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Abstract

The adoption of “human-in-the-loop” paradigms in computer vision and machine learning is 
leading to various applications where the actual data acquisition (e.g., human supervision) and the 
underlying inference algorithms are closely interwined. While classical work in active learning 
provides effective solutions when the learning module involves classification and regression tasks, 
many practical issues such as partially observed measurements, financial constraints and even 
additional distributional or structural aspects of the data typically fall outside the scope of this 
treatment. For instance, with sequential acquisition of partial measurements of data that manifest 
as a matrix (or tensor), novel strategies for completion (or collaborative filtering) of the remaining 
entries have only been studied recently. Motivated by vision problems where we seek to annotate a 
large dataset of images via a crowdsourced platform or alternatively, complement results from a 
state-of-the-art object detector using human feedback, we study the “completion” problem defined 
on graphs, where requests for additional measurements must be made sequentially. We design the 
optimization model in the Fourier domain of the graph describing how ideas based on adaptive 
submodularity provide algorithms that work well in practice. On a large set of images collected 
from Imgur, we see promising results on images that are otherwise difficult to categorize. We also 
show applications to an experimental design problem in neuroimaging.

1. Introduction

The problem of missing or partially observed data is ubiquitous in science — an issue that is 
becoming more relevant within the translational/operational aspects of modern computer 
vision and machine learning. Occasionally, we may be restricted by the number of distinct 
types of measurements (feedback or supervision) that can be acquired per participant due to 
budget constraints. In other situations, a subset (or even a majority) of features/responses 
may be missing in a portion of the data due to logistic reasons. Separately, equipment 
malfunction, human negligence or fatigue, noise and other factors common in data 
acquisition lead to scenarios where a subset of the data to be analyzed is missing, partially 
observed or systematically corrupted. Occasionally, this phenomena may be prospective — a 
design choice where the experiment can acquire extensive supervision only for a few 
samples. Alternatively, it may be a nuisance that must be accounted for in a retrospective 
manner (e.g., 10% of participants labeled merely half of the objects in the image). As the 
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number of computer vision and machine learning systems deployed in the real world 
continues to grow and “human-in-the-loop” paradigms become mainstream, such issues will 
emerge as a first order constraint that should inform the design of algorithms.

Example 1

We are tasked with collecting human annotations on 1M+ images, via a crowdsourced 
platform. The allocated budget, unfortunately, is only enough for 500K image-wise 
annotations. Assume that 250K randomly selected images in the corpus have already been 
annotated in the first phase. We may ask an interesting question: based on image features 
calculated (e.g., using a deep network [33, 36, 17]) on the full dataset, if we could only 
acquire partial data based on financial constraints, can we come up with a “policy” to decide 
which subset of 250K images should we request user feedback on? Is one ‘order’ of requests 
(policy) better than the other? If we know that we will run a simple logistic regression using 
the annotations what properties of the data will ensure that we obtain guarantees on the 
downstream machine learning model?

Example 2

Consider the setting where we have access to an (already trained) model for object detection. 
When we use this system on images obtained via a platform such as Reddit or Imgur, it 
works well but fails for η% of the images. Let us assume that the already learned system 
offers good specificity, i.e., when the model is highly confident, its predictions correlate with 
ground truth labels. Separately, we also have auxiliary information (e.g., comments, captions 
associated with each image). While not perfect, such secondary data provide some sense of 
associations between images. If this were a partially observed distribution (with η% of 
missing observations), can we provide new object probabilities on images where a state of 
the art object detectors failed? Now, if human supervision were available to annotate a small 
portion, η% of images, in which order of images will we ask the human to intervene? 
Thinking of object-wise probabilities as a multivariate “signal”, can the signal on the 
remaining subset be “completed”?

Example 3

In a neuroimaging study, we may be provided a set of relatively cheaper measurements (e.g., 
MRI scans) on all subjects in a cohort. Let us assume that these measurements are correlated 
with a more expensive and highly informative acquisition such as a PET scan; summaries 
obtained from the less expensive scans are useful but have higher variability [35]. What can 
be gleaned from the data statistics of the cheaper set of imaging measures? How can such 
information guide the sequential order in which more expensive data will be collected on the 
remaining participants with budget constraints? Can we guarantee that the statistical power 
of the downstream model will improve?

If we ignore the online aspect of the problems above, it is reasonable to think of examples 1 
to 3 above via the lens of matrix completion [10, 5, 6, 37, 6, 4, 16]. Indeed, each subject/
participant can be given as a column in a matrix which is partially observed (potentially 
corrupted) and the task is to “complete” the matrix — often, using a low rank regularizer (or 
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its variants). However, we see that even the entry-level assumptions used in low rank matrix 
completion are violated, for instance, the restricted isometry property (RIP) and incoherent 
sampling. Shoehorning matrix completion schemes directly to the problem yields 
unsatisfactory results, as we will describe shortly.

Graph representation

Instead of a matrix, it is perhaps more natural to express the data in terms of a graph. 
Individual participants are nodes and their measurements can be assumed to be an observed 
multivariate signal of dimension p on each node. If we assume some auxiliary information 
yields associations between these nodes, then the partially observed setting models the 
situation that at some nodes we do not observe the signal at all, see Fig. 1.

This “discrete” space (i.e., graph) version of completion problems has only been studied/
formalized within the last two years. In [28], the idea of collaborative filtering was 
generalized to graphs where a smoothness assumption was imposed using the Laplacian of 
the graph. Separately, a random sampling scheme with a bandlimited assumption was 
introduced in [27] where the authors define a probability distribution for sampling at each 
node of a graph by analyzing the eigenvalues/eigenvectors of the Laplacian of the graph. 
These methods essentially model the graph completion problem (an example demonstrated 
in Fig. 1) using a diffusion process by propagating observed measurements to their 
neighboring vertices where the measurements are unobserved. They utilize the spectrum of 
the Laplacian of a graph to simulate the diffusion process in the native space (i.e., a graph), 
and solve an optimization problem in the graph space to obtain the optimal solution. These 
are important results which provide baselines for our experiments.

Key Ideas

The starting point of our proposed algorithm is to perform harmonic analysis on the given 
graph. Similar to the “low rank” property (for matrix completion), we also make use of 
parsimony/sparsity, albeit in terms of representations obtained in the Fourier/wavelet space 
of the graphs. Recall that measurements/signals are represented as a smooth function in their 
graph space but their representations in a dual space may be sparse, which is an important 
advantage of the frequency analysis [20]. We exploit a similar idea, in the graph setting 
using the graph Fourier transform. The “online” version of the completion problem is 
defined using the frequency space of this graph. When we acquire a measurement on a 
vertex, the “value of information” for the remaining set of unobserved vertices changes to 
impact our “policy” to acquire the next measurement. This strategy is related to the idea of 
diminishing returns but is an “adaptive” variation. While such an online scenario has been 
studied for a general matrix or tensor setting [21, 22, 25], no algorithms are available for 
graphs. We show how recent work on submodular maximization can be adapted for analysis 
of measurements on a graph in this online manner utilizing the graph Fourier representation.

In this paper, we provide a framework for deciding the optimal policy of selecting vertices 
on a graph for an accurate and efficient recovery of a signal by exploring its dual 
representation. The contributions of this paper are: 1) we propose an algorithm for 
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sequentially selecting vertices on a graph using adaptive submodularity, 2) we provide an 
algorithm for sequentially recovering signals on graph vertices using the graph Fourier 
transform, 3) we demonstrate extensive results on large-scale image datasets as well as a 
neuroimaging dataset. On the image data, we estimate object labels on images where state-
of-the-art object detectors fail. On the neuroimaging data, we estimate expensive summary 
measures from brain scans using other cheaper measures.

2. Background: Fourier and Wavelet Transforms in Non-Euclidean Spaces

The Fourier and wavelet transforms have been extensively studied almost exclusively in 
Euclidean spaces. Recently, several groups have demonstrated the analogs of these 
transforms in non-Euclidean spaces [8, 14], which are fundamental for our proposed 
algorithm. We therefore provide a brief description in this section.

2.1. Fourier and Wavelet Transforms

The Fourier transform transforms a signal f (x) in x to f ̂(ω) in the frequency space ω using 
sin() basis functions as f ̂(ω) = 〈f, ejωx〉 = ∫ f (x)e−jωxdx. The concept underlying the 
wavelet transform is similar but it utilizes a localized oscillating basis function (i.e., mother 
wavelet) for the transform. While the Fourier basis has an infinite support, a wavelet ψ is 
localized in both time and frequency space [26]. A mother wavelet with scale s and 

translation a parameters is written as , where changing s and a varies the 
dilation and location of ψs,a respectively. Using ψs,a as basis, a wavelet transform of a 
function f (x) yields wavelet coefficients Wf (s, a) defined as

(1)

where ψ* is the complex conjugate of ψ.

In the frequency space, ψs behave as band-pass filters covering different bandwidths 
corresponding to scales s. When these band-pass filters do not handle low-frequency bands, 
a scaling function ϕ (i.e., a low-pass filter) is introduced. In the end, a transform of f with the 
scaling function ϕ results in a smooth representation of the original signal and filtering at 
multiple scales s of the mother wavelet ψs offers a multi-resolution view of the given signal. 
In both cases for the Fourier and wavelet transforms, there exist inverse transforms that 
reconstruct the original signal f (x) using their coefficients and the basis functions.

2.2. Fourier and Wavelet Transforms for Graphs

The Euclidean space is typically represented as a regular lattice, therefore one can easily 
construct a mother wavelet with a certain shape to define a wavelet transform. On the other 
hand, in non-Euclidean spaces that are generally represented by a set of vertices and their 
arbitrary connections, the construction of a mother wavelet is ambiguous due to the 
definition of dilation and translation of ψs,a. Because of these issues, the classical Fourier/
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wavelet transform has not been suitable for analyzing data in complex space until recently 
when [14, 8] proposed these transforms for graphs.

The core idea for constructing a mother wavelet ψs on the nodes of a graph comes from its 
representation in the frequency space. By constructing different shapes of band-pass filters 
in the frequency space and transforming them back to the original space, we can implement 
mother wavelets that maintain the traditional properties of wavelets. Such an implementation 
requires a set of “orthonormal” bases and a kernel (filter) function. The orthonormal bases 
span the analog of the frequency space in the non-Euclidean setting and the kernel function 
denotes the representation of ψs in the frequency space. In this sense, when the non-
Euclidean space is represented as a graph, we can adopt spectral graph theory [7] for 
orthonormal bases and design a g() in the space spanned by the bases.

In general, a graph G = {V, E} is represented by a set of vertices V of size N and a set of 
edges E that connects the vertices. An adjacency matrix AN×N is the most common way to 
represent a graph G where each element aij denotes the connection in E between the ith and 
the jth vertices by a corresponding edge weight. Another matrix, a degree matrix DN×N, is a 
diagonal matrix where the ith diagonal element is the sum of edge weights connected to the 
ith vertex. From these two matrices, a graph Laplacian is then defined as L = D − A. Note 
that L is a self-adjoint and positive semi-definite operator, therefore provides pairs of 
eigenvalues λl ≥ 0 and corresponding eigenvectors χl, l = 1, ⋯, N which are orthonormal to 
each other. The bases χ can be used to define the graph Fourier transform of a function f (n) 
defined on the vertices n as

(2)

where χ* is a conjugate of χ. Here, the graph Fourier coefficient f ̂(l) is obtained by the 
forward transform and the original function f (n) can be reconstructed by the inverse 
transform. If a signal f (n) lives in the spectrum of the first k eigenvectors, we say that f (n) 
is k-bandlimited. This transform offers a way to look at a signal defined on graph vertices in 
a dual space which is an analog of the frequency space in the Fourier transform.

A mother wavelet ψ then can be defined using the graph Fourier transform. First, a kernel 
function g : ℝ+ → ℝ+ (i.e., band-pass filter) is designed in the dual space, then this 
operation is localized by an impulse function δn at vertex n:

(3)

Here, the scale parameter s is independent from χ and defined inside of g() using the scaling 
property of Fourier transform [32]. Examples of localized ψs on a mesh are shown in Fig. 2 
comparing with a χ3 (not localized).
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The wavelet transform of a function f (n) on graph vertices n at scale s then can be written 
using the bases ψ defined as in (3), and it follows the conventional definition of the wavelet 
transform yielding wavelet coefficients Wf (s, n) at scale s and location n as

(4)

This transform offers a multi-resolution view of a signal defined on graph vertices just like 
the traditional wavelet transform in the Euclidean space (e.g., pixels) by multi-scale filtering. 
Our method to be introduced shortly will use the graph Fourier transform and wavelets on 
graphs to formalize adaptive vertex selection strategy and graph completion.

3. Our Proposed Algorithm

Consider a setting where there exists an unknown bandlimited signal f of p features defined 
on N graph vertices (in an identical state space). In other words, at each vertex υ, we can in 
principle obtain a p-dimensional feature. However in reality, we may be able to observe the 
signal only at m≪N different vertices of the graph due to budget constraints. In this setting, 
there are two core questions we may ask related to the recovery of the signal f at all vertices: 
1) how to efficiently recover the signal on every vertex and 2) how to select the best m 
vertices (and in which order) to acquire the additional measurements. We tackle these 
problems by formulating an adaptive submodular function derived from the frequency space 
of the graph. We provide our solutions to the two questions by showing that our formulation 
is adaptive submodular and proposing an algorithm to recover the full signal. Notice the 
distinction from classical active learning (also see [20, 21, 22]) that our specification is 
agnostic to the subsequent task (e.g., classification).

3.1. Signal Recovery in Graph Fourier Space

Suppose we have collected data from m number of vertices Y ∈ ℝm×p from a full (unknown) 
function f ∈ ℝN×p. Here, our objective is to recover the original signal f based on the partial 
observation Y. We denote the set of selected indices as W = {w1, w2, ⋯, wm}, and define a 
projection matrix P that maps f to Y (i.e., Pf = Y):

(5)

Based on the data Y from the selected data points (i.e., vertices), a naive signal recovery 
algorithms may solve for

(6)
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which minimizes the error between the observation and the estimation and typically used 
with a smoothness constraint. However, such a formulation operates in the native space of 
ℝN×p without utilizing the bandlimited property of signals. It can be also computationally 
challenging to deal with other constraints that requires full diagonalization of L. We 
therefore take this problem into its graph Fourier space using a set of orthonormal bases Uk 

= [χ1, χ2, ⋯, χk] and search for a solution in the dual space spanned by Uk. One of the most 
fundamental properties of the Fourier representation is its sparsity. In many cases, even a 
very dense form of signals in its original domain can be reconstructed with a few sin() 
functions. Signals in the image space tend to be smooth among pixels that are spatially 
close, on the other hand, their frequency representations are independent from such a spatial 
constraint [20]. Such an observation is crucial for methods for low-rank estimation of signal/
measurement and has been utilized in machine learning and computer vision literature [6, 4]. 
In this regime, we would want to obtain a bandlimited solution that is sparse within the 
range of k-band. Transforming (6) into the space spanned by Uk and imposing ℓ1-norm 
constraint for the sparsity, we obtain

(7)

where ξ controls the sparsity and its solution is easily obtainable using a LASSO solver 
[34]. The optimal solution Ẑ* here is an estimation of sparse encoding of the original signal 
f in the frequency space, and its representation in the original space can be empirically 

recovered by performing the inverse graph Fourier transform as . 
Note that in (7), we avoid imposing a smoothness constraint that has been used in other 
approaches [28, 27], since our solution is already smooth due to its low-rank and 
bandlimited properties. However, the smoothness criteria may still be useful when our 
assumption (i.e., sparsity) in the dual domain does not hold.

3.2. Performing Adaptive Selection of Vertices

In order for our signal recovery process to obtain the best estimation possible, the optimal 
sequential selection of vertices to construct the projection matrix P is critical. For this task, 
we approach this problem from an adaptive submodular perspective. Let us first clarify some 
notations to describe adaptive submodularity.

Given a set of vertices V with possible states S, we denote a function γ : V → S as a 
realization. We also denote Γ as a random realization with a prior probability p(γ) ≔ ℙ[Γ = 
γ]. Under this setting, we look for a strategy to select a vertex υ, observe its state Γ(υ) and 
then select the next vertex conditioned on the previous observations. The set of observations 
until the most recent stage is represented as partial realization θ and its domain defined as 
dom(θ) = {υ|∃o, (υ, o) ∈ θ}. The selection process defines a policy π = {π1, π2, ⋯ πm} 
which is an ordered set of m number of selected vertices. Given a policy π, a function f : 2V 

× OV → ℝ depends on the selection of vertices and its states. Defining V (π, Γ) as the set 
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of vertices under realization Γ, we can formulate a problem to identify the optimal strategy 
with favg = [f (V (π, Γ)), Γ] as

that is known as adaptive stochastic maximization problem [13]. With conditional expected 
marginal benefit defined as

(8)

it is known that a function f : 2V × SV :→ ℝ is adaptive monotone when Δ(υ|θ) ≥ 0 and 
adaptive submodular when Δ(υ|θ) ≥ Δ(υ|θ′) with θ ⊆ θ′ [13]. Such a problem is easily 
solved approximately by a greedy algorithm that maximizes Δ(υ|θ) at each iteration. For 
example, if the V are potential locations to place certain sensors and f() is a function that 
computes the area covered by the sensors, given a probability that some sensors fail at 
random (i.e., p(γ)), one can maximize the total expected area covered by selected sensors by 
such an algorithm.

Such a setup can be computationally challenging due to the size of V and requires an 
accurate prior probability. We therefore tackle our problem of selecting the vertices in a 
simpler manner by computing a “leverage value” that describes the importance of each 
vertex using frequency properties of a given graph. In our formulation, once a vertex is 
selected based on the leverage measure and data are acquired, then its state gets fixed (i.e., 
placed sensors do not fail). Notice that such a setting makes the problem deterministic. 
However, once we observe the state of the vertex and evaluate its contribution to the signal 
recovery process, we will adaptively modify the leverage value for all remaining vertices to 
make the next selection. That is, once a vertex is added to the policy π, we will perform our 
signal recovery process as described in section 3.1 to evaluate how well the signal is 
recovered at the newly selected vertex which will adaptively affect our next selection. In this 
setting, the conditional marginal benefit (no longer an expectation), given a policy π is 
defined as

(9)

which is a specific case of (8) with a fixed policy π instead of a random realization.

Next, in order to define our utility function, we define a measure that describes a notion of 
importance at each vertex. At each vertex, we can define the leverage value as

(10)
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which is a reconstruction of δn at vertex n using Uk and a kernel function g() [31, 3, 1, 15, 
19]. The leverage value I (n) ≥ 0 describes how much energy is preserved at vertex n at scale 
s and roughly describes how well a signal can be recovered at each vertex with limited 
number of bases. In order for an accurate signal recovery on the selected vertices, we want 
to prioritize vertices with high I when selecting a vertex υ for π. Moreover, we assume that 
the signals on neighboring vertices may be similar (i.e., smooth) and modulate down Is from 
neighboring vertices of υ when it gets selected. To define the notion of “closeness” between 
vertices, we use a diffusion-type distance [9, 18] defined as

(11)

which measures how far a vertex n and n′ are at scale s by an energy propagation process. 
Using these concepts, given Ij after j number of selections, the leverage value Ij+1 for the 
next selection is defined as

(12)

where ηj is a constant to set Ij+1 (πj) = 0. Notice that for the leverage values Ij (υ) and Ij+1 

(υ) on the same vertex υ at j and (j + 1)th iterations, Ij (υ) ≥ Ij+1 (υ) with D > 0. With the 

leverage value Ij in hand, we define a utility function  which is the sum of 
I (·) from each selection. Using the two results below, we show that our utility function is 
adaptive monotone and adaptive submodular and can be approximately solved in a greedy 
way.

Lemma 1—Given current policy π = {π1, π2, ⋯, πj} of size j,  is 
adaptive monotone.

Proof: The conditional benefit of adding a vertex υ having observed π is

This lemma shows that the benefit of adding a vertex υ is always non-negative and f (π) 
follows the traditional definition of monotonicity (i.e., f (A) ≤ f (B) holds whenever A ⊆ B) 
with positive I.

Lemma 2—Given two policies π of size j and π′ of size j′ where π ⊆ π′, our utility 

function  is adaptive submodular.
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Proof: The difference between the conditional benefits from the two observations (i.e., 
policies) π and π′ is

This result shows that the utility function f (π) satisfies an adaptive analog of the traditional 
definition of submodularity [12] (i.e., f (A ∪ {υ}) − f (A) ≥ f (B ∪ {υ}) − f (B) when A ⊆ B 
⊆ V and υ ∈ V \ B) and it can be used to formulate an adaptive submodular optimization 
problem.

Given our adaptive submodular utility function at hand, we define this iterative process as 
Select and Recover (SR) method by formulating the following problem:

(13)

Such an adaptive submodular problem is solved by a greedy algorithm that comes with 
performance guarantees [13].

Once we obtain the the optimal π*, we can finalize a set of selected vertices W and a 
projection matrix P which are the key ingredients for our signal recovery step. Using W, we 
go through the process as described in section 3.1 and obtain the estimation of the unknown 
signal. This whole pipeline is summarized in the Algorithm 1 below, where we solve 
LASSO at each iteration which is easily scalable.

Algorithm 1

Select and Recover (SR) Method

Input : vertex set V, orthonormal bases Uk, total number of selection m and D update parameter α

Output: Z: recovered signal

1 π ← ∅, s ← 0

2 Derive I1(n) using Uk as in (10)

3 for i = 1 to m do

4 Selection step: υ* = arg maxυ Δ(υ|π)

5 π ← π ∪ {υ*}

6 Observe f (dom(π))

7 Recovery step: obtain Z* as in section 3.1

8 s ← α|f (πi) − Z* (πi)|

9 Ii+1 ← Ii − ηiDs
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10 end

11 Return Z*

4. Experimental Results

In this section, we demonstrate various experimental results using our framework on three 
different datasets. The first unique dataset consists of images and comments that we 
collected from Imgur (http://www.imgur.com), where we qualitatively evaluate our 
framework for labeling objects in images where object detectors failed. The second dataset 
is publicly available MSCOCO, where we make quantitative evaluations for a multi-label 
learning problem with human-specified object labels. The basic schematic of how the SR 
method works on these datasets is shown in Fig. 3. The last experiment focuses on 
Alzheimer’s disease (AD) image dataset that consist of participants with Pittsburgh 
compound B positron emission tomography (PIB-PET) scans and Cerebrospinal fluid (CSF) 
data. Here, we use the CSF measures and SR method to predict PIB imaging measures 
where CSF data is much cheaper to acquire.

4.1. Object Label Estimation over Object Detection

Dataset—We used MSCOCO categories to select a subset of categories on Imgur which 
provided images and comments, which gave us an interesting dataset to evaluate our 
algorithm. For each image, we obtained the top 10 comments upvoted by the community. 
We also created a dictionary of most commonly used words on Imgur (e.g., upvoted and 
downvoted) which were removed from the comments. We removed those categories that 
provided no images and the images with fewer than 10 comments. Our eventual dataset 
consisted of 10K images with 75 categories.

Setup—A graph of 10K vertices (i.e., images) with total of 49995k edges was generated by 
calculating the pair-wise similarity between the comments from each image. To compute the 
similarities, the comments were first cleaned (i.e., removing stopwords, URLs and non-
alphabetical letters) using natural language toolkit (NLTK) [2] and vector embedding using 
Word2Vec [30]. Then, the sanitized comments were used to compute Word’s Mover’s 
Distance (WMD) [23] using HTCondor distributed computing software. In our case, the 
WMD ranged in (4, 16) and we used a Gaussian kernel to transform the WMD into 
similarity measure within (0, 1). In order to assign object labels in each image, we used You 
Only Look Once (YOLO) [29], a deep learning framework pretrained on MSCOCO images 
and categories. After thresholding the confidence level at 40%, we ended up with 6329 
images with at least one label.

We applied SR framework (using α = 1 and ξ = 0.01) on this graph with the object labels as 
measurements on the vertices as in Fig. 3. Note that our framework works in an online 
manner. We first select a vertex (i.e., an image) π1 and obtain corresponding image labels as 
in section 3.2 and then run the recovery process as in section 3.1 which will inform how the 
next vertex π2 should be selected. After running this procedure m times until πm, we obtain 
our policy π to be used for final image label recovery. We will demonstrate our results with 
m = 50% of the total samples, i.e., selection of 5000 (of 10K) vertices to obtain image labels 
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and perform estimation over all vertices including the 5000 vertices where our model has not 
obtained a measurement (class/object label). Note that we do not have ground truth (i.e., true 
object labels) for this dataset. We therefore show various interesting qualitative results on the 
images where YOLO did not detect objects with high confidence.

Results—Our representative results on object label estimation on the unselected images are 
demonstrated in Fig. 4. Note that we were not able to assign any labels for objects in these 
images using YOLO, since these objects were severely occluded/scaled, not in traditional 
shape or artificial objects. However, our framework successfully suggested labels for some 
of the unlabeled images with our 75 predefined categories. For the images where both 
YOLO and our method did not yield any labels, post-hoc analysis suggested that many of 
these images contained little visual context. More results are shown in the appendix.

There were some failure cases where our method as signed false labels that generally falls in 
one of the following cases: 1) SR predicted “persons” but only a small part of a person (e.g., 
hand, arm or finger) was seen, 2) SR detected objects that had images of texts describing the 
object, 3) similar/related objects exist in the image but not exact (e.g., car center labeled as 
‘car’). Some of these examples which are still interesting are shown in Fig. 5.

4.2. Multilabel Learning on MSCOCO Dataset

Dataset—We used the MSCOCO dataset where ~328000 images with 82 different object 
categories and relevant captions were available [24]. We retrieved the first 80 images from 
80 different categories and their corresponding captions to generate a smaller dataset to 
evaluate our SR method. When overlapping images between categories were discarded, our 
dataset included 5440 images.

Setup—A graph using MSCOCO data was generated based on the captions from the 5440 
images (i.e., 5440 nodes). The edges were defined using WMD in the same way as in section 
4.1. Measurements at each vertex were given as a binary 1 × 80 vector representing object 
labels where non-zero elements indicate whether the corresponding objects exist in the 
image. Concatenating 5440 of them, we get a f5440×80 matrix which served as the ground 
truth. Depending on the sampling ratio, m number of rows of the matrix were selected 
according to our policy π to obtain object labels, and we recovered the measurements on all 
rows. Notice that the ground truth labels are skewed, i.e., 0s dominates over 1s since there 
are only a few objects in each image. Therefore, to evaluate our algorithm, we computed the 
number of errors that SR makes as well as mean precision of the prediction. We compared 
our results with two other baseline methods 1) Puy et a.l [27] and 2) Rao et al. [28], which 
are the state-of-art methods for graph completion. For the signal recovery step, we used α = 
1, ξ = 0.01 and only 60% of the total bases in our algorithm for estimation while other 
methods required all of them.

Result—After recovering the object labels for all images, we thresholded the estimation at 
0.15 to make the recovered labels binary (i.e., 1 if a recovered signal is > 0.15 and 0 
otherwise). Since baseline methods are stochastic, we ran them 100 times and computed the 
mean of evaluation scores with optimzed parameters. Table 1 shows the number of mistakes 
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(out of 435200 estimations) with respect to the size of our policy (or the total number of 
samples). As the number of samples that we select increases, the errors decrease in all three 
methods and our method makes the fewest errors. We also report mean precision over all 
categories instead of accuracy in Fig. 6. Here, the precision increases as the size of the 
policy increases and our result shows higher precision than those from the baselines as well 
as in [20] reaching up to 0.84 with 60% of total vertices.

4.3. Estimation of PIB Measures using CSF

Dataset—Our AD dataset includes 79 participants where both PIB-PET scans and CSF are 
available. The voxel intensities of PIB-PET scans measure amyloid plaque pathology in the 
brain which is highly related to brain function as do the CSF measures, and these two 
measures are known to be highly (negatively) correlated [11]. We parcellated the brain into 
multiple regions of interests (ROI) and took the mean of the PIB measures in 16 selected 
ROIs to obtain ROI specific PIB measures. From the CSF data, we obtained various protein 
levels for each participant. More details of the dataset are given in the appendix.

Setup—The PIB images and the CSF measures involve different costs where PET scans are 
much more expensive, and CSF measures are often acquired as a surrogate for PET scans. In 
this experiment, we try to estimate PET image-derived measures based on CSF measures 
from the full cohort and PET image-derived measures on a subset of participants. A graph 
using CSF measures from each participant (i.e., vertex) was created by measuring similarity 
(i.e., edge) between participants using a Gaussian kernel exp(−(x − y)2/σ2) with σ = 1. Then 
we applied our framework as in Alg. 1 to decide a policy to obtain PIB imaging measures 
from υ ∈ π on the 16 ROIs and recover the measures over all (remaining) participants. We 
used ξ=0.01 for the sparsity parameter, k=50 number of eigenvectors and α=1 for the signal 
recovery step.

Result—We show the ℓ2-norm of the error between the ground truth and the recovered 
measures for evaluation. Again, we ran the baseline methods 500 times to compute the mean 
of errors due to their stochasticity. We ran the experiments by varying m and reported the 
results with m = {30%, 50%} of the total samples. As summarized in Fig. 7, our result (in 
red) shows much lower error than the baseline methods. When we used these estimation 
results to identify whether each participants had elevated amyloid burden (i.e., whether mean 
of PIB measures over all ROIs is > 1.18), our estimation offered 91.1% accuracy while [27] 
and [28] provided 88.6% and 87.6%.

5. Conclusion

Motivated by various instances in modern computer vision that involve an interplay between 
the data (or supervision) acquisition and the underlying inference methods, we study the 
problem of adaptive completion of a multivariate signal obtained sequentially, on the 
vertices of graph. By expressing the optimization in the frequency domain of the graph, we 
show how a simple algorithm based on adaptive submodularity yields impressive results 
across diverse applications. On large-scale vision datasets, our proposal complements object 
detection algorithms by solving a completion problem (using auxiliary information). The 
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model provides promising evidence how neuroimaging studies under budget constraints can 
be conducted (in a sequential manner) with minimal deterioration in statistical power. Our 
open source distribution will enable applications to other settings in vision which involves 
partial measurements and/or sequential observations of data structured as a graph.
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Figure 1. 
An example of graph completion on Armadillo mesh, given edge weights based on 
curvature. Left: noisy signal on the mesh, Middle: partial observation on the signal, Right: 
recovery of the signal on the mesh.
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Figure 2. 
Examples of basis functions on a dog shaped mesh. Left: χ3 (not localized), Middle: two ψ1 

(localized) at the back and on a paw, Right: ψ5 (localized and condensed).
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Figure 3. 
Our workflow on image datasets. Left: images and text, Middle: a graph derived from the 
text and a policy π (yellow vertices), Right: recovered object labels on unobserved vertices 
(red vertices).
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Figure 4. 
Various results on object label estimation from our Imgur experiment. YOLO did not 
confidently assign any labels on these images (i.e., below 40% confidence) using our 75 
categories. However, our framework suggested that there were some objects in these image. 
The images represent nodes and the lines denote edges in our framework, and there are 
strong relationships between images with same object labels.
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Figure 5. 
Examples of images where our method assigns false labels. We assigned car for body shop 
(left), sheep instead of sheep shaped chair (middle) and person instead of a person shaped 
apple (right).
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Figure 6. 
Mean precision over all categories w.r.t sampling ratio. As the number of samples increase, 
precision increases. SR (red) shows higher precision than Puy et al (green) and Rao et al 
(blue) at all sampling rates.
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Figure 7. 
ROI-wise mean ℓ2−norm error between recovered signals and the ground truth using SR 
(red), Puy et al.(green) and Rao et al.(blue). Top: using 30% of the total samples, Bottom: 
using 50% of the total samples.
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Table 1

# of errors (out of 435200) in the recovered measurements

Sampling Ours (SR) Puy et al. Rao et al.

20% 19531 21274.6 23992.6

30% 17246 19503.3 20427.7

40% 15003 17862.2 17762.4

60% 8992 10689.6 11906.9

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2018 February 05.


	Abstract
	1. Introduction
	Example 1
	Example 2
	Example 3
	Graph representation
	Key Ideas

	2. Background: Fourier and Wavelet Transforms in Non-Euclidean Spaces
	2.1. Fourier and Wavelet Transforms
	2.2. Fourier and Wavelet Transforms for Graphs

	3. Our Proposed Algorithm
	3.1. Signal Recovery in Graph Fourier Space
	3.2. Performing Adaptive Selection of Vertices
	Lemma 1
	Proof

	Lemma 2
	Proof



	Algorithm 1
	4. Experimental Results
	4.1. Object Label Estimation over Object Detection
	Dataset
	Setup
	Results

	4.2. Multilabel Learning on MSCOCO Dataset
	Dataset
	Setup
	Result

	4.3. Estimation of PIB Measures using CSF
	Dataset
	Setup
	Result


	5. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

