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Abstract—Signals from sensors placed at different locations are
used for control and protection purposes in a nuclear reactor. It
also requires in-service Fault Detection and Isolation (FDI) for its
safe operation. The sensor signals are generally a superimposition
of low-frequency components representative of true values of the
variables being monitored; occasional high-frequency periodical
oscillations due to disturbances and faults; and sensor faults.
Techniques like Principal Component Analysis (PCA) can be
used for FDI, however, it would be more meaningful if the FDI
technique can also help for predictive maintenance of reactor
internals through vibration spectra. To address these issues, a
multi-scale PCA, integrating wavelet transform with PCA and
aiming to reduce the modeling cost by using only a fewer scales
that contribute to the monitoring has been proposed in this paper
for online FDI of Advanced Heavy Water Reactor (AHWR).
A new mathematical formulation of the Generalized Likelihood
Ratio Test for its use with wavelet approximation coefficients has
also been proposed for better sensor-FDI outcomes. The proposed
approach detects and isolates sensor faults and process faults
using the signals from neutron detectors. Efficacy of the proposed
technique is established on the simulated ex-core ion chamber
data of AHWR considering different scenarios that involve
localized frequency contents representative of process faults,
slowly developing (incipient) sensor faults, and the simultaneous
presence of two or more of these scenarios. Simulation results
validate the effectiveness of the proposed scheme for online FDI
in the reactor.

Index Terms—Fault Detection and Isolation, Ex-core neutron
detectors, Ion chambers, Advanced Heavy Water Reactor, Prin-
cipal Component Analysis, Wavelets.

I. INTRODUCTION

NUCLEAR reactors being safety critical systems need

multiple sensors for measurement of key parameters such

as flow, pressure, temperature, and neutron flux. The sensor

signals generally consist of both static and dynamic compo-

nents representing slow as well as fast varying phenomena

in the reactors. The static component corresponds to process

variables measured by the sensors, whereas the dynamic com-

ponent results from inherent fluctuations in process variables

as a result of external disturbances on the plant such as random

neutron flux, random heat transfer, turbulence, vibration, and
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other effects [1]. For instance, neutron detectors carry the

signal corresponding not only to the neutron flux which is

a slowly varying signal but also to the vibration of reactor

internals. The hardware redundancy among sensors, which is

always maintained for continuous safe-operation of the reactor

even when some sensors malfunction, plays a vital role in

Fault Detection and Isolation (FDI). Analytical redundancy or

mathematical relationships among sensor signals can be found

through either first principles approach or using statistical

techniques like Principal Component Analysis (PCA) [2],

[3]. PCA-based FDI, though proved to be highly efficient

for sensor fault detection as presented in [3], acts only on

the static components of the detector signals to find the

possible degradation. However, extending PCA-based FDI to

the process condition monitoring and diagnostics in addition

to the sensor anomalies will be of more interest.

Generally, the neutron detector signals also contain mea-

surement noises that may arise from different sources like

stochastic nature of neutron interaction, fluctuation in pressure

and temperature, mechanical vibration of internal parts, and

so on. Neutron noise analysis can be used as a predictive

maintenance strategy to safeguard the structural integrity,

which would be otherwise at a risk due to vibration induced

accidents. The neutron noises obtained from in-core or ex-

core detectors, in the typical range of 0.5 Hz to 25 Hz,

give important information for in-service monitoring of the

core for excessive mechanical motion of fuel assemblies, in-

core detector tubes, the reactor core support barrel, reactor

vessel, and reactor coolant pumps [1], [4]–[8]. In literature,

various works on the analysis of neutron detector noises using

frequency domain techniques namely, fast Fourier transform,

auto power spectral density, and cross power spectral density

have been reported for different reactor configurations [4]–

[10]. Though these frequency domain techniques were proved

to be successful in detecting vibration-induced faults visible

in the frequency spectrum, they ignore the cross-correlations

among the static component of the sensor signals as they

need to be applied individually on each signal. This limits

their application, as the information hidden in cross-correlation

is left unused, which plays a vital role in the detection of

sensor faults. With the objective of detecting sensor faults,

PCA which captures cross-correlations among the variables

has been widely used in nuclear engineering [3], [11]–[13].

In most of the reported works, PCA models are developed for

the underlying process assuming its existence only at a single

scale in measurement space. However, it is well known that

1



in systems like large nuclear reactors, multiple modes interact

simultaneously and many time-frequency localized phenomena

evolve at different scales of time [14]. These events may not be

clearly visible at a single scale in measurement space. Thus, it

is imperative to have data representation at appropriate scales

or resolutions. Wavelets provide an architecture for multi-

scale data visualization due to their inherent multi-resolution

approximation property and simultaneous time-frequency lo-

calization capability. They decompose noisy signals at dif-

ferent resolutions, thereby they extract features relevant to

process dynamics and efficiently remove noise contribution.

Processing based on wavelets minimizes distortion of signal

bandwidth and thus improves the signal-to-noise ratio as com-

pared to the frequency domain-based techniques which reduce

only the high-frequency components of a signal and require

that signal and noise spectra must be separable. Recently, the

advantages of wavelets in processing neutron detector data,

power transients, and in fault diagnosis have been reported

[15]–[18].

In the last two decades, wavelet-based multi-scale tech-

niques have demonstrated superior performance over the con-

ventional single-scale approaches in different applications such

as modeling, prediction, data-compression, and rectification.

For process monitoring, Bakshi [19] proposed a Multi-Scale

Principal Component Analysis (MSPCA) formulation where

signals are decomposed at different scales using wavelet trans-

form and then PCA is applied at individual scales to monitor

the frequency induced signatures. This technique is very much

suitable for industrial processes where non-stationary multi-

scale events are inherently existing. The approach simultane-

ously extracts auto-correlation within a sensor using wavelets

and cross-correlation across the sensors through PCA. In [20]

and [21], applications of MSPCA in FDI are demonstrated

and it is shown that MSPCA outperforms the classical PCA

technique. In most of the works, all the scales were utilized

for building a PCA model. However, in practice, not all

the scales contribute to process monitoring and control. For

instance, usually the finest scale detail contains contribution

arising mainly from high-frequency noise components. Hence,

a significant reduction in the modeling effort can be achieved

by selectively removing the detail scales not contributing

much. For this, the occurrence of significant scales is to be

found. In this work, the classical MSPCA method has been

modified by identifying and building parsimonious models

only at those scales where the underlying process evolves

predominantly.

Therefore, the proposed work develops a novel online

MSPCA-based FDI for process condition monitoring and diag-

nostics. Specifically, the technique is applied to the Advanced

Heavy Water Reactor (AHWR) [22] in which coolant flow-

induced vibrations of fuel may be caused [23]. This could

be seen as a process fault that results in the variation of the

frequency spectrum. Neutron noise signatures obtained from

the ex-core ion chamber signals of AHWR are analyzed and

statistics like Squared Prediction Error (SPE) are computed at

significant scales to observe the on-set of vibration-induced

faults. In addition, sensor faults or degradation can be iden-

tified from the measurements violating the algebraic relation-

ships dictated by the constraint models obtained through PCA,

when applied on either the measurement data or on the data

selectively reconstructed after inverse-wavelet transformation

or on the low-frequency approximation coefficients obtained

through wavelets. FDI tools like Generalized Likelihood Ratio

Test (GLRT) [24] integrated with MSPCA as used in [25],

[26] for the detection of the process faults can also be used for

dealing with the sensor faults. For this, fault signature matrices

need to be constructed from the constraint residuals to identify

the faulty sensor and the fault magnitude. However, none of

the works in the literature used such an MSPCA-based GLRT

formulation. In this paper, such formulation is used for sensor-

FDI based on the original measurement data and the data

reconstructed with parsimonious MSPCA models discussed

before. Further, a new mathematical formulation of GLRT is

also proposed so that it can process the wavelet approximation

coefficients for better sensor-FDI outcomes such as quick

detection, accuracy in fault location and that in the estimate of

the fault magnitude. The effectiveness of the proposed scheme

is established for the case of an incipient fault in one of the

ion chambers of AHWR.

The rest of the paper is organized as follows: Section

II briefly discusses wavelets, PCA, and GLRT. Section III

formulates the MSPCA scheme for FDI. Section IV demon-

strates the application of the proposed technique to AHWR

through the ex-core ion chambers. Section V presents the

results of analysis when MSPCA is applied on the simulated

ion chamber signals of AHWR. Finally, conclusions are drawn

in Section VI. The fault signature matrices and the other

formulations for GLRT based on approximation coefficients;

and PCA models obtained from the original, reconstructed and

the approximations data are respectively given in Appendix A

and Appendix B.

II. WAVELETS, PRINCIPAL COMPONENT ANALYSIS, AND

GENERALIZED LIKELIHOOD RATIO TEST

A. Wavelet Transform

Wavelets are the atoms with variable time-frequency res-

olution for localization of the events. They are appropriate

for analyzing phenomena having short-lived high-frequency

components and long-lived low-frequency components or in

which the former are superimposed on the latter [27], [28]. The

Continuous Wavelet Transform (CWT) of a square integrable

function y(t) can be expressed as the correlation between y(t)
and the dilated and translated version of wavelet function. It

is given by the inner product of y(t) and the wavelet function

as

W (s, τ) =
〈

y(t), 1√
s
ψ
(

t−τ
s

)

〉

= 1√
s

∞
∫

−∞
y(t)ψ∗

(

t−τ
s

)

dt
(1)

where ∗ represents the complex conjugate. The wavelet func-

tion ψ integrates to zero and has finite energy [28]. The CWT

operation maps a one dimensional function y(t) to a function

of two variables s ∈ R
+ and τ ∈ R which respectively

represent wavelet dilation and translation parameters. The

CWT coefficients W (s, τ) give a redundant wavelet repre-

sentation. However, a computationally efficient non-redundant
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representation can be obtained by sampling s and τ on a

dyadic grid known as the Discrete Wavelet Transform (DWT).

The DWT coefficients are determined by selecting s = 2j

and τ = 2j l, where j and l are scale and position indices

respectively with j, l ∈ Z, as given by

W (2j , 2j l) =
1√
2j

+∞
∫

−∞

y(t)ψ∗
(

t− 2j l

2j

)

dt (2)

Therefore, using (2), function y(t) can be represented as

y(t) =
+∞
∑

j=−∞

+∞
∑

l=−∞
a(j, l)2−j/2ψ(2−jt− l)

=
+∞
∑

j=−∞

+∞
∑

l=−∞
a(j, l)ψj,l(t),

(3)

where the two-dimensional sequence a(j, l) constitutes

wavelet coefficients. Equation (3) indicates the multi-

resolution ability of the wavelet functions. It constructs a

hierarchy of approximations in various nested subspaces. The

sub-spaces are defined by scaling function, φ(t) and wavelet

function, ψ(t), which carry the signal decomposition in ap-

proximation and detail sub-spaces respectively. Thus, from (3),

y(t) =

∞
∑

l=−∞

cJ+1,lφJ+1,l(t) +

J
∑

j=0

∞
∑

l=−∞

dj,lψj,l(t), (4)

where the coefficients cJ+1,l and dj,l are called as approxi-

mation and detail coefficients respectively. Scale J represent

the maximum depth of decomposition while J + 1 represents

approximation at J th scale.

B. Principal Component Analysis

The real-time data as collected on the ion chamber signals

of a reactor have the stochastic properties along with the

deterministic nature as given by the n−variate noisy data

vector y = x + ε, which is the sum of the true data vector

x ∈ R
n and the white noise vector ε ∈ R

n. Assuming that m
number of variables (m < n) in x are dependent on other

variables, there are (n − m) significant eigenvalues whose

corresponding eigenvectors span the principal component sub-

space and there are m number of insignificant but non-zero

eigenvalues that span the residual subspace. PCA projects

the n × N dimensional data matrix Y = [y1 y2 . . .yN ]
onto the subspaces with major and minor variabilities, where

yk ∈ R
n, ∀ k = 1, 2, ..., N represents the data vector at

an instant k. To state it otherwise, the eigenvector matrix

V = [P B], where P = [v1 v2 . . .vn−m] represents the prin-

cipal component subspace and B = [vn−m+1 vn−m+2 . . .vn]
represents the residual subspace and converts the correlated

variables in x into uncorrelated scores given by

ti = vT
i Y , ∀ i = 1, . . . , n (5)

for each of the eigenvectors vi and thus separates Y into de-

terministic variation (due to change in process) and stochastic

variation (due to noise). However, such projection requires the

order of the residual subspace m, called the model order. Once

it is known, we can decompose the sample data vector at an

instant k into the signal matrix x̂k and the noise matrix êk
with the help of matrices P and B as follows:

yk = PP Tyk +BBTyk = x̂k + êk. (6)

The vector x̂k = PP Tyk gives the data vector reconstructed

using the n − m number of principal components in P and

êk = BBTyk gives the error in this reconstruction. The

constraint residuals vector at time k is given by

rk = BTyk,∈ R
m (7)

and it has a mean value of 0, i.e., E[rk] ≃ 0, ∀ i = 1, 2, ..., N .

Since the operation BTyk = rk ≃ 0 resembles the relation

Ax = 0 on an average sense, BT is taken equivalent to the

constraint model A that shows the relationships among the

variables in the measurement vector y [3].

At any instant k, SPE or Q statistics [13], [20] to take

decisions about the sensor faults can be computed as

Qk = yT
k (I − PP T )yk. (8)

For a false alarm probability α, the threshold value of Q
statistic can be computed as [25]

Qα = gχ2
α,h, (9)

where g =
variance(Q)

2× mean(Q)
and χ2

α,h is the value of chi-square

distribution at a significance level of α with degrees of freedom

given by h =
2× mean(Q)2

variance(Q)
. In online FDI, if the SPE

statistic Qk computed from (8) exceeds the threshold Qα, a

fault is declared and the source and magnitude of fault can be

investigated through the techniques such as GLRT.

C. Generalized Likelihood Ratio Test

In GLRT, the fault signature vectors f j = Aej are

developed for each measurement j, where ej is the unit vector

with 1 at position j. The fault signature matrix that holds fault

signature vectors as its columns can be expressed as [24]

F i =



















Aei1 , i1 = 1, ..., n;

A(ei1 , ei2), ∀i1, i2 = 1, ..., n, i1 6= i2; ...;

A(ei1 , ei2 , ..., eig ), ∀i1, i2, ..., ig = 1, ..., n,

i1 6= i2 6= ... 6= ig,
(10)

where the subscript i refers to the set of combinations in which

i1, i2, ..., ig are chosen to exhaustively consider all possible

combinations of number of simultaneous sensor-faults from

1, 2, ..., g. The residuals have a mean of 0 and F ibk in the

presence of no and g faults hypothesized respectively, where

bk is a column vector of unknown magnitudes of faults at the

instant k.

If p(.) denotes the probability density function, then the

Generalized Likelihood Ratio of the m-variate residuals ob-

tained from (7) can be written as

λ(r) = sup
p(r|H1)

p(r|H0)
, (11)
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where H1 and H0 respectively represent the hypotheses of

fault and no-fault. Using the normal probability density func-

tion for the residuals r, (11) can be written as

λ(r) = sup
i,bk

exp
{

− 1
2̺

T
i,kΣ

−1
r ̺i,k

}

exp
{

− 1
2r

T
kΣ

−1
r rk

} , (12)

where ̺i,k = rk−F ibk. Defining L = 2 lnλ(r) = supi Li,k,

where

Li,k = rTkΣ
−1
r rk − sup

bk

̺T
i,kΣ

−1
r ̺i,k, (13)

the maximum likelihood estimates of the fault magnitudes b̂k
is obtained by equating the first derivative of (13) with respect

to bk to zero, and is

b̂k = (F T
i Σ

−1
r F i)

−1(F T
i Σ

−1
r rk), (14)

and the corresponding test statistics are

Li,k = (F T
i Σ

−1
r rk)

T (F T
i Σ

−1
r F i)

−1(F T
i Σ

−1
r rk). (15)

The false alarm probabilities for each of the test statistics

Li,k is

αi,k = p(χ2
g,α ≥ Li,k), (16)

where χ2
g,α is a random variable following a chi-square

distribution with g degrees of freedom. The combination

i chosen out of {i1 = 1, ..., n; i1, i2 = 1, ..., n, i1 6=
i2; ...; i1, i2, ..., ig = 1, ..., n, i1 6= i2 6= ... 6= ig} and

corresponding to minimum false alarm probability gives the

number and locations of faults and the bias magnitudes.

For the evaluation of GLRT, the following indices can be

computed with the help of the hypothesis testing in which

the null hypothesis H0 states that no fault is present; and the

alternative hypothesis H1 states that faults are present in one

or more signals [3]:

1) Overall Detection Rate (ODR): It is the percentage of

detection of one or more faults or rejection of H0 out of

total number of trials. It involves detection, even during

the cases where H0 is true. For a true H1, ODR is

desirable to be close to 100% [3].

2) Overall Power (OP): It is the percentage of trials when

one or more faults are correctly identified for a true H1.

For a true H1, OP should be close to 100% [3].

3) Mean-Square Error (MSE): It is a measure of error in the

estimate of fault magnitude in a sensor, defined as
√

∑

k∈C(bk − b̂k)
T (bk − b̂k)

NC

,

where C is the set of instants at which the faults are

correctly identified and NC is the cardinality of C [29].

III. MULTI-SCALE PRINCIPAL COMPONENT ANALYSIS

FOR ON-LINE FDI

MSPCA for FDI involves different sequential operations

on the multi-variate data, namely decomposition of the data

into multiple scales using wavelets, the projection of this

decomposed data onto the principal components, and inverse

wavelet decomposition for reconstructing the data. Q statistics

are computed from the appropriate variables from (9), which

will be used for MSPCA-based FDI whose objectives are

the detection of vibration signatures of process internals and

sensor faults. These objectives are met by a one-time executed

off-line algorithm for model development and a continuously

running online algorithm for every new observation [21]. The

concepts involved in the MSPCA-based FDI are discussed in

this section.

A. Multi-scale Data Decomposition

For a given time-series ȳ ∈ R
2J×1, the DWT operation in

terms of matrix multiplication is given by

yw =
[

yT
J+1 yT

J yT
J−1 · · · yT

1

]T
= Wȳ, (17)

where yw is called as wavelet coefficient and comprised

of approximation (at scale J + 1) and details (at scales

j = 1, 2, . . . , J). The wavelet operator W is given by

W =

[

J

Π
j=1

HT
j GT

J

J−1

Π
j=1

HT
j GT

J−1

J−2

Π
j=1

HT
j ··· GT

1

]T

,

=
[

H̃
T

J G̃
T

J G̃
T

J−1 ··· G̃
T

1

]T

, (18)

where H̃J

(

1× 2J
)

and G̃J

(

2J−j × 2J
)

are matrices of

wavelet filter coefficients.

The effective implementation of wavelet-based techniques

requires careful selection of wavelet and the maximum depth

of decomposition. Generally, complex wavelets can be used

for capturing oscillatory behaviour whereas real ones can be

used for detecting peaks. For instance, real wavelets such as

Haar are suitable for representing highly localized events like

singularities or sudden changes due to their piecewise constant

representation. They compute the transformation entirely using

the past and present data; avoid undesirable border distortions

due to signal extensions; and do not introduce any delay in the

analysis [30]. Hence, Haar wavelets are chosen in the proposed

scheme. The maximum depth or scale of decomposition J
is selected so as to ensure that a minimum number of ob-

servations hit the support of basis function. It can be found

out using the Fourier transform such that the magnitude of

the Fourier transform is above the noise floor-level [14], i.e.,
∣

∣y
(

π/2J
)
∣

∣ ≥ |y (π/f)|. It has been observed that not all the

scales contribute in determining process behavior, thus for a

parsimonious model representation, the selection of significant

scales is a crucial step [14], [30].

The online implementation of wavelet transform for J = 2
is shown in Fig 1. The signal is measured at finest scale j = 0
and assumed to be available up to the current time instant k.

A window of 2J observations is formed and decomposed into

detail spaces at j = 1, 2, . . . , J and an approximation space at

j = J+1. With the availability of new data at every subsequent

instant, the window is translated by one time step and the

wavelet decomposition is performed. It may be noted that due

to redundancy in representation, only the last (or rightmost)

coefficients indexed as k, k + 1, . . . at each scale are stored.
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Fig. 1. Implementation of wavelet transform for J = 2.

B. Local PCA Models at Different Scales

Once a decomposition depth J is worked out, PCA is

applied to each of the J + 1 matrices (J matrices holding

details and 1 matrix holding approximation coefficients) with

an objective of extracting cross-correlation of the sensors.

However, the challenge lies in choosing the model order

mj , j = 1, 2, . . . , J + 1 at each scale accurately. There

are many methods for determining model order [2], out of

which the method based on Cumulative Percentage of Variance

(CPV) of principal components is used here. According to this

method, the minimum number of principal components, the

cumulative sum of whose eigenvalues exceeds 95% of the sum

of all eigenvalues is taken as pj , the order of principal compo-

nent subspace. Thus, the model order is obtained as the order

of the subspace of insignificant variations as mj = n− pj . It

should be noted that the data at each scale may have different

values for mj that decides the dimensions of the matrices P j

and Bj of that scale.

If the frequency spectrum of the process is changed with

an addition of one or more frequency components as a result

of faults, the Qj statistics at the scales corresponding to

added frequencies show large values due to broken covariance

structure of the details-data while their values for rest of the

frequency spectrum, remain by and large unaffected. Hence,

these statistics can be continuously monitored for the detection

and identification of process faults.

Moreover, sensor faults can be detected with the help

of Q statistics computed from the approximations obtained

in the wavelet transformation. As mentioned before, a new

mathematical formulation has been suggested to use GLRT

on the wavelet approximation coefficients.

Lemma III.1. When the GLRT is applied on the wavelet ap-

proximation coefficients, the fault signature matrix in various

hypothesized-number of sensor faults up to g is

F i =























AAEi1H̃
T

J , i1 = 1, ..., n;

AA(Ei1H̃
T

J ,Ei2H̃
T

J ), ∀i1, i2 = 1, ..., n, i1 6= i2; ...;

AA(Ei1H̃
T

J ,Ei2H̃
T

J , ...,EigH̃
T

J ),

∀i1, i2, ..., ig = 1, ..., n, i1 6= i2 6= ... 6= ig,

where AA is the PCA-based constraint model obtained from

approximation coefficients and Ei ∈ R
n×2J is a matrix whose

ith row has its all elements equal to 1.

Proof. Refer to Appendix A. �

C. Data Pre-processing and Synthesis

Wavelet thresholding followed by signal reconstruction is

a well-established denoised technique that enables nonlinear

approximation of a signal [27]. Wavelet transform distributes

contribution of noise among all small coefficients while con-

tribution from signal remains in a small number of high am-

plitude coefficients. Thus, it decorrelates wavelet coefficients

of the signal from that of the noise thereby preserving only

relevant signal components. Thresholding operation can either

be hard thresholding or soft thresholding. In case of hard

thresholding, the coefficients below a certain threshold are

made equal to zero, while in soft thresholding the coefficients

are reduced by the given threshold. Wavelet pre-processing can

also be performed by removing the entire contribution arising

from insignificant details. The signal is then reconstructed only

from the information present at significant scales.

The inverse wavelet transform to obtain the reconstructed

signal in measurement domain is given by

ŷ = Wyw, (19)

where W represent the inverse wavelet operator. yw and ŷ

contain pre-processed wavelet coefficients and reconstructed

processed signal respectively.

D. Off-line MSPCA algorithm

The detailed sequence of operations to be performed for

developing the process-history-based models are given in the

following off-line algorithm:

1) Obtain the n-variate observations in sufficiently large num-

ber N during a fault-free operation. Compute the level J
of wavelet decomposition as described in Sec. III-A and

form the wavelet decomposition matrix W .

2) Decompose each of the n variables in the data matrix

Y into J vectors of detail coefficients and 1 vector of

approximation coefficients using W .

3) Group the detail coefficients at each level of all variables

as a matrix and approximation coefficients as another

matrix, i.e., J number of detail matrices and 1 number

of approximation matrix.

4) Apply SVD on the data in each of J+1 matrices obtained

in Step-3. For each of the J+1 data sets, choose the value

of mj as explained in Sec. III-B and develop PCA models

(P j and Bj matrices) from the eigenvectors of the data.

5) Compute Qj statistics using the PCA models at each scale

and determine the thresholds Qα,j .

6) Perform data pre-processing and then apply inverse wavelet

transformation on the processed data of each variable using

W .

This completes the development of process-history-based

models which can now be used on the new observations.

E. On-line MSPCA algorithm

Once the off-line algorithm is executed, another algorithm

has to be run which is similar to the off-line one but excludes
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the need for the repeated development of PCA models and

wavelet transformation matrix W . The data used at the instant

k, denoted by Y k ∈ R
n×2J comprise of all the 2J instants

prior to and including k. The steps involved are as follows:

1) Set observation index k = 1. Load the data Y k, all the

PCA models (P j and Bj matrices) developed for details

and approximations; and wavelet transformation matrix W .

2) Decompose Y k into detail and approximation coefficients

using the matrix W .

3) Use PCA models on these coefficients to get Qj statistics

∀j = 1, 2, ..., J + 1 .

4) For all details with scale index j = 1, 2, ..., J , declare a

process fault, if the Qj statistics exceed the corresponding

thresholds Qα,j , and investigate the type of fault from the

wavelet coefficients.

5) From the approximations, declare a sensor fault if QJ+1

statistic exceeds the thresholds Qα,J+1, apply GLRT and

output the FDI outcomes.

6) Selectively reconstruct the measurement data using inverse

wavelet transformation matrix W for their further use.

7) Increment k by 1, input new data Y k and go to step-2.

The flow-chart representation of this online algorithm is given

in Fig. 2.

Start

Set observation index k = 1 and
load the matrices P , B, W and Y k

Decompose the data Y k into detail and ap-
proximation coefficients using the matrix W

Obtain Q statistics from these coefficients
using corresponding PCA models

Is Qj > Qα,j

at any level
j = 1, ..., J?

Outcomes
of process

FDI

Is
QJ+1 > Qα,J+1?

Reconstruct the measurement data using
inverse wavelet transformation matrix W

Run GLRT

Outcomes
of sensor

FDI

Increment k by 1 and load new Y k

YesNo

Yes

No

Fig. 2. Flow chart of MSPCA-based online FDI scheme

IV. APPLICATION OF MSPCA-BASED FDI TO ION

CHAMBERS OF AHWR

The MSPCA-based FDI scheme is applied to the ion

chamber signals of AHWR, a 920 MW (thermal), vertical,

pressure tube type, heavy-water moderated, boiling light-water

cooled, natural circulation type reactor [22]. AHWR has 9 ex-

core ion chambers located in the vault water surrounding the

reflector [3], [31]. The ion chambers sense the leakage flux

entering into the vault water, which in turn is proportional to

the core-average neutron flux. Out of the 9 ion chambers, 3 ion

chambers (namely ion chamber-1, 2, 3) are meant for reactor

control and monitoring, 3 ion chambers (namely ion chamber-

4, 5, 6) are for primary shut-down system denoted as Shut-

Down System-1, and remaining 3 (namely ion chamber-7, 8,

9) are for secondary shut-down system denoted as Shut-Down

System-2.

Like any other large reactor, AHWR is also prone to vibra-

tions of internal parts. For instance, a high-velocity coolant

flow can excite fuel bundle and fuel elements inside it thereby

resulting in vibrations of the fuel bundle. In AHWR, the

vibration spectrum, in this case, is found out to have two

cluster modes around 5 and 11 Hz [23]. These low-frequency

vibrations may cause inter-element rubbing that can eventually

damage the fuel bundle. There are other possible ways also

that lead to vibration-induced damages. In all the significant

scenarios leading to vibrations, the frequencies of vibrations

are less than 30 Hz [1], [4]–[10]. As these are low frequencies,

their resolution with accelerometers, which are suitable for

high frequencies, is a complex phenomenon. However, the

resolution is quite easy with ion chamber signals as they are

sensitive to neutron flux distribution, which is affected due to

the vibrations of the internal parts of the reactor. For example,

thermo-hydraulic fluctuations generate oscillatory behaviour

in the ion chamber signals at around 1 Hz, whereas the real

value of the core average flux continues to exhibit its normal

behaviour. The second mode of oscillation is also generally

present in some of the process-faults like the vibration of the

deck plate as in the case of fuel assembly vibrations.

Taking different aspects into consideration, the current from

the linear amplifier of an ion chamber-l can be represented as

il = Kφl + εl + µ+ bl + 4 mA, l = 1, 2, · · · , 9, (20)

where K = 10.667 is the product of detector sensitivity and

the gain of the amplifier stages and φl denotes the per-unit

(p.u.) value of the local neutron flux at the lth ion chamber

location, which is directly proportional to the core average

flux for nominal flux distribution. εl is the measurement noise

component in the uncertainty vector ε as discussed in Section

II-B. The noise ε is generally independent and normally

distributed with the following properties [32]:

E[ε] = 0, E[εkε
T
l ] = Rδk,l,

where R is the covariance matrix of the measurement un-

certainties, and δk,l is the Kronecker delta. The parameter µ
in (20) denotes sinusoidal functions representative of process
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faults, if any, that induce vibrations as given in

µ =

h
∑

k=1

Mksin (2πfkt) , (21)

where Mk and fk are the magnitude and frequency of the kth

frequency component respectively. Lastly, bl is the degradation

in the lth ion chamber signal due to a sensor fault, if any.

The frequency dependent noise signatures in the ion cham-

ber currents, approximated by (20), are measured regularly

for process-fault detection [1], [4]–[8]. After the detection

of process faults, the sources of noise components can be

identified by comparing the measured noise signatures with

baseline signatures of each anticipated fault. MSPCA-based

scheme for FDI can then be designed so as to capture one or

more of the noise signatures at different scales. The Q statistics

computed at these scales play a major role in discriminating

between different faults. It may also be noted that though bl
may represent either an incipient fault or an abrupt fault in

the sensor, its time-dependent magnitude is immaterial for

the analysis like PCA-based FDI that are concerned only

about cross-correlation in the ion chamber signals but not

the auto-correlation. The Q statistics can be computed on the

reconstructed measurement data for fault detection, which is

followed by fault identification with GLRT.

Fig. 3 depicts the implementation of the proposed MSPCA-

based scheme for FDI in AHWR. Each of the control and

protection systems is fed with signals from linear amplifiers of

the ion chambers. Although signals are tapped from the 9 ion

chambers before being fed to the MSPCA-based FDI system,

physical separation and electrical isolation among control and

each of the protection systems are maintained. The time series

data of all 9 ion chambers in steady-state and in transient

situations simulated using a mathematical model of the AHWR

core and the ion chamber model given by (20), as described in

[31], is supplied to the online MSPCA-based scheme for FDI

as shown in Fig. 3. The wavelet transform block decomposes

the data from each ion chamber into approximation and details

based on the decomposition depth J . PCA is applied on the

approximation and details at each level of all the 9 ion chamber

data. The violations of Q statistics at each level j = 1, 2, ..., J
are checked against the corresponding thresholds to detect the

process faults, if any. On the other hand, the violations of Q
statistics at level J + 1 are checked against the threshold to

detect the sensor faults, if any. If sensor faults are detected,

GLRT is applied to know the faulty sensor index and the

fault estimate. After the FDI is performed, the inverse wavelet

transformation is applied to the pre-processed data to get the

data in measurement space for their further use by control and

protection systems.

V. RESULTS AND ANALYSIS

In this section, a detailed analysis is performed on the

results obtained through MSPCA approach on the ion chamber

data simulated through the mathematical model of AHWR.

A demand power change transient is considered, wherein the

demand power change from 1.0 p.u. to 0.9 p.u. is reflected in

all the 9 ion chamber signals. The data of ion chamber signals

is simulated for 140 s out of which the reactor is at steady-state

producing 1.0 p.u. till 100 s at which it undergoes the demand

power change transient. A sampling time of 0.02 s leads

to the generation of 7000 observations on 9 ion chambers.

The measurement noise in (20) is assumed to be normally

distributed with a standard deviation of 0.29 mA, which is

equivalent to 2% random fluctuations around the full power

steady-state.

Simulations are performed in such a way that one simulation

is sufficient to cover different scenarios. The scenarios consid-

ered involve the data carrying no fault, one or two frequencies

indicative of process faults, one frequency along with a sensor

fault, two frequencies along with a sensor fault, a sensor fault

alone, process change and sensor fault together, one or two

frequency components with simultaneous presence of both

process change and sensor fault. To include all these scenarios

in a single simulation, the data of 7000 observations length is

divided into different windows numbered from I to XIII as

shown in Fig. 4. The scenarios in each of these windows are

as follows:

1) Window-I: The data in this window are used for the

computation of J , W , P , and B.

2) Window-II: The data in this window are considered to be

fault-free, i.e., there are no process-fault induced frequen-

cies, no sensor fault, and there is no process change as

well. This case is considered to test the algorithm against

the no-fault case.

3) Window-III: In this window, the data carry components of

a single frequency, say f1.

4) Window-IV: In this window, the data carry components of

a single frequency, say f2 6= f1.

5) Window-V: This data window is corrupted by two different

frequency components f1 and f2.

6) Window-VI: In this window, one of the sensors, namely ion

chamber-5, is assumed to start developing an incipient fault

along with the presence of fault-induced frequency f1. The

rate of rise of this incipient nature is assumed to be constant

at 0.2% of the nominal value of the signal at steady-state

(14.67 A) per second such that the fault shows the nature

of a ramp signal. It is also assumed that the rate of rise

of fault magnitude persists in other subsequent windows as

well such that the fault grows by a value of 2.934 A for

every 100 s. The growth of this sensor-fault magnitude is

as shown in Fig. 5.

7) Window-VII: In this window, ion chamber-5 is assumed

to be faulty as described in point-6 above, along with the

presence of fault-induced frequency f2.

8) Window-VIII: This data window has both fault-induced

frequencies f1 and f2 along with a sensor fault in ion

chamber-5.

9) Window-IX: In this window, only the incipient fault in the

ion chamber-5 is considered.

10) Window-X: This window constitutes both the sensor fault

in ion chamber-5 along with the commencement of process

change from 1.0 p.u. and its way towards 0.9 p.u.

11) Window-XI: This data window holds the frequency f1,

sensor fault in ion chamber-5 and the process change that
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Fig. 3. Implementation of the proposed MSPCA-based method for FDI in AHWR.

commenced in Window-X.

12) Window-XII: This data window holds the frequency f2,

sensor fault and the process change that commenced in

Window-X.

13) Window-XIII: This data window holds the fault-induced

frequencies f1 and f2, sensor fault, and the process change

that commenced in Window-X.

Signals of all the 9 ion chambers are shown in Fig. 6, in

which the signals can be seen to have been contaminated by

the faults as per the nature of data windows described above.

A. Model development

The decomposition depth, J , to be used for wavelet decom-

position can be computed as explained in Sec.III-A from the

data of one of the ion chamber signals. Signal data of ion

chamber-1 available in window I is chosen for this purpose.

From the Fourier transform of this data shown in Fig. 7, it

is evident that the magnitude of the transform approaches

the noise floor level approximately after π/64 rad/sample.

Thus, the maximum scale for decomposition is selected such

that π/2J ≥π/64, i.e., J = 6. Accordingly, the wavelet

transformation matrix W for J = 6 is used in the analysis.

Significant scales can be found out by analysing the wavelet

coefficients. From Fig. 8 that shows the wavelet coefficients

of signals from ion chamber-1 in Window I, it can be clearly

observed that scales 1 and 2 do not carry much information as

compared to scales 3 to 6. A quantitative analysis examining

the energy of wavelet coefficients can give further information

about information present in different scales. The fraction of

energy of detail coefficients from all ion chambers at different

scales can be seen in Fig. 9. Both of these preliminary analyses

suggest that scales 3 to 6 contain most of the energy for all ion

chamber signals as compared to that of scales 1 and 2. Thus,

detail coefficients at scales 1 and 2 can be ignored during

reconstruction. Therefore, signal reconstruction is performed

by considering detail coefficients from scales 3 to 6 and

approximation at scale 6. The removal of inconsequential

detail coefficients is justified, as there is no meaningful loss

of useful information in the denoised signal.

Singular value decomposition is performed on different

data, such as approximations, details, and reconstructed data,

as a first step of PCA. The orders of the PCA models,

mj , j = 0, 1, ..., J + 1, where j = 0 represents the index of

the reconstructed data, while the rest have their usual meaning,

are to be chosen based on the CPV curves of their respective

data. The CPVs of approximations and reconstructed data are

greater than 95% with only one principal component (p = 1)

such that the order of the residual subspace m = 9 − p = 8.

However, for detail coefficients, substantial amount of CPVs

are obtained with p = 8, which make the model order

m = 9− p = 1. The matrices P j and Bj , j = 0, 1, ..., J + 1,

of all the data are formed based on these model orders. The

approximation and detail coefficients of ion chamber-5 for

J = 6 are shown in Fig. 10. Ion chamber-5 is chosen to

present some characteristics of MSPCA-based FDI as the sig-

nal corresponding to this sensor is additionally contaminated

by a sensor fault from instant 3000. Since the window I is

meant especially for model development, the analysis from the

window II onward is presented in the following subsections.

B. No fault signatures in the data

Approximation and detail coefficients for window II are

shown in Fig. 10. The approximation coefficients carry the

trend of the data while detail coefficients contain mainly the

contribution from noise. This behaviour of MSPCA-based FDI

is expected as the ion chamber data carries noisy steady state

measurement without any fault signatures or process change

in this window.

C. Faults with localized time-frequency contents

In the presence of time-frequency localized contents in the

data due to some process faults in the reactor, the scales

that are sensitive to these contents show variations in their

wavelet coefficients. This section demonstrates the outcomes

of MSPCA-based FDI in the presence of two frequency modes

in the ion chamber data with f1 = 5 Hz and f2 = 11 Hz

that correspond to fuel assembly vibrations (refer to Sec. IV)
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Fig. 4. Data windows for the simulation of different scenarios.
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Fig. 5. The growth of the sensor-fault magnitude (mA) in ion chamber-5.
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Fig. 6. Signals of all 9 ion chambers.

[23]. These frequency modes are added into the data as per

equations (20) and (21) and the data windows presented in

Fig. 4.

Fig. 10 shows the approximations and detail coefficients

of the data of 5th ion chamber for J = 6. From Fig.

10, it can be observed that under the steady-state condition

in window II, the approximation coefficients represent slow
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Fig. 7. Fourier transform of signal from first ion chamber.
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Fig. 8. Fuel assembly vibrations: wavelet coefficients of signal from ion
chamber-1 in window I (a) approximations at level-6, (b) details at level-6,
(c) details at level-5, (d) details at level-4, (e) details at level-3, (f) details at
level-2, and (g) details at level-1.

variation in the process and have non-zero mean whereas the

detail coefficients have zero-mean with no auto-correlation.

However, the approximations and the detail coefficients have

auto-correlated nature with non-zero values when there are

process faults accompanied with frequencies either f1, or f2,

or both (windows III to V). The presence of the frequencies

f1 = 5 and f2 = 11 can be easily identified respectively

in windows III and IV from the approximation and details

at level 4 to 6, while the overlapping of f1 on f2 can be

identified in window V. It can also be observed in Fig. 10

that not all the details coefficients show dynamic variations

representative of process faults. To be specific, the sensitivities
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Fig. 9. Fraction of energy of detail coefficients of all ion chamber signals in
window I at different scales.

of details at levels 1 and 2 are negligible to the faults with

f1 = 5 Hz and f2 = 11 Hz, and these details mainly represent

the white Gaussian random process. On the other hand, the

wavelet coefficients of other ion chambers may exhibit a

similar behaviour due to the fact that all ion chambers signals

are similarly affected during a process fault.

The ion chamber-5 undergoes a sensor fault from window

VI onwards and it can be clearly observed from Fig. 10 by

the sudden variation of approximation and details at level 4 to

6 at the onset of window VI. The details at level 1 to 3 can

be seen to be insensitive to the sensor fault and they continue

to represent the high-frequency components due to process

faults. The presence of frequencies in addition to sensor fault

in windows VI to VIII, can be detected from the approximation

and details coefficients. However, in window IX, no frequency

components can be observed from any of these coefficients.

At the commencement of window X, which carries the data

of the process change, the approximations drift as they capture

the trend of the data, while the details are insensitive to this

slowly varying phenomenon. The detection of frequencies in

the presence of sensor faults and process change, in windows

XI to XIII, can be seen from wavelet coefficients.

Fig. 11 shows the SPE statistics of the wavelet coefficients

of all the 9 ion chambers. From Fig. 11(a), it can be observed

that the SPE of approximation is insensitive to frequency

changes as it is close to zero for the data in windows III

to V. The SPEs of details at levels 3 to 6 are fairly above

the threshold exactly at the occurrence of frequency modes

representative of the faults giving a very good simultaneous

time and frequency localization. However, the SPEs obtained

for details at levels 1 and 2 do not carry much information. In

Fig. 11, the sensitivities of SPEs at levels 3 to 6 are attributed

to the changes in the covariance structures of details-data at

levels 3 to 6 shown in Fig. 10 from those obtained in the

model development. The violation of SPEs above the threshold

suggests that there exists a process fault. The detection rate,

which is the ratio of the number of fault detection instants

and the number of instants at which the fault really exists, is

computed at all levels of decomposition in each window for

establishing the efficacy of the FDI scheme. Table I gives the

detection rates from which the sensitivities of details at scales
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Fig. 10. Fuel assembly vibrations: wavelet coefficients of signal from 5th

ion chamber (a) approximations at level-6, (b) details at level-6, (c) details at
level-5, (d) details at level-4, (e) details at level-3, (f) details at level-2, and
(g) details at level-1.

3 to 6 in response to process faults can be observed.

D. Sensor fault

As discussed earlier, there is a sensor fault in the ion

chamber-5 from the inception of window VI leading to a

change in approximations and details from k = 3000. SPEs

of approximations and details also experience a change at

this instant at which the covariance structure of the data

is broken. However, SPEs of some finer level details are

ignorant of the breakage of covariance structure due to a

fault in ion chamber-5. SPEs of the original measurement data

before getting fed to the online MSPCA scheme (refer to Fig.

3), the reconstructed data obtained with the inverse wavelet

transformation and the level-6 approximations of all 9 ion

chambers are respectively shown in Fig. 12(a), 12(b), and Fig.

11(a) along with the thresholds for fault detection. It can be

seen from these characteristics that SPEs violate the threshold

after k = 3000 at which the sensor fault arises, such that the

10



TABLE I
DETECTION RATES FOR PROCESS FAULTS IN VARIOUS WINDOWS FOR FUEL ASSEMBLY VIBRATIONS.

Scale Index
Window No.

II III IV V VI VII VIII IX X XI XII XIII

Approximations at level-6 0 0 0 0 25.20 100 100 100 100 100 100 100

Details at level-6 10 81.40 67.80 89 85.40 66.80 82.40 28 7 82.80 67.20 82.60

Details at level-5 4.60 79.80 91.40 89.40 83.60 89.20 90.60 15.40 7.60 78 90 91.20

Details at level-4 2.20 5.80 14.60 15.40 4.40 7.80 17.40 11.20 1.20 5.80 12.20 17.80

Details at level-3 1.20 4.80 5 9.20 3 5.40 9.60 5.80 1 3.20 5.60 9.20

Details at level-2 1 1.20 1 0.40 1.40 1.20 1 1.20 0.80 1 1.20 1

Details at level-1 1.80 0.40 0.80 0.80 0.60 0.40 0.80 0.60 1 1.40 1 1.20
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Fig. 11. Fuel assembly vibrations: SPE of (a) approximation coefficients
at level-6, (b) detail coefficients at level-6, (c) detail coefficients at level-5,
(d) detail coefficients at level-4, (e) detail coefficients at level-3, (f) detail
coefficients at level-2, and (g) detail coefficients at level-1. (The horizontal
red line represents the threshold for the SPE.)

fault identification (finding of faulty ion chamber) procedure

using GLRT is automatically triggered.

Constraint model (A) determines the relationship among

ion chamber signals and play a crucial role in GLRT. They

are obtained through the application of PCA on the above-

mentioned three variants with an objective of building fault

signature vectors. Recall from Section V-A that the CPV

calculation led to a model order m = 8 for these low frequency
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Fig. 12. Sensor Fault Detection: SPEs from (a) the original measurement
data, (b) the reconstructed measurement data.

data. Models corresponding to original, reconstructed, and

level-6 approximations data are respectively given by AO,

AR and AA in Appendix-B. It is worth noting that the

relationships among ion chamber signals explained by these

models obtained from one operating condition of the reactor

hold good for other operating conditions including transients

also when a successful spatial control scheme is employed [3].

In the simulations, the maximum possible number of simul-

taneous sensor-faults g is chosen as 1, not only to simplify the

demonstration but also due to the fact that more than one ion

chamber being simultaneously faulty is unlikely in practice.

The fault signature vectors are obtained from the columns of

the models (refer to Appendix-B) such that all single-sensor-

fault scenarios are exhaustively considered as per (10).

GLRT outcomes, namely faulty-sensor index and corre-

sponding fault magnitude (mA), obtained for original, recon-

structed, and approximations data are shown respectively in

Fig. 13, 14, and 15. On comparing these GLRT outcomes

with the corresponding SPEs shown in Fig. 12 and 11(a),

it can be observed that there is a set of GLRT outcomes

for every SPE violating the threshold. It can be seen that

the GLRT analysis based on reconstructed data is better than

that based on original data. However, the GLRT applied

on approximations data is more prompt in the detection of

sensor-faults and more accurate in finding the faulty ion

chamber and estimating the corresponding fault magnitude

as compared to other two variants. It can also be observed

that the fault magnitudes estimated with the GLRT applied on

reconstructed data (Fig. 14(b)) and on approximations (Fig.
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Fig. 13. Sensor-FDI with original measurement data: (a) Faulty sensor index,
(b) Estimate of the fault magnitude.
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Fig. 14. Sensor-FDI with reconstructed measurement data: (a) Faulty sensor
index, (b) Estimate of the fault magnitude.

15(b)) are very much in line with the actual value of fault

added in the ion chamber-5 signal. The effectiveness of the

FDI with GLRT is expressed in Table II in terms of the indices

ODR, OP, and MSE as discussed in Section II-C. It can be

seen from Table II that ODR, OP, and MSE obtained from

reconstructed data and approximations are better than those

obtained with the original data. In particular, the performance

based on approximations is very far superior to the other two

approaches. From these observations, it can be concluded that

the proposed formulation using GLRT is an improved and

superior version than the other alternatives. It can also be seen

that the proposed scheme yielded consistent results for sensor-

FDI even during process faults and during a process change.

Summarizing the results obtained in the different simula-

tions, it is possible to state that the MSPCA-based FDI has

the ability to handle process faults along with the sensor-FDI

and can serve as an important tool for predictive maintenance

of reactor internals.
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Fig. 15. Sensor-FDI with 6-level approximations data: (a) Faulty sensor index,
(b) Estimate of the fault magnitude.

VI. CONCLUSION

A multi-scale principal component analysis approach for

online fault detection and identification in the Advanced Heavy

Water Reactor using ex-core ion chambers has been presented.

The technique combines proficiency of wavelets in multi-scale

data representation and time-frequency localization with fault

detection capability of Principal Component Analysis making

it well suitable for time-frequency localized faults. Specifi-

cally, parsimonious PCA models are developed on significant

scales. The squared prediction error statistics are computed

at significant scales to detect time-frequency localized events

representative of vibration of reactor internals or process faults.

Along with the process faults, generalized likelihood ratio

test is also applied on original, reconstructed, and approxi-

mations with the help of a suitable mathematical formulation

to identify the faulty sensor, if any, and the corresponding

fault magnitude. Different scenarios have been considered to

include various challenges for fault detection and isolation

in the reactor operation. Simulation results establish that the

proposed scheme is very effective in detecting process faults

and sensor faults during both the transient-state as well as the

steady-state operation. The results also suggest that it can be a

very good tool for predictive maintenance of reactor internals

against vibration-induced accidents.

APPENDIX A

PROOF TO LEMMA III.1

The uni-variate time-series data ȳ ∈ R
2J×1 in (17) can be

expressed as

ȳ = x̄+ ε̄+ b̄, (A.1)

where x̄, ε̄, and b̄ respectively are the true values of the vari-

able being measured, measurement errors and the magnitude

of sensor-fault, if any, in the window of 2J samples.

From (17) and (18), we have the wavelet approximation co-

efficients yJ+1 as the linear combination of 2J measurements

with the elements in H̃J . Letting ȳJ+1 be the ordered set of

approximation coefficients of all n variables, the covariance
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TABLE II
ODR (%), OP (%) AND MSE FOR SENSOR FAULTS IN VARIOUS WINDOWS WITH DIFFERENT DATA VARIANTS

Data type Index
Window No.

II III IV V VI VII VIII IX X XI XII XIII

Original data

ODR 0 0 0 0 0 0 0.60 5.20 24.80 57.80 86.00 95.80

OP 0 0 0 0 0 0 0.60 5.20 24.60 57.80 86 95.80

MSE - - - - - - 0.85 0.52 0.41 0.31 0.26 0.2879

Reconstructed data

ODR 0 0 0 0 0 3.20 45 85.60 99.80 100 100 100

OP 0 0 0 0 0 3.20 44.80 85.60 99.80 100 100 100

MSE - - - - - 0.15 0.18 0.16 0.16 0.17 0.15 0.15

Approximations data

ODR 0 0 0 0 25.20 100 100 100 100 100 100 100

OP 0 0 0 0 25.20 100 100 100 100 100 100 100

MSE - - - - 0.02 0.04 0.04 0.04 0.04 0.03 0.03 0.02

matrix of measurement error in ȳJ+1 can be related to that in

ȳ, i.e., Σε as

Σε,J+1 = H̃J ēē
T H̃

T

JΣε, (A.2)

where ē ∈ R
2J×1 is a column vector with all elements equal

to 1. The covariance matrix of constraint residuals obtained

from ȳJ+1 is [24]

Σr,J+1 = AAΣ
T
ε,J+1A

T
A, (A.3)

where AA is the PCA-based constraint model obtained from

approximation coefficients.

For a hypothesized sensor fault corresponding to ith variable,

the expected value of constraint residuals based on approxi-

mation coefficients is

E[r] = E[AAȳJ+1]

= AAEiH̃
T

J b̄, (A.4)

where Ei ∈ R
n×2J is a matrix whose ith row has its all

elements equal to 1. Hence, from (A.4), the fault signature

matrix in various hypothesized-number of sensor faults up to

g is [24]

F i =























AAEi1H̃
T

J , i1 = 1, ..., n;

AA(Ei1H̃
T

J ,Ei2H̃
T

J ), ∀i1, i2 = 1, ..., n, i1 6= i2; ...;

AA(Ei1H̃
T

J ,Ei2H̃
T

J , ...,EigH̃
T

J ),

∀i1, i2, ..., ig = 1, ..., n, i1 6= i2 6= ... 6= ig.

The formulation of GLRT subsequent to this will be on

similar lines as that explained in Sec. II-C.

REFERENCES

[1] H. M. Hashemian, “On-line monitoring applications in nuclear power
plants,” Prog. Nucl. Energy, vol. 53, no. 2, pp. 167 – 181, 2011.

[2] I. T. Jolliffe, Principal Component Analysis, ser. Springer Series in
Statistics. Springer, 2002.

[3] V. S. Yellapu, A. P. Tiwari, and S. B. Degweker, “Application of
data reconciliation and fault detection and isolation of ion chambers
in Advanced Heavy Water Reactor,” Ann. Nucl. Energy, vol. 85, pp.
1210–1225, 2015.

[4] P. Bernard, J. Cloue, C. Messainguiral, R. Baeyens, P. Mathot, J. Satinet,
and C. Puyal, “PWR core monitoring by incore noise analysis,” Prog.

Nucl. Energy, vol. 9, pp. 541 – 556, 1982, reacto Noise - Smorn III.

[5] Y. Fujita and H. Ozaki, “Neutron noise monitoring of reactor core
internal vibrations at PWRs in japan,” Prog. Nucl. Energy, vol. 9, pp.
423 – 436, 1982, reacto Noise - Smorn III.

[6] O. Glokler, “Reactor noise measurements in the safety and regulating
systems of CANDU stations,” Prog. Nucl. Energy, vol. 43, no. 1, pp.
75 – 82, 2003.

[7] J. Park, J. H. Lee, T.-R. Kim, J.-B. Park, S. K. Lee, and I.-S. Koo,
“Identification of reactor internals’ vibration modes of a korean standard
PWR using structural modeling and neutron noise analysis,” Prog. Nucl.

Energy, vol. 43, no. 1, pp. 177 – 186, 2003.

[8] M. Viebach, N. Bernt, C. Lange, D. Hennig, and A. Hurtado, “On the
influence of dynamical fuel assembly deflections on the neutron noise
level,” Prog. Nucl. Energy, vol. 104, pp. 32 – 46, 2018.

[9] M. Mori, M. Kaino, S. Kanemoto, M. Enomoto, S. Ebata, and
S. Tsunoyama, “Development of advanced core noise monitoring system
for BWRs,” Prog. Nucl. Energy, vol. 43, no. 1, pp. 43 – 49, 2003.

[10] A. Kolbasseff and R. Sunder, “Lessons learned with vibration monitoring
systems in German nuclear power plants,” Prog. Nucl. Energy, vol. 43,
no. 1, pp. 159 – 165, 2003.

[11] J. Ma and J. Jiang, “Applications of fault detection and diagnosis
methods in nuclear power plants: A review,” Prog. Nucl. Energy, vol. 53,
no. 3, pp. 255 – 266, 2011.

[12] B. R. Upadhyaya and M. Skorska, “Fault analysis of in-core detectors
in a PWR using time-series models,” in The 22nd IEEE Conference on

Decision and Control, 1983, vol. 22, Dec 1983, pp. 758–763.

[13] B. Lu and B. R. Upadhyaya, “Monitoring and fault diagnosis of the
steam generator system of a nuclear power plant using data-driven
modeling and residual space analysis,” Ann. Nucl. Energy, vol. 32, pp.
897–912, 2005.

[14] V. Vajpayee, S. Mukhopadhyay, and A. P. Tiwari, “Multiscale subspace
identification of nuclear reactor using wavelet basis function,” Ann. Nucl.

Energy, vol. 111, pp. 280 – 292, 2018.

[15] C. Shiguo, Z. Ruanyu, W. Peng, and L. Taihua, “Enhance accuracy in
pole identification of system by wavelet transform de-noising,” IEEE

Trans. Nucl. Sci., vol. 51, no. 1, pp. 250–255, Feb 2004.

[16] G. Y. Park, J. Park, and P. Y. Seong, “Application of wavelets noise-
reduction technique to water-level controller,” Nuclear Technology, vol.
145, pp. 177–188, 2004.

[17] B. R. Upadhyaya, C. Mehta, and D. Bayram, “Integration of time series
modeling and wavelet transform for monitoring nuclear plant sensors,”
IEEE Trans. Nucl. Sci., vol. 61, no. 5, pp. 2628–2635, Oct 2014.

[18] E. Nasimi and H. A. Gabbar, “Signal de-noising methods for fault
diagnosis and troubleshooting at CANDUr stations,” Nucl. Eng. Des.,
vol. 280, pp. 481–492, 2014.

[19] B. R. Bakshi, “Multiscale PCA with application to multivariate statistical
process monitoring,” AIChE J., vol. 44, no. 7, pp. 1596–1610, 1998.

[20] M. Misra, H. Yue, S. Qin, and C. Ling, “Multivariate process moni-
toring and fault diagnosis by multi-scale pca,” Computers & Chemical

Engineering, vol. 26, no. 9, pp. 1281 – 1293, 2002.

[21] S. Yoon and J. F. MacGregor, “Principal-component analysis of multi-
scale data for process monitoring and fault diagnosis,” AIChE Journal,
vol. 50, no. 11, pp. 2891–2903, 2004.

[22] R. K. Sinha and A. Kakodkar, “Design and development of the AHWR
- the indian thorium fuelled innovative nuclear reactor,” Nucl. Eng. and

Design, vol. 236, no. 7-8, pp. 683–700, 2006.

[23] “BARC Highlights- AHWR Technology and Engineering.” [Online].
Available: https://www.uxc.com/smr/uxc Library.aspx

[24] S. Narasimhan and C. Jordache, Data Reconciliation & Gross Error

Detection: An Intelligent Use of Process Data. Gulf Publishing,
Houston, 2000.

[25] C. Botre, M. Mansouri, M. N. Karim, H. Nounou, and M. Nounou,
“Multiscale PLS-based GLRT for fault detection of chemical processes,”
Journal of Loss Prevention in the Process Industries, vol. 46, pp. 143 –
153, 2017.

[26] M. Z. Sheriff, M. Mansouri, M. N. Karim, H. Nounou, and M. Nounou,
“Fault detection using multiscale PCA-based moving window GLRT,”
Journal of Process Control, vol. 54, pp. 47 – 64, 2017.

13



APPENDIX B

PCA MODELS

AO , A =
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0.6289 −0.3173 0.1748 0.1691 −0.0443 0.1892 −0.4263 −0.4658 0.0906

−0.0955 0.3225 0.3969 −0.2138 −0.5417 0.2386 0.3550 −0.4552 −0.0072
0.4833 −0.1702 −0.2480 −0.5211 −0.3729 0.1704 0.1540 0.4589 0.0462
0.0917 0.0610 −0.3871 0.7144 −0.5153 0.0028 0.1423 0.0796 −0.1887























. (B.1)

AR , A =























0.1296 −0.1095 −0.2674 −0.1158 0.4785 −0.3407 0.4935 −0.4959 0.2274
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. (B.2)

AA , A =























0.0124 0.0352 0.0288 0.5114 −0.4703 0.5806 −0.3359 −0.1711 −0.1896
0.1932 0.1603 −0.6354 0.0368 0.3242 0.1254 −0.2679 −0.3794 0.4419
0.0356 −0.5018 0.3309 0.1437 0.2973 0.0900 0.2809 −0.6642 −0.0133

−0.0908 0.6990 0.2722 −0.4058 −0.1004 0.1041 0.0923 −0.4750 −0.0965
0.7569 −0.0361 −0.2869 −0.1413 −0.2184 0.0100 0.3503 −0.0461 −0.3884

−0.2844 −0.0956 −0.2359 −0.3094 0.4113 0.6164 0.1059 0.1930 −0.4012
0.1470 −0.3318 0.1697 −0.5461 −0.3464 0.3663 −0.0660 0.0811 0.5256

−0.4079 0.0304 −0.3659 0.1648 −0.3563 0.0550 0.6918 −0.0558 0.2449























. (B.3)

[27] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness
via wavelet shrinkage,” J. American Statis. Assoc., vol. 90, no. 432, pp.
1200–1224, Dec 1995.

[28] S. G. Mallat, A wavelet tour of signal processing: the sparse way, 3rd ed.
Academic Press, 2009.

[29] R. A. Razak, M. Bhushan, M. N. Belur, A. P. Tiwari, M. G. Kelkar,
and M. Pramanik, “Data reconciliation and gross error analysis of
self powered neutron detectors: comparison of PCA and IPCA based
models,” Int. J. Adv. Eng. Sci. Appl. Math., vol. 4, pp. 91–115, 2012.

[30] M. S. Reis, “A multiscale empirical modeling framework for system
identification,” Journal of Process Control, vol. 19, no. 9, pp. 1546–
1557, 2009.

[31] V. S. Yellapu, A. P. Tiwari, S. R. Shimjith, M. Naskar, and S. B.
Degweker, “Space-time kinetics modeling for the determination of
neutron detector signals in Advanced Heavy Water Reactor,” in 2013

IEEE International Conference on Control Applications (CCA), Aug
2013, pp. 1224–1229.

[32] V. S. Yellapu, A. K. Mishra, A. P. Tiwari, and S. B. Degweker,
“Online fault detection and diagnosis of in-core neutron detectors using
generalized likelihood ratio method,” IEEE Trans. Nucl. Sci., vol. 62,
no. 6, pp. 3311–3323, 2015.

14


