, it runs LSPI to update
its value function, in which it uses LSTD-Rmax instead of
LSTD to evaluate value functions.

To summarize: LSTD-Rmax is just like LSTD, except
that it assigns maximum value, Rmax/(1− γ), to states and
state–action pairs that are not (εd, m)-known. LSPI-Rmax
is just an online version of LSPI that uses LSTD-Rmax in-
stead of LSTD to evaluate policies.

4.2 Implementation Issues
While we have given the generic form of LSPI-Rmax, a

number of implementation issues remain open. We describe
our solutions to these problems, but note that other solu-
tions do exist and might work better in certain situations.

The first natural question is how to decide whether a
state–action pair is (εd, m)-known or not. A straightforward
algorithm would be to search over all samples in D and count
the number of nearest neighbors within εd distance. How-
ever, when D is large, even this O(|D|)-time algorithm is far

Algorithm 1 LSTD-Rmax

1: Input:

• D: set of transitions

• π: policy to be evaluated

• φ: feature function (k is the number of features)

• γ: discount factor

• εd, m: thresholds for (εd, m)-known state–actions

2: Output: weight vector θ for predicting Qπ

3: A ← 0k×k (the k × k zero matrix)
4: b ← 0k (the k × 1 zero column-vector)
5: for all 〈s, a, r, s′〉 ∈ D do
6: if (s, a) is (εd, m)-known then
7: if s′ is (εd, m)-known then

8: A ← A + φ(s, a) · `φ(s, a) − γφ(s′, π(s′))
´T

9: b ← b + φ(s, a) · r
10: else
11: A ← A + φ(s, a) · φ(s, a)T

12: b ← b + φ(s, a) ·
“
r + γRmax

1−γ

”
13: end if
14: else
15: A ← A + φ(s, a) · φ(s, a)T

16: b ← b + φ(s, a) · Rmax
1−γ

17: end if
18: for all a′ ∈ A \{a} where (s, a′) is not (εd, m)-known

do
19: A ← A + φ(s, a′) · φ(s, a′)T

20: b ← b + φ(s, a′) · Rmax
1−γ

21: end for
22: end for
23: Return θ = A−1b

Algorithm 2 LSPI-Rmax

1: Input:

• φ: feature function (k is the number of features)

• γ: discount factor

• εd, m: thresholds for (εd, m)-known state–actions

2: Initialize θ, s1, and set D ← ∅
3: for t = 1, 2, 3, · · · do
4: Choose the greedy action at in st with respect to Qθ,

observe reward rt and st+1

5: D ← D ∪ {〈st, at, rt, st+1〉}
6: Update θ by running LSPI with LSTD-Rmax
7: end for

too expensive. A better way is to employ smarter nearest-
neighbor search techniques such as kd-trees [12] whose time
complexity is sub-linear in |D|, but still is prohibitively ex-
pensive in high dimension state spaces. Therefore, it might
be worthwhile to sacrifice exact counting for faster compu-
tation. In our implementation, we coarsely discretize S ×A
into bins, and the number of nearest neighbors is approxi-
mated by counting how many samples in D fall in the same
bin. Thus, all samples in a bin are simultaneously known
or unknown under this approximation.1 By maintaining a
counter for each bin, we are able to achieve a much lower

1This implementation also has a desired side-effect of
smoothing the optimal value function of the known-state
MDP, which makes it easier to learn the optimal value func-
tion and policy for the known-state MDP.
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time complexity that is linear in the state dimension. There-
fore, this binning implementation can be viewed as a com-
putationally efficient approximation to the exact nearest-
neighbor search procedure such as the kd-tree algorithms.
We note that better choices for identifying known state–
actions are possible in the presence of domain knowledge,
and the number of bins may grow sub-exponentially.

It is important to note that the discretization procedure
we use here should not be confused with discretization for
solving large MDPs, as mentioned at the beginning of Sec-
tion 4. Discretization there directly decides the complex-
ity of value functions being considered, and solving a dis-
cretized model often requires repeated access to the whole
model (e.g., in the case of dynamic programming [20]). Here,
in contrast, discretization is used only to indicate whether
enough samples have been observed in a local region, that
is, whether a state–action pair is known. Thus, the class of
value functions under consideration and the computational
complexity mostly depend on number of features, rather
than number of bins used by LSPI-Rmax. These differences
make our approach less prone to the curse of dimensionality
than discretization methods.

A second problem is that D keeps growing without limit as
time goes on. However, if the MDP dynamics are smooth2

(which is often the case in practice), it is unnecessary to
keep all samples in D if many of them are close to each
other. Thus, we have chosen to avoid adding a sample to D
if the corresponding bin size reaches a predefined capacity,
which varied between 50 and 100 in our experiments in Sec-
tion 5. Excluding samples has the effect of making sample
distribution in D more uniform, which is often preferred for
the policy-improvement step of LSPI in practice [17].

Third, steps 18 to 21 ensure that untried actions a′ in s are
preferred when a nearby state is visited in the future. Empir-
ically, it is desirable to avoid adding too many such artificial
samples, which may overwhelm the real samples. This can
be done in a number of ways. In our implementation, an
artificial sample is used only when the bin corresponding to
(s, a′) is empty. This choice has the desired property that if
the local region of (s, a′) is underrepresented, the artificial
sample has the effect of increasing the value of a′ in s so as
to encourage exploration; on the other hand, if a′ has been
tried in nearby states of s′, the algorithm will use those real
samples and does not use artificial ones.

Finally, LSPI is invoked in each step in Algorithm 2. Since
LSPI is rather expensive (the complexity of each iteration is
on the order of O(k3)) and adding a sample to the training
set D usually has ignorable effects on the value function it
finds, our implementation calls LSPI (step 6 in Algorithm 2)
only after a certain number of samples are added to D.

4.3 Discussion
Because LSPI-Rmax’s root is in Rmax, it is natural to

consider the relation between them. Given a finite MDP,
Rmax estimates Q(s, a) for each (s, a). If we view this tab-
ular representation as a linear function approximation such
that there is an independent feature per state–action pair,
then LSPI-Rmax precisely duplicates Rmax when εd = 0.
(Note that Rmax has a similar parameter m.) In fact, what
LSTD-Rmax solves for is the value function of policy π on
the empirical known-state MDP M̂K maintained by Rmax.

2Nearby sates have similar transition and reward functions
if the MDP’s dynamics are smooth.

Consequently, step 6 of Algorithm 2 becomes exact policy
iteration and returns the optimal value function of M̂K .

This connection to Rmax serves as a sanity check of the
plausibility of our approach. We can make this similarity
formal. A thorough analysis of LSPI-Rmax is difficult, since
a nontrivial performance guarantee for LSPI itself is open
except in limited situations [1]. Our preliminary analysis
is specific to the bin-based implementation described in the
previous section. Similar to known states, we call a bin to
be known if every action has been tried at least m times
in states in this bin. Suppose the state space is partitioned
into C disjoint bins. Let K ⊆ {1, 2, · · · , C} be the subset
of known bins, then the known-bin MDP can be defined as
MK = 〈S, A, TK , RK , γ〉 where

RK(s, a) =

(
R(s, a) if s is in a known bin

Rmax otherwise,

TK(s, a, s′) =

(
T (s, a, s′) if s is in a known bin

I(s = s′) otherwise,

where I is the set-indicator function.
Assumption 1 below asserts that the LSPI algorithm,

when using the feature function φ, is able to return a near-
optimal policy in known-bin MDP.

Assumption 1. Let ε, δ ∈ (0, 1) be given. Let m =
m(ε, δ) be some positive constant depending on ε and δ. We
call C a cover number of the MDP if the state space S can
be partitioned into C disjoint bins: S = S1 ∪ S2 ∪ · · · ∪ SC ,
such that, with probability at least 1−δ, LSPI with the given
set of features returns an ε-optimal policy in the known-state
MDP MK for any K ⊆ {1, 2, . . . , C}.

This assumption allows one to show a bound on the sam-
ple complexity of exploration stated in Proposition 1, whose
proof follows similar steps as the sample complexity proof
for Rmax [13]. Although it is hard to verify Assumption 1
in practice, the theorem serves as a best-case sanity check
that the algorithm does employ the data-efficiency of Rmax.
An important open question is to generalize the analysis to
broader classes of linear function approximation.

Proposition 1. When it is implemented using bins
S1, . . . , SC that are defined in Assumption 1, LSPI-Rmax’s
sample complexity of exploration is

O

 
CAm

`
ε, δ

CA

´
ε3(1 − γ)6

log
CA

δ

!
.

LSPI-Rmax is similar to metric E3 in the sense that they
both depend on some kind of smoothness assumption. The
notation of (εd, m)-known state–actions plays a similar role
to the local modeling assumption. Metric E3 estimates the
model explicitly based on samples and then employs a hy-
pothetical planner to get the desired policy. In contrast,
LSTD-Rmax builds a compressed empirical model implic-
itly [5] and approximate policy iteration is then used to solve
the planning problem. The near-optimality part in Assump-
tion 1 is roughly the analog of the approximate planner as-
sumption made in metric E3. Since LSPI does not make
a clean distinction between learning and planning, it is not
clear how to use the same assumptions that applied to met-
ric E3 to analyze LSPI-Rmax.
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express lane

Figure 1: From left to right: MountainCar (bor-
rowed from Sutton and Barto [24]), ExpressWorld
(adapted from Sutton [23]), ContCombLock. The
fourth domain, Bicycle, is not illustrated here.

5. EMPIRICAL STUDIES
This section reports experimental results on four contin-

uous, episodic domains ordered by increasing difficulty of
exploration. We did not try to optimize features, which is
an important problem. Further investigation is needed to
study the effect of features on exploration.

5.1 Setup
MountainCar [24] is a problem in which the agent tries

to drive a car to a hilltop (see Figure 1(a)). To do this,
the agent has to reverse the car to move away from the
goal and then apply full throttle until it reaches the hilltop.
This problem has two continuous state variables and three
actions. Every step gives rise to a reward of −1, and the
state transition is governed by a system of nonlinear equa-
tions [24]. We used CMAC features consisting of 3 layers of
4 × 4 tilings, which are then repeated for each of the three
actions, leading to a total of 3 × 3 × 4 × 4 = 144 features.
The same approach of repeating features for every action
was adopted in the other problems.

Bicycle is the problem of balancing a bicycle. We used
the deterministic version of bicycle [21] (i.e., the noise in the
displacement action is always zero) to illustrate how LSPI-
Rmax works in a challenging, high dimensional problem,
although the problem is somewhat easier than the original,
stochastic one. There are six continuous state variables and
two continuous action variables. Each balancing step leads
to a reward of +1, and an episode terminates when the bicy-
cle falls. We used the same set of hand-coded features and
the same discretization in the continuous action space as in
the original LSPI paper [17]; that is, there were 100 features
and 5 actions.

ExpressWorld is adapted from PuddleWorld [23]. In
PuddleWorld, the state space is a two-dimensional con-
tinuous grid world in which the agent can move along four
directions (N, E, S, and W) to reach the goal region in the
north-east corner while trying to avoid two puddles (see Fig-
ure 1(b)). Each step yields a −1 reward plus a penalty for
entering the puddle region. To make exploration more im-
portant in this task, we add an “express lane” 0.15 units
wide—if the agent moves within this lane, every immedi-
ate reward is −0.5 instead of −1. Start states are drawn
randomly from the left half plane so that the agent has to
learn how to avoid puddles, as well as to explore actively
to discover the goal as well as the express lane. We have
found empirically that this is a quite challenging exploration
task. Partly because of the reward function that has sharp
changes in the puddle region, it is not easy to find good fea-

tures for this problem. Therefore, we simply used a 6 × 6
discretization of the state space and treated it as a CMAC
feature with one layer of gridding, which resulted in a total
of 4 × 6 × 6 = 144 features.

The last problem, ContCombLock, is a continuous ver-
sion of combination lock, which was designed to require a
smart exploration strategy [16]. The state space is a seg-
ment [0, 1] with a fixed start state 0 (Figure 1(c)). There
are two actions: left always takes the agent back to the
start state 0; the other action right takes the agent from
state x to a new state y = x + 0.02 + Δ, where Δ is gener-
ated via Gaussian noise with mean 0 and standard deviation
0.005. If the agent reaches a state x > 0.98, the episode ter-
minates. Every step results in a −1 reward. Therefore, the
optimal policy is to always choose right, and on average
each episode takes about 50 steps to finish. We used CMAC
features that have 3 layers of grids, each dividing the state
space into 6 pieces. Hence, 2×3×6 = 36 features were used.

For Bicycle, the agent was allowed to run 2000 episodes,
each of which was at most 72000 steps long; in the other
problems, the agent had to run up to 200 episodes, each of
which was at most 300 steps long. The discount factor was
set to 0.99 for all four problems.

In the experiments, the capacity of a bin was set to 100
except in Bicycle where it was 50 (since this problem’s
state space is larger). We invoked LSPI in LSPI-Rmax every
time 100 new samples were added to D, except in Cont-
CombLock where LSPI was invoked immediately after a
new sample was added.

We compared LSPI-Rmax against LSPI with ε-greedy and
counter-based exploration. For each of them, we have tried
different exploration parameters and report the best result.
Since all problems are continuous, we had to modify the
counter-based method to use the same trick as LSPI-Rmax
(cf., Section 4.2), and maintained a counter for each bin.

5.2 Results
Figure 2 shows the learning curves for cumulative reward

of LSPI with different exploration rules in all four problems,
where the y-axis is the cumulative rewards, averaged over
30 runs. The slope of a curve corresponds to per-episode
reward. In MountainCar and Bicycle, all three explo-
ration rules had similar cumulative rewards for the first
dozen episodes, but LSPI-Rmax quickly showed its advan-
tage over the other two and converged to a much better
policy. It is also observed that ε-greedy and counter-based
exploration rules can be better than the other, depending
on specific problems. In ContCombLock, LSPI-Rmax was
the only one that succeeded.

The learning curve for ExpressWorld probably best il-
lustrates the way LSPI-Rmax works. At the beginning of
learning, LSPI-Rmax actually receives much less cumulative
rewards since it attempts to visit different parts of the state
space and thus receives a lot of penalty for entering puddles.
However, after about 10 episodes, it has obtained a better
policy, which finally compensates the cost of exploration at
the beginning. In contrast, LSPI with ε-greedy and counter-
based exploration converged to suboptimal policies (visible
in the graph as their reward slopes).

The success of LSPI-Rmax comes from the fact that the
agent actively explores the state space. This claim is sup-
ported by Figure 3, which plots the states visited by the
three agents in ExpressWorld for the first three episodes
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Figure 3: State visitation of the first three episodes of a typical run in ExpressWorld.

during a typical run. (We chose this domain for demon-
stration because it is easier to visualize its 2D state space).
Observe that all three agents failed to reach the goal for the
first three episodes. However, the LSPI-Rmax agent appar-
ently behaves more intelligently by experiencing novel parts
of the state space, while the other two agents had difficulty
getting far away from the start states on the left half plane.

Finally, we study the effect of parameter m on cumulative
rewards in LSPI-Rmax. Figure 4 plots the average per-
episode reward, as well as standard deviation, of LSPI-Rmax
during the entire 30 runs in ExpressWorld with different
threshold m values. The results demonstrate how m controls
the exploration-exploitation tradeoff. When m is small, the
agent tries to exploit sooner, but risks at ending up with less
effective policies, which explains the large variance in the
average per-episode reward. When m gets larger, the agent
becomes more conservative and tends to explore more before
exploiting. Consequently, learning is more robust and the
variance is small. However, being conservative comes with
costs as the algorithm delays exploitation while exploring.
In between, medium m values work best. Similar patterns
are observed in other problems.

6. CONCLUSIONS
This paper raises a number of interesting problems for fu-

ture research. LSPI-Rmax has worked well on several other
benchmark problems, including CartPole [3] and Acro-
bot [24] that are not included here. In the future, we would
like to test it on more realistic control problems. A very
challenging problem is to extend the formal analysis for
LSPI-Rmax without making the somewhat hard-to-verify
Assumption 1. Ideally, we would like to have sample com-
plexity bounds that depend on the number of features rather
than the number of state variables. A possible direction is
to use Gaussian processes as the function approximator [11],
which readily provide confidence intervals that could be use-
ful for exploration. A third problem is to investigate model-
based approaches (e.g., [18]) as opposed to the model-free
one studied here in large problems. Finally, it is interesting
to extend the algorithm to handle continuous actions.

Efficient exploration in continuous environments is a fun-
damental problem in real-life reinforcement learning. This
paper takes a step towards this goal by proposing a plau-
sible, online LSPI variant that borrows ideas from efficient
exploration techniques for finite MDPs. A few principled
and practical issues are discussed, and insights are drawn
by relating it to existing works. The algorithm’s effective-

ness is demonstrated in four benchmark problems.
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