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Abstract. Recent approaches to model-based manipulator control in-
volve data-driven learning of the inverse dynamics relationship of a ma-
nipulator, eliminating the need for any knowledge of the system model.
Ideally, such algorithms should be able to process large amounts of data
in an online and incremental manner, thus allowing the system to adapt
to changes in its model structure or parameters. Locally Weighted Pro-
jection Regression (LWPR) and other non-parametric regression tech-
niques have been applied to learn manipulator inverse dynamics. How-
ever, a common issue amongst these learning algorithms is that the sys-
tem is unable to generalize well outside of regions where it has been
trained. Furthermore, learning commences entirely from ‘scratch,” mak-
ing no use of any a-priori knowledge which may be available. In this pa-
per, an online, incremental learning algorithm incorporating prior knowl-
edge is proposed. Prior knowledge is incorporated into the LWPR frame-
work by initializing the local linear models with a first order approxima-
tion of the available prior information. It is shown that the proposed ap-
proach allows the system to operate well even without any initial training
data, and further improves performance with additional online training.
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1 Introduction

Control strategies that are based on the knowledge of the dynamic model of
the robot manipulator, known as model-based controllers, can present numer-
ous advantages such as increased performance during high-speed movements,
reduced energy consumption, improved tracking accuracy and the possibility of
compliance [1]. However, this performance is highly dependant upon the accu-
rate representation of the robot’s dynamics, which includes precise knowledge of
the inertial parameters of link mass, centre of mass and moments of inertia, and
friction parameters [2]. In practice, obtaining such a model is a challenging task
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which involves modeling physical processes that are not well understood or dif-
ficult to model, such as friction [3] and backlash. Thus, assumptions concerning
these effects are often made to simplify the modeling process, leading to inac-
curacies in the model. Furthermore, uncertainties in the physical parameters of
a system may be introduced from discrepancies between the manufacturer data
and the actual system [4]. Changes to operating conditions can also cause the
structure of the system model to change, thus resulting in degraded performance.

Traditionally, adaptive control strategies have been used to cope with pa-
rameter uncertainty [2], [5]. This allows parameters of the dynamic model such
as end effector load, inertia and friction to be estimated online [2]. However,
such methods are still reliant upon adequate knowledge of the structure of the
dynamic model and are thus susceptible to modeling errors and changes in the
model structure. Furthermore, accurate estimation of the model parameters re-
quires sufficiently rich data sets [2],[6], and even when available, may result in
physically inconsistent parameters meaning that constraints must be applied to
the identified parameters [2],[7].

Newer approaches to manipulator control involve data-driven learning of the
inverse dynamics relationship of a manipulator, thus eliminating the need for
any a-priori knowledge of the system model. Unlike the adaptive control strat-
egy, these approaches do not assume an underlying structure but rather attempt
to infer the optimal structure to describe the observed data. Thus, it is possible to
encode nonlinearities whose structure may not be well-known. Solutions to this
form of supervised learning approach can be broadly categorized into two types
[8]. Global methods such as Gaussian Process Regression (GPR) [9] and Support
Vector Regression (SVR) [10], and local methods such as Locally Weighted Pro-
jection Regression (LWPR). Recent studies comparing these learning methods
[11] show that while SVR and GPR can potentially yield higher accuracy than
LWPR, their computational cost is still prohibitive for online incremental learn-
ing. Furthermore, a major issue of online learning approaches such as LWPR is
the failure to generate appropriate control signals away from the trained region
of the workspace [12].

Central to the learning approaches introduced thus far is the need for large
amounts of relevant training data in order to yield good prediction performance.
These algorithms most often assume that there is no prior knowledge of the
system dynamics, and thus learning commences entirely from ‘scratch’, making
no use of the rigid body dynamics (RBD) model from the well-established field of
analytical robotics [1], which provide a global characterization of the dynamics.
Recent research [13] has been done to incorporate the full RBD model into
the GPR algorithm to improve its performance in terms of generalization and
prediction accuracy in the context of real-time robot control. However, in [13],
the high computational requirements of GPR still prohibit incremental online
updates from being made, which is a highly desirable feature of any learning
algorithm for robot control [14].

In many cases, partial information about the robot dynamics may be avail-
able, such as for example, the link masses, which may be helpful in bootstrapping
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a learning model and accelerating the rate of learning. This paper proposes a
novel approach for on-line, incremental learning for model-based control, capable
of incorporating full or partial a-priori model knowledge. This is done by using
first order approximations of the RBD equation to initialize the local models of
the LWPR technique. The developed algorithm can be applied both when full
knowledge of the RBD model is available, and also when only partial information
(e.g. only the gravity loading vector) is known.

The remainder of this paper is organized as follows. In section 2, the dynamic
model of a typical rigid body manipulator and model based control strategies are
reviewed. Section 3 briefly overviews the previously developed LWPR algorithm
for learning control. Section 4 presents the proposed online, incremental algo-
rithm for incorporating full or partial a-priori knowledge into LWPR. Section 5
presents the simulations and results. Finally, in Section 6, the conclusions and
next steps are discussed.

2 Overview of Model-Based Control

The rigid body dynamic equation (RBD) of a manipulator characterizes the re-
lationship between its motion (position, velocity and acceleration) and the joint
torques that cause these motions [1]:

M(q)4 +C(q,q) + G(q) =7 (1)

where q is the nx1 vector of generalized coordinates consisting of the n joint
angles for an n-degree of freedom (DOF) manipulator, M(q) is the nxn inertia
matrix, C(q, q) is the nx1 Coriolis and centripetal force vector, G(q) is the nx1
gravity loading vector and 7 is the nx1 torque vector.

Equation (1) does not include additional torque components caused by fric-
tion, backlash, actuator dynamics and contact with the environment. If ac-
counted for, these components are modeled as additional terms in (1).

Model-based controllers are a broad class of controllers which apply the joint
space dynamic equation (1) to cancel the nonlinear and coupling effects of the
manipulator. A common example of this is the computed torque approach [2],[1]
in which the control signal u is composed of the computed torque signal, ucr,
which is set to the torque determined directly from the inverse of the dynamic
equations (1). This term globally linearizes and decouples the system, and thus a
linear controller can be applied for the feedback term, ugg, which stabilizes the
system and provides disturbance rejection. Typically a Proportional-Derivative
(PD) feedback scheme is used for this term.

Desirable performance of the computed torque approach is contingent upon
the assumption that the values of the parameters in the dynamic model (1) match
the actual parameters of the physical system. Otherwise, imperfect cancelation
of the nonlinearities and coupling in (1) occurs. Hence, the resulting system is
not fully linearized and decoupled and thus higher feedback gains are necessary
to achieve good performance.
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3 Learning Inverse Dynamics

Learning inverse dynamics involves the construction of a model directly from
measured data. The problem of learning the inverse dynamics relationship in
the joint space can be described as the map from joint positions, velocities and
accelerations to torques

(4,4,8a) — 7 (2)

where 7T is the nx1 torque vector, and q is the nx1 vector of generalized coordi-
nates. This means that the mapping has an input dimensionality of 3n and an
output dimensionality of n.

3.1 Locally Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) approximates the nonlinear
inverse dynamics equation (1) with a set of piecewise local linear models based
on the training data that the algorithm receives. Formally stated, this approach
assumes a standard regression model of the form

y=[f(X)+e ()

where X is the input vector, y the output vector, and € a zero-mean random
noise term. For a single output dimension of y, denoted by y;, given a data point
X¢, and a subset of data close to X, with the appropriately chosen measure of
closeness, a linear model can be fit to the subset of data such that

yi =B "X +e (4)

where 3 is the set of parameters of the hyperplane that describe ;. The region
of validity, termed the receptive field (RF) [8] is given by

Wi = cxp(—%(X — X )TDiu (X — X,)) (5)

where w;), determines the weight of the k*" local linear model of the i*" output
dimension (i.e. the k" local linear model), X, is the centre of the k" linear
model, Djx corresponds to a positive semidefinite distance parameter which de-
termines the size and shape of the ik'" receptive field. Given a query point X,
LWPR calculates a predicted output

Gi(X) =Y wirbin/ Y win (6)
k=1 k=1

where K is the number of linear models, §;;, is the prediction of the ik*" local
linear model given by (4) which is weighed by w;;, associated with its receptive
field. Thus, the prediction ¢;(X) is the weighted sum of all the predictions of the
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local models, where the models having receptive fields centered closest to the
query point are most significant to the prediction. This prediction is repeated i
times for each dimension of the output vector y.

Determining the set of parameters 3 of the hyperplane is done via regression,
but can be a time consuming task in the presence of high-dimensional input data,
which is a characteristic of large numbers of DOF in robotic systems. To reduce
the computational effort, LWPR assumes that the data can be characterized by
local low-dimensional distributions, and attempts to reduce the dimensionality
of the input space X using Partial Least Squares regression (PLS). PLS fits
linear models using a set of univariate regressions along selected projections in
input space which are chosen according to the correlation between input and
output data [15].

The distance parameter, D, (5) can be learned for each local model through
stochastic gradient descent given by

aJcost
“od (7)

where a is the learning rate for gradient descent, D = dTd and J,. is a pe-
nalized leave-one-out cross-validation cost function which addresses the issue of
over-fitting of the data [16]. The number of receptive fields is also automatically
adapted [8]. Receptive fields are created if for a given training data point, no
existing receptive field possesses a weight w; (5) that is greater than a threshold
value of wyep, which is a tunable parameter. The closer wge,, is set to one, the
more overlap there will be between local models. Conversely, if two local models
produce a weight greater than a threshold wy,yune, the model whose receptive
field is smaller is pruned.

Because training points are not explicitly stored but rather encoded into
simple local linear models, the computational complexity of LWPR remains low,
and is not affected by the number of training points. Assuming that the number
of projection directions found by the PLS algorithm remains small and bounded,
the complexity of the basic algorithm varies linearly with input dimension [8].

d"'=d"-a

4 Incorporating a-priori knowledge into LWPR

Despite its ability to perform online, incremental updates due to its low com-
putational cost [8],[11], as a result of the local learning approach of LWPR,
performance deteriorates quickly as the system moves outside of the region of
state space it has been trained in [11],[12]. In order to improve the generalization
performance of LWPR, a-priori knowledge from the RBD model (1) is incorpo-
rated into the LWPR algorithm as a method of initializing the system. This is
done by initializing the receptive fields in the LWPR model with a first order
approximation of the available RBD model.

or

B — %z:w* (8)
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where z, is a new query point for which no previous training data has been
observed and 7(z.) is the known or partially known dynamics. For a query
point z, and known RBD equation 7(x,), the algorithm shown in Figure 1 for
initializing the LWPR model is added to the standard prediction procedure of
LWPR:

if there is no existing RF centered near z. then

Compute () according to (8)

Initialize a new RF centered at x. with hyperparameters 3
else

Compute prediction with standard LWPR, procedure (6)
end if

Fig. 1. LWPR Initialization Pseudocode

The determination of whether an existing RF is centered near z, is made in
the same way as determining whether a new RF should be added, as described
in Section 3.1, i.e., if there is no existing RF that produces a weight (5) greater
than wgen given x,, the initialization procedure is applied.

By evaluating the partial derivative of the full (1) or partially known RBD
equation at the query point, a first-order linear approximation of the system
dynamics is obtained, and is used to initialize the model at that point. The size
of the receptive field is initially set as a tunable parameter, and is eventually
learned optimally through gradient descent [8].

5 Simulations

The proposed approach is evaluated in simulation on a 6-DOF Puma 560 robot
using the Robotics Toolbox (RTB) [17]. The open-source LWPR [8] was mod-
ified to incorporate full or partial initialization with the RBD model. In order
to closely simulate the nonlinearities present in a physical robot, the effects of
Coloumb and viscous friction were accounted for in simulation by the following
model:

7r = Cysign(q) + Vyq ()

where 7; is the torque due to Coulomb and viscous friction, C' is the Coulomb
friction constant, and V is the viscous friction constant. The friction constants
were obtained from the defaults for the Puma 560 in the RTB.

Furthermore, to simulate the effects imprecise knowledge of the inertial pa-
rameters of the robot, a 10% percent error in the inertial parameters of the
a-priori knowledge was introduced.

The LWPR algorithm is applied to learn the joint-space mapping in (2). Full
a-priori knowledge from the RBD model in (1), as well as partial knowledge
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from the gravity loading vector G(q), is used to initialize each algorithm. Stan-
dard computed torque control is also implemented with the same RBD model
used to initialize the learning algorithms. Although LWPR incorporates many
algorithms which enable the system to automatically adjust its parameters for
optimal performance, initial values of these parameters can significantly impact
the convergence rate. The initial value for the distance metric D (5) dictates
how large a receptive field is upon initialization. Too small a value of D (corre-
sponding to large receptive fields) tends to delay convergence while a larger value
of D results in overfitting of the data [8]. The initial value of the learning rate
a(7) determines the rate at which prediction error converges. Too high a value
leads to instability and too low a value leads to a slow convergence. These pa-
rameters were generally tuned through a trial-and-error process which involved
monitoring the error of the predicted values during the training phase.

Tracking performance of the controllers is evaluated on a ‘star-like’ asterisk
pattern [7] as seen in Figure 2. This trajectory is obtained by first moving in a
straight line outwards from a centre point, then retracing back inwards to the
centre, repeating this pattern in eight different directions in a sequential manner.
This pattern produces high components of acceleration, and thus requires model-
based control for tracking accuracy. Two speeds are tested, slow and fast, with
the maximum velocities set to 0.5 and 2.5 m/s respectively, where the fast speed
corresponds to roughly 80% of the robot’s maximum velocity. At low speeds, it is
expected that the gravity term G(q) (1) will be dominant. The high-speed tra-
jectory is used to ensure that the Coriolis and centripetal components, C(q, q),
(1) of the dynamics are excited to a sufficient extent so that G(q) is no longer
dominant. A numerical inverse kinematics algorithm [18] is used to convert the
workspace trajectories into the joint space.
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Fig. 2. Task Space tracking results for the slow trajectory

Figure 2 depicts the task space tracking performance of the computed torque
(CT) controller using a model with 10% error in the inertial and friction param-
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eters of the system tracking the slow asterisk trajectory. It is evident that the
imprecise knowledge of the RBD model is responsible for poor tracking results.
The same RBD model is used to initialize the LWPR model, and the resulting
controller is trained online while tracking the slow asterisk trajectory. Table 1
shows the joint space tracking performance after one cycle of the trajectory (ap-
proximately 11 seconds). Because the LWPR model is initialized with a set of
linear approximations of the RBD equation, the initial performance of LWPR is
not as good as the CT method. Table 1 shows the joint space tracking after 90
seconds of training. Due to the high computational efficiency of LWPR, incre-
mental updates are made at a high rate of 400 Hz. As time progresses, LWPR
is able to collect more training data and eventually outperforms the CT method
by learning the nonlinear behaviour of Coloumb and viscous friction and com-
pensating for the initial inaccurate knowledge of the RBD equation. The model
learned on the slow trajectory is then applied to tracking the fast trajectory. The
performance suffers only slightly compared to the initial performance on the slow
trajectory, as the system was initialized with a full, but slightly inaccurate RBD
model. As seen in Table 1, further training for 45 seconds mitigates this issue
and results in tracking performance that is nearly as good as compared to that
of the slow trajectory. Performance of the CT controller was very similar for
both slow and fast trajectories, and is also shown for a comparison.

Table 2 illustrates the joint space tracking performance of the LWPR model
when initialized with only the gravity loading vector of the RBD equation while
tracking the slow asterisk trajectory. The same table also illustrates the perfor-
mance after 150 seconds of training. Similarly to the case of full knowledge of
the RBD, with sufficient training, LWPR is able to compensate for friction and
clearly outperforms the CT controller. However, since the system was initialized
with only partial knowledge of the RBD equation, it has taken longer to achieve
the same tracking performance in the case of full RBD knowledge. The learned
model is once again applied to track the fast trajectory. Compared to the case of
full RBD initialization, the performance with only gravity initialization on the
faster trajectory is much worse, as seen numerically in Table 2. Performance of
the CT controller was very similar for both slow and fast trajectories, and is also
shown for a comparison.

Table 1. RMS tracking error with full knowledge (deg)

| Joint T1]2[3]4]5]6 [Avg
Slow Trajectory, Initial|[1.25(2.26|1.74|0.65|0.75|0.80}|1.24
Slow Trajectory, 90s {|0.75]0.94/0.82(0.25|0.38|0.45(|0.60
Fast Trajectory, Initial|{0.95]1.20{1.05|0.36]0.50|0.65|(0.79
Fast Trajectory, 45s ||0.82|1.00{0.93|0.35|0.45|0.52|(0.68
CT Controller 1.10{2.05|0.95]0.55|0.65|0.62{|0.98
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Because the learning of the Coriolis and centripetal term, C(q, q), is local-
ized about a specific joint position and velocity, the learned model from the
slow trajectory is no longer fully applicable to the fast trajectory. Furthermore,
since the system was only initialized with the gravity loading vector, the system
performs poorly, and requires significantly more training time to perform well
again. This is illustrated in Table 2.

Without the use of a-priori knowledge, learning algorithms were typically
initialized with large training data sets obtained through motor babbling [8],
[19], [11] in order to achieve decent tracking performance after initialization. By
incorporating a-priori knowledge of the RBD equation, whether partial or full,
the proposed systems are able to perform reasonably well from the start, even
without undergoing such an initialization procedure.

6 Conclusions and Future Work

In this paper, an incremental, online learning method is proposed for approximat-
ing the inverse dynamics equation while incorporating full or partial knowledge
of the RBD equation. The LWPR algorithm was chosen due to its computational
efficiency which allows incremental, online learning to occur. In order to improve
the generalization performance of the algorithm, prior knowledge was incorpo-
rated into the LWPR framework by initializing its local models with a first-order
approximation of the RBD equation. In cases where the full RBD is not known
due to lack of knowledge of the inertial parameters, partial information (such as
the gravity vector) can still be encoded into the model.

Table 2. RMS tracking error with partial knowledge (deg)

| [1[2]3[4[5]6 [Ave
Slow Trajectory, Initial{|2.57|4.78|3.62|0.95|0.80(0.75(|2.25
Slow Trajectory, 150s ||0.80/0.95/0.80(0.22(0.41|0.44(/0.91
Fast Trajectory, Initial ||2.95(5.27]4.16(1.25|1.00|0.94||2.60
Fast Trajectory, 60s ||0.86{1.10/0.91]0.32|0.48|0.51{|0.70
CT Controller 1.10{2.05|0.95]0.55|0.65|0.62{|0.98

When this occurs, more training time is required to achieve similar performance
as with full RBD initialization. In either case, the generalization performance
of LWPR is greatly improved, as the model is able to yield acceptable track-
ing results without having seen any relevant training data beforehand. It is also
shown that this approach is able to compensate for the nonlinear effects of fric-
tion, as well as the initial inaccuracy in the inertial parameters. Future work will
involve more a more comprehensive evaluation of the proposed methods, includ-
ing experimental results on physical robots. Secondly, other machine learning
algorithms for function approximation will be investigated, such as Gaussian
Process Learning [9)].
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