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Abstract—We propose a new online feature selection framework 
for applications with streaming features where the knowledge of 
the full feature space is unknown in advance. We define 
streaming features as features that flow in one by one over time 
whereas the number of training examples remains fixed. This is 
in contrast with traditional online learning methods that only 
deal with sequentially added observations, with little attention 
being paid to streaming features. The critical challenges for 
online streaming feature selection include (1) the continuous 
growth of feature volumes over time; (2) a large feature space, 
possibly of unknown or infinite size; and (3) the unavailability of 
the entire feature set before learning starts. 

In the paper, we present a novel Online Streaming Feature 
Selection (OSFS) method to select strongly relevant and non-
redundant features on the fly. An efficient Fast-OSFS algorithm 
is proposed to improve feature selection performance. The 
proposed algorithms are evaluated extensively on high-
dimensional datasets and also with a real-world case study on 
impact crater detection. Experimental results demonstrate that 
the algorithms achieve better compactness and higher prediction 
accuracy than existing streaming feature selection algorithms. 
 
Index Terms— Feature selection, streaming features, supervised 
learning  

I. INTRODUCTION 

eature selection in predictive modeling has received 
considerable attention in statistics and machine learning 
[14-15, 26, 43] during the last three decades. A variety of 

feature selection algorithms have been developed and proven 
to be effective in improving prediction accuracy for 
classification [2, 20, 33]. Traditional feature selection methods 
assume that all features are pre-computed and presented to a 
learner before feature selection takes place. This assumption, 
however, is often violated in many real-world applications 
where not all features can be present in advance. For example, 
many image processing processes involve a search of potential 
features for machine learning algorithms to fulfill the pattern 
recognition goal, but image features are often expensive to 
generate and store and therefore may exist in a streaming 
format [13, 22, 42]. More specially, Mars crater detection 
from high resolution planetary images is an important task in 
planetary research because it provides an effective solution for 
measuring the relative ages of planetary surfaces. While 
texture features have proven to be effective in crater detection 
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[11], tens of thousands of texture-based features, in different 
scales and different resolutions, can potentially be generated 
for high resolution planetary images. It is infeasible to pre-
generate texture features from planetary images that have a 
near global coverage of the Martian surface. 
      An intriguing question is that if we need a high level of 
computational effort to generate those features up front, 
should we develop a new way of integrating new features as 
they arrive and carry out the computation, or should we wait a 
long time for all features to become available and then carry 
out the learning process? This presents an interesting research 
question on how to design an effective mechanism to deal 
with feature selection without the knowledge of the full 
feature space. At the same time, when the potential feature 
space is enormous, an exhaustive search over the entire feature 
space becomes very costly or simply infeasible. Under such 
circumstances, we need an effective design to ensure that 
feature selection is properly and effectively carried out, even 
though smoothing through the entire feature space is simply 
not an option. 
      Indeed, many existing feature selection algorithms are 
effective in selecting a subset of predictive features for various 
classification problems, but their scope is essentially limited to 
the problem settings that all features are given before the 
learning begins and they therefore cannot deal with the above 
challenges [9, 22, 34].   
      Motivated by these observations, we formulate dynamic 
features as streaming features, whereby features are no longer 
static but flow in one by one, and each new feature is 
processed upon its arrival. Based on the newly formulated 
problem, we present a novel framework for selecting features 
from streaming features, which is inspired by feature 
relevance and feature redundancy. This framework involves 
two key components: (1) the utilization of feature relevance to 
select features on the fly, and (2) the removal of redundant 
features from the selected candidates thus far, based on feature 
redundancy. Two new algorithms, Online Streaming Feature 
Selection (OSFS) and Fast-OSFS, are proposed to validate the 
effectiveness of the proposed framework. 
     In summary, the unique contributions that distinguish the 
proposed work from existing approaches are threefold: (1) our 
work advances the relevance- and redundancy-based feature 
selection one step further for handling streaming features; (2) 
a novel framework based on feature selection is proposed to 
manage streaming features; and (3) two new online streaming 
feature selection algorithms are proposed with extensive 
comparisons and experimental studies. 
    The remainder of the paper is organized as follows. Section 
2 discusses related work. Section 3 presents the proposed 
framework for streaming feature selection. Section 4 describes 
two algorithmic solutions to the streaming feature selection 
problem. Section 5 reports experimental results and a case 
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study on streaming features for impact crater detection, and 
Section 6 concludes the paper. 

II. RELATED WORK 

For many years, feature selection as an effective means for 
handling data with high dimensionality has been generally 
viewed as being the problem of searching for an optimal 
subset of features. Feature selection can be broadly classified 
into three categories: wrapper, filter, and embedded methods. 
A wrapper method performs a heuristic search in the space of 
all possible feature subsets, using a classifier of choice to 
assess each subset. Although this method has high accuracy, 
the exponential number of possible subsets makes the method 
computationally expensive in general [7, 18].  
      The filter methods, independent of any classifiers, apply 
evaluation measures such as distance, information, 
dependency, and consistency to select features and then build 
a classifier using selected features [5, 10, 23, 27]. Because of 
their simplicity and fast computational performance, many 
filter methods have been proposed to solve the feature 
selection problem [24, 30]. In recent studies especially, causal 
filter methods have attracted much attention [3, 6].  
      The embedded methods attempt to simultaneously 
maximize classification performance and minimize the 
number of features used.  These types of methods are typically 
more efficient than the wrapper methods because a filter 
algorithm is built with a classifier to guide the feature 
selection procedure. A variety of embedded feature selection 
methods have been introduced, including using classification 
or regression as an optimization problem with specified loss 
and penalty functions [16, 29, 37-39]. 
     The work discussed above shares one common assumption, 
which is that all candidate features are available from the very 
beginning, because all features are examined at each iteration 
to select the best feature. In the context of streaming features, 
feature dimensions continuously increase and not all features 
are presented in advance. Consequently, this poses great 
challenges to traditional feature selection methods. 
      Several research efforts have been made to address the 
streaming feature challenge. Perkins and Theiler considered an 
online feature selection problem and proposed the Grafting 
algorithm based on a stagewise gradient descent approach for 
online feature selection [22]. Grafting treats the selection of 
suitable features as an integral part of learning a predictor in a 
regularized learning framework. It optimizes the L1-
regularized maximum likelihood using two iterative steps: 
optimizing over all the free parameters and selecting new 
features. Grafting operates in an incremental iterative fashion, 
gradually building up a feature set while training a predictor 
model using gradient descent. In each iteration, a fast gradient-
based heuristic is used to identify a feature that is most likely 
to improve the existing model, with the model being 
incrementally optimized using gradient descent. Glocer et al. 
extended this algorithm to solve the edge detection problem in 
grayscale imagery [13]. While the Grafting algorithm is able 
to handle streaming features, it needs to select the value of a 
regularization parameter—λ in advance to determine which 
feature is most likely to be selected for the model at each 
iteration. Choosing a suitable regularization parameter λ 

inevitably requires information about the global feature set. 
Therefore, Grafting is ineffective in dealing with streaming 
features with an unknown feature size. 
   Ungar et al. and Zhou et al. studied streamwise feature 
selection and proposed two novel algorithms based on 
streamwise regression, information-investing, and Alpha-
investing [31, 40-41]. Dhillon et al. extended the Alpha-
investing method and proposed a multiple streamwise feature 
selection algorithm to address the case of multiple feature 
classes [12]. The Alpha-investing method sequentially 
considers new features for addition to a predictive model by 
modeling the candidate feature set as a dynamically generated 
stream. Alpha-investing can handle candidate feature sets of 
unknown or even infinite sizes. It uses linear and logistic 
regression to dynamically adjust the threshold of error 
reduction required for evaluating a new feature for inclusion 
by the predictive model so far.  

One inherent deficiency of Alpha-investing is that it only 
considers adding new features but never evaluates the 
redundancy of selected features after new features have been 
added. Because the information-investing uses a very similar 
approach to Alpha-investing, we adopt Alpha-investing in this 
paper for comparative studies. Alpha-investing requires some 
prior knowledge about the structure of the feature space in 
order to heuristically control the choice of candidate feature 
selection. In real-world applications, obtaining sufficient prior 
information about the structure of the feature space is not 
always feasible. Our proposed framework, by comparison, 
makes an additional effort to manage the real-world feature 
selection problem in streaming features without any 
prerequisite for (or prior knowledge of) the feature space 
structure. 

III.  A FRAMEWORK FOR FEATURE SELECTION WITH 

STREAMING FEATURES 

In this section, we formally define streaming features and 
discuss relevant special characteristics. Based on the new 
definition, we review notations of feature relevance and make 
two propositions to deal with feature redundancy in streaming 
features. 

   Definition 1 Streaming features: Streaming features 
involve a feature vector that flows in one by one over time 
while the number of training examples remains fixed. 

The uniqueness of feature selection in streaming features, 
compared to traditional feature selection, is as follows. 

• The dynamic and uncertain nature of the feature 
space. Feature dimensions may grow over time and 
may even extend to an infinite size. 

• The streaming nature of the feature space. Features 
flow in one at a time and each feature is required to be 
processed online upon its arrival.    

Due to the inapplicability of traditional feature selection 
methods for handling applications involving streaming 
features, we will review some notations of feature relevance 
and then propose two methods to handle feature redundancy in 
streaming features. To characterize feature relevance, an input 
feature can be in one of three disjoint categories, namely, 
strongly relevant, weakly relevant or irrelevant [18-19]. In the 
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definitions below, F represents a full set of features and C 
denotes the class attribute (note that the full feature set F does 
not include the class attribute C). Assuming X� denotes the ith 
input feature, F − �X��	represents the feature subset excluding 
feature X� .  

Definition 2 Conditional Independence [19]: Two distinct 
features X� ∈ F and X
 ∈ F are conditionally independent on a 
subset S ⊆ F, iff P�X�|X
, S� = P�X�|S� or P(Xk|Xi,S) =P(Xk|S). 

Definition 3 Strong relevance: A feature X�  is strongly 
relevant to C iff  ∀S ⊆ F − �X��	s. t. P�C|S� ≠ P�C|S	, X��. 

Definition 4 Weak relevance: A feature X�  is weakly 
relevant to C iff it is not strongly relevant, and   
																		∃S ⊂ F − �X��	s. t. P�C|S� ≠ P�C|S, X��             (1) 
Definition 5 Irrelevance: A feature X� is irrelevant to C iff 

it is neither strongly nor weakly relevant, and 
               ∀S ⊆ F − �X��	s. t.		P�C|S	, X�� = P�C|S�            (2) 

   Weakly relevant features can be further divided into 
redundant features and non-redundant features [36] based on a 
Markov blanket criterion [19]. 

Definition 6 Markov blanket:  Denoting M� ⊂ F a subset of 
features, if for the given M�  the following property 
																				∀Y ∈ F − M�	s. t.		P�C|M�, Y� = P�C|M��	            (3) 
holds, then M� is a Markov blanket for C (MB(C) for short). 

Definition 7 Redundant features: A feature X�	 is 
redundant to the class attribute C, if and only if it is weakly 
relevant to C and has a Markov blanket, MB(X�), that is a 
subset of the Markov blanket of MB(C). 

The Markov blanket of a feature X�  subsumes the 
information that X� has about C while the Markov blanket of 
the class attribute C carries information that all of the other 
features have about C. In other words, the Markov blanket of 
the class attribute C is the optimal feature subset which 
contains all the weakly relevant but non-redundant features 
and strongly relevant features, as shown in Figure 1. 

 

       
Figure 1: Feature relevance and Markov blanket of C 

While irrelevant features can be easily removed, removing 
redundant features is the key task for an optimal feature 
selection process. Existing methods for removing redundant 
features are based on the Markov blanket criterion: let G be 
the current set of features (G contains the whole set of features 
at the beginning, i.e. G=F); at any phase, if there exists a 
Markov blanket for a feature X within the current G, X is 
removed from G [19]. When the full feature space is large, 
finding a Markov blanket for a feature is very difficult. 
Moreover, it is nontrivial to convert existing learning methods 
to deal with redundant features in streaming features because 
the prior knowledge about the whole feature space is unknown.  

   Within the context of streaming features, we set the MB(C) 
as an empty set initially and gradually build the MB(C) over 

time. We then use it to identify and remove redundant features 
from the streaming features. If an incoming feature is relevant 
to the class attribute C and is added into the current feature set, 
we use Proposition 1 to determine which of the selected 
features observed so far may become redundant as time passes. 

 Proposition 1 As the features flow in one by one, a current 
Markov blanket of the class attribute C  at time t is denoted as 
CMB�C��. At time t+1, a new feature  X�  which is relevant to 
C  is added to	CMB�C���� . If for any existing feature Y in 
CMB(C)t+1, ∃S ⊆ �CMB�C���� − Y�		s. t.		P�C|Y, S� = P�C|S� , 
then Y is redundant and can be removed from CMB�C����.  

Theorem 1 [19] Assume G is our current set of selected 
features, and a previously removed feature X� ∉ !  has a 
Markov blanket within G. When " ∈ #$�X��  is removed 
based on a Markov blanket within G, then X�  also has a 
Markov blanket within G-{Y}. 

   Theorem 1 shows that a redundant feature removed earlier 
remains redundant during the rest of the process when some 
features within its Markov blanket are later removed. We use 
Corollary 1 to guarantee that Proposition 1 satisfies this 
desirable property. 

 Corollary 1 A feature X� removed earlier by Proposition 1 
remains redundant when some features within MB�X��  are 
removed during the rest of the streaming feature selection 
process. 

Proof: Assuming that at time t  feature X�  is discarded 
because its Markov blanket	MB�X�� ⊆ CMB�C� by Proposition 
1. Assume ∃Y ∈ MB�X��  is removed later. In this case, 
Theorem 1 guarantees that X�  also has a Markov blanket 
within	�MB�X�� − "� ∪ �MB�Y��. Thus, in streaming features, 
if at time	t + ε	�ε > 0�, Y is removed, X�  remains redundant 
because it still has a Markov blanket in CMB�C� − �Y�. As a 
result, a feature removed earlier by Proposition 1 remains 
redundant during the rest of the process.      □□□□ 

Corollary 1 therefore guarantees that the strongly relevant 
features and non-redundant features can be selected as the 
features stream one by one over time. By Proposition 1 and 
Corollary 1, we propose a framework for feature selection 
with streaming features that contains two major steps: (1) 
online relevance analysis that discards irrelevant features and 
retains relevant ones; and (2) online redundancy analysis 
which eliminates redundant features from the features selected 
so far (see Figure 2).  
 
 1. Initialization   
     Best candidate feature set BCF={}, the class attribute C 
 2. Online Relevance Analysis 

(1) Stream in a new feature X 
(2) Determine whether X is relevant to C. 

        a. If X is irrelevant to C, then X is discarded 
        b. Otherwise, X is added to BCF 
 3. Online Redundancy Analysis 
    Online identify redundant features and remove them from 

BCF by Proposition 1.  
4. Alternate steps 2 and 3 until a predefined prediction 

accuracy or the maximum number of iterations is reached. 
5. Output selected features contained in BCF.         

Figure 2: The framework for Feature Selection with Streaming Features 
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IV.  ONLINE STREAMING FEATURE SELECTION 

ALGORITHMS  

In this section, we propose two new algorithms to 
implement the framework for feature selection with streaming 
features: Online Streaming Feature Selection (OSFS) and an 
accelerated OSFS (Fast-OSFS), for streaming feature 
selection. 

A. An Online Streaming Feature Selection Algorithm 

   OSFS Algorithm: The pseudo-code of the Online Streaming 
Feature Selection (OSFS) algorithm is shown in Figure 3, 
where *+,�-, .|/�  denotes conditional independence test 
between a feature X and the class attribute C given a subset S, 
012�-, .|/� represents conditional dependence test, and BCF 
stands for the set of best candidate features so far. 

 
Figure 3: The OSFS algorithm 

OSFS employs a two-phase optimal subset discovery 
scheme: online relevance analysis (from steps 6-11) and 
online redundancy analysis (from steps 12-20). In the 
relevance analysis phase, OSFS discovers strongly and weakly 
relevant features and adds them into BCF. When a new feature 
arrives, OSFS assesses its relevance to the class attribute C 
and decides to either discard the new feature or add it to BCF, 
according to its relevance.  

Once a new feature is included into BCF, the redundancy 
analysis phase is triggered. In this phase, using Proposition 1, 
OSFS dynamically identifies and eliminates redundant 
features within BCF. If a subset exists within BCF to make 
any existing feature in BCF and the class attribute C 
conditionally independent, the previously selected feature Y, 
Y∈BCF, becomes redundant and is removed from BCF. OSFS 
alternates the above two phases till one of the following 
stopping criteria is satisfied: (1) a predefined prediction 
accuracy is satisfied, or (2) the maximum number of iterations 
is reached, or (3) no further features are available. 

The 345 and 678 functions in OSFS: In Figure 3, OSFS 
uses the notations *+,�-, .|/� and 012�-, .|/� to denote the 
conditional independence/dependence tests to identify 
irrelevant and redundant features. The tests can be 
implemented using the G: test that is an alternative to the  χ: 
test [28, 21] (refer to reference [21], pp. 611-615 and reference 
[28], pp. 148-151for detailed explanations about the G: test).  
   We briefly explain the G: test using one example. With three 
features,	X�,	X< and X
, we set S�<


=>? to be the number of counts 

satisfying X� = a, X< = b and X
 = c in a dataset. S�<
=>, S<


>?  and 

S

? are defined in a similar way. If X� and X< are conditionally 

independent given X
, the G: statistic is defined as  

                   G: = 2∑ S�<

=>?

=,>,? ln
GHIJ
KLM	GJ

M

GHJ
KL		GIJ

LM                      (4) 

   This formula can be easily extended to the case in which X� 
and X< are conditionally independent given a subset of S. The 
G: statistic is asymptotically distributed as χ: with appropriate 
degrees of freedom. In general, when we check the conditional 
independence of X� and X< given S, the number of degrees of 
freedom df used in the test is calculated as 

             df = �r� − 1��r< − 1�∏ r
SJ∈G
                      (5) 

where r� is the domain (number of distinct values) of X�. As a 
heuristic, Spirtes et al. reduced the number of degrees of 
freedom by one for each count that is equal to zero [28].  

 A significance level of α is used to measure the probability 
of rejecting a conditional independency hypothesis, so we can 
conclude the conditional independence at α level (often 
significance levels of 0.01 or 0.05 are used).  

To measure the functions Ind�C, X|S� and 	Dep�C, X|S� , 
OSFS uses a p-value returned by the G: test to measure these 
two functions. Under the null hypothesis of the conditional 
independence between a feature X and the class attribute C 
given the subset S, assuming X is the p-value returned by the 
G:  test and α is a given significance level, the functions 
Ind�C, X|S� and	Dep�C, X|S� in OSFS are defined as follows.  

Definition 8 YZ[�\, ]|^�:	 The function Dep�C, X|S� 
defines that X and C are conditionally dependent given S. This 
function holds if and only if X	 ≤ α, which concludes that the 
null hypothesis is rejected.  

Definition 9 bcd�\, ]|^�: The function Ind�C, X|S� defines 
that X and C are conditionally independent given S. This 
function holds if and only if X	 > α, which concludes that the 
null hypothesis is accepted.  

With the above two definitions and Proposition 1, we 
conclude that for the current BCF, X is redundant to C and 
should be discarded if the function *+,�-, .|/�  holds 
conditioned on a subset S. Otherwise, we conclude that X is 
strongly relevant or non-redundant to C for the time being, and 
then add X into BCF if the function 012�-, .|/�  holds 
conditioned on all subsets within the current BCF. 
   Reliability of the  345 and 678: According to the work of 
[1, 28] by performing a reliable conditional independence test 
between X� and X< given X
, the average number of instances 
per cell of the contingency table of �X�, X<� ∪ X
  must be at 
least φ , i.e., N/��r� − 1� × �r<i�� × r
� ≥ φ  (N is the total 
number of instances,	r� is the number of distinct values of X�, 
and φ is often set to 5 or 10). With the G: test, the calculation 
of S�<


=>? requires the counting of the number of occurrences of 
all different possible values for features X� , X<  and X
 , This 
implies that the number of training instances required to 
accurately count these values is exponential to the size of the 
conditioning set X
. Hence in the OSFS algorithm, we assume 
Ind�X� , X<|X
�  holds unless there are at least five training 
instances (φ = 5) for each set of different possible values of 
X�, X< and X
. 

Reliability of OSFS: As illustrated by the algorithm in 
Figure 3, conditional tests on line 7 and line 15 control the 
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reliability of OSFS because these two lines could make false 
positive and false negative errors that correspond to traditional 
type I and type II errors. A type I error in statistics is the error 
of rejecting the null hypothesis when it is true while a type II 
error is the error of accepting the null hypothesis when it is 
false.  

The false negative errors denote that OSFS may discard 
strongly relevant or non-redundant features incorrectly. The 
dependence test on line 7 always performs a reliable test, since 
it is an unconditional independence test. OSFS might conduct 
unreliable tests on line 15 when the available instances are 
insufficient to check the tests conditioning on all subsets of 
BCF, and false negative errors may then occur. For example, 
an incoming feature X is strongly relevant to C. On line 15, 
assume BCF contains two features Y and Z at this time, thus, 
all of the tests Dep�C, X|Y�, Dep�C, X|Z�,  and Dep�C, X|Y, Z� 
must hold so that X can be added into BCF. When the 
available instances suffice to only check the tests 
Dep�C, X|Y� and Dep�C, X|Z� , OSFS will assume that 
Ind�C, X|Y, Z� holds and return a type II error. Therefore, to 
control the type II error in this case, OSFS can limit the size of 
the maximum conditioning subset of BCF according to the 
sizes of the available sample and BCF, instead of using an 
exhaustive search over all subsets within BCF on line 15.  
  To control the false positives, OSFS classifies them into 
irrelevant and redundant features. For an irrelevant feature, if 
an incoming feature X is irrelevant to C, X is discarded at the 
line 7 test.  

For a redundant feature, two situations to be considered 
include (1) the size of the streaming feature set is finite; and 
(2) the size of the streaming feature set is infinite. When the 
feature size is finite, OSFS searches a subset S on line 15, 
based on Proposition 1, for each feature within BCF to 
evaluate its redundancy with respect to C. For example, a 
redundant feature X is added into BCF as a relevant feature on 
line 7. If training instances are sufficient and most of the 
features are irrelevant and redundant features, OSFS can keep 
the size of BCF reasonably small so that conditioning on all 
subsets within BCF is computationally feasible. As features 
flow in one by one over time, the subset S within BCF must be 
found to make X redundant and remove it from BCF at the test 
on line 15, but if we limit the size of the maximum 
conditioning subset of BCF to k, OSFS might return a type I 
error (false positives will enter BCF) when k is not big enough 
to make X and C conditionally independent. 

When the size of the streaming feature set is infinite, OSFS 
may also fail to remove X during the independence tests on 
line 15. In this case, false positive errors may occur which 
results in redundant features to enter into BCF. Because a 
feature could arrive randomly, OSFS does not know in 
advance when the subset S for X can be found within BCF; 
therefore, the actual time for OSFS to remove X is unknown. 
Assuming that all tests are reliable, if X is really a redundant 
feature, a subset S must exist to satisfy the term	Ind�C, X|S� as 
features flow in one by one over time.  

In summary, on the assumption that all independence tests 
are reliable, OSFS can control the false positive and false 
negative errors well. If the size of the maximum conditioning 
subset is limited to k, the selection of the k value is crucial. 

Our empirical studies show that setting k to 3 yields 
satisfactory results. Since the G:  test focuses on the 
independence tests of discrete distribution, Fisher’s z-test is an 
alternative and reliable test [28] to assess the conditional 
independence tests of continuous data (refer to reference [21], 
pp. 611-615 for detailed explanations about Fisher’s z-test). 

Time complexity of OSFS: The time complexity of OSFS 
depends on the number of tests. Assuming |M| is the number 
of features that have arrived so far, the worst-case complexity 
is O�|M||BCF|k|opq|� where k is the maximum size to which a 
conditioning set may grow and r|stu| denotes the total number 
of subsets needs to be checked in BCF (i.e., all subsets whose 
sizes do not exceed k). Assuming |SF| contains the number of 
all relevant features in |M|, the average time complexity is 
O�|SF||BCF|k|opq|� . It is clear that the time complexity of 
OSFS is determined by the number of features within BCF, 
and is independent of the total number of features and training 
instances. Thus, OSFS is very time-efficient if only a small 
number of features in a large feature space is predictive and 
relevant to C, which is the case in many real-world 
applications. Meanwhile, OSFS is also memory-efficient, 
because it only needs to store a small number of relevant 
features at any time by adding and discarding features online. 

B. Fast-OSFS Algorithm 

As we have discussed, the most time-consuming part of 
OSFS is the redundancy analysis phase. When OSFS includes 
an incoming feature to BCF, its redundancy analysis phase 
will re-examine the redundancy of each feature of BCF. If the 
size of BCF is large, this process will significantly reduce the 
runtime performance of OSFS.  

To improve selection efficiency, the process of handling 
redundant features can be divided into two steps: (1) 
determining whether an incoming new feature is redundant, 
and (2) identifying which of the selected features observed so 
far may become redundant once the inclusion of the new 
feature occurs. Based on Definition 7, we propose to use 
Proposition 2 to identify whether a newly arrived feature is 
redundant.  

Proposition 2 As features flow in one by one over time, a 
current Markov blanket of C at time t is denoted by CMB�C��. 
At time t+1, a new feature  X� streams in and is relevant to C. 
If ∃S ⊆ CMB�C��		s. t.		P�C|X�, S� = P�C|S� , then X�  is 
redundant can be discarded. 

To test which features in CMB�C�� might become redundant 
due to the inclusion of X�, we propose Proposition 3 as follows. 

Proposition 3 As the features continuously flow in, for any 
given time point t with CMB�C�� , when a new feature X� 
arrives at time t+1, if there is no MB�X�� within CMB�C�� and 
the following condition applies, Y ∈ CMB�C��, ∃S ⊆
�CMB�C�� ∪ X�� − �Y�	s. t. P�C|Y, S� = P�C|S� , then Y  can be 
removed from CMB�C��.  

Proposition 3 explains that as an incoming feature is added 
into BCF by Proposition 2, only the subsets created by the 
inclusion of this new feature need to be tested to check the 
redundancy of the other features in BCF. Clearly, propositions 
2 and 3 also satisfy the property of Corollary 1. Therefore, 
with the above two Propositions, an accelerated OSFS 
algorithm named Fast-OSFS is proposed in Figure 4.  
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Fast-OSFS accelerates OSFS by dividing the online 
redundancy analysis in OSFS into two parts. The first part 
(lines 10-18) is a redundancy analysis which aims to remove a 
new relevant but redundant feature, say Xi, from inclusion in 
BCF. If Xi is successfully removed, Fast-OSFS directly deals 
with the next incoming feature. Otherwise, if Xi is not 
eliminated in the first part, the second part (lines 19-28) is 
triggered, which adds the new feature Xi into BCF, validates 
each originally existing feature in BCF, and checks whether 
any of these features has become redundant after the inclusion 
of new feature Xi into BCF. In the second part, Fast-OSFS 
reduces the computational cost of conditional independence 
tests by only considering the subsets within BCF that contain 
the newly added feature instead of all subsets within BCF.  

 
Figure 4: The Fast-OSFS algorithm 

    The time complexity of Fast-OSFS is as follows. Assuming 
|M| is the number of features that have arrived so far and |SF| 
contains the number of all relevant features in |M|, the best 
time complexity of Fast-OSFS is v�|/w|r|stu|� if Fast-OSFS 
does not perform the second part for all |/w| arrived features. 
If the second part is performed for |SF1| features in SF, the 
time complexity is v�|/w − /w�|r

|stu| + |/w�||$-w|r
|stu|∗� 

where r|stu|
∗
only considers those subsets in BCF that contain 

the newly added feature, and if the sizes of the subsets do not 
exceed k. r|stu| denotes all subsets in BCF whose sizes are 
less than or equal to k. If the second part is performed for all 
features in SF, the worst-case time complexity is 
O(|/w||$-w|r|stu|

∗
). When compared with OSFS, it is easy 

to conclude that for all three conditions above, Fast-OSFS is 
faster than OSFS. 

V. EXPERIMENTAL STUDIES 

To compare the performance of the proposed OSFS and 
Fast-OSFS algorithms with existing streaming feature 
selection methods, we use high dimensional datasets as our 
test-beds, by observing features one by one to simulate the 
situation of streaming features. Table 1 summarizes the 16 
high-dimensional datasets used in our experiments.  

In Table 1, the ovarian-cancer and breast-cancer datasets are 
biomedical datasets [8, 32]. The lymphoma and sido0 datasets 
are from [25] and the WCCI 2008 Performance Prediction 
Challenges. The madelon, arcene, dexter, and dorothea 
datasets are from the NIPS 2003 feature selection challenge. 

The colon, prostate, leukemia, and lung-cancer datasets are 
four frequently studied public microarray datasets [35]. The 
ohsumed and apcj-etiology are two massive high-dimensional 
text datasets [17, 4]. 

Table 1: Summary of the benchmark datasets.  
#: the number of features, SIZE: the number of instances 

Dataset # SIZE  Dataset # SIZE 
bankruptcy 147 7063  leukemia 7129 72 
sylva 216 14374  prostate 6033 102 
madelon 500 2000  lung-cancer 12533 181 
arcene 10000 100  breast-cancer 17816 286 
dexter 20000 300  ovarian-cancer 2190 216 
dorothea 100000 800  sido0 4932 12678 
lymphoma 7399 227  ohsumed 14373 5000 
colon 2000 62  apcj-etiology 28228 15779 

 
For the four NIPS 2003 challenge datasets, we use their 

original training and validation sets, and for the remaining 
twelve datasets we use 10-fold cross-validation in our 
experiments. Two measurements for evaluating our algorithms 
with Grafting and Alpha-investing are compactness (the 
proportion or number of selected features) and prediction 
accuracy (the percentage of the correctly classified test 
instances which were previously unseen). We use two 
classifiers, Knn and J48 in Spider toolbox, and report the 
average prediction accuracy in the experiments. The results 
were collected on a DELL workstation with Windows 7, 
2.9GHz CPU and 12GB memory. Grafting and Alpha-
investing were performed using their original 
implementations. The tuning parameter λ for Grafting was 
selected using cross-validation and the parameters of Alpha-
investing were set using its default settings, W0=0.5 and 
α∆=0.5. For all 16 datasets in Table 1, the independence tests 
are G2 tests with the statistical significance level, y, being  set 
to 0.05. For the impact crater case study dataset, we use 
Fisher’s z-tests.  

A. Comparing OSFS to Grafting and Alpha-investing          

Figure 5 reports the performance of OSFS with Grafting with 
respect to the prediction accuracy (the y-axis to the left) and 
the compactness in terms of the number of selected features 
(the y-axis to the right). From the top two curves in Figure 5, 
we can see that the prediction accuracy of OSFS is superior to 
Grafting on 13 out of 16 datasets. For the remaining 3 
datasets, arcene, ovarian-cancer, and leukemia (corresponding 
labels in the x-axis are 1, 5, and 9), the accuracy of OSFS is 
inferior to Grafting, whereas the two curves at the bottom 
show that Grafting selects more features than OSFS on those 
three datasets. For most datasets, we can conclude that OSFS 
selects fewer features than Grafting. Although for the dexter, 
madelon, and the last three datasets, ohsumd, bankruptcy, and 
sylva, Grafting selects fewer features than OSFS, the accuracy 
of Grafting on those five datasets is lower than OSFS. It is 
worth noting that Grafting uses a gradient-based heuristic, 
which is computationally inefficient, to identify whether a new 
feature is predictive in each iteration. The large number of 
features in dorothea make the runtime of Grafting increase 
dramatically and eventually fail in our experiments. 
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Figure 5: The prediction accuracy (top two figures) and number of selected 
features (bottom two figures) of OSFS vs. Grafting. (The labels of the x-axis 
from 1 to 16 denote the datasets: 1:arcene; 2:dexter; 3:madelon; 4:dorohthea; 
5:ovarian-cancer; 6:breast-cancer; 7: lymphoma; 8: colon; 9:leukemia; 
10:lung-cancer; 11:prostate; 12:sido0; 13: apcj-etiology; 14:ohsumed; 
15:bankruptcy; 16:sylva.)   
      

 
Figure 6: The prediction accuracy (top two figures) and number of selected 
features (bottom two figures) of OSFS and Alpha-investing. (The labels of the 
x-axis are the same as the labels of the x-axis in Figure 5.)    
 
    In Figure 6, we report the comparisons between OSFS and 
Alpha-investing, which show that OSFS wins 10 times and 
ties 3 times on prediction accuracy compared to Alpha-
investing. The results show that OSFS selects far fewer 
features than Alpha-investing on most of datasets datasets (see 
the bottom two figures). On the third dataset, madelon, and the 
seventh dataset, lymphoma, Alpha-investing selects fewer 
features than OSFS, the accuracy of Alpha-investing on those 
two datasets is significantly lower than OSFS. Moreover, 
Alpha-investing fails to select any features on the dexter 
dataset because it is a very sparse dataset. 

B. Comparing Fast-OSFS to Grafting and Alpha-investing 

Figure 7 reports the prediction accuracy (the two curves at the 
top) and compactness (the two curves at the bottom) 
comparisons between Fast-OSFS and Grafting. The results 
show that Fast-OSFS wins over Grafting 14 times and only 
loses twice against Grafting on prediction accuracy. 
Meanwhile, in the bottom two figures, Fast-OSFS loses 8 
times on compactness compared to Grafting, but Fast-OSFS 
has higher accuracy than Grafting on those eight datasets. 

In Figure 8, in comparison with Alpha-investing, Fast-OSFS 
also only loses on two datasets with respect to prediction 
accuracy. Although on the third dataset, madelon, and the 
seventh dataset, lymphoma, Alpha-investing selects fewer 
features than Fast-OSFS, the accuracy of Alpha-investing on 
those two datasets is significantly lower than Fast-OSFS. 

Moreover, on the massive and high-dimensional datasets, such 
as sido0, apcj-etiology, and ohsumed, Fast-OSFS selects far 
fewer features than Alpha-investing, but it achieves the same, 
or higher prediction accuracy than Alpha-investing. 

 

 
Figure 7: The prediction accuracy (top two figures) and number of selected 
features (bottom two figures) of Fast-OSFS and Grafting. (The labels of the x-
axis are the same as the labels of the x-axis in Figure 5.)    
 

 
Figure 8: The prediction accuracy (top two figures) and number of selected 
features (bottom two figures) of Fast-OSFS and Alpha-investing. (The labels 
of the x-axis are the same as the labels of the x-axis in Figure 5.)    
   

 
Figure 9: The prediction accuracy (top two figures) and number of selected 
features (bottom two figures) of Fast-OSFS and OSFS. (The labels of the x-
axis from 1 to 16 denote the datasets: 1:dexter; 2:ovarian-cancer; 3:dorothea; 
4:bankruptcy; 5:sido0; 6:arcene; 7:lymphoma; 8:madelon; 9:breast-cancer; 
10:colon; 11:leukemia; 12:lung-cancer; 13:prostate; 14: apcj-etiology; 15: 
ohsumed; 16:sylva.)  
 

 In our experiments, we find that Alpha-investing, similar to 
OSFS, also shows slightly better accuracy than Fast-OSFS on 
the arcene and ovarian-cancer datasets. A possible 
explanation is that for datasets with a very small sample-to-
variable ratio, this could aggravate the number of unreliable 
tests if the number of features within BCF increases over time. 
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C. Comparisons between OSFS and Fast-OSFS 
 
The comparisons between Fast-OSFS and OSFS in Figure 9 
show that Fast-OSFS has higher accuracy than OSFS on 13 
out of the 16 datasets, although Fast-OSFS selects more 
features than OSFS, which demonstrates that Fast-OSFS 
significantly improves the performance of OSFS. Both OSFS 
and Fast-OSFS perform multiple statistical comparisons to 
assess whether a feature is redundant. In the redundancy 
analysis phase, OSFS needs to evaluate each feature within 
BCF without first considering whether a newly added feature 
is redundant. It significantly increases the system runtime 
when the number of features within BCF is large which, in 
turn, reduces the test of statistical power. Fast-OSFS, on the 
other hand, significantly reduces the total number of tests 
because it first examines the redundancy of a new feature and 
checks only the subsets of BCF containing the feature newly 
added into BCF.  

Table 2 reports the accelerate ratio which is the number of 
tests performed by OSFS divided by the number of tests 
performed by Fast-OSFS on the same dataset (the alpha value 
is fixed at 0.05). An accelerate ratio value greater than one 
indicates that Fast-OSFS performs fewer tests than OSFS. In 
Table 2, Fast-OSFS involves far fewer tests than OSFS, thus, 
Fast-OSFS has stronger statistical power than OSFS.  

 
      Table 2: The ratio of conditional independence tests (OSFS/Fast-OSFS) 

Dataset Accelerate Ratio Dataset Accelerate Ratio 
dexter 31.82 lymphoma 3.41 
dorothea 35.96 breast-cancer 10.67 
arcene 3.50 ovarian-cancer 15.50 
madelon 3.34 sylva 13.79 
colon 2.08 bankruptcy 14.17 
prostate 3.26 sido0 23.81 
lung-cancer 4.88 apcj-etiology 159.91 
leukemia 2.54 ohsumed 107.50 

 
D. Runtime Analysis 
D.1 A summary of runtime of OSFS and Fast-OSFS 
 
In addition to the theoretical analysis of the time complexity 
for OSFS and Fast-OSFS, a summary of the runtime 
performance for OSFS and Fast-OSFS is reported in Tables 3 
and 4. Because the runtime of OSFS and Fast-OSFS is 
significantly influenced by the size of BCF, we report the 
runtime of both algorithms with the alpha value up to 0.01 
(Table 3) and up to 0.05 (Table 4). The results in Tables 3 and 
4 show that Fast-OSFS is much faster than OSFS on all 
datasets. When only a small number of features are predictive, 
the proposed OSFS and Fast-OSFS algorithms are very 
efficient, even if a dataset has hundreds of thousands of 
features, as is the case for the lung-cancer and dexter datasets.  
For a dataset with a large number of predictive features, such 
as sido0, apcj-etiology, and ohsumed (the number of 
predictive features is shown in the bottom figures of Figure 9), 
OSFS is time-consuming, even for the bankruptcy and sylva 
datasets which contain no more than 300 features. In addition, 
we observe that the runtime of OSFS is linear to the number of 
total features, but exponential to the number of features which 
are predictive.  

As we have analyzed in Section IV.B, Fast-OSFS alleviates 
this problem by significantly reducing the number of tests (as 
shown in Table 2). For example, from the bottom figures of 
Figure 9, we can see that there is a large number of predictive 
features on bankruptcy, sido0, apcj-etiology, and ohsumed, but 
Fast-OSFS is still quite efficient, as shown in Tables 3 and 4. 

 
Table 3: Runtime performance (in seconds) of OSFS and Fast-OSFS 
(alpha=0.01). (A/B in the second column denotes the runtime of OSFS, i.e., A, 
vs. the runtime of Fast-OSFS, i.e., B) 

Dataset Runtime  Dataset Runtime 
dexter 4/1  lymphoma 0/0 
dorothea 64/34  breast-cancer 20/4 
arcene 0/0  ovarian-cancer 1/0 
madelon 0/0  sylva 1892/170 
colon 0/0  bankruptcy 1272/127 
prostate 0/0  sido0 10085/410 
lung-cancer 6/1  apcj-etiology 11141/139 
leukemia 0/0  ohsumed 2851/66 

 
Table 4: Runtime performance (in seconds) of OSFS and Fast-OSFS 
(alpha=0.05). (A/B in the second column denotes the runtime of OSFS, i.e., A, 
vs. the runtime of Fast-OSFS, i.e., B) 

Dataset Runtime  Dataset Runtime 
dexter 38/2  lymphoma 2/1 
dorothea 1988/78  breast-cancer 97/9 
arcene 1/0  ovarian-cancer 4/0 
madelon 0/0  sylva 4807/348 
colon 0/0  bankruptcy 3645/261 
prostate 1/0  sido0 42789/2014 
lung-cancer 10/2  apcj-etiology 118329/676 
leukemia 0/0  ohsumed 156271/1103 

 
D.2 Runtime Analysis for Grafting and Alpha-investing 
 
Since the Grafting and Alpha-investing algorithms used in the 
experiments are both implemented in MATLAB by the authors 
and our algorithms are written in C language, a direct time 
comparison between the baselines and our algorithms is 
inappropriate. Instead, we investigate an analysis as follows. 
Grafting recasts feature subset selection as optimizing the L1-
regularized maximum likelihood estimation by iteratively 
performing two steps: optimizing over all the free parameters 
and selecting a new feature. Grafting needs a regularization 
parameter—λ in advance to determine which feature is most 
likely to be selected to the model at each iteration. It is 
understandable that choosing a suitable regularization 
parameter requires the entire feature set information in 
advance, but the full feature set information is unknown in 
advance in streaming features. Moreover, finding an optimum 
value for a free parameter at each step is usually a 
computationally expensive step. Because Alpha-investing and 
our proposed two algorithms do not need to determine any 
prior parameters in advance, we focus on the comparison 
between Alpha-investing and Fast-OSFS. 
   The Alpha-investing algorithm uses linear and logistic 
regression to dynamically adjust the threshold on the error 
reduction required for evaluating a new feature that is added to 
the predictive model. Alpha-investing only considers whether 
to add a new feature and never considers the discard of the 
selected features or adding discarded features again. 
Therefore, when a new feature X arrives, even if X is 
irrelevant, Alpha-inverting adds it into the current model, that 
is, �z{,1| ∪ .�, and then uses linear regression to compute 
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the error reduction between �z{,1| ∪ .�  and �z{,1|�  to 
decide whether to drop X. At the arrival of each new feature, 
the time complexity of Alpha-investing is O�|V||model|:� 
where |V| is the total number of features arrived so far and 
|model|  is the number of features selected from V in the 
current model.  
 
Table 5: Runtime performance (in seconds) of Alpha-investing and Fast-
OSFS (A/B in the second and last columns denotes the runtime of Alpha-
investing, i.e., A, vs. the runtime of Fast-OSFS, i.e., B). 

alpha=0.01  alpha=0.05 
Dataset Runtime  Dataset Runtime 

dorothea 993/34  dorothea 993/78 
sido0 929/410  sido0 929/2014 
apcj-etiology 7305/139  apcj-etiology 7305/676 
ohsumed 794/66  ohsumed 794/1103 

 
When the feature set size is not large and the number of 

features in the current model is small, Alpha-investing is very 
time efficient. However, when the size of the streaming 
feature set is huge and the number of features within the 
current model is large, Alpha-investing is not computationally 
efficient. Although Alpha-investing is implemented in 
MATLAB, we still show the runtime of Alpha-inverting and 
Fast-OSFS in Table 5. We can see that when the alpha value 
goes up to 0.01, Fast-OSFS is computationally efficient 
whereas Alpha-investing is not. When the alpha value is 
around 0.05, Fast-OSFS is still very fast on the dorothea and 
apcj-etiology datasets. 

 
E. Handling datasets with an unknown feature space 

   In the above experiments, the streaming features are 
simulated using datasets with known feature sizes. In this 
subsection, we study the performance of OSFS and Fast-OSFS 
under the situation where the entire feature set of a dataset is 
unknown in advance. To demonstrate the performance of the 
algorithms, we use prediction accuracy as a criterion to 
explore the streaming feature selection process; four 
NIPS2003 feature selection challenge datasets, madelon, 
arcene, dexter, and dorothea, and four gene datasets, colon, 
prostate, leukemia, and lung-cancer in Table 1 are used for 
these evaluation studies. 

We use the original training and validation sets for the NIPS 
2003 challenge datasets. Because the colon and leukemia gene 
expression datasets have a small number of instances, we 
randomly select 10 instances as the test instances (5 positive 
and 5 negative instances) and the rest of the instances are used 
for training. For the remaining two gene expression datasets, 
we randomly select, using cross-validation, the first 2/3 
instances for training and the remaining 1/3 instances are used 
for testing. Knn is used as a baseline classifier on the training 
and testing sets with all features. With this baseline, our two 
algorithms and Alpha-investing use Knn to dynamically 
evaluate streaming feature selection on the testing instances. 

In Figure 10, we report the change of the prediction 
accuracies of three algorithms on Knn with respect to the 
features continuously arriving over time. The red horizontal 
line in each figure denotes the prediction accuracy of the 
baseline Knn classifier trained using all features.  Because 

Alpha-investing fails to select any features on dexter, its 
accuracy is omitted in the figure.  
    The results in Figure 10 demonstrate that a comparison of 
Fast-OSFS with OSFS and Alpha-investing shows that Fast-
OSFS is more stable and has better prediction accuracy. 

Among the four NIPS 2003 datasets, the prediction 
accuracies of all of three algorithms on the arcene dataset fall 
below the accuracy of the baseline classifier. Alpha-investing 
stops selecting any features with the percentage of features up 
to 10%, while Fast-OSFS continues the feature selection till 
the feature percentage increases to 60% and then stops 
(denoted by the straight line after the selected features are 
60% or higher). For the dexter dataset, Fast-OSFS and OSFS 
reach the baseline accuracy as the feature percentage increases 
to 70%. For the madelon and dorothea datasets, both OSFS 
and Fast-OSFS exceed the baseline accuracy as features 
stream in, while Alpha-investing falls behind. Among the four 
gene expression datasets, Fast-OSFS is able to reach or 
outperform the baseline without an exhaustive search over the 
entire feature set, with the exception of the leukemia dataset. 

 

 
Figure 10: The prediction accuracy changes with respect to the number of 
features streaming in 

The above observations conclude that when the underlying 
feature space is unknown or significantly large, it is 
unnecessary to exhaustively search over the entire feature 
space. Compared to Alpha-investing and OSFS, Fast-OSFS 
achieves better and more stable performance in terms of the 
prediction accuracy of the models trained from selected 
streaming features. 
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F. Conclusions of the Experimental Results 

The above experiments and comparisons conclude that OSFS 
and Fast-OSFS outperform both Grafting and Alpha-investing 
on most of the datasets (in terms of the prediction accuracy 
and the compactness of the selected features). When handling 
streaming features, the main drawback of Grafting is that it 
needs to tune parameter λ in advance while Alpha-investing 
cannot properly handle the original features without any prior 
information about the feature structure. Since Alpha-investing 
only considers each feature once, its running speed is very 
fast, but this also causes Alpha-investing to select more 
features than other methods (including our algorithms). In 
addition, Alpha-investing cannot discard redundant features 
from the current model to deal with the situation that some 
features may have been useful in the past but have become 
redundant or irrelevant to the target concept as time goes by.  
    In personalized news filtering, for example, users’ interests 
constantly change so that new words may become useful 
whereas previously selected words may become outdated and 
redundant. Grafting and the proposed OSFS and Fast-OSFS 
algorithms can effectively handle this problem.  
   With the prior knowledge about the structure of the feature 
space, Alpha-investing is fast and achieves good performance 
since the prior knowledge helps the algorithm to heuristically 
control the selection of candidate features. With prior 
knowledge, our framework also performs well; with domain 
knowledge, for example, the corresponding redundant features 
can be removed earlier because it is easier for our algorithms 
to find strongly relevant and non-redundant features if 
informative features are placed earlier in the streaming 
features. For a strongly relevant feature, say Y, and its copies, 
say Y1 and Y2, which carry exactly the same predictive 
information about the class attribute C, the incoming order of 
these features does not matter. This is because both our 
algorithms and Alpha-investing can select any one feature 
from Y and its copies Y1 and Y2. As soon as one of the 
strongly relevant features, Y, Y1, or Y2, is selected, the 
remaining features will be excluded from the succeeding 
streaming feature selection process.  
   In reality, features are rarely identical but may be strongly 
correlated; thus, given a feature A which is relevant to the 
class attribute C, the order of features A and B might matter if 
feature B is redundant (but not identical) to A. Under such 
circumstances, our algorithms and Alpha-investing might 
select a different set of features depending on the actual order 
of the features. To evaluate the impact of feature order on the 
algorithm’s performance, we generate a number of trials in 
which each trial represents a random ordering of features as a 
feature stream. We apply different algorithms (OSFS, Fast-
OSFS, and Alpha-investing) to each randomized trial and 
report the results in Figures 11-13, where the x-axis represents 
each of the randomized trials and the y-axis represents the 
number of selected features (Figure 11) and the prediction 
accuracies from the corresponding trial.  

The results in Figures 11-13 (the madelon dataset) confirm 
that varying the order of the incoming features does impact on 
the final outcomes. Overall, the results demonstrate that Fast-

OSFS is the most stable method and Alpha-investing appears 
to be highly unstable.  
 

 
Figure 11: Numbers of selected features from 12 randomized trials (each trial 

represents a random ordering of features as a feature stream) 

 

 Figure 12: Prediction accuracies from 12 randomized trials using decision 
tree learning algorithms (J48) 

Figure 13: Prediction accuracies from 12 randomized trials using Knn learning 
algorithms  

As for the proposed OSFS and Fast-OSFS algorithms, Fast-
OSFS significantly accelerates OSFS by employing a new 
redundancy analysis strategy. The accelerated feature selection 
strategy in Fast-OSFS might introduce additional false 
positive features into BCF, which explains why OSFS always 
selects fewer features than Fast-OSFS (as shown in Figure 
11). With sufficient instances and a small size of BCF, OSFS 
achieves almost the same prediction accuracy and runtime as 
Fast-OSFS, but it results in a smaller number of selected 
features. On the other hand, with sufficient instances and a 
large size of BCF, Fast-OSFS is much faster than OSFS. With 
an insufficient number of instances and a large size BCF, Fast-
OSFS is superior to OSFS because Fast-OSFS significantly 
mitigates the false negative errors by reducing the number of 
tests involved in checking feature redundancy. 

G. A Case Study on Automatic Impact Crater Detection 
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In addition to the validation on the publicly available 
benchmark datasets, we also use a real-world impact crater 
dataset to evaluate our streaming feature selection algorithms. 
Impact craters, the structures formed by the collisions of 
meteoroids on planetary surfaces, are among the most studied 
geomorphic features in the solar system because they yield 
information about past and present geological processes. 
Surveying craters provides the only tool for remotely 
measuring the relative ages of geologic formations.  
   Planetary probes deliver ever-increasing volumes of high 

resolution images; however, the scientific utilization of these 
images in ever-higher spatial resolution is hampered by the 
lack of tools for their effective automated analysis. Texture 
features have proven to be effective for crater detection. Tens 
of thousands of texture-based features in different scales and 
resolutions can be generated for crater detection on remotely 
sensed images which provide an extensive near-global 
coverage of a remote planet, such as Mars. While rich texture 
features provide a tremendous source of potential features for 
use in crater detection tasks, they are expensive to generate 
and store. The reality calls for efficient feature selection to 
develop a processing pipeline for fast and accurate surveys of 
craters from high resolution images and make possible the 
assembly of global “million crater” catalogs of craters, not 
only on Mars, but also on Mercury, the Moon, and other 
planets. Consequently, this makes an ideal case study for 
validating our streaming selection framework, compared to 
traditional feature selection approaches. 
  In this case study, our work is based on the crater detection 

framework proposed by Ding et al. (Figure 14). There are 
three steps in the crater-detection framework [11]. 
(1) Crater candidates are the regions of an image that may 

potentially contain craters and the image can be collected 
using remote sensing techniques. A key insight to constructing 
crater candidates is that a sub-kilometer crater can be 
recognized as a pair of crescent-like highlight and shadow 
regions in an image (see Figure 15 [11]). Crescent-like 
shadow and highlight regions in an image are identified from 
images using a shape detection method based on mathematical 
morphology, and those highlight and shadow regions are 
matched so that each pair will be used to construct crater 
candidates, that is, the locations where craters are likely to 
reside. 
 (2) Image texture features are extracted from crater 

candidates using square kernels. 
 (3) Craters are identified using supervised learning 

algorithms. 
    The experiments in crater detection are evaluated on Mars 
because it is at the center of NASA exploration efforts. There 
is a very extensive, near-global coverage of the Martian 
surface with high resolution planetary images. A portion of the 
High Resolution Stereo Camera (HRSC) nadir panchromatic 
image h0905 is selected, taken by the Mars Express 
spacecraft, to serve as the test set [11]. The selected image has 
a resolution of 12.5 meters/pixel and a size of 3,000 by 4,500 
pixels (37,500×56,250m2). The image represents a significant 
challenge to automatic crater detection algorithms because it 
covers a terrain that has spatially variable morphology and 

because its contrast is rather poor (mostly noticeable when the 
image is inspected at a small spatial scale).    
  

 
 

Figure 14: The crater-detection framework proposed by Ding et al. [11] 

 
Figure 15: (A) an illustration explaining why an image of a sub-kilometer 
crater consists of crescent-like highlight and shadow regions. (B) An image of 
an actual 1 km crater showing the highlight and shadow regions. 

    

 
 
 
Figure 16: Impact craters in a 37,500×56,250 m2 test image from Mars. 

 
The image is divided into three sections denoted as the west 

region, the central region, and the east region (see Figure 16 
[11]) for the test sets summarized in Table 6. The central 
region is characterized by surface morphology that is distinct 
from the rest of the image. The west and east regions have 
similar morphology but the west region is much more heavily 

West Region 
 

Central Region East Region 
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cratered than the east region. 1,089 image texture features are 
constructed. The training set consists of 204 true craters and 
292 non-crater examples selected randomly from crater 
candidates located in the northern half of the east region. A 
streaming feature selection framework for the crater detection 
is given in Figure 17. 

 
Table 6: Summary of crater datasets 

 #samples (crater candidates) #features 

West region 6,708 1,089 

Central region 2,935 1,089 
East region 2,026 1,089 

     

 
 
Figure 17: A framework of streaming feature selection for crater detection 
 

In the following sections, we compare our algorithms 
(OSFS and Fast-OSFS) with Alpha-investing and other state-
of-the-art feature selection algorithms. Knn is used to train 
classifiers from each selected feature set, through which we 
can compare the prediction accuracies of different methods. In 
order to thoroughly demonstrate the behaviors of our 
algorithms in the case study, we report the number of selected 
features and the prediction accuracy with respect to two alpha 
values (0.01 and 0.05). The best results are bold-faced in the 
tables. 

G.1 Comparisons with Alpha-investing 

With the value of alpha up to 0.01, Table 7 reports the 
prediction accuracy on three regions using our algorithms and 
Alpha-investing. On the three regions, both our algorithms 
select the same four features from the training dataset and 
result in the same prediction accuracy. From Table 7, we can 
see that our algorithms select fewer features and have higher 
accuracy than Alpha-investing on the west and central regions, 
and the accuracies of our algorithms on the east region are also 
comparable to Alpha-investing. 

 
Table 7: The prediction accuracy on three regions (alpha=0.01) 

 #Selected 
features 

West 
region  

Central 
region  

East 
region  

OSFS  4 0.7753 0.7826 0.7725 
Fast-OSFS  4 0.7753 0.7826 0.7725 
Alpha-investing  16 0.7589 0.7666 0.7730 

 
With the value of alpha up to 0.05, as shown in Table 8, our 

algorithms also select fewer features and have higher accuracy 
than Alpha-investing on all three test regions. On the west 
region and central region, OSFS has the highest prediction 
accuracy, while Fast-OSFS has the highest accuracy on the 
east region. 

 
 Table 8: The prediction accuracy on the three regions (alpha=0.05) 

 # Selected 
features 

West 
region  

Central 
region  

East 
region  

OSFS 5 0.7809 0.7874 0.7828 
Fast-OSFS 5 0.7809 0.7874 0.7828 
Alpha-investing 16 0.7589 0.7666 0.7730 

 
Figures 18 and 19 report the performance of OSFS and 

Alpha-investing with the percentage of the features streaming 
in (Fast-OSFS has the same performance as OSFS, so its 
performance is omitted from the figures). Figure 18 shows that 
the number of selected features changes as more features 
stream in. We can see that our two algorithms select far fewer 
features than Alpha-investing at any stage. When the 
percentage of the features increases to 50%, the number of 
selected features remains stable for Alpha-investing and OSFS. 

Figure 19 illustrates that the test errors of both OSFS and 
Alpha-investing change over time as the features flow in 
continuously. The overall results confirm that OSFS is 
superior to Alpha-investing. The test errors of both algorithms 
remain stable when the percentage of the total features 
increases to 50%. This observation validates the rationality of 
stream feature selection and confirms that instead of trying to 
smooth across all potential features, we can use a small 
number of features to train a much stronger model. 

 

 
Figure 18: Number of selected features changes as the percentage of the 
features increases over time 

G.2 Comparisons with Traditional Feature Selection 
Algorithms 

In this section, we compare our algorithms with the state-of-
the-art non-streaming fashion feature selection algorithms, a 
causal feature selection algorithm, the LARS (Least Angle 
Regression) algorithm, a Naïve boosting algorithm and an 
algorithm without feature selection. Causal feature selection 
has recently been proposed as an emerging successful filtering 
approach in feature selection and has shown that it dominates 
most feature selection methods in prediction accuracy and 
compactness [3]. The HITON_PC algorithm is selected to 
instantiate a causal feature selection approach [3]. The LARS 
algorithm is an embedded feature selection method recently 
introduced to handle classification or regression problems by 
using optimization with specified loss and penalty functions. 
The Naïve boosting algorithm was proposed by Ding et al. 
[11]; it integrates the boosting algorithm and greedy feature 
selection algorithms for crater detection.  
      In Tables 9 and 10, we report the prediction accuracies of 
all methods on the three regions. With the value of alpha up to 
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0.01, as shown in Table 9, we can see that our algorithms win 
on the west region and are very competitive with the LARS 
and Naïve boosting algorithms on the central and east regions. 
As shown in Table 10, both our algorithms outperform the 
other four algorithms on the west and east regions. Although 
our algorithms lose on the central region, they are also very 
close to the Naïve boosting algorithm. In summary, compared 
to the traditional non-streaming fashion feature selection 
algorithms, our new algorithms select far fewer features and 
result in higher or at least comparable accuracies as other 
methods. Most importantly, our algorithms provide a new 
processing pipeline for streaming based feature selection with 
fast and accurate surveys of craters from high resolution 
images. 
 

Table 9: The prediction accuracy on three regions (alpha=0.01) 

 #Selected     
features 

West 
region  

Central 
region  

East 
region  

OSFS 4 0.7753 0.7826 0.7725 
Fast-OSFS 4 0.7753 0.7826 0.7725 
HITON_PC 4 0.7722 0.7853 0.7636 
LARS 6 0.7740 0.7881 0.7799 
Naïve Boosting 150 0.7661 0.7888 0.7749 
No feature selection 1089 0.7303 0.7499 0.7710 

Table 10: The prediction accuracy on three regions (alpha=0.05) 

 #Selected  
features 

West 
region  

Central 
region  

East 
region  

OSFS 7 0.7809 0.7874 0.7828 
Fast-OSFS 7 0.7809 0.7874 0.7828 
HITON_PC 6 0.7749 0.7792 0.7813 
LARS 6 0.7740 0.7881 0.7799 
Naïve Boost 150 0.7661 0.7888 0.7749 
No feature selection 1089 0.7303 0.7499 0.7710 

     Interestingly, the results in Tables 9 and 10 demonstrate 
that although a river-shaped region (the Nanedi Valles on 
Mars) runs through the central image, which makes it 
morphologically different from the original training set, the 

five feature selection algorithms in Tables 9 and 10 result in 
slightly better prediction accuracy on the central region than 
other regions. The reason for this is that we use crater 
candidates, which are the regions of an image that may 
potentially contain craters, for crater detection and calculation 
of prediction accuracy instead of an inefficient, exhaustive 
search of the entire image. While the river-shaped region 
appears to make crater detection more difficult, the distinct 
texture features generated by the crater candidates make them 
fairly easy to recognize compared to the small crater regions 
to the east and west. Moreover, although the west and east 
regions have similar morphology, the west region is much 
more heavily dense with small craters than the east region. 
Thus, the prediction accuracy on the west region is slightly 
lower than the accuracy on the east region. 

VI.  CONCLUSIONS 

In this paper, we have proposed two new algorithms for 
streaming feature selection. Compared to the two state-of-the-
art algorithms, Grafting and Alpha-investing, the proposed 
algorithms OSFS and Fast-OSFS have demonstrated high 
efficiency and effectiveness for applications containing many 
irrelevant and/or redundant features. 

In the experiments, our study has shown that in most cases 
for applications involving streaming or an infinite size of 
features, a small number of features can be selected to train a 
much stronger model, rather than trying to smooth across all 
potential features. We have also applied online streaming 
feature selection to a real-world Mars impact crater dataset 
and compared our algorithms with Alpha-investing and other 
state-of-the-art traditional feature selection algorithms. The 
experiments have demonstrated that the proposed algorithms 
select far fewer features than other methods, and their 
prediction accuracy is mostly higher than, or at least as good 
as, other methods. 

 

 
Figure 19: The test errors of three algorithms with respect to the increase of the percentage of features in three regions (In the top figures OSFS using alpha=0.01 

and in the bottom three figures OSFS using alpha=0.05). 



TPAMI-2011-10-0721(R2) 
 
 

14 

ACKNOWLEDGEMENTS 

This work is supported by the National 863 Program of China 
(2012AA011005), the National Natural Science Foundation of 
China (61229301, 61070131, 61175051 and 61005007), the 
US National Science Foundation (CCF-0905337), and the US 
NASA Research Award (NNX09AK86G). X. Zhu is 
sponsored by Australian Research Council (ARC) Future 
Fellowship (FT100100971). The authors would like to thank 
the anonymous reviewers for their valuable and constructive 
comments on improving the paper. 

References 
 

[1] A. Agresti. Categorical Data Analysis. (1990) New York: John Wiley 
and Sons. 

[2] A. Akadi, A. Amine, A. Ouardighi and D. Aboutajdine. (2011)  A two-
stage gene selection scheme utilizing MRMR filter and GA wrapper. 
Knowledge and Information Systems,  26(3), 487-500. 

[3] C. F. Aliferis,  A.Statnikov, I. Tsamardinos , S. Mani and X. Koutsoukos.  
(2010) Local causal and Markov blanket induction for causal discovery 
and feature selection for classification, Part I: Algorithms and empirical 
evaluation. Journal of Machine Learning Research, 11:171-234.  

[4] Y. Aphinyanaphongs, A. Statnikov and C. F. Aliferis.  (2006) A 
comparison of citation metrics to machine learning filters for the 
identification of high quality medline documents. J. Am. Med. Inform. 
Assoc., 13(4):446–455. 

[5] G. Brown, A. Pocock, M. Zhao and M. Luj´an. (2012) Conditional 
likelihood maximisation: a unifying framework for information theoretic 
feature selection. Journal of Machine Learning Research, 13:27-66. 

[6] G. Bontempi and P. E. Meyer. (2010) Causal filter selection in 
microarray data. ICML’10, 95-102. 

[7] N. Bouguila and D. Ziou. (2011) A countably infinite mixture model for 
clustering and feature selection. Knowledge and Information Systems, 
21:1-20. 

[8] T. P. Conrads et al. (2004) High-resolution serum proteomic features for 
ovarian cancer detection. Endocr. Relat Cancer, 11:163-178. 

[9] A. Cuzzocrea. (2011) Data warehousing and knowledge discovery from 
sensors and streams. Knowledge and Information Systems, 28:491-493. 

[10] M. Dash and H. Liu. (2003) Consistency-based search in feature 
selection. Artificial Intelligence, 151(1-2), 155-176. 

[11] W. Ding, T. Stepinski, Y. Mu, L. Bandeira, R. Vilalta, Y. Wu, Z. Lu, T. 
Cao and X. Wu. (2011) Sub-kilometer crater discovery with boosting 
and transfer learning. ACM Transactions on Intelligent Systems and 
Technology, 2(4), 1-22. 

[12] P. S. Dhillon, D. Foster and L. Ungar. (2010) Feature selection using 
multiple streams. AISTATS’10, 153-160. 

[13] K. Glocer, D. Eads and J. Theiler. (2005) Online feature selection for 
pixel classification. ICML’05, 249 - 256. 

[14] I. Guyon, C.F. Aliferis and A. Elisseeff. (2008) Causal feature selection. 
In: Computational methods of feature selection. H. Liu and H. Motoda 
Eds. Boca Raton, FL: Chapman and Hall. 

[15] I. Guyon and A. Elisseeff. (2003) An introduction to variable and feature 
selection. Journal of Machine Learning Research, 3:1157-1182. 

[16] X. He, M. Ji, C. Zhang and H. Bao. (2011) A variance minimization 
criterion to feature selection using laplacian regularization. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 33(10), 
2013-2025. 

[17] T. Joachims. (2002) Learning to classify text using support vector 
machines. Boston: Kluwer Academic. 

[18] R. Kohavi and G. H. John. (1997) Wrappers for feature subset selection. 
Artificial Intelligence, 97: 273-324. 

[19] D. Koller and M. Sahami. (1996) Toward optimal feature selection. 
ICML’96, 284-292. 

[20] H. Malik, D. Fradkin and F. Moerchen. (2011) Single pass text 
classification by direct feature weighting. Knowledge and Information 
Systems, 28(1), 79-98. 

 

[21] R. Neapolitan. (2003) Learning Bayesian networks. Upper Saddle River, 
NJ: Prentice Hall. 

[22] S. Perkins and J. Theiler. (2003) Online feature selection using grafting. 
ICML’03, 592-599. 

[23] H. Peng, F. Long and C. Ding. (2005) Feature selection based on mutual 
information: Criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 27(8):1226–1238. 

[24] I. Rodriguez-Lujan, R. Huerta, C. Elkan and C. Santa-Cruz. (2010) 
Quadratic programming feature selection. Journal of Machine Learning 
Research, 11:1491-1516. 

[25] A. Rosenwald et al. (2002) The use of molecular profiling to predict 
survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. 
J Med., 346, 1937-1947. 

[26] M. Shah, M. Marchand, J. Corbeil. (2012) Feature selection with 
conjunctions of decision stumps and learning from microarray data. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 
174-186. 

[27] L. Song, A. Smola, A. Gretton, J. Bedo and K. Borgwardt.  (2012) 
Feature selection via dependence maximization. Journal of Machine 
Learning Research, 13:1393−1434. 

[28] P. Spirtes, C. Glymour and R. Scheines. (2000) Causation, prediction, 
and search, 2nd edition. Cambridge, MA: MIT Press. 

[29] R. Tibshirani. (1996) Regression shrinkage and selection via the Lasso. 
Journal of Royal. Statist. Soc. B. 58, 267–288. 

[30] E. Tuv, A. Borisov, G. C. Runger and K.Torkkola. (2009) Feature 
selection with ensembles, artificial variables, and redundancy 
Elimination. Journal of Machine Learning Research, 10:1341-1366. 

[31] L. Ungar, J. Zhou, D. Foster and B. Stine. (2005) Streaming feature 
selection using IIC. AI&Statistics’05, 384-393. 

[32] Y. Wang et al. (2005) Gene-expression profiles to predict distant 
metastasis of lymph-node negative primary breast cancer. Lancet, 365, 
671-679. 

[33] R. Wang, S. Shan, X. Chen, J. Chen and W. Gao. (2011) Maximal linear 
embedding for dimensionality reduction.  IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 33(9), 1776–1792. 

[34]  K. Yu, H. Wang and W. Ding. (2010)  Online streaming feature 
selection. ICML’10, 1159-1166. 

[35] L. Yu, C. Ding and S. Loscalzo. (2008) Stable feature selection via 
dense feature groups. KDD’08, 803-811. 

[36] L. Yu and H. Liu. (2004) Efficient feature selection via analysis of 
relevance and redundancy. Journal of Machine Learning Research, 5: 
1205-1224. 

[37] P. Zhao and B. Yu. (2006) On model selection consistency of Lasso. 
Journal of Machine Learning Research, 7:2541–2567. 

[38] T. Zhang. (2009) On the consistency of feature selection using greedy 
least squares regression. Journal of Machine Learning Research, 10: 
555-568. 

[39] Z. Zhang and N. Ye. (2011) Locality preserving multimodal 
discriminative learning for supervised feature selection. Knowledge and 
Information Systems,  27(3), 473-490. 

[40] J. Zhou, D. P. Foster, R. Stine and L.H. Ungar. (2005) Streaming feature 
selection using Alpha-investing. KDD’05, 384 -393.  

[41] J. Zhou, D. Foster, R.A. Stine and L.H. Ungar. (2006) Streamwise 
feature selection. Journal of Machine Learning Research, 7:1861-1885. 

[42] X. Zhu, W. Ding, P. S. Yu and C. Zhang. (2011) One-class learning and 
concept summarization for data streams. Knowledge and Information 
Systems, 28(3), 523-553. 

[43] H. Zeng and Y. Cheung. (2011) Feature selection and kernel learning for 
local learning-based clustering. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 33(8), 1532-1547. 

  



TPAMI-2011-10-0721(R2) 
 
 

15 

Xindong Wu is a Yangtze River Scholar 
in the School of Computer Science and 
Information Engineering at the Hefei 
University of Technology (China), a 
Professor of Computer Science at the 
University of Vermont (USA), and a Fellow 
of the IEEE.  He received his Bachelor's and 
Master's degrees in Computer Science from 
the Hefei University of Technology, China, 
and his Ph.D. degree in Artificial Intelligence 

from the University of Edinburgh, Britain.  His research interests 
include data mining, knowledge-based systems, and Web 
information exploration. 
    Dr. Wu is the Steering Committee Chair of the IEEE 
International Conference on Data Mining (ICDM), the Editor-in-
Chief of Knowledge and Information Systems (KAIS, by 
Springer), and a Series Editor of the Springer Book Series on 
Advanced Information and Knowledge Processing (AI&KP).  He 
was the Editor-in-Chief of the IEEE Transactions on Knowledge 
and Data Engineering (TKDE, by the IEEE Computer Society) 
between 2005 and 2008. He served as Program Committee 
Chair/Co-Chair for ICDM '03 (the 2003 IEEE International 
Conference on Data Mining), KDD-07 (the 13th ACM SIGKDD 
International Conference on Knowledge Discovery and Data 
Mining), and CIKM 2010 (the 19th ACM Conference on Information 
and Knowledge Management). 

 
Kui Yu  received the MSc degree in Computer 
Science from the Hefei University of 
Technology, China, in 2007. He is currently a 
Ph.D. student in the School of Computer 
Science and Information Engineering at the 
Hefei University of Technology (China), and 
also a visiting Ph.D. student in the Department 
of Computer Science at the University of 
Massachusetts Boston (USA). His research 

interests include feature selection, probabilistic graphical models and 
machine learning. 

 

Wei Ding received her Ph.D. degree 
in Computer Science from the 
University of Houston in 2008. She 
has been an Assistant Professor of 
Computer Science in the University of 
Massachusetts Boston since 2008. Her 
research interests include data mining, 
machine learning, artificial 
intelligence, computational semantics, 
and with applications to astronomy, 
geosciences, and environmental 

sciences. She has published more than 60 referred research papers, 1 
book, and has 1 patent. She is an Associate Editor of Knowledge and 
Information Systems (KAIS) and an editorial board member of the 
Journal of System Education (JISE). She is the recipient of a Best 
Paper Award at the 2011 IEEE International Conference on Tools 
with Artificial Intelligence (ICTAI), a Best Paper Award at the 2010 
IEEE International Conference on Cognitive Informatics (ICCI), a 
Best Poster Presentation award at the 2008 ACM SIGSPATIAL 
International Conference on Advances in Geographic Information 
Systems (SIGSPAITAL GIS), and a Best PhD Work Award between 
2007 and 2010 from the University of Houston. Her research projects 
are currently sponsored by NASA and DOE. 
 
 

 
Hao Wang received his Ph.D. degree in 
Computer Science from the Hefei University of 
Technology, China, in 1997. He is a Professor of 
the School of Computer Science and 
Information Engineering, Hefei University of 
Technology, Hefei, China. His research interests 
include robotics, artificial intelligence, data 
mining, probabilistic graphical models and 

machine learning. 
 
Xingquan Zhu received his Ph.D. degree in 
Computer Science from Fudan University, 
Shanghai, China, in 2001. He is a recipient of 
the Australian Research Council (ARC) Future 
Fellowship and a Professor of the Centre for 
Quantum Computation & Intelligent Systems, 
Faculty of Engineering and Information 
Technology, University of Technology, Sydney 
(UTS), Australia. Dr. Zhu’s research focuses on 

data mining, machine learning, and multimedia systems. Since 2000, 
he has published more than 140 referred journal and conference 
proceedings papers in these areas. Dr. Zhu is an Associate Editor of 
the IEEE Transactions on Knowledge and Data Engineering (2009-), 
a General Co-Chair for the 11th International Conference on Machine 
Learning and Applications (ICMLA 2012), the Program Committee 
Co-Chair for the 23rd IEEE International Conference on Tools with 
Artificial Intelligence (ICTAI 2011), and the 9th International 
Conference on Machine Learning and Applications (ICMLA 2010).  
 
 
 
  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 


