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Abstract 
 

We present a novel predictive statistical framework 
to improve the performance of an Eigen Tracker which 
uses fast and efficient eigen space updates to learn 
new views of the object being tracked on the fly using 
candid co-variance free incremental PCA. The 
proposed system detects and tracks an object in the 
scene by learning the appearance model of the object 
online motivated by non-traditional uniform norm. It 
speeds up the tracker many fold by avoiding non-
linear optimization generally used in the literature. 
 
1. Introduction 
 

There are numerous tracking algorithms proposed 
in the literature like mean-shift or camshift algorithms, 
appearance based tracker etc. An appearance-based 
tracker (EigenTracker [1]) can track moving objects 
undergoing appearance changes powered by 
dimensionality reduction techniques. The Isard and 
Blake CONDENSATION algorithm [2] can represent 
simultaneous multiple hypothesis. There can be several 
ways by virtue of which the power of EigenTracker 
and particle filter can be combined like [7] and [8]. But 
these have the overhead of non-linear optimization. [6] 
proposes a fast appearance tracker which eliminates 
non-linear optimizations completely but it lacks the 
benefit of predictive framework. We enhance the 
capabilities of the EigenTracker by augmenting it with 
a CONDENSATION-based predictive framework to 
increase its efficiency and also make it fast by avoiding 
non-linear optimization like [6]. The main features of 
our approach are the tracker initialization, presence of 
prediction framework, effective subspace update 
algorithm [4] and avoidance of non-linear 
optimizations.  

 
2. On-Line Prediction in the Tracker 
 
2.1. The Prediction Mechanism  
 

The tracking area is described by a rectangular 
window parameterized by [xt ,yt,, wt, ht, θt ], and 

modeled by the 7 dimensional state vector Xt =  [xt , x't 
, yt , y't , wt ,ht, θt ], where (xt, yt) represents the position 
of the tracking window, (wt , ht) represents the width 
and height of the tracking window, (x’t,y’t) represents 
the horizontal and vertical component of the velocity 
and θt represents the 2D rotation angle of the tracking 
window. These 5 motion parameters can track the 
object with its bounding box being an oriented 
rectangle. This seed point is needed for sampling 
windows around it. The predictive framework helps 
generating better seed values for diverse object 
dynamics. We use a simple first-order AR process to 
represent the state dynamics (t represents time): 

Xt = AtXt-1 + wt, where wt is a zero-mean, white, 
Gaussian random vector. The measurement is the set of 
five motion parameters obtained from the image, Zt. 
The observation model has Gaussian peaks around 
each observation, and constant density otherwise. 

We estimate the values of the five motion 
parameters based on their predicted values and the 
measurements done. These estimated values serve as 
seeds to the next frame. For every frame, we get 
sampled version of conditional state density (St), and 
corresponding weights (∏t) for conditional probability 
propagation or CONDENSATION. The state estimate 
is used to generate the predictions for the next frame. 
The prediction framework we used is motivated by 
predictive Eigen tracker [7]. 

 
2.2. Initialization of the tracker 

 
Accurate tracker initialization is a difficult problem. 

Our coding solution currently can detect the most 
moving object automatically by analyzing the first 
three frames, i.e. with the overhead of additional two 
frames buffering at the beginning of the tracking 
process which is quite acceptable. We have used a 
moving object segmentation method based on the 
improved PCA which is a simplified version of the 
methodology used in [3] for moving object detection 
and segmentation. For this technique to work the 
background should be still or changing slowly such as 
grassplot or cloud for the analyzing frames. The 
principle component analysis is improved to adapt to 



the motion detection. The definition of traditional 
covariance matrix is modified to:  
C = (X1 – X2)T(X1 – X2) + (X2 – X3) T(X2 – X3)+ 
(X1 – X3)T(X1 – X3)                                              (1)  

Where, Xi is a one dimensional vector obtained by 
vectorizing the original image sequence. Secondly, the 
calculation result is improved in the following way. 
Say, E1 and E2 as the first two eigenvectors 
calculated. The element wise product of these two 
eigenvectors is:  

E = E1 × E2. E effectively eliminates the blur of the 
eigen images of the moving object. And after 
formation of E, a simple thresholding usually gives a 
good initialization of the object’s rectangular bounding 
box. 

 
2.3. On-the-fly Eigen space Updates 

 
In most tracking problems, the object of interest 
undergoes changes in appearance over time. It is not 
feasible to learn all possible poses and shapes even for 
a particular domain of application, off-line. Therefore, 
one needs to learn and update the relevant Eigen 
spaces on the fly. Since a naive O(mN3) algorithm (for 
N images having m pixels each) is time-consuming, we 
use an efficient-estimation motivated by optimal 
incremental principal component analysis of O(mNk) 
algorithm (for k most significant singular values) 
proposed by Juyang Weng et al. [4]. 

At each time frame Fi+1, the IPCA method 
iteratively computes the new principal components 
vj(i+1) (for j = 1, 2, ...d), as follows: 

1. u1(i + 1) = Oi+1. 
2. For j = 1, 2, ...,min(d, i + 1) do, 
(a) If j = i + 1,  
initialize the jth eigenvector as vj(i + 1) = uj(i + 1); 
(b) Otherwise, 
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where l is the amnesic parameter giving larger weights 
to newer samples, and ||v|| is the eigenvalue of v. 
Intuitively, eigenvectors vj(i) are pulled towards the 
data uj(i+1), for the current eigenvector estimate vj(i + 
1) in eq (3). Since the eigenvectors have to be 
orthogonal, therefore eq (4) shifts the data uj+1(i+1) 
normal to the estimated eigenvector vj(i+1). This data 
uj+1(i + 1) is used for the estimating the (j +1) th 
eigenvector vj+1(i + 1). The IPCA method converges to 
the true eigenvectors in fewer computations than PCA 
(proof in [5]).  

Since the real mean of the image data is unknown, we 
incrementally estimate the sample mean m’(n) by 
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Where x(n) is the nth sample image. The data entering 
the IPCA algorithms are the scatter vectors,  
u(n) = x(n) – m’(n) for n=1,2,…  

 
2.4. The Overall Tracking Scheme 

 
The following section outlines our overall tracking 
scheme. In the first frame, we initialize the tracker 
(Section 2.2). For all subsequent frames, the next step 
is to obtain the measurements – taking the minimum 
distant prediction from the learnt sub-space (in RGB 
plane) as the description of the tracked object. We then 
update the eigen-spaces incrementally. Finally, we 
predict the motion parameters values for the next 
frame. The idea behind the subspace construction for 
the appearance based tracking is the uniform L2 
reconstruction error norm  

Error∞(L, {x1, · · · xN}) = maxid2(L, xi)              (5) 
To define the quality of approximation, we use the 

uniform reconstruction error norm Error∞ introduced 
in Equation 5 in our approach. If N denotes the number 
of previous frames whose tracking results are retained 
and δ > 0 is a threshold parameter, we can specify a 
pair of input parameters (N, δ). We can define the 
subspace L to be any subspace such that the uniform 
reconstruction error norm between L and {x1, · · · , xN} 
is less than the threshold δ. i.e. 

Error∞(L, {x1, · · · xN}) < δ.                              (6) 
This definition of L is general and the solution is 
generally not unique. As along as δ is greater than 
zero, there exists at least one L that satisfies the 
inequality in Equation 6, the subspace L spanned by 
the entire collection of samples {x1, · · · , xN}. One of 
the great advantages of this non-uniqueness of the 
solution is that we only need to find one such L, and it 
allows us to design a simple and computationally 
inexpensive algorithm to find just one such L. Having 
a computationally inexpensive update algorithm is 
necessary if the tracking algorithm is expected to run 
in real-time.  

 
4. Remark and Discussions 
 
The computational complexity of the algorithm is 
dominated by the number of windows generated from 
the sampling. Like all appearance-based tracker it 
cannot handle situation like sudden pose or 
illumination changes or fully occlusion, but it can 
handle partial occlusion and gradual pose or 



illumination changes (Figures 1, 2, 3). There are three 
important free parameters in our algorithm, N, the 
number of samples to pick and l, amnesic parameter 
for the subspace update and k, the number of principal 
components. In the experiments we reported below, we 
let l range from 2 to 6 and N range from 150 to 200 
and k range from 3 to 10.   
 
6. Experiments and Results 
 
We implemented the proposed method in MATLAB 7. 
Our current implementation runs at about 0.25 to 0.5 
frames/sec with 320x240 and 176x144 video input 
respectively on a standard Intel centrino P4 1.8 MHz 
machine and thus it is quite expected that C 
implementation easily can run on real time. Our test 
cases contain scenarios which a real-world tracker 
encounters, including changes in appearance, large 
pose variations, significant lighting variation and 
shadowing, partial occlusion, object partly leaving 
field of view, large scale changes, cluttered 
backgrounds, and quick motion resulting in motion 
blur.  

Frames tracked Avg Time/frame video 
 No 

predicti
on 

With  
predictio
n 

No 
predictio
n 

With  
predicti
on 

Coast 
guard 

80 100 4.2 sec 4.2 sec 

hall 82 112 4.5 sec 4.6 sec 
Table 1: comparison of predictive and non-predictive 
framework ( N = 150 windows sampled for each case) 
 
It is evident from the above table that incorporation of 
predictive framework makes the tracker more robust. 
Coastguard sequence has presence of the boat up to 
frames 100 out of total 300 frames and then it 
disappears (figure 1).  Hall is the sequence where a 
person (tracking object) appears in frame 25 and 
disappears after 140th frame, and in that interval it 
changes poses heavily. If we increase the number of 
windows to be sampled by 250, no prediction 
framework (with almost double time complexity) 
shows almost similar robustness that of predictive 
framework with 150 samples. 
 
7. Summary and conclusions 
 
In this paper, we have introduced a technique for 
predictively learning the statistical distribution on-line 
with an Eigen subspace representation of an object that 

is being tracked with a fast EigenSpace update 
technique. The resulting tracker is both simple and 
fast. The method can robustly track an object in the 
presence of large viewpoint changes, partial occlusion, 
lighting variation, changes to the shape of the object 
shaky cameras, and motion blur. Moreover avoidance 
of non-linear optimization makes our tracking task 
faster than that of [7]. 
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Frame 1                                             Frame 21                                            Frame 35 

              
Frame 67                                             Frame 86                                            Frame 108 

Figure 1: Sequence of tracking a boat (sequence coastguard) which shows high background motion, 
background clutter as well as object partly going out of the field of view 
 
 

                
Frame 1                                                 Frame 210                                           Frame 237 

 

               
Frame 261                                            Frame 264                                           Frame 271 

Figure 2 Sequence of tracking a helicopter in a changing background and which goes under partial occlusion 
 

                
Frame 1                                               Frame 25                                          Frame 84 

Figure 3: Sequence of tracking a woman’s face (sequence Renata) which shows apparent pose changes 
   


