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Abstract— For large-scale and long-term simultaneous lo-
calization and mapping (SLAM), a robot has to deal with
unknown initial positioning caused by either the kidnapped
robot problem or multi-session mapping. This paper addresses
these problems by tying the SLAM system with a global loop
closure detection approach, which intrinsically handles these
situations. However, online processing for global loop closure
detection approaches is generally influenced by the size of the
environment. The proposed graph-based SLAM system uses
a memory management approach that only consider portions
of the map to satisfy online processing requirements. The
approach is tested and demonstrated using five indoor mapping
sessions of a building using a robot equipped with a laser
rangefinder and a Kinect.

I. INTRODUCTION

Autonomous robots operating in real life settings must

be able to navigate in large, unstructured, dynamic and

unknown spaces. To do so, they must build a map of their

operating environment in order to localize itself in it, a

problem known as Simultaneous localization and mapping

(SLAM). A key feature in SLAM is detecting previously

visited areas to reduce map errors, a process known as loop

closure detection. Our interest lies with graph-based SLAM

approaches [1] that use nodes as poses and links as odometry

and loop closure transformations.

While single session graph-based SLAM has been largely

addressed [2]–[4], multi-session SLAM involves having to

deal with the fact that robots, over a long period of operation,

will eventually be shutdown and moved to another location

without knowing it. Such situations include the so-called

kidnapped robot problem and the initial state problem: when

it is turned on, a robot does not know its relative position

to a map previously created. One way to do multi-session

mapping is to have the robot, on startup, localize itself in

a previously-built map. This solution has the advantage to

always use the same referential and only one map is created

across the sessions. However, the robot must start in a portion

of the environment already mapped, otherwise it never can

relocalize itself in it. Another approach is to initialize a new

map with its own referential and when a previously visited

location is encountered, the transformation between the two

maps can be computed. In [5], special nodes called “anchor
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nodes” are used to keep transformation information between

the maps. A similar approach is also used with multi-robot

mapping [6]: transformations between maps are computed

when a robot sees the other or when a landmark is seen by

both robots in their respective maps.

Global loop closure detection approaches, by being inde-

pendent of the robot’s estimated position [7], can intrinsically

solve the problem of determining when a robot comes back

to a previous map using a different referential [8]. Popular

global loop detection approaches are appearance-based [9]–

[12], exploiting the distinctiveness of images. The underlying

idea behind these approaches is that loop closure detection

is done by comparing all previous images with the new one.

When loop closures are found between the maps, a global

graph can be created by combining the graphs from each

session. Graph pose optimization approaches [13]–[15] can

then be used to reduce odometry errors using poses and link

transformations inside each map and also between the maps.

All the solutions above can be integrated together to create

a functional graph-based SLAM system. However, for loop

closure detection and graph optimization approaches, online

constraint satisfaction is limited by the size of the environ-

ment. For large-scale and long-term operation, the bigger the

map is, the more computing power is required to process the

data online. Mobile robots have limited computing resources,

therefore online map updating is limited, and so some parts

of the map must be somewhat forgotten. Memory manage-

ment approaches [16] can be used to limit the size of the

map so that loop closure detections are always processed

under a fixed time limit, thus satisfying online requirements

for long-term and large-scale environment mapping.

The solution presented in this paper simultaneously ad-

dresses these two problems: multi-session mapping, and on-

line map updating with limited computing resources. Global

loop closure detection is used across the mapping sessions

to detect when the robot revisits a previous map. Using these

loop closure constraints, the graph is optimized to minimize

trajectory errors and to merge the maps together in the same

referential. A memory management mechanism is used to

limit the data processed by global loop closure detection

and graph optimization in order to respect online constraints

independently of the size of the environment. The algorithm

is tested over five mapping sessions using a robot in an indoor

environment.

The paper is organized as follows. Section II describes

our approach. Section III presents experimental results and

Section IV discusses limitations of the approach on very

long-term operation. Section V concludes the paper.



II. ONLINE MULTI-SESSION GRAPH-BASED

SLAM

In our approach, the underlying structure of the map is

a graph with nodes and links. The nodes save odometry

poses for each location in the map. The nodes also contain

visualization information like laser scans, RGB images,

depth images and visual words [17] used for loop closure

detection. The links store rigid geometrical transformations

between nodes. There are two types of links: neighbor and

loop closure. Neighbor links are added between the current

and the previous nodes with their odometry transformation.

Loop closure links are added when a loop closure detection

is found between the current node and one from the same

or previous maps. Our contribution in this paper involves

combining two algorithms, loop closure detection [16] and

graph optimization [14], through a memory management

process [16] that limits the number of nodes available from

the graph for loop closure detection and graph optimization,

so that they always satisfy online requirements.

A. Loop Closure Detection

For global loop closure detection, the bag-of-words ap-

proach described in [16] is used. Briefly, this approach uses

a bayesian filter to evaluate loop closure hypotheses over all

previous images. When a loop closure hypothesis reaches a

pre-defined threshold H , a loop closure is detected. Visual

words, which are SURF features quantized to an incremental

visual dictionary, are used to compute the likelihood required

by the filter.

In this paper, the RGB image, from which the visual words

are extracted, is registered with a depth image, i.e., for each

2D point in the RGB image, a 3D position can be computed

using the calibration matrix and the depth information given

by the depth image. The 3D positions of the visual words

are then known. When a loop closure is detected, the rigid

transformation between the matching images is computed by

a RANSAC approach using the 3D visual word correspon-

dences. If a minimum of I inliers are found, loop closure

is accepted and a link with this transformation between

the current node and the loop closure hypothesis node is

added to the graph. If the robot is constrained to operate

on a single plane, the transformation can be refined with

2D iterative-closest-point (ICP) optimization [18] using laser

scans contained in the matching nodes.

B. Graph Optimization

TORO [14] (Tree-based netwORk Optimizer) is the graph

optimization approach used, in which node poses and the link

transformations are used as constraints. When loop closures

are found, the errors introduced by the odometry can then

be propagated to all links, thus correcting the map. It is

relatively straightforward to use TORO to create a tree from

the map’s graph when there is only one map: the TORO

tree has therefore only one root. In multi-session mapping,

the different maps created have their own root with their

own reference frames. When loop closures occur between

the maps, TORO cannot optimize the graph if there are
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Fig. 1. Memory management model.

multiple roots. It may also be difficult to find a unique root if

some portions of the map are forgotten or unavailable at that

time (because of the memory management approach used to

satisfy online processing requirements, explained in Sect. II-

C). To alienate these problems, our approach takes the root

of the tree to be the latest node added to the current map

graph, which is always uniquely defined across intra-session

and inter-session mapping.

C. Memory Management for Online Multi-Session Mapping

For online mapping, new incoming data must be processed

faster than the time required to acquire them. For example,

if data are acquired at 1 Hz, new data should be added

to the graph with global loop closure detection and graph

optimization should be done in less than R = 1 second. The

problem is that the time required for loop closure detection

and graph optimization depends on the map’s graph size.

Long-term and large-scale online mapping is then limited

by the size of the environment. To handle this, the RTAB-

Map memory management approach [16] is used to maintain

a graph manageable online by the loop closure detection

and graph optimization algorithms, thus making the metric

SLAM approach presented in this paper independent of the

size of the environment.

The approach works as follows. The memory is composed

of a Short-Term Memory (STM), a Working Memory (WM)

and a Long-Term Memory (LTM), as shown by Figure 1.

The STM is the entry point for new nodes added to the

graph when new data are acquired, and has a fixed size S.

Nodes in STM are not considered for loop closure detection

because they are generally very similar from one to another.

When the STM size reaches S nodes, the oldest node is

moved to WM to be considered for loop closure detection.

The WM size indirectly depends on a fixed time limit T .

When the time required to process the new data reaches

T , some nodes of the graph are transferred from WM to

LTM, thus keeping the WM size nearly constant. The LTM

is not used for loop closure detection and graph optimization.

However, if a loop closure is detected, neighbors in LTM of

the old node can be transferred back to WM (a process called

Retrieval) for further loop closure detections. In other words,

when a robot revisits an area which was previously forgotten,

it can remember incrementally the area if a least one node

of this area is still in WM.

The choice of which nodes to keep in WM is based on

a Weight Update step done in STM. The heuristic used to
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Fig. 2. Illustration of a local map created from multi-session mapping.

increase the weight of a node is based on the principle that,

as humans do [19], [20], the robot should remember more

the areas where they spent most of their time in. Therefore,

the longer the robot is at a particular location, the larger the

weight of the node should be. If two consecutive images are

similar, i.e., the ratio of corresponding visual words between

the images is over a specified threshold Y , the node’s weight

of the first image is increased by one and no new node is

created for the second image. By following this heuristic, the

compromise made between search time and space is therefore

driven by the environment and the experiences of the robot.

Oldest and less weighted nodes in WM are transferred to

LTM before the others, thus keeping in WM only the nodes

seen for longer periods of time.

For the approach presented in this paper, a local map

consists of the biggest fully connected graph that can be

created through neighbor and loop closure links from the last

node (used as the root) with those in WM. Figure 2 illustrates

the concept. The diamonds represent initial and end nodes

for each mapping session. The nodes in LTM are shown in

red and the others are those in WM. The current local map

is created and optimized only using nodes in WM that are

linked to the last node (all nodes in the dashed area). The

local map therefore represents more than the latest mapping

session: it can span over multi-session mapping through loop

closure links (green links). The other nodes still in WM that

are not included in the local map are unreachable from the

last node through links available in WM at this time.

Using this memory management approach, some parts of

the map may be missing for graph optimization, as described

in II-B. Online graph optimization is done on the local

map, with the constraints available in WM at that time.

Constraints transferred to LTM are not used, thus limiting

graph quality compared to using all constraints available.

This is the compromise to make to be able to satisfy online

processing requirements. However, if required, the approach

is still able to create a global map by using all constraints

from LTM and conduct offline a global graph optimization.

III. RESULTS

The data sets used for the experiments are acquired using

the AZIMUT-3 robot [21], shown by Fig. 3, equipped with

Kinect!

URG-04LX!

AZIMUT-3!

Fig. 3. AZIMUT-3 robot equipped with a URG-04XL laser range finder
and a Kinect sensor.

a URG-04LX laser rangefinder and a Kinect sensor. The

RGB images from the Kinect are used for the appearance-

based loop closure detection while the depth images are used

to find the 3D position of the visual words. Laser scans

and RGB-D point clouds created from the Kinect are used

for map visualization. As mentioned in II-A, since in this

experiment the robot is constrained to a single plane, loop

closure transformations are refined using 2D ICP with the

laser scans to increase precision: the transformations are then

limited to three degrees of freedom (x, y and rotation over z

axis), ignoring noise on other degrees of freedom computed

by the visual transformation.

Five mapping sessions (total length of 750 m) were

conducted by starting the robot at different locations in our

lab building. Between the mapping sessions, the robot was

turned off to reset odometry, and moved to another location.

In each session, the robot revisited at least one part of the

environment mapped in a previous session. Data acquisi-

tion is done using the ROS bag mechanism (http://ros.org).

Odometry, laser scans, RGB images and depth images are

recorded at 1 Hz (i.e., R = 1 s) in a ROS bag. A ROS bag

can be played using the same timings as during acquisition,

making a realistic input for mapping and a good common

format for other algorithms using ROS. One ROS bag per

mapping session is taken. The ROS bags are processed on a

MacBook Pro 2010: 2.66 GHz Intel Core i7 and SSD hard

drive (on which the LTM is saved).

Two experiments were conducted (STM size S = 10,

minimum inliers I = 5 of RANSAC, hypothesis threshold

H = 0.11 and similarity threshold Y = 0.45). For the first

experiment, our approach processed each mapping session

independently, i.e., the memory was cleared between each

session. Time limit T was set to 0.7 s. Fig. 4 shows the

resulting maps for sessions 1, 2 and 3, with and without

graph optimizations. The light gray areas are empty spaces

detected using the laser rangefinder. No nodes were trans-

ferred to LTM in these experiments (local maps are equal

to global maps). This is confirmed by Fig. 6: T was never

reached for these sessions, and thus all nodes were used for

loop closure detection and graph optimization. Fig. 5 shows

results for the mapping sessions 4 and 5 (i.e., Map 4 and Map

5): the global graph not optimized (left), the last local map

(middle) and the global map (right). The local map is the

biggest map that was created online from the last node (with

nodes available in WM), and the global map was generated

offline after the mapping sessions (with all nodes in WM and
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Fig. 4. Resulting local maps without (left) and with (right) graph
optimizations for a) Map 1, b) Map 2 and c) Map 3. Loop closures are
shown in red.
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Fig. 5. Results for Map 4 (top) and Map 5 (bottom), with a) the map
from all nodes still in WM (light gray) with the global graph (blue line) not
optimized, b) the local map with local graph optimization and c) the global
map with global graph optimization. Loop closures are shown in red.

LTM). As shown by Fig. 6, T was reached before the end.

Fig. 5 b) illustrate the effect of transferring nodes to LTM

to satisfy the online requirement. Even if loop closures can

be detected with older portions of the map still in WM (as

shown in a)), the maps cannot be globally optimized if the

neighbors of the loop closures are in LTM. For comparison,

Fig. 5 c) are maps created offline using all constraints in

LTM: here, loop closures with old portions of the map have

an effect on graph optimization.

For the second experiment, the data sets for the five maps

were processed one after each other, as in a real multi-session

mapping trial. The robot automatically started a new map

when the odometry was reset to zero before each session. The

memory was preserved between the sessions and T was also

set to 0.7 s. Fig. 7 shows the last local map (nodes in light

gray areas are those in WM) and global graph (blue line)

without optimization. The maps lie over each other because
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Map 1: 333 nodes
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Fig. 6. Processing time in relation to the number of nodes processed over
time for each data set. T is shown by the horizontal line.

Fig. 7. Top view of the map without optimization after five mapping
sessions. The red and green links show intra-session and inter-session loop
closures detected, respectively.

they are all starting from the same referential. Loop closures

detected in the same map (intra-session) and those detected

between the maps (inter-session) are shown in red and green,

respectively. To distinguish more easily inter-session loop

closures, Fig. 8 illustrates the global graph for y-value of the

poses over time. Note that all paths for each session started

at y = 0 and they were not connected together by neighbor

links. Optimizing the graph using all these detected loop

closures results in a single fully connected map of all five

mapping sessions. Fig. 9 shows the resulting global map by

assembling the RGB-D point clouds from the Kinect using

the optimized poses of the graph.

Fig. 10 a) shows the resulting local map created from all

the mapping sessions. Because the local map is built only

from nodes in WM that are linked (directly or indirectly)

to the last node, only a small portion of the global map

is available online. Note that the local map is also smaller

than Map 5 taken independently (shown by Fig. 5): in

the second experiment, there were nodes with more weight

from previous mapping sessions that were still in WM, thus

more nodes from the latest mapping session were transferred

to LTM and not used for local map creation. These high

weighted nodes are located in the light gray areas of Fig.

10 b). The blue line represents the global graph created

using all constraints in LTM. When using all constraints in

LTM, the local map is also slightly more straight. At the

end of the experiment, the global graph has 2074 nodes



−10 0 10 20 30 40 50
0

500

1000

1500

2000

2500

y

N
o
d
e 

in
d
ex

es

Map 1

Map 2

Map 3

Map 4

Map 5

Fig. 8. Loop closures between the mapping sessions. Only the y values
of the poses are illustrated for visibility purposes. Green and red links are
inter-session and intra-session loop closures detected, respectively. Neighbor
links are shown in blue. Note that only green links connect the five maps
together.

Fig. 9. Five online mapping sessions merged together automatically.
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Fig. 10. Graphs optimized for a) the last local map built online, b) the
global map built offline, with nodes in light gray areas are those still in
WM, and the other nodes are in LTM.

with all mapping sessions connected, with 330 nodes in

WM (107, 12, 27, 28, 156 nodes from maps 1, 2, 3, 4 and

5, respectively) for which 173 nodes are accessible for the

local map (4, 15, 6, 0, 148 nodes from maps 1, 2, 3, 4

and 5, respectively). For the local map, it is normal that a

high proportion of nodes are from the last session, which

is the most recent one. Nodes from older maps are those

retrieved from LTM around the latest loop closures found.

For example, when the robot is mapping a new area, only

nodes of the last session would be in the local map.

Fig. 11. Global maps with (blue) and without (red) T . The maps are
manually superimposed over the actual plan of the building.

To observe the influence of memory management on

the quality of the map created, we conducted the same

experiment without T . All nodes were then kept in WM and

they were processed by both loop closure detection and graph

optimization at each time step. Normally, without transfer-

ring nodes to LTM, more loop closures would be detected,

so more constraints would be used for graph optimization.

As shown in Fig. 12, the processing time becomes greater

than the acquisition time R, which is not the case with

T = 0.7 s. However, without T , 193 intra-session and 387

inter-session loop closures were detected, comparatively to

188 and 258 respectively for the online experiment. Fig. 11

compares the resulting global maps with (blue) and without

(red) T . By comparing with the building plan (the plan was

scaled to 5 cm / pixel like the generated maps, the maps were

manually oriented so trajectories are aligned to most doors

traversed), the quality of the experiment without T (red) is a

little better than with T (blue), probably because more loop

closures were used for graph optimization. However, for the

two conditions, the large loop from Map 5 is not correctly

aligned with the building plan. The robot traversed this area

only once and exited from the same door from which it

entered, making it more difficult for the graph optimization

algorithm to correct angular errors for this single entry point.

For comparison, the left part of the map was also traversed

once during session 4, but the robot exited the area from

another door, thus making the area more robust to angular

errors.

IV. DISCUSSION

In term of processing time, the results show that the

proposed approach is able to satisfy online processing re-

quirements independently of the size of the environment.

However, map quality depends on the number of loop

closures that can be detected. To satisfy online requirements,

the robot transfers in LTM some portions of the map which

cannot be used for loop closure detection. For multi-session

mapping, the worst case would occur if all nodes of a

previous map are transferred to LTM before a loop closure

is detected with the new map. This would result in definitely

forgetting the previous map: there would be no links in
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Fig. 12. Processing time for each node added to graph. The horizontal
lines are T = 0.7 and R = 1.

WM and even in LTM that could connect this older map

to the new one, and it would be ignored even for the global

map construction. To avoid this problem, our approach could

keep at least one node for each map in WM. However, if

the number of mapping sessions becomes very high (e.g.,

thousands of sessions), these nodes would definitely have

to be transferred in LTM to satisfy the online requirement.

For long-term, large-scale and multi-session mapping, some

portions of the map would then be definitely forgotten,

and therefore some kind of heuristic to efficiently manage

important nodes to keep in WM is required.

Another observation is that frequently revisiting old maps

increases global map quality. A robot autonomously mapping

a facility could, when detecting an old map, decide to revisit

some parts of it to detect more inter-session loop closures,

thus creating more constraints for graph optimization.

In the experiments conducted, no invalid loop closures

were detected. If this occur, erroneous constraints would

be added to graph optimization, resulting in map errors.

Some graph optimization approaches such as [22], [23] deal

with possible invalid matches, and could be used to increase

robustness of the proposed approach.

V. CONCLUSION

Results presented in this paper suggest that the pro-

posed graph-based SLAM approach is able to meet online

requirements needed for large-scale, long-term and multi-

session online mapping. By limiting the number of nodes in

WM available for global loop closure detection and graph

optimization, online processing is achieved for new data ac-

quired. Our approach is tightly based on global loop closure

detection, allowing it to naturally deal with the kidnapped

robot problem and gross errors in odometry. Our code is

open source and available at http://rtabmap.googlecode.com/.

In future work, we plan to study the impact of autonomous

exploration strategies on multi-session mapping, especially

how it can actively direct exploration based on nodes avail-

able for online mapping and graph optimization.
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