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ABSTRACT
The traditional view of agent modelling is to infer the ex-
plicit parameters of another agent’s strategy (i.e., their
probability of taking each action in each situation). Unfor-
tunately, in complex domains with high dimensional strat-
egy spaces, modelling every parameter often requires a pro-
hibitive number of observations. Furthermore, given a model
of such a strategy, computing a response strategy that is ro-
bust to modelling error may be impractical to compute on-
line. Instead, we propose an implicit modelling framework
where agents aim to estimate the utility of a fixed portfolio
of pre-computed strategies. Using the domain of heads-up
limit Texas hold’em poker, this work describes an end-to-end
approach for building an implicit modelling agent. We com-
pute robust response strategies, show how to select strategies
for the portfolio, and apply existing variance reduction and
online learning techniques to dynamically adapt the agent’s
strategy to its opponent. We validate the approach by show-
ing that our implicit modelling agent would have won the
heads-up limit opponent exploitation event in the 2011 An-
nual Computer Poker Competition.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms
Algorithms

Keywords
Economic paradigms::Game theory (cooperative and non-
cooperative); Agent theories, Models and Architec-
tures::Modeling other agents and self

1. INTRODUCTION
In any complex multiagent system the ideal agent behav-

ior is contingent on the behavior of other agents. Hence, a
key capability for agents in such domains is to learn about
and adapt to other agents. Traditional agent modelling ap-
proaches observe an opponent’s actions and construct a gen-
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erative model of their behavior. This may involve directly
estimating probabilities of actions, or fitting some parame-
ters in a more complex model to describe how the agent’s
behavior is generated. We call this an explicit model.

Although explicit modelling provides a direct and rich rep-
resentation of other agents’ behavior, there are significant
practical challenges. First, in complex systems, agent be-
havior is likely to be complex as well, and involve a very
high-dimensional parameterization. Learning such an ex-
plicit model either requires significant prior knowledge, or
a prohibitively large number of observations of their behav-
ior. Second, even if we can estimate a sufficiently accurate
explicit model, there remains the question of how to use the
model to adapt our agent’s behavior. The natural approach
is to select actions that maximize the agent’s utility given
the estimated models, but this can be extremely vulnera-
ble to model error as demonstrated by Johanson et al. [10].
They instead propose the offline computation of “robust re-
sponses” to models, but this computation is too slow to be
used online for the complex systems of interest.

In this paper we propose implicit modelling of agents as a
practical approach to adapting agent behavior for complex
settings. Where explicit modelling uses online data to es-
timate a model and then determines its response, implicit
modelling works backwards by first computing a portfolio of
responses and then uses online data to estimate the utility of
the responses in its portfolio. We call this implicit modelling
as the other agents’ behavior is summarized only by its effect
on the utility of the agent’s portfolio responses. This avoids
the drawbacks of explicit models, as the computationally ex-
pensive robust response computations are performed offline.
Furthermore, the dimensionality of the model parameteriza-
tion is reduced to the size of the agent’s portfolio, regardless
of the complexity of the domain or agent behavior.

We begin by presenting the framework of extensive-form
games, a general model of multiagent interaction. We then
describe some related work and present our implicit mod-
elling approach end-to-end: from building response strate-
gies, to selecting responses for the portfolio, and finally using
online learning algorithms to select the best strategy from
the portfolio during online interaction. We empirically vali-
date our approach using the domain of heads-up limit Texas
hold’em, a complex domain where explicit modelling has
generally been unsuccessful. We show that this approach
outperforms other baseline approaches and that an agent
using the framework would have won the 2011 Annual Com-
puter Poker Competition’s total bankroll competition, an
event which highlights agents’ abilities to model and adapt.
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2. BACKGROUND
We begin by presenting the framework of extensive-form

games as a model of multiagent interaction. We then discuss
methods for computing behavior policies, called strategies,
in this framework.

2.1 Extensive-Form Games
An extensive-form game is an intuitive model for repre-

senting interactions between multiple agents and their envi-
ronment. In a repeated game such as poker, the agents play
a series of independent games against each other, alternat-
ing positions (i.e., being a different player) in each game. A
single game is represented as a tree, in which each node rep-
resents a state where it is one of the players’ turn to act (or
chance’s turn to act), and directed edges represent the avail-
able actions. Each leaf, called a terminal node, assigns a
utility to each player. In games of imperfect information,
each action may be observed by one or both players. When
information is not observed, the players cannot determine
the precise game state and instead only observe an infor-
mation set, which is a set of game states indistinguishable
to the acting player. For simplicity of exposition, our nota-
tion is presented for the situation of a two-player zero-sum
game, i.e. where there is a single other agent in the game
who will be called the opponent. However, the concepts can
be equally applied in multiplayer and non-zero-sum settings.

A strategy for player i ∈ {1, 2}, σi, is a function mapping
a player’s information sets I to a probability distribution
over the available actions, A(I), and let Σi represent the set
of such strategies. A strategy profile σ = (σ1, σ2) is a tu-
ple containing one strategy for each player in the game. σ−i
refers to the strategies in the profile σ for all players except
player i. For a two player game, σ−i just refers to the strat-
egy of player i’s only opponent. In domains such as poker
where the agents alternate positions between iterations of
the game, an agent itself is a strategy profile containing the
strategies that are used when acting as each player. Given
the strategies for two players, σ1 and σ2, we can define player
i’s expected utility as ui(σ1, σ2), which can be computed
by traversing the game tree or approximated by Monte Carlo
sampling of trajectories according to the strategies. Given
an opponent’s strategy σ−i, we define the best response
value for player i to be bi(σ−i) = maxσ′

i∈Σi
ui(σ

′
i, σ−i), and

best response strategy to be the maximizing strategy. A
strategy profile is an ε-Nash equilibrium if the difference
between each player’s utility and the best response value
to their opponent’s strategy is less than or equal to ε. A
Nash equilibrium occurs when ε = 0 and each player is a
best response to the other. Given an agent’s strategy pro-
file, we define exploitability to be the average of the best
response values of its strategies, representing the expected
loss against a worst-case adversary. A Nash equilibrium for
two-player, zero-sum games has an exploitability of 0.

Poker is a canonical example of a stochastic, imperfect
information, extensive-form game. In this paper we consider
the variant called two-player limit Texas hold’em, which is
the smallest variant played in the Annual Computer Poker
Competition [8]. Two players play a long series of games
against each other to win chips from each other, and the
overall winner is the player with the most chips. Each game
begins with each player being randomly dealt two cards that
only they can see. The players then alternate turns wagering
chips that their set of cards will be strongest at the end

of the game. After the players have acted by betting or
choosing to fold (surrendering the game), additional cards
are revealed to all of the players to see and use, and the
players place additional wagers. The game ends after four
such rounds, at which time the remaining player with the
strongest set of cards wins the wagered chips. While a Nash
equilibrium strategy can be guaranteed to not lose against
any adversary and thus do no worse than tie on expectation,
ideal agent behaviour in the game comes from identifying
and exploiting an opponent’s weaknesses over the series of
games to maximize the agent’s total winnings.

2.2 Nash Equilibrium Approximation
CFR [16] is a state-of-the-art algorithm for approximating

Nash equilibrium strategies in two-player zero-sum perfect
recall extensive-form games. It is an iterative self-play algo-
rithm. Each player begins with an arbitrary strategy. On
each iteration, the players examine every decision, and for
each possible action compare the observed value of their cur-
rent policy to the value they could have achieved by making
that action instead. This is the regret for playing an action,
and the accumulated regret is used to determine the strategy
used on the next iteration. In the limit, the average strate-
gies used by the players converge to a Nash equilibrium.

Although CFR efficiently approximates a Nash equilib-
rium, human-scale problems are typically so large as to be
beyond the capability of existing techniques using modern
hardware. For example, two-player limit Texas hold’em
poker has 3.19×1014 information sets, and solving the game
with CFR would require 4.54 petabytes of RAM. The stan-
dard approach in such cases is to apply a state-space abstrac-
tion technique to derive a smaller abstract game that can
be tractably solved [16, 6]. The resulting abstract strategy
can then be used to select actions in the original game. The
effectiveness of the resulting strategy depends on the ab-
straction technique used and the size of the abstract game;
larger abstractions usually result in strategies that are less
exploitable in the real game, although see the work of Waugh
and colleagues [15].

2.3 Robust Counter-Strategies
An (approximate) Nash equilibrium strategy profile is

guaranteed to not lose to a worst-case opponent. However,
it will not obtain the maximum utility from a known, ex-
ploitable opponent. If the exploitable opponent’s strategy is
known, a best response lies at the other extreme from a Nash
equilibrium: it is a counter-strategy, designed to maxi-
mally exploit an opponent’s flaws. While a best response is
the utility-maximizing strategy to use against the opponent,
Johanson et al. have shown that such strategies are brittle.
When used against a different opponent, or if the opponent’s
strategy changes or is estimated instead of known precisely,
the best response strategy can lose badly [10]. An alterna-
tive approach is to use ε-safe best responses, as proposed by
McCracken and Bowling [12]: the utility maximizing strat-
egy from the set of strategies exploitable for no more than
ε. In this setting, ε represents a maximum loss that we are
willing to suffer in cases where our opponent modelling has
failed. The Restricted Nash Response algorithm (RNR) is a
technique for generating ε-safe best response strategies given
a known adversary strategy [10]. A modified game is con-
structed which begins with a chance event only observed by
player 2. With probability p, the result of this chance event
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is that player 2 must play according to a fixed strategy σfix
2 ,

while with probability 1−p they may play the game as nor-
mal. Given a value of p, this modified game can then be
solved using any game solving algorithm, such as CFR. In
the Nash equilibrium of the modified game, player 1’s strat-
egy is an ε-safe best response to σfix

2 for some value of ε.
The role of player 1 and player 2 can be switched to get
an ε-safe best response to σfix

1 . Varying p results in ε-safe
best responses with different values for ε. This approach
provides a strategy that limits its exploitability in the worst
case, while still winning much more than a Nash equilibrium
against the target opponent.

However, the RNR algorithm is only applicable when the
opponent’s strategy is known. A more realistic scenario oc-
curs when we have a set of observations of the opponent
playing the game and have to construct a model of their
behaviour. If the model is incomplete or inaccurate, the
RNR strategy may “overfit” to the opponent model and be
ineffective against the actual opponent. Johanson et al.’s
data biased response (DBR) algorithm [9] extends RNRs
and performs well even when only observations of behavior
are available. DBRs construct an opponent model by count-
ing the frequency of taking each action at each information
set over the set of observations. Instead of tuning a single
probability p at the root of the tree as in RNR, a probability
p(I) is chosen at each information set I, with p(I) scaling
with the number of observations at I. The DBR strategy, as
with RNR, is then trained using CFR. Setting and tuning an
upper bound on p(I), allows us to generate strategies with
different degrees of exploitability ε, just as with RNR.

2.4 Related Work
Due to the intrinsic need for utility maximization in poker,

it has been a common domain for agent modelling research
with a focus on two-player limit Texas hold’em. Recent ef-
forts to use explicit modelling in this domain suffer from
the challenges of using explicit models during online inter-
action. Ganzfried and Sandholm attempt to learn an ex-
plicit model by combining strictly online observations with
a prior (approximate equilibrium) strategy [4]. Though they
show positive results against highly exploitable opponents,
the effectiveness of the approach against strong opponents
has not been explored. This explicit modelling based agent
may be highly exploitable by strong opponents because it
uses a best response to its current model, and the model
must use a relatively coarse abstraction of the game for the
agent to act quickly enough.

Ganzfried and Sandholm suggest that combining this ap-
proach with safe exploitation algorithms [5] may provide
improved robustness. They demonstrate this combined ap-
proach in Kuhn poker (a small toy poker domain), but per-
formance in large games has not been explored. With critical
parts of their safe exploitation algorithms being either in-
tractable without abstraction in large games (e.g., comput-
ing Nash equilibria, or ε-safe strategies) or too computation-
ally intensive for real-time computation (e.g., exploitability),
it is unclear how these techniques can scale to large domains.

Rubin and Watson compute the performance of different
strategy adaptations against prior opponents offline, and use
online observations to build a low-dimensional explicit model
to evaluate similarity to prior opponents and identify rele-
vant adaptations [14]. They show a marginal improvement
over their non-adapting strategy, but the results are only for

expert imitators of agents from the 2011 ACPC which may
not be capable of capturing those agents accurately. Further,
this technique has no guarantees on robustness as modelling
error can lead to choosing a contraindicated adaptation.

Some prior work has examined agent modelling tech-
niques with similarities to our implicit modelling framework.
UCB1 [1] has been used to select from a portfolio of RNR
strategies [10] or expert imitators [13]. Unfortunately, the
results for portfolios of expert imitators were negative or
statistically insignificant relative to a single expert. Further,
these approaches ignore the fact that UCB1’s regret bounds
are for the stochastic bandit problem where there is no ad-
versary who can manipulate the value of the bandit arms.
As poker is an adversarial game, this may be inappropriate.
This approach also ignores the potential value of off-policy
estimation seen in non-stochastic bandit algorithms such as
Exp4. Prior work by Hoehn et al. investigated techniques
similar to Exp4 for selecting from a portfolio of strategies in
Kuhn poker, but did not investigate how to scale this tech-
nique to larger domains [7]. Our implicit modelling frame-
work, which we present next, addresses these issues and is
demonstrated in two-player limit Texas hold’em.

3. IMPLICIT MODELLING
Using explicit models in complex domains involving com-

plex agent behavior presents two major challenges. First,
the number of observations needed to learn a model gener-
ally depends on the degrees of freedom in the model. With-
out prior knowledge, the number of parameters for a gen-
eral model must grow with the size of the agent’s strategy
space. For settings with many information sets, the number
of observations required to learn such a general model will
typically be prohibitively large, especially considering only a
tiny fraction of information sets are observed with each play-
ing. Second, even if we can learn a model quickly enough,
best response strategies are brittle in the face of model error
and computing robust responses in real-time is impractical
for any non-trivial domains.

We propose to avoid these challenges altogether by avoid-
ing the actual construction of an explicit model, in favor of
an implicit model. Figure 1 shows graphically the differences
between the two types of models. Generally, an explicit
model represents particular action probabilities, (e.g. α, β
and γ in Figure 1a). An implicit model instead summarizes
these probabilities as the expected utilities of a portfolio of
counter strategies (e.g. ui(σ−i, σ

A
i ) and ui(σ−i, σ

B
i ), the

table entries in Figure 1b). Now consider increasing the
complexity of the domain, such as increasing the number
of information sets. The number of parameters in the ex-
plicit model grows with this increase in complexity, while the
parameterization of the implicit model is unchanged, and re-
mains the utilities for the fixed portfolio of responses.1

The implicit modelling approach comes with its own chal-
lenges. First, how do we choose the portfolio of strategies
for modelling? Second, how do we estimate the utilities
of the portfolio from online interaction, and how does the
agent’s behavior adapt given these estimates? In the sub-

1Formally, one can view the implicit model as a set of lin-
ear projections of the sequence-form representation of the
opponents’ joint strategy. And so one can view the implicit
model as a particular low-dimensional representation of the
agent’s strategy. While an interesting observation, we don’t
use this fact further in this work.
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Figure 1: Explicit models versus implicit models.

sections that follow, we describe our end-to-end approach
for addressing these challenges. First, though, observe that
the explicit modelling approach gave little opportunity to do
any useful computation offline, prior to the start of an inter-
action. In the implicit modelling approach, we have a more
obvious offline/online computational distinction, which is to
our advantage. Since our portfolio construction must occur
prior to interaction, we are now free to use computation-
ally demanding robust response approaches, such as RNR
and DBR as discussed in section 2. By also limiting our
actual behavior during play to be from the same portfolio
of responses, we also get the advantage of having a “safety”
guarantee that comes from using such ε-safe responses in
our own behavior. We will see that this commitment also
greatly simplifies the challenge of using the implicit model’s
estimates to adapt our agent’s behavior, as we can leverage
the existing online learning literature for this exact problem.

We give the details of our approach by first answering how
to dynamically adapt our strategy online using a portfolio of
responses as this choice impacts the portfolio’s construction.
We then consider the problem of constructing the portfolio
of responses during the offline phase. An overview of the
entire process of implicit modelling is presented in Figure 2.

3.1 Online Adaptation
With the portfolio computed offline, the online adapta-

tion task becomes a utility estimation problem. If an oracle
provided the expected utility for each of the portfolio’s re-
sponses, we would simply act according to the response with
highest expected utility. In lieu of the oracle, we can esti-
mate the utility of each response using multi-armed bandit
algorithms augmented by variance reduction techniques.

3.1.1 Variance Reduction
In stochastic games the actions of chance can significantly

alter the game’s final utility. The noise induced by chance
can dramatically increase the number of observations neces-
sary to have a confident estimate of the utility of a particular
response. Variance reduction techniques can help eliminate
some of this noise and reduce the number of observations
needed to respond correctly.

For example, Bowling et al. used “imaginary observa-
tions” and importance sampling corrections in extensive-
form games to provide a general technique for variance re-
duction for both on and off-policy utility estimation [3]. At
a high level, this technique reduces estimator variance by
imagining alternate observations that remain consistent with
the actually observed actions taken by other agents (e.g., al-
ternate private cards or alternate actions that would end the
game). Furthermore, this technique enables us to estimate

off-policy, i.e. obtain estimates of the utility of one policy
while behaving according to a different policy. Therefore,
each observation of the opponents’ choices and the outcome
can be used to update estimates for the entire portfolio.

Unfortunately, using this technique off-policy has a caveat:
the support of the acting strategy must be a superset of
the strategies whose utility is being estimated. If not, the
estimator can be biased. In other words, any sequence of
actions that can be realized with non-zero probability (for
some private information) for the off-policy strategy must be
taken by the acting strategy with non-zero probability (with
some other, not necessarily the same, private information).
If this is not the case, then there exists some sequence of
actions that the acting strategy will never take but that the
off-policy strategy will, leading to bias.

One way to use Bowling et al.’s technique while avoiding
this bias from off-policy strategy incompatibility is to
sample according a strategy that mixes between all of the
strategies in the portfolio. That way, if any individual strat-
egy would play an action, then the mixture will necessarily
play it with non-zero probability.

3.1.2 Bandit-Style Algorithms
Exp4 [2] is a well known algorithm for combining the

advice of “expert” strategies to address the non-stochastic
multi-armed bandit problem. For each time step of a multi-
armed bandit problem, Exp4 generates a probability dis-
tribution over a collection of expert strategies using a nor-
malized exponential function of the expected total rewards
for each expert, selects an action according to the weighted
mixture of the experts, receives a reward for the action,
and computes the expected reward for each expert which
is added to the vector of expected total rewards. The Exp4
action selection rule comes with finite-time regret bounds
on the expected per-time-step regret, guaranteeing the ex-
pected utility of the selected actions performs nearly as well
as the best expert in hindsight.

We can apply Exp4 directly to our task of choosing
amongst the responses in our portfolio. However, we make
two small changes. First, since we are mixing extensive-
form strategies instead of a distribution over single actions,
we must average the strategies’ action sequence probabili-
ties. Second, instead of uniform exploration over actions (or
action sequences in our case) we force the weight of each
expert to be at least some minimum value, bounding each
expert’s weight in the mixture away from zero. This allows
us to guarantee the acting strategy has non-zero probabil-
ity on every action sequence played by any response in the
portfolio. With these modifications we can then use Bowling
et al.’s off-policy importance sampling and imaginary obser-
vations to return low variance estimates of each response’s
utility and add it to the Exp4 accumulated total as normal.

3.2 Offline Portfolio Generation
One of the key benefits of the implicit modelling frame-

work is that it allows us to build a portfolio of response
strategies offline. Without the typically tight time con-
straints involved in real-time interaction, we have time to
build more sophisticated responses for our portfolio. Ide-
ally, our responses should be good at maximizing utility for
the agents we will eventually interact with. Unfortunately,
uncertainty about the other agent’s strategies means that
we also want robust strategies that are “safe” to use regard-
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Figure 2: Implicit modelling process. The portfolio is constructed offline from robust responses to agent models and pruned
with submodular optimization. It is then used online by a bandit algorithm in tandem with variance reduction techniques

less of the other agent’s behaviour. In summary, we want
a portfolio of strategies that can exploit a variety of other
agents without any one strategy being badly exploitable.

3.2.1 Robust Responses
The goal of exploitive, yet robust, response strategies

makes the restricted Nash response (RNR) and data biased
response (DBR) techniques introduced in section 2 ideal
tools for generating our portfolio of responses. In order to
be able to use these tools, there must be some set of past
interactions from which to construct responses. Interaction,
in this case, is very loosely defined. There might be data
from other agents playing the game, or even complete agent
strategies available. Both of these might be publicly avail-
able (e.g. logs from an open competition), from the designer
(e.g. a previously available non-modelling agent), or from
the agents’ own past matches. The choice of algorithm rests
on the type of data: the RNR algorithm works best with a
complete strategy, while the DBR technique is specifically
designed to handle a collection of observed games.

We can also exploit an additional feature of the DBR al-
gorithm. At the same time that it computes a robust re-
sponse to the data, it also computes a robust strategy that
mimics the data. At each information set, the mimic will,
with some probability based on the amount of data avail-
able, choose its play so as to prevent exploitation by the
DBR strategy. This mimic strategy behaves increasingly
like the agent which produced the data as more observa-
tions are available. Note that there is no need for finding
such a strategy when using an RNR with an explicit oppo-
nent model: the best possible mimic in such a case is the
model itself, which is already available.

3.2.2 Pruning Responses
While we can generate a robust response from every past

interaction, it may not be wise to include all such responses
in the portfolio. An overly large portfolio has two draw-
backs. First, it adds computational burden in order to

estimate the utilities of every strategy in the portfolio af-
ter every hand. Second, and more importantly, both theo-
retical bounds and empirical practice of bandit-style algo-
rithms (such as Exp4) show regret growing with the num-
ber of available bandit arms. Too many arms simply re-
quires too much exploration before exploitation can reliably
occur. Furthermore, each additional response may not be
adding much to the overall exploitive power of the portfo-
lio if other similar responses are already included. Finding
a manageably-sized portfolio that still achieves broad ex-
ploitation possibilities is the final step in our approach.

Given a large set of responses computed from all past
interactions, we want to find a subset of these responses
which maximizes the resulting portfolio’s exploitive power.
This is a quintessential example of a submodular optimiza-
tion [11]. Submodular optimization involves optimizing a
function over sets, where the function exhibits diminishing
returns, subject to a cardinality constraint on the set. In
general, submodular optimization is NP-hard, however prov-
ably good approximations exist. In fact, greedily adding el-
ements one at a time until reaching the capacity constraint,
provides a 1− 1/e-approximation to the optimal subset.

Specifically, we would like to find some small subset of our
entire set of generated responses, which retains as much of
the exploitive power as possible. Because we cannot com-
pute a given portfolio’s exploitive power without interacting
with other agents, nor do we know which agents we will
eventually encounter, we will need a proxy objective for the
portfolio’s exploitive power. We define this proxy objective
function on portfolios to be the expected utility the portfolio
would obtain if an oracle told us which response from the
portfolio to use when playing each of a given field of agents
(i.e., the response with the maximum expected utility for
the agent at hand). This function is submodular, as adding
strategies to the portfolio will eventually exhibit diminishing
returns. Yet, we still need a field of agents to formally define
our objective. This is where we can use our mimic strategies,
which are generated as a by-product of DBR. Our objective
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is then the total expected utility achieved against all of the
generated mimic strategies if we can optimally choose the
portfolio’s utility-maximizing response for each mimic.

Using the greedy approximation, we repeatedly add re-
sponses to our portfolio one at time, with each one maximiz-
ing the marginal increase in our proxy objective function.
If computational resources limit the number of responses
then this can serve as our cardinality constraint and stop-
ping condition. Alternatively, the marginal increase in value
for including each additional response can provide a guide:
stopping once the diminishing returns becomes too small.

4. RESULTS
Poker provides a natural domain for experimental valida-

tion of these techniques. Since human experts are known
for quickly adapting to other players, this sets a high bar
for agent modelling techniques to strive for. Furthermore,
with a focus on statistical significance, seven prior compe-
titions, and numerous competitors worldwide, the Annual
Computer Poker Competition (ACPC) is the premier venue
for computer poker research. In addition to the yearly com-
petition, the ACPC also provides access to a benchmark
server following the competition for competitors to evaluate
against agents from that year’s competition.

We validate our implicit modelling framework using the
benchmark server from the 2011 ACPC. Specifically, we eval-
uate an implicit modelling agent in the competition’s total
bankroll event in heads-up limit Texas hold’em. The winner
of this event is the agent with the highest expected win-
nings against all other competitors in the event. Although
section 3 described the general approach for building im-
plicit modelling agents, we first provide the details specific
to our heads-up limit Texas hold’em agent.

4.1 Agent Design
With performance in the Annual Computer Poker Compe-

tition as our goal for these experiments, we chose to use data
from past competitors to generate our responses. To keep
training data and testing opponents separated, we used logs
from the 2010 ACPC for generating our response strategies.
This provided data for 13 different agents, each with a total
of at least 8.4 million full information hands (i.e., no missing
card information) against other competitors from that year.

The data for each individual agent was used with Johan-
son et al.’s DBR technique [9] to compute a robust response.
As we are dealing with a human-scale game, DBR requires
an abstraction choice for both the opponent and the response
strategy. For the opponent we chose a coarse abstraction
where each round’s chance outcome is bucketed into one of
five abstract outcomes. With perfect recall of these abstract
chance outcomes and no abstraction of player actions, this
means there are 5, 25, 125, and 625 combinations of chance
for each betting sequence on the preflop, flop, turn, and river
betting rounds, respectively. For the responses, we used an
abstraction somewhat smaller than the strongest entries in
the actual 2011 competition. DBR also requires the specifi-
cation of parameters that controls the trade-off between the
response’s exploitation and exploitability. We tuned these
parameters to generate responses that were exploitable for
approximately 100 mbb/h (milli big blinds per hand) by a
best responding agent trained in their own abstract game.
This threshold was kept relatively low to ensure that any of
the responses could be used without substantial risk.

Our experimental results show the performance of our im-
plicit modelling approach using two different portfolios: a
portfolio of all of the responses (except the responses to our
own 2010 submission to the ACPC), and a smaller four-
response portfolio generated by the greedy approximation
to the submodular optimization described in section 3.2.2.

We chose Exp4 parameter settings by performing experi-
ments against our generated mimic strategies using the small
portfolio. One of the best settings used a temperature pa-
rameter of η = 0.025 and a minimum probability of 2%,
although the performance was largely insensitive to these
parameter choices, with broad ranges of parameters giving
similar results. After a smaller experiment verifying this
choice of parameters using the large portfolio, we used these
parameter settings in all subsequent experiments.

Johanson et al. explored the effects of various types of
imaginary observations and value functions for strategy eval-
uation. For our experiments we create observations for all
possible private cards and early folding opportunities. Early
folds are provably unbiased, and although the all-cards tech-
nique can create bias under partial information (due to card-
replacement effects and not knowing which cards the other
agent holds) prior results suggest this bias is small while
providing substantial variance reduction (viz., [3], table 3).

4.2 Empirical Results
While the ultimate validation is comparing the approach

in the context of the 2011 ACPC entrants, we begin our ex-
perimental validation in a number of simpler settings. The
first is a comparison against the four mimics for which the
small portfolio’s responses were designed. This experiment
gives us an idealized case where we avoid any concerns about
being unable to respond to one of the opponents. Further-
more, because the opponents include two of the most ex-
ploitable agents from the 2010 ACPC, this experiment is an
ideal scenario for exploitation. In all of the following stacked
bar charts, the total bar height indicates the expected win-
nings against the field of opponents while the bar’s compo-
sition specifies the proportion of the mean won by playing
against each specified mimic. Note that the vertical order of
the bar’s components is the same as the order in the legend.
Expected winnings are in milli big blinds per hand (mbb/h).
The match length for all experiments was 3000 hands: the
same length as the 2011 ACPC event. 95% confidence inter-
vals on all of the expected winnings values are ±7mbb/h or
smaller, except where noted. Essentially, visible differences
in the graphs are statistically significant.

The results for this simple setting are in Figure 3. Our
implicit modelling agent using the small portfolio (labelled
Small-Portfolio) outperforms our range of other baselines.
First, note that its winning rate is nearly double that of a
fixed Nash equilibrium strategy, which used a considerably
larger abstraction. Furthermore, the Small-Portfolio agent
improves upon any individual response from the portfolio
(ASVP, GS6 iro, LittleRock, longhorn) by at least 19.9%,
demonstrating that it is able to tailor its strategy online to
the opponent at hand. It also outperforms the Small-Static
agent: a baseline also built using a DBR, but responding to
a single aggregate model built with the same data used for
the small portfolio’s models. This suggests that the mimics
are exploitable in at least partially independent ways and
that modelling them as a single aggregate player harms the
response’s exploitive power.
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Figure 3: Performance versus mimics corresponding to the
four responses in the small portfolio. Bar components are
in the same order as the legend.

Small-Portfolio also improves on an implicit modelling
agent that uses upper confidence bounds (UCB) instead of
our modified Exp4 algorithm to select from the portfolio.
Note that this UCB based agent exhibited higher variance
in its results, and a 95% confidence interval on its results are
approximately ±13 mbb/h. Since UCB selects and acts ac-
cording to a single strategy from the portfolio rather than a
mixture, we cannot ensure that the support of the strategy
being played is a superset of the supports for the portfo-
lio’s individual responses. Therefore we cannot estimate the
utilities of the off-policy strategies in the portfolio without
potentially introducing bias.

Finally, the smaller portfolio also outperformed the larger
portfolio (Big-Portfolio). This demonstrates that even
though Big-Portfolio contains a superset of the responses,
there is a potential learning cost associated with including
extraneous strategies in the portfolio.

Next, we evaluate the agents against the entire field of
2010 ACPC mimics. In contrast to the last experiment,
the Small-Portfolio agent no longer has a response asso-
ciated with every opponent, while the Big-Portfolio agent
still does. The results are in Figure 4. Once again, the
small portfolio agent outperforms the equilibrium, now by
approximately 65%. Against this field, both Exp4-based
implicit modelling agents outperform the aggregated Small-
Static baseline agent and the UCB based implicit modelling
agent. Despite the reduced number of responses, the Small-
Portfolio agent’s performance is within noise of the Big-
Portfolio agent. These empirical results support our intu-
ition for the benefits of using a submodular optimization to
prune back the portfolio to a manageable size.

Finally, we validated the implicit modelling approach us-
ing the 2011 ACPC benchmark server. The benchmark
server allows previous competitors to run matches against
submissions from that year. Except for one agent that failed
to run on the server, all other competitors were available.
Table 1 shows the performance of the Big-Portfolio and
Small-Portfolio agents from the previous two experiments
contrasted with the competition’s original results.

Our original submission to the competition in 2011 placed
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Figure 4: Performance versus mimics corresponding to the
responses in the large portfolio. Bar components are in the
same order as the legend.

third with a total bankroll of 224 mbb/h with a 95% confi-
dence interval of 6 mbb/h. Note that these results for the
original competitors have been recomputed to exclude the
agent that failed to run on the benchmark, although it did
not change the outcome of the competition. To compute the
results for our implicit modelling agents, data from our orig-
inal agent “Hyperborean” (Hyperborean-2011-2p-limit-tbr)
was excluded and new data was substituted for Hyperborean
by playing matches on the benchmark server with our im-
plicit modelling agents, Big-Portfolio and Small-Portfolio.
The values for each agent’s total bankroll in the modified
competitions were recomputed using the data from these
new matches combined with the remaining original data.

In this experiment both Big-Portfolio and Small-Portfolio
do not have any responses tailored for the specific oppo-
nents since all responses were trained on data from 2010
ACPC agents. First, observe that both implicit modelling
agents would have won the competition. Although the Big-
Portfolio agent did not win by a statistically significant mar-
gin, Small-Portfolio wins the event by greater than the 95%
confidence margin. These results demonstrate that the im-
plicit modelling framework enables modelling and improved
utility even against an unknown field of agents. Moreover,
while the technique still outperforms other agents with a
larger portfolio, pruning the portfolio of redundant or low
value responses can improve performance further still.

5. CONCLUSION
We present an alternative approach to the traditional idea

of modelling other agents with explicit models of their be-
havior. In complex domains, both learning a model of an
agent and being able to respond robustly using a model
can be impractical. Instead we present a framework for
modelling agents implicitly through online estimates of the
utility for a portfolio of robust responses computed offline.
Through a synthesis of techniques from several areas includ-
ing robust responses in extensive-form games, submodular
optimization, variance reduction, and multi-armed bandits,
we present a step-by-step approach of how to build implicit
modelling agents. Using the domain of heads-up limit Texas
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2011 ACPC Big-Portfolio Small-Portfolio
Calamari 276± 4 Big-Portfolio 290± 11 Small-Portfolio 317± 5

Sartre 270± 6 Calamari 275± 5 Calamari 277± 4
Hyperborean 224± 6 Sartre 268± 8 Sartre 272± 6

Slumbot 214± 6 Feste 211± 6 Slumbot 216± 6
Feste 213± 5 Slumbot 209± 7 Feste 215± 5
ZBot 205± 6 Patience 207± 7 ZBot 207± 6

Patience 204± 6 ZBot 205± 8 Patience 205± 6
2Bot 187± 6 2Bot 188± 8 2Bot 187± 6

LittleRock 183± 6 LittleRock 182± 9 LittleRock 185± 6
GGValuta 147± 6 GGValuta 142± 7 GGValuta 147± 6

AAIMontybot −31± 12 AAIMontybot −28± 17 AAIMontybot −33± 12
RobotBot −36± 9 RobotBot −42± 14 RobotBot −41± 10

GBR −54± 13 GBR −58± 16 GBR −61± 13
player.zeta −189± 16 player.zeta −205± 21 player.zeta −203± 15

Calvin −246± 12 Calvin −243± 13 Calvin −252± 12
Tiltnet −287± 10 Tiltnet −295± 13 Tiltnet −300± 9

POMPEIA −541± 6 POMPEIA −548± 9 POMPEIA −553± 6
TellBot −738± 16 TellBot −757± 17 TellBot −783± 15

Table 1: 2011 ACPC total bankroll results for heads-up limit Texas hold’em. Results include those from original ACPC
matches and matches played on the benchmark server against the Big-Portfolio and Small-Portfolio implicit modelling agents.
95% confidence intervals are shown and values are in milli big blinds per hand.

hold’em, we validate the approach through implementations
of implicit modelling agents built using public data from the
2010 Annual Computer Poker Competition. These agents
not only outperform other baseline response techniques, but
also would have won the 2011 Annual Computer Poker Com-
petition’s exploitation event.
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