
49

Online Fault Diagnosis for Single-Phase PWM 
Rectifier Using Data-Driven Method

Kun ZHANG, Bin GOU, and Xiaoyun FENG

Abstract—In power electronic traction transformer, the fail-
ure of the single-phase PWM rectifier will lead to performance 
degradation of the system. Thus, a feasible data-driven method 
is proposed to realize online fault diagnosis of single-phase PWM 
rectifier in this paper. The principle of the data-driven method is 
to construct a signal predictor based on historic database utilizing 
the nonlinear autoregressive exogenous (NARX) model with a 
randomized learning algorithm named extreme learning machine 
(ELM). Besides, the ensemble method is employed to improve the 
prediction accuracy and robustness against load fluctuation. In 
online diagnosis, the predictor and sensor operate simultaneously 
and their residual is generated. Afterward, the fault detection is 
conducted by comparing the residual with fault threshold and the 
fault classification is completed based on system fault symptoms 
and fault residuals analysis. Several hardware-in-loop tests are 
implemented to verify the applicability of the proposed diagnosis 
method. Test results show that this data-driven method is effec-
tive to perform the online fault diagnosis with fast fault detection 
speed and high classification accuracy, and robust against load 
fluctuation.  

Index Terms—Ensemble learning, extreme learning machine 
(ELM), nonlinear autoregressive exogenous (NARX), online fault 
diagnosis, single-phase PWM rectifier.

I. IntroductIon

AS the high-speed traction system is developing towards 
the targets of high efficiency, energy-saving and light 

weight, power electronic traction transformer (PETT) is con-
sidered as a superior choice compared to traditional power 
frequency transformer [1]. However, due to the complex cas-
cade structure and the fragility of the large number of power 
components and sensors, the internal part and subunit of PETT 
are prone to come across malfunction [2]. As shown in Fig. 1, 
as the basic unit of the input stage of PETT, single-phase PWM 
rectifier plays a vital role in the operation of PETT. The failure 
of single-phase PWM rectifier, including sensor faults and 
IGBT open-circuit faults, may result in a severe deterioration 
or even shutdown of the whole system. Therefore, it is urgently 
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essential to investigate in fault online diagnosis for the sin-
gle-phase PWM rectifier.

Generally, fault diagnosis methods can be categorized into 
the classes of model-based, signal-based, and knowledge-
based methods [3]. For model-based methods, the main idea 
is to build an analytical model describing the relationship 
among system variables and indicating the system status, 
based on which the system signals can be estimated, and then 
fault diagnosis schemes are developed and implemented. 
The existing fault diagnosis methods for single-phase PWM 
rectifier are mostly model-based methods [4]-[7]. [4] proposes 
a fast model-based method for open-switch fault diagnosis of 
the single-phase PWM rectifier, based on the mixed logical 
dynamic (MLD) model and residual generation. Also based 
on MLD model, [5] utilizes the change rate of current residual 
for different IGBT faults to realize the fault detection of single-
phase cascaded PWM rectifier. [6] proposes a method to de-
termine an unknown input observer with minimum sensitivity 
to disturbance and maximum to the faults when achieving 
the fault detection for single-phase PWM rectifier. These 
model-based methods have salient advantage in diagnosis 
speed but suffer from parameter uncertainties and difficulty 
of complex system modeling. On the other hand, signal-based 
methods do not need the mathematical system model but the 
signal symptoms and features extracted by signal processing 
techniques [8]-[10]. The fault diagnosis is then executed by 
checking the signal patterns and features. This method has high 
diagnostic accuracy but requires large computational quantities 
or even additional hardware and performs poorly in the case of 
loads fluctuating.
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Fig. 1.  Structure of PETT.
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The knowledge-based method is also known as the data-
driven method because what it needs is not a priori system 
model or signal symptom, but a historic database, which is 
more available in complicated industrial processes. In data-
driven methods, the principle is to apply intelligent algorithms to 
extract the underlying knowledge (i.e. the mapping relationship 
among system variables) from a historic database, enabling the 
data-driven approach to solve problems with unknown system 
structure and parameters or complicated models [11]-[14]. 

In many research and cases, the diagnostic problems are 
mostly formulated as pattern recognition problems and data-
driven method is considered as a classification tool [3], which 
suffers from a large computational burden, unbalanced fault 
dataset, and unfavorable diagnosis speed, making related on-
line applications more difficult to realize. To overcome such 
challenges and realize the online fault diagnosis with fast 
diagnostic speed, a data-driven signal predictor is designed in 
this paper, the principle of which is derived from the model-
based method. But unlike the model-based approach, the data-
driven predictor is constructed based on historic database rather 
than the system mathematical model.

First, to establish the mapping relationship among system 
variables including grid voltage and current, DC-link voltage 
and switch command signals, a random learning algorithm 
named ELM is selected, which has fast convergence speed, 
favorable generalization ability, and computationally efficient 
mechanism [15]. Besides, a useful data structure based on 
nonlinear autoregressive exogenous (NARX) is utilized to 
improve the signal prediction performance [16]. Additionally, 
the ensemble learning method is employed to fortify the 
robustness against loads fluctuating. As for diagnosis decision-
making, a hybrid classifier based on the fault residual symptoms 
combined with the fault performance of system variables is 
designed. The data-driven predictor and the physical sensor 
work simultaneously and their outputs are compared in real-
time, generating the current residual, based on which the fault 
detection is conducted online. Furthermore, the specific type of 
fault is identified based on the fault system symptoms and fault 
residual analysis.

The rest of this paper is organized as follows: Section II 
briefly describes the system of single-phase PWM rectifier. 
Section III introduces the general framework of the proposed 
method. Section IV gives the fault analysis of the rectifier and 
shows the fault diagnosis decision-making mechanism. Section 
V presents the experimental results and analysis, and finally, a 
general conclusion of this paper is given in Section VI.

II. SySteM deScrIPtIon 
A typical single-phase PWM rectifier is shown as Fig. 2, 

where uN and iN are the grid voltage and current, LN and RN are 
the grid leakage inductance and resistance, Ls and Cs are the 
series resonant circuit inductance and capacitance, Cd is the dc-
link capacitance. RL is the load resistance. ud and iL refer to dc-
link voltage and current. 

For data-driven methods, the feature vector and target vector 
are significant for the methodology performance. To choose 

suitable feature and target vectors of the data-driven predictor 
and establish their mapping relationship, the dependence of 
system variables of single-phase PWM rectifier should be 
confirmed. According to the research of [17], the mathematical 
state-space model of single-phase PWM rectifier can be 
constructed as:

  
N

N

N N
N N

N
a b d         (1)

where Sa and Sb are the switch gate signal function of two 
bridges, as shown in the following:

  
the upper switch conducts

the lower switch conducts              (2)

According to the mathematical model, the system variable 
grid-side current iN is related to grid-side voltage uN, dc-link 
voltage ud, and switch command signals s1-s4. Therefore, iN is 
selected as the target vector. uN, ud, and s1-s4 are chosen as the 
feature vectors. The principle of the data-driven method is to 
learn from the historic database of the rectifier and build the 
nonlinear mapping relationship between the feature vectors 
and target vector using an intelligent algorithm. After that, a 
predictor is built to emulate the value of grid-side current iN 
utilizing the real-time sampling signals.

III. ProPoSed Methodology

A. General Framework

The general framework of the proposed data-driven dia-
gnosis method can be briefly illustrated as Fig. 3, the whole 
process is divided into offline stage and online stage. At the 
offline training stage, the sample data of the rectifier working 
on healthy state, including grid-side voltage uN, dc-link voltage 
ud, switch command signals s1-s4 and grid-side current iN, are 
collected to build a historic database for training. Then the 
historic time-series data is constructed as NARX structure and 
ensemble ELM algorithms are applied to learn the mapping 
relationship f between the feature vectors and the desired 
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Fig. 2.  Topology of single-phase PWM rectifier.
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target. After the offline learning, the predictive model, which 
can be regarded as a digital emulator indicating the healthy 
operational mode of the rectifier, is built for the online process. 
At the online stage, the real-time sampled data of the rectifier 
reshaped as NARX structure are delivered to the current 
predictor. The predictor and the physical grid-side current 
sensor are operating simultaneously and generating the residual 
in real-time. Once the residual value overtakes the threshold, 
the fault detection flag will have a change and thus the fault is 
detected. Furthermore, based on the fault current residual and 
various performance of the rectifier when different faults occur, 
the specific type of the fault can be recognized in detail by the 
hybrid classifier and a fault classification flag will be output.

B. Current Prediction Based on NARX Structure

NARX is a resultful structure for modeling the nonlinear 
dynamic system and dealing with time-series data, which can 
realize an effective prediction by its autoregressive topology, as 
shown in Fig. 4. NARX can be mathematically formulated as: 

  
T (t + 1) = f [T (t),...,T (t － dT), u (t),..., u (t － du)] (3)

where T, u are the target and feature vectors, dT, du refer to 
a time-delayed step. Generally, the nonlinear mapping f is 
established by the intelligent algorithm.

Based on the NARX model merged with the rectifier mathe-
matical expression, the predictive function for iN can be formed 
as: 

  
iN = f (iNH , uN , ud , s)                          (4)

where iNH is the past grid-side current value, s is the switch 
command signal vector. By integrating the function (4) with 
(3), the predictor structure can be represented as follows:

(          )

(5)

Based on this NARX model, the predicted value of grid-side 
current is calculated iteratively every sampling interval and the 
prediction is processed accurately and effectively.

In [18], it has been demonstrated that the NARX model 
has not only a powerful computing capacity as good as a fully 
connected RNN but also a better performance in terms of 
learning capability and convergence speed, which is desirable 
in online applications. 

C. Extreme Learning Machine

According to (3) and (5), to realize the signal prediction 
based on the NARX model, it is essential to select a suitable 
learning algorithm to extract the mapping relationship between 
the inputs and the output. Here ELM learning algorithm 
gets the nod for its unique merits of fast learning speed and 
favorable generalization capacity. Proposed in [15] by Huang, 
ELM is an advanced algorithm for dealing with the single 
hidden layer feedforward neural network. Different from 
conventional algorithms, the input weights and bias of the 
network in ELM are randomly produced, with the output 
weights calculated by Moore-Penrose pseudoinverse. 

A typical structure of the ELM network is constructed as 
Fig. 5. For a dataset comprising N' instances (xi, yi), where 
xi∈Rn and yi∈Rm, the mapping relationship between the input 
layer x and the output layer y of the ELM network can be 
mathematically formulated as:

  
 

       
(6)
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Fig. 4.  NARX structure.
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where ωj is the input layer weight vector connected to jth node 
of the hidden layer, h is the activation function, βj is the hidden 
layer weight connected to the output layer, bj and N refer to the 
bias vector and the number of hidden nodes. And (6) can be 
simplified as:

                                          (7)

where H refers to the output matrix of the hidden layer, which 
converts the input space of J-dimension to N-dimension output 
space. In the learning process of the algorithm, the input weight 
ω and bias b are generated stochastically, while β is calculated 
by Moore-Penrose inverse shown as follows:

  
                                       (8)

  
                                (9)

D. Ensemble ELM

As a randomized learning algorithm, ELM enjoys the adv-
antages of fast learning speed and favorable generalization 
capacity but suffers from undesirable robustness against 
disturbance, which means that although ELM is suitable 
for online fault diagnosis in single-phase PWM rectifier, 
it performs badly once the load of the rectifier fluctuates 
suddenly. To address this problem, an effective approach 
named ensemble learning is adopted, the critical idea of which 
is to generate a group of individual learners as an ensemble and 
deliver the output with a combination strategy.

Firstly ELM is selected as the base learning algorithm, and a 
set of individual learners are produced based on ELM, denoted 
as{hE1, hE2, ..., hEp}, p is the number of learners. Then the 
training dataset, which is comprised of time-series data D{(x1, 
y1), (x2, y2), ..., (xt, yt), ...}, is imported to every single ELM. 
Afterward, the outputs of every single ELM are combined 
by a combination strategy and thus final output is generated. 
Generally, averaging is employed as the combination strategy 
in the regression task. Moreover, due to the individual learners 
are all based on the same learning algorithm ELM, simple 
averaging is adopted, which can be formulated as follows: 

  
 mean E                   

(10)

where  mean E
—  is the final output of the ensemble learner. To 

summarize, the ensemble rule can be formed as follows: 
ELM Ensemble Rule 

Input : Individual Learners, hE;  
Training Dataset, = ( ) ;  
Number of Learners, N; 

Process
1: For i = 1, 2, ... , p

x, yD

2: Ti = hEi[D (xt , yt )]
3: End For

: 

Output : T (t) = mean (∑p
i = 1 hEi)

It is worth mentioning that this ensemble rule is conducted at 
every iteration step of the prediction process, as shown in Fig. 

3. Integrating (3) and (10), the NARX structure with ensemble 
learning can be formulated as follows:

   mean E

(11)

The integrating of individual learners can bring great benefits 
in two aspects [19]. From the perspective of statistics, since 
the hypothesis space of learning tasks is generally large, there 
may be multiple hypotheses that achieve the same performance 
on the training set, which may cause the case that the single 
learner with poor generalization capacity is put to use. But by 
virtue of the ensemble approach, this risk can be decreased. 
From another point of the presentation, the true hypothesis 
of some learning tasks may stay beyond the hypothesis space 
considered by the adopted learning algorithm. However, the 
hypothesis space can be broadened by integrating numerous 
learners, and a better approximation can be achieved in this 
way. Benefiting from such advantages, the ensemble learner 
has better performance and superior generalization capacity 
than the single learner, and the robustness of the proposed 
predictor can be improved. 

Iv. fault analySIS and decISIon-MakIng MechanISM

For single-phase PWM rectifier, the switch IGBTs are 
easily to come to open-circuit fault because of high power 
stresses, aging, and unpredicted operational condition. Besides, 
the sensors installed to accomplish the closed-loop control 
strategy are also prone to malfunction due to device aging and 
surrounding interference. Therefore, regarding to IGBT open-
circuit fault and sensor fault, the fault analysis is given and 
the decision-making mechanism of fault diagnosis is designed 
based on a hybrid classifier in this section.

A. IGBT Open-Circuit Fault Analysis

The direction of current flowing into the rectifier is defined 
as the reference direction. When the open-circuit fault occurs in 
switch T1, the positive current keeps unchanged as there exists 
another available path with freewheeling diode D1, as shown 
in Fig. 6(a), where the yellow arrow is the current that keeps 
unchanged and the red arrow is the current that will change. 
But the negative current flowing through T1 originally has to 
change its path to the bottom part of bridge A by D2, which 
will lead to the reduction of both the negative part of iN and the 
amplitude of ud. And the extent of the reduction is related to the 
load RL. The topologies of other switch faults are shown in Fig. 
6(b), (c), and (d) and the fault analysis is the same again.

As the system performance of T4 open-circuit fault is the 
same as T1, they are identified as one type of IGBT open-circuit 
fault. Similarly, the open-circuit fault of T2 and T3 are treated as 
another type.

B. Sensor Fault Analysis

Based on the characteristics and the performance of various 
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faults, sensor faults are generally categorized into four types: 
gain fault, drift fault, stuck fault, and noise fault, which can be 
formulated as follows:

 
F

F

                    (12)

 F

F                   (13)

 
F

F

                    (14)

 F

F                  (15)

where i(t) is the real output of the sensor, d(t) is the desired 
output in normal operation, K1, K2 and A are constant values. 
n(t) is a time sequence of Gaussian white noise. tF refers to the 
time when the fault occurs. According to the above-mentioned 
analysis, the faults of single-phase PWM rectifier can be 
classified into six types, as shown in Table I.

C. Fault Diagnosis Decision-Making Mechanism 

To satisfy the requirements of both diagnosis time and 
diagnosis accuracy, a two-stage decision-making mechanism 
including fault detection and fault classification is designed for 
fault diagnosis.

For the fault detection step, the principle derived from 

model-based methods is to calculate the residual between 
predicted signal and real-time sampled sensor signal and 
compare it with the fault threshold, which takes a very short 
time. At the online stage, the data-driven predictor and sensor 
are working simultaneously, and the current residual can be 
calculated as:

  
 

N
N N

N                                 (16)

where iN refers to the real sample value of the grid-side current 
sensor. Then the fault detection rule can be defined as follows:

   

N

fault occurs

no fault
N

                      (17)

where σ is the fault detection threshold. After that, the fault 
diagnosis will process to the fault classification stage. 

The occurrence of different types of faults will cause a 
different impact on rectifier system signals, which means that 
the system fault symptom is corresponding to the type of fault. 
In our previous work [2], the fault classification is completed 
by the logical judgment module integrating the fault symptom 
of system signals based on IF-THEN rules developed from 
prior knowledge. One example of the logical judgment rule is:

Antecedent: N >  AND the grid-side current increases 
AND the dc-link voltage decreases.

Consequent: Then the fault is sensor gain fault.
Moreover, aiming at all six types of faults of the rectifier, 

a fault classification rule table is constructed based on related 
fault knowledge basement, as presented in Table II.

Although the classifier constructed based on the fault symp-
tom of the system signal can fulfill the fault classification with 
high accuracy [2], there still exists the risk of misdiagnosis 
if the load of the rectifier has a fluctuation. To alleviate such 
misdiagnosis risk, the fault residual is taken into consideration. 
As shown in Fig. 7, the current residual between predictor 
signal and sensor signal has diverse changes when the different 
fault occurs. According to the waveform characteristic and 
distribution of these fault residuals, several descriptive statistics 
including variance, integral, kurtosis, and skewness are 
adopted to the analysis of fault residuals, as shown in Fig. 8. It 
is worth mentioning that kurtosis is a measure of steepness of 
the probability distribution of a real-valued random variable and 
skewness is a measure of asymmetry. Based on the diversity 

Fig. 6.  Topologies of IGBT switch open-circuit fault in single-phase PWM 
rectifier. (a) T1 fails, (b) T4 fails, (c) T2 fails, (D) T3 fails.
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and feature of different fault residuals in these descriptive 
statistics, the fault classifier can be built as Fig. 9, where v = 1, 
s = 1, i+ = 100, i- = -100, k = 3. 

Eventually, the fault classification is completed by the hybrid 
classifier combining system fault symptom and fault residual 
analysis. When a fault is detected, the classifier based on 

system fault symptom and the classifier based on fault residual 
analysis work simultaneously and the fault label is output only 
if their classification results are consistent. In this way, the 
misdiagnosis risk of the load fluctuating case can be reduced 
and the fault classification accuracy and effectiveness can be 
guaranteed. 

v. exPerIMental valIdatIon

A. Offline Modeling and Training

From the perspective of error-ambiguity decomposition [20], 
the higher the accuracy and diversity of the individual learners, 
the better the ensemble, which can be formulated as follows: 

  
                                  (18)

where E is the ensemble generalization error.   and   refer to 
the weighted mean of the generalization error and ambiguity of 
individual learners, which can be formed as follows: 

  
 
E E Aω

i = 1 i = 1
i i Aωi i

p p

;
               

(19)

where p is the number of individual learners, and ωi is the 
weight. As the ambiguity of individual learners, Ai represents 
the diversity of individual learners in samples.

Therefore, the performance of the ensemble learner can 
be optimized by increasing the accuracy and diversity of in-
dividual learners. On the one hand, the accuracy is guaranteed 
by applying ELM as the base learning algorithm. On the 
other hand, to increase the diversity of individual learners, 
the common idea is to introduce randomness in the learning 
process by perturbing data samples, input attributes, and 
algorithm parameters.

As a result, the data sample disturbance and algorithm 
parameters disturbance are adopted to increase the diversity of 
the ensemble ELMs learner, as shown in Fig. 10. On the offline 
stage, considering the case of load fluctuating, the dataset is 

(1 6) (1 6)

Fig. 8.  The variance, integral, kurtosis, and skewness of fault residuals. Fault 
type: 1, sensor gain fault; 2, sensor drift fault; 3, sensor stuck fault; 4, sensor 
noise fault; 5, T1/T4 open-circuit fault; 6, T2/T3 open-circuit fault.

Fig. 9.  Fault classifier based on fault residual.
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derived from the rectifier working at rated load RL changing 
to different load, varying from 60% RL to 150% RL, as shown 
in Fig. 10(a). Then the training dataset of every single ELM is 
randomly selected in the database. Besides, the randomness is 
also introduced into the algorithm parameters in the modeling 
process by setting different hidden neuron nodes number. 
According to the survey in [21], the range of hidden node 
number is set as [150, 200], as shown in Fig. 10(b).

B. Online Experimental Testing

To validate the practicability and effectiveness of the 
designed diagnosis method for practical application, several 
hardware-in-loop tests are carried out. The experimental 
system parameters are listed in Table III. As presented in 
Fig. 11, the experimental platform consists of an AC power, 
a single-phase PWM rectifier circuit, an RT Box simulator, 
and an upper computer. The control strategy of the rectifier 
and the diagnosis algorithm is conducted by RT Box with 
corresponding software in the upper computer.

The predictor model is built and trained in the upper 
computer so that the grid-side current prediction and fault 
diagnosis can be realized by the RT Box simulator connected 
to the computer. Additionally, due to the convenience of the RT 
Box simulator, the real-time testing results can be observed and 
saved in the upper computer without using an oscilloscope. 

Based on the fault analysis in section IV, four kinds of sensor 
faults and two IGBT open-circuit faults are simulated in the 
rectifier to verify the applicability of the proposed data-driven 
diagnosis method. For sensor gain fault, the gain factor A is set 
as 1.1. And for sensor drift fault, the drift factor K1 is set as 4, 
which is 0.2 times the grid current.

Fig. 12 shows the test result of the rectifier operating in 
normal condition with load fluctuation. In this case, the 
predictor signal follows the sensor signal closely and their 
normalized residual keeps lower than 0.04 even after the 
moment that the load changes from RL to 135% RL (the 
fluctuating range taken into consideration is set as 60% to 
150%). Therefore, the fault threshold σ is set as 0.04, which 
means that no fault occurs as long as the normalized residual 
staying lower than it. Moreover, there is no risk of misdiagnosis 
even if the load has a fluctuation.

Fig. 13(a)-(f) presents test results of the rectifier working 
with different types of fault occurrence, including sensor gain 
fault, drift fault, stuck fault, and noise fault, and T1/T4 open 

circuit fault, T2/T3 open circuit fault. It can be seen that the 
normalized residual keeps lower than the fault threshold and 
the fault detection label and classification label stay at zero 
when the rectifier is operating at normal conditions. But once a 
sensor fault or IGBT open-circuit fault occurs, the normalized 
residual will have a change or even a large deviation compared 
to normal operation immediately and exceed the fault threshold 
(i.e. N > ), and the fault detection label will be set to 
0.5 within 1 ms, indicating a fault occurring in the system. 

taBle III
ParaMeterS of SIngle PhaSe PwM rectIfIer

Fig. 10.  Increasing the diversity of ensemble ELM in offline modeling and 
training. (a) data sample disturbance, (b) algorithm parameters disturbance.

Fig. 11.  Experimental platform.

Fig. 12.  Test result of the rectifier working at normal condition with load fluctuating.
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Furthermore, in about 15 ms (i.e. 3/4 fundamental period time) 
after the fault occurs, the corresponding classification label 
varying from 1 to 6 will be output and thus the fault type is 
classified in detail and located accurately.

According to these test results, the proposed data-driven 
method has been validated as an effective and practical 
approach for the online fault diagnosis in single-phase PWM 
rectifier, which can realize the signal estimation in a data-
driven way. Moreover, the proposed method can perform 
the online fault diagnosis with fast fault detection speed and 
high fault classification accuracy based on the detection-

classification mechanism.

vI. concluSIon

This paper proposes a data-driven method dealing with 
online fault diagnosis problems of the single-phase PWM 
rectifier, which is the essential subunit of the cascaded power 
electrical traction transformer. The critical idea of this data-
driven approach is to construct a signal predictor applying the 
NARX model with ensemble ELMs. The predictor and the real 
sensor operate simultaneously and generate a residual. Then 
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Fig. 13.  Test results of the rectifier working with fault occurrence. (a) sensor gain fault, (b) sensor drift fault, (c) sensor stuck fault, (d) sensor noise fault, (e) T1/T4 

open-circuit fault, (f) T2/T3 open-circuit fault.
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fault detection is conducted by comparing the residual with 
fault threshold, and fault classification is completed by a hybrid 
classifier combining the system fault symptoms with fault 
residual analysis. The experimental test results demonstrate 
that the proposed data-driven method is feasible and effective 
to realize the online fault diagnosis of single-phase PWM 
rectifier with fast diagnosis speed and high accuracy, and is 
robust against load fluctuation. 
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