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 With advances in machine learning techniques, handwriting recognition 

systems have gained a great deal of importance. Lately, the increasing 

popularity of handheld computers, digital notebooks, and smartphones give 

the field of online handwriting recognition more interest. In this paper, we 

propose an enhanced method for the recognition of Arabic handwriting 

words using a directions-based segmentation technique and discrete cosine 

transform (DCT) coefficients as structural features. The main contribution of 

this research was combining a total of 18 structural features which were 

extracted by DCT coefficients and using the k-nearest neighbors (KNN) 

classifier to classify the segmented characters based on the extracted features. 

A dataset is used to validate the proposed method consisting of 2500 words 

in total. The obtained average 99.10% accuracy in recognition of handwritten 

characters shows that the proposed approach, through its multiple phases, is 

efficient in separating, distinguishing, and classifying Arabic handwritten 

characters using the KNN classifier. The availability of an online dataset of 

Arabic handwriting words is the main issue in this field. However, the 

dataset used will be available for research via the website. 
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1. INTRODUCTION  

Online approaches of recognizing handwritten scripts remain an ongoing research issue over the last 

four decades [1, 2]. Nevertheless, this research area is getting more attention recently due to the widely use of 

touch screen notebooks, handheld computers, and smart phones around the world [3, 4]. In contrast, in the 

offline scripts recognition field, the efforts have been more dedicated to comparing the online handwritten 

recognition approaches for most languages [5-7]. Online text recognition refers to handwritten texts on touch 

screen or tablet type devices. In essence, online recognition deals with the coordinate pairs of handwriting in 

real-time while the writing is taking place. Offline recognition is fairly simple, such systems take a complete 

image of the script from a digital input source, such as a scanner, and binarize it using a threshold technique, 

so that the image pixels are either on (1) or off (0) for typewritten [8, 9] or handwritten text [10, 11]. Online 

recognition of Arabic script is a challenging problem for many reasons. Handwritten characters suffer not 

only from scale, location, and orientation variation, but also from person-dependent deformations that 

produce a large set of handwriting samples per character [12]. Additionally, writing on a digital platform is 

not as accurate as writing on paper. There are many applications that require real-time automatic recognition 

https://creativecommons.org/licenses/by-sa/4.0/
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of handwritten scripts. With the growth in popularity of handheld devices, the number of applications that 

require automatic text and digit recognition is also increasing. Though keyboard applications exist in these 

devices, there are many application areas that require users to write on the screen or tablet of the device either 

through a stylus pen or using the tip of their fingers [13, 14]. The main motivation of this research paper is to 

design and implement a methodology for real-time Arabic handwriting recognition. Our objective is to 

achieve a high classification accuracy by proposing a novel approach of Arabic handwriting text pre-

processing and segmentation. A lot of research focusing on online recognition has concentrated on English, 

whereas concentration on Arabic script recognition has been less focused on in previous researches.  

This paper aims to propose enhanced solutions to the major challenges of the Arabic handwritten 

form, which represents size variations, dimensional variations, and irregularity of stylus points. In this paper, 

a novel methodology for online recognition of Arabic handwritten words in real-time is presented. The 

technique is based on a directional-based segmentation, enhanced structural features and an efficient 

classifier. The system is tested on dataset consisting of more than 2500 handwritten Arabic word samples. 

These words were passed through four consecutive phases to reach the state of separating each character of 

each sample and classifying them correctly. An average 99.10% accuracy is achieved by the proposed 

system. This paper is organized as follows: Section 2 introduces the methodology used for the online Arabic 

handwriting recognition system, Section 3 shows the results and discussion of classification process, Section 

4 is the conclusion and future work. 

 

 

2. PROPOSED METHOD 

The architecture of the proposed system is illustrated in Figure 1 and consists of five main phases: 

In the first phase, raw data is collected accurately using a touching device as coordinates of X and Y. In the 

second phase, pre-processing phase is applied for removing noise or distortions that are present in the raw 

data. This phase includes four steps: size normalization, centering, point resampling, and pen or finger 

movement’s direction calculation. 

 

 

 
 

Figure 1. Proposed system phases 

 

 

In the phase of segmentation, data can be represented by characters or sub-stroke levels. Thus, the 

nature of every character or sub-stroke can be analysed in individual processes [2, 15]. In the feature 

extraction phase, features that define each character that are obtained were: Discrete cosine transform (DCT) 

coefficients that determine each character form, character position within the word and character dots with 

their position. Finally, the classification phase is done using the k-nearest neighbors (KNN) classifier to 

recognize the handwritten samples and verify the accuracy of the proposed method. The 5 phases are 

described below. 

 

2.1.  Dataset 
The data acquisition phase is the first step of the pattern recognition system [16, 17]. It is used for 

feeding raw data to be used in subsequent phases to train and test the proposed system [18]. For this phase, a 

sample of 2500 words were obtained using a software interface to convert each handwritten word to 

coordinates (x, y) of pen trajectory. This dataset was collected by another research project [19]. 
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2.2.  Pre-processing phase 

The pre-processing phase is applied to reduce noise and aberrations that may occur in acquired texts 

because of the limitations of the hardware or software used while writing the text. The noise or aberrations 

include irregular text size, non-centered text, missing some points of the lines and curves of the texts paths 

because of the high speeds of writing and uneven distances of points from neighbouring positions [11]. In 

this phase, several steps are included. Every step performs a specific function for filtering the raw data. Also, 

it may help to improve the recognition accuracy rate overall and it is considered an important phase of pattern 

recognition systems. The following steps are applied in the pre-processing phase of the proposed system: 

 Size normalization is performed for recognizing any type of script and avoid ambiguity by exchanging the 

acquired text size into a standard size. The step is done by the (1). 

 

Snew=S / S (xmax,ymax)  (1) 

 

where S is the coordinates series of x and y.  

 After resizing, the coordinates have to be transferred into the centre (x0,y0) to be sure that text is 

transferred to the same spot relative to the origin. The resizing step is set based on (2). 

 

Snew=S- S (xmin,ymin)  (2) 

 

 Then, the resampling process removes redundant points acquired by the digital device and adds missing 

points in text trajectories. The resampling procedure is summarized in Figure 2. 

 

 

 
 

Figure 2. Steps of normalization algorithm 

 

 

Finally, the Freeman Chain code [20] is performed to represent the direction of movements for 

every word. This code represents the directions of the pen movements which are listed from 1-8 codes as 

illustrated in Figure 3. Figure 4 shows the results of performing the pre-processing steps on the word "له". 
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Figure 3. The main writing directions 

 

 

 
 

Figure 4. The word "له" after resizing, centering and resampling processes 

 

 

2.3.  Segmentation 

In this phase, data will be presented in isolated characters or sub-strokes. Thus, the nature of every 

character or sub-stroke is analysed individually. For this purpose, a new segmentation algorithm has been 

created and developed. First, the handwritten word is divided into a set of strokes that are gathered in groups 

representing the characters of the written word. In such an operation, Freeman Chain codes were grouped in 

three sets to describe three main directions: Up, Down and the horizontal direction for left and right. These 

sets have been labelled as A, B, C areas respectively as shown in Figure 5. 

 

 

 
 

Figure 5. The three directions sets 

 

 

Strokes are created based on each class of A, B, and C. For A or B classes, points belonging to the 

same class are grouped into a single stroke. Because these classes (A and B) have opposite directions, they 

cannot be merged in the same stroke. Points in horizontal class (C) are added to previous stroke if they occur 

after any vertical class (A or B). However, if a word starts with a sequence of points in class C, they are 

grouped into a single stroke. Furthermore, if the distance between any two points in the sample is larger than 
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a specific threshold (t = 2.5), it will be a character dot or a transition from a character to another one. In this 

case, a new stroke will be created to store the sequence of points that starts from the second point. Figure 6 

explains the initial strokes of the word "له" after performing the first part of the segmentation algorithm. 

 

 

 
 

Figure 6. The initial strokes after applying the first part of the segmentation phase 

 

 

In the second part of the segmentation algorithm, the resulting strokes are filtered and merged or 

removed according to a set of specific principles explained below. The baseline (writing line), that is a 

hidden line, describes the position of characters or dots in the word as calculated. By finding out the baseline, 

final forms of each character can be determined. 

First rule, if a stroke contains three points or less and does not relate to any other stroke (in other 

words, it is not a complementary stroke of other strokes), the stroke will be dots belonging to a character. 

Otherwise it will be a character or a part of a character. Then, the remaining strokes are passed through a set 

of tests to identify the form of each stroke and determine its relationship to its adjacent strokes or sometimes 

distant strokes. For example, a stroke that consists of points in the vertical direction (Class A or B) will be a 

character Alif (‘ـا’) or character Lam (‘لـ’) if the distances between these points are vertical and not far apart. 
In this case, this stroke has reached its final form. Except for these cases, any stroke is considered a part of a 

character. 

Moreover, if a stroke intersects with another one, these strokes are combined together in a single 

stroke that will be a loop in a character as in Fa (‘فـ’), and Sad (‘ـصـ’). Also, if a stroke has a connection point 

with the next stroke and they have opposite parts horizontally or vertically, they are grouped together. 

Examples of characters that have opposite parts such as Noon (‘ن’), Ba (‘ب’), Jeem (‘ج’), Lam (‘ل’), and 

Lam-Alif (‘لا’). These steps are repeated for each stroke until it satisfies all the principles and cannot be 

merged any more. Figure 7 illustrates the results of performing segmentation algorithm on the previous 

example "له". After obtaining the final form of characters, the number and position of dots will be calculated. 

Dots and the state of each character are recorded in text files as numeric codes as explained in Table 1. 

 

 

 
 

Figure 7. The output of segmentation algorithm on the word "له" 
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Table 1. The state and dots codes and descriptions 
 Code Description 

State 

1 The initial form of the character (connected 

only from the left), i.e. “ لـ ”. 
2 The middle form (connected from the both, 

left and right), i.e. “ ـبـ ”. 
3 The character is at the end of the word or 

connected only form the right, i.e. “ ـه   ”. 
4 The isolated form (not connected), i.e. “ و   ”. 

Dots 

1 Single dot above the character. 

-1 Single dot below the character. 

2 Two dots above the character. 

-2 Two dots below the character. 

3 Three dots above the character. 

0 No dots in the character. 

 

 

2.4.  Character features extraction 

This phase aims to realize that just some features of data points are important to be used in the 

pattern recognition tasks [21-23]. For this study, frequency domain features 𝑥 and 𝑦 signals are used. By 

performing the segmentation phase, a sequence of strokes which represent characters of a word, will create a 

result. The sampling points of multiple strokes would look like: 

 {(𝑥𝑠00, 𝑦𝑠00) … (𝑥𝑠0𝑖 , 𝑦𝑠0𝑖)}, … , {(𝑥𝑠𝑛0, 𝑦𝑠𝑛0) … (𝑥𝑠𝑛𝑗 , 𝑦𝑠𝑛𝑗)}  

 

In which, each parenthesis indicates a stroke assuming the whole word would have strokes. The 

sample point’s number in each stroke can be more𝑖or less𝑗samples of the same stroke. In other words, they 

are not necessarily equal. The discrete cosine transform (DCT) allows it to reconstruct a sequence of accurate 

from only a few DCT coefficients. It is used for converting the corresponding character signals to frequency 

domain coefficients [24]. The feature vectors will be constructed using the derivative cosine transform 

coefficient. This will be considered for each class which was found to be actual and exact for describing the 

characteristics for every Arabic letter. In fact, signals representing characters typically have the lowest 

frequency components, so the eight lowest coefficients for all of the axis signals were used for determining 

the feature vector [24]. Totally, there will be 16 coefficients in the features vector to represent the shape of 

every character: 

 

FV= [X1, X2, ……, Xn, Y1,Y2, ……, Yn] 

 

Additionally, these coefficients are combined with features of state and dots of each character. 

Therefore, the final number of features used to describe and classify each character would be 18 coefficients. 

 

2.5.  Classification 
In this study, k-nearest neighbor (KNN) classifier was applied by using Lazy-IBK Weka classifier. 

This technique is used as the recognizer for classifying and recognizing the Arabic handwritten characters. 

Before classification, a dataset of features was prepared by 115 class labels that identify each character. 

Dataset records were 6650 in total represent characters’ features of the collected handwritten words. The 
dataset that was used to train and test the KNN classifier will be described in the next sub-sections. 

Any new character can be classified by discovering the k-nearest neighbors among the training data. 

This process is done by categorizing the candidates of the 115 class after getting each of their weight. Here, a 

minimum distance function is required for comparing the similarity of writing points. Euclidean distance is 

used in this classifier within the testing points and all the training points to conclude K smallest Euclidean 

distances as the nearest neighbors. Equation (3) was used to find the smallest Euclidean distances between 

two features factors. 

 

d(Ctesting,Ctraining)= √∑ (fvtesti-fvtraini)2n
i=1  (3) 

 

where C testing is the testing character and C training is the matched character from the training set. Also,  f v testi 
and f v traini are the feature vectors of the testing and training process. 

Weka software (Waikato environment for knowledge analysis, version 3.8) was used for 

implementing the KNN classifier by applying the Lazy-IBK classifier. This environment platform gives an 

easy way for comparing among a variety of machine learning techniques. The training and testing process 
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can easily be performed on datasets using a collection of a number of visualization methods and tools. KNN 

is considered as an instance-based learning example. Here, in the stored training dataset the classification 

process for any new unclassified case can be classified basically by matching it to similar cases in the 

training set [25, 26]. 

In this study, two different test modes were performed. In the first mode, called full training Set 

mode, the whole dataset is used to train and test the model. In the second mode, called split criterion mode, 

the classifier was trained on a specific proportion of the records and tested on the remainder. The splitting 

proportion ranged from 90% to 10% each time. The number of nearest neighbors used by the KNN classifier 

was set as 1-nearest neighbor. The results and observations of using each of the two test modes of the KNN 

classifier are explained below. 

 

 

3. RESULTS AND DISCUSSION  

The classification process determines the efficiency of the recognition system and the validity of 

processes that each phase of the system are comprised of. Therefore, the k-nearest neighbor (KNN) classifier 

was used as the primary recognition engine. Results obtained in this study were based on two test modes: 

Full training set and split criterion. In the full training set mode, testing is implemented on the same set the 

classifier is trained on. Whereas in the split criterion mode, the classifier is trained in a specific proportion of 

the data initially to build the model, and then to test the model using the rest of the records. Table 2 

illustrated the accuracy results of the KNN classifier for each mode. 

In the full training set test mode, the whole dataset was used to train and test the model and therefore 

the classification ratio was high (99.10%). In the split criterion mode, the dataset was divided by different 

percentages at each time. The best results were obtained when the records were divided into (90%) for 

training and (10%) for testing. The classifier was able to classify (95.64%) of characters correctly, while the 

lowest percentage was (91.29%) when the records were divided into (10%) for training and (90%) for testing. 

The classifier was able to obtain high classification percentages of not less than (90%) in all cases, 

and the characters that were incorrectly classified were less than (9%) in the split criterion mode. This 

indicates that the proposed approach can classify most of the characters properly and also indicates that the 

phases of pre-processing, segmentation, and features extraction had succeeded in representing the characters 

properly which enabled the system achieving these results.  

The speed of the model building did not exceed (0.02) seconds, whereas, the test period ranged from 

(0.33) seconds to (0.89) seconds in the split criterion mode and (4.11) seconds in the full training set mode. 

The precision (P) rates of the classifier for each test mode were above (0.9) as shown in Table 3. The highest 

rate was (0.993) in the full training set mode, while it was between (0.962) and (0.916) in the split criterion 

mode. Overall, it can be seen that the KNN classifier achieved a high precision rate and accuracy within a 

short period of time. 

 

 

Table 2. KNN classifier accuracy results 
Training 

Set 

Testing 

Set 

Correctly 

Classified 

Incorrectly 

Classified 

100% 10% 99.10% 0.90% 

90% 20% 95.64% 4.35% 

80% 30% 94.66% 5.34% 

70% 40% 94.49% 5.51% 

60% 50% 94.25% 5.75% 

50% 60% 94.29% 5.71% 

40% 70% 94.16% 5.84% 

30% 80% 93.92% 6.08% 

20% 90% 93.29% 6.71% 

10% 100% 91.29% 8.71% 
 

Table 3. Performance measures for each test mode 
Split 

Percentage  

TP Rate FP Rate Precision (P) 

100% 0.991 0.001 0.993 

90% 0.956 0.001 0.962 

80% 0.947 0.001 0.950 

70% 0.945 0.001 0.950 

60% 0.942 0.001 0.943 

50% 0.943 0.001 0.944 

40% 0.942 0.001 0.943 

30% 0.939 0.001 0.941 

20% 0.933 0.001 0.934 

10% 0.913 0.002 0.916 
 

 

 

4. CONCLUSION  
The complexity of online handwritten text recognition is high compared with offline recognition. 

Therefore, fewer studies and methods have been developed for online handwritten text recognition compared 

with offline recognition. Online character recognition is used in many applications like, translation using 

handheld devices, smart boards, and writing on touch screen devices. Many smart devices are currently 

available in the market which supports applications with handwriting texts. However, Arabic language needs 

more attention and focus due to it having a few number of applications that support the language as the main 

reason for having limited applications is the structure of writing Arabic words. 
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In this research, a dataset contained 2500 handwritten samples represents all Arabic characters’ 
cases. These samples were processed and filtered during the pre-processing phase, and divided into their 

constituent characters during the segmentation phase. In the feature extraction phase, features of characters 

were gained using discrete cosine transform coefficients (DCT). Finally, the feature vectors of 18 coefficients 

were used to determine the characters’ class and classify them to one of the predetermined classes using k-

nearest neighbors (KNN) classifier. 

After obtaining the final results, the KNN classifier was able to classify up to (99.10%) of 6650 

characters. Thus, it is possible to say that the proposed system and its algorithms had been able to prove their 

effectiveness and efficiency in recognizing the characters of the handwritten words and thus recognize these 

words as a single unit. In regards to this finding, most of the studies test the performances based on private 

dataset which could not be available publicly. In this study, dataset were obtained from previous research. 

However, the mentioned studies were conducted without the segmentation step. In this matter, the output of 

the current study with these studies are not comparable.  

After conducting this study on online Arabic text recognition and implementing the system, it is 

recommended for future studies to improve the segmentation algorithm so it includes different writing modes 

such as slant writing and overlapping characters. Finally, it can be said that the proposed system through its 

multiple phases had been able to achieve the desired objectives of this study and can be exploited in other 

future studies based on its concepts. 
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