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Abstract— The technological landscape of intelligent transport
systems (ITS) has been radically transformed by the emergence
of the big data streams generated by the Internet of Things (IoT),
smart sensors, surveillance feeds, social media, as well as growing
infrastructure needs. It is timely and pertinent that ITS harness
the potential of an artificial intelligence (AI) to develop the
big data-driven smart traffic management solutions for effective
decision-making. The existing AI techniques that function in
isolation exhibit clear limitations in developing a comprehensive
platform due to the dynamicity of big data streams, high-
frequency unlabeled data generation from the heterogeneous data
sources, and volatility of traffic conditions. In this paper, we pro-
pose an expansive smart traffic management platform (STMP)
based on the unsupervised online incremental machine learning,
deep learning, and deep reinforcement learning to address these
limitations. The STMP integrates the heterogeneous big data
streams, such as the IoT, smart sensors, and social media,
to detect concept drifts, distinguish between the recurrent and
non-recurrent traffic events, and impact propagation, traffic flow
forecasting, commuter sentiment analysis, and optimized traffic
control decisions. The platform is successfully demonstrated
on 190 million records of smart sensor network traffic data
generated by 545,851 commuters and corresponding social media
data on the arterial road network of Victoria, Australia.

Index Terms— Smart traffic management, concept drift, unsu-
pervised incremental learning, deep learning, deep reinforcement
learning, impact propagation, traffic optimization, traffic fore-
casting, traffic control, social media analytics.

I. INTRODUCTION

R
OAD traffic conditions and flow management con-
tinue to be an important area of research with many

practical implications. During the last decade, the techno-
logical landscape of transportation has gradually integrated
disruptive technology paradigms into current transportation
management systems, leading to Intelligent Transportation
Systems (ITS) [1], [2]. The emergence of Internet of
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Things (IoT), sensor networks and social media has surpassed
traditional means of collecting data, by creating voluminous
and continuous streams of real-time data. Leveraging such big
data environments is a formidable issue, due to the intense vol-
ume and velocity at which data is generated by transportation
and mobility systems [1]. Furthermore, the dynamic nature of
these environments makes the data generation volatile, which
impedes the effectiveness of decision-making in ITS.

The dynamicity of data generated by transportation systems
consists of continuously changing patterns and concept drifts.
In a traffic context, concept drifts are the changes to the
distributions of data in a traffic data stream over time [3].
Based on the nature of fluctuations in data streams, these
changes are further classified as recurrent and non-recurrent
concept drifts. For example, traffic congestion changes due
to peak/off-peak traffic is a recurrent concept drift whereas
an accident or breakdown is a non-recurrent concept drift.
Special importance should be placed into identifying non-
recurrent concept drifts as it could affect the entire road
network. Existing literature reports a number of supervised
machine learning algorithms that detect drifts and adapt to new
concepts [3]–[6]. Although real-time concept drift detection is
crucial for effective decision making in transportation, feed-
back on the type of traffic incident is only received following
an unknown delay. This severely limits the applicability of
the supervised learning nature of these algorithms. Therefore,
we postulate that concept drift detection in road traffic requires
unsupervised online incremental machine learning to address
the challenges of real-time, unlabeled, volatile data streams.

In this work, we distinguish online learning and incremen-
tal learning. Online learning updates the model using each
incoming data point that arrives during the operation, without
storing [7]. As such, online learning is utilized to handle
large volumes of streaming data arriving at high velocity.
Incremental learning is learning from batches of data at distinct
time intervals, and has the capability to stabilize the historical
knowledge of the learning model over novel learnings [8].
Hence, the model is updated to any new data point that is
received while keeping its existing knowledge intact. Further,
it is essential that non-recurrent concept drifts are identified
and utilized for updated traffic propagation and traffic flow
prediction models in a real-time manner.

To this end, we further address several key concerns which
are underexplored in current ITS, to support the development
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of a holistic traffic management platform. Following an exten-
sive review of current literature in ITS [1], [2], [9] we
identified the following four current challenges which have not
been sufficiently addressed. a) the development of real-time
machine learning algorithms and prediction schemes for non-
recurrent traffic incidents that impact an entire road network.
b) a majority of existing approaches focus on freeways and
highways, with very limited attention to arterial networks due
to the technical challenges of integrating multiple streams of
traffic data, thus fails when determining traffic propagation
in the entire network. c) current approaches do not account
for network level spatiotemporal variables that are expressed
as big data streams. d) the human element of road traffic,
commuter sentiment and emotions expressed regarding traffic
on social media channels, which are largely overlooked in
current ITS research. While social media is increasingly being
used in emergency events [10]–[12], integrating such data with
other traffic-related data would provide a holistic view of the
situation from both road dynamics and commuter perspective.

Addressing these limitations, we designed and developed
the ‘Smart Traffic Management Platform’ (STMP), an expan-
sive intelligent traffic data integration and analysis platform,
that integrates heterogeneous traffic data sources. With the
proposed STMP platform we present the following research
contributions.

• a novel online incremental machine learning algorithm
to detect real-time concept drifts from big data streams

• a deep learning approach for real-time network level
traffic flow prediction and impact propagation estimation
in arterial road networks

• a deep reinforcement learning approach to determine
optimal traffic control actions based on real-time mea-
surements

• a social media data integration model to capture social
behaviors during a non-recurrent traffic event, to deter-
mine commuter sentiment and emotion

• demonstrated the STMP platform on 190 million records
of smart sensor network traffic data generated by
545,851 commuters and corresponding social media data
on the arterial road network of the State of Victoria in
Australia.

Rest of the paper is organized as follows. The next section
delineates the proposed STMP platform, followed by subsec-
tions for each research contribution. STMP is demonstrated
in Section III, and Section IV concludes the paper follow-
ing a discussion on implications and potential for future
research.

II. PROPOSED PLATFORM

The proposed STMP platform is illustrated in Fig. 1.
It consists of three layers of functionality, L1-L3. It is expan-
sive in terms of the heterogeneous data sources that can
be transformed and integrated into the data transformation
layer L1 (Section II-A). The middle layer L2 (Section II-B)
consists of the online incremental machine learning algorithm
which detects concept drifts and classifies into recurrent/non-
recurrent traffic events. These are passed on as input to
smart traffic management modules in layer L3 for impact

Fig. 1. Smart traffic management platform architecture.

propagation estimation (Section II-C), traffic flow forecast-
ing (Section II-D), optimization for intelligent traffic control
(Section II-E) and commuter emotion analysis (Section II-F).
L3 is also expansive as further modules can be linked to L2 for
other traffic management activities.

A. Data Transformation

The data transformation layer receives heterogeneous
sources of big data streams related to road traffic, such as
IoT, sensor network data, social media data, video surveil-
lance feeds, weather data, planned public events, and road
construction activities. These data sources are pre-processed,
transformed and integrated into a computational format that
can be effectively ingested by the online incremental machine
learning algorithm in L2. Due to space limitations, we scope
this study to trajectory data from Bluetooth Traffic Monitoring
System (BTMS) and social media data.

1) Traffic Flow Modeling: The flow of traffic in a road
network fluctuates due to recurrent events (e.g., peak, off-
peak traffic), non-recurrent events (e.g., accidents, road work),
and the characteristics of the location (e.g., schools, shopping
centers). Therefore, the traffic flow needs to be modeled as a
spatiotemporal function.

The traffic flow T (t, s) at location s and time t are a
directional measure determined separately for each direction
of traffic at s. This is based on the number of vehicles that
pass through location s towards a particular direction at time
interval t to t + �t [13]. In legacy approaches, traffic flow is
measured from several reference points and then extrapolated
to determine the traffic flow of the road network based on the
density flow theories of hydrodynamics [13]–[16]. However,
as the arrival of more comprehensive traffic data collections
systems, fully data-driven methods have been recently pro-
posed to estimate the traffic flow [17]–[19].

In addition to point-based traffic flow, the availability of
vehicle trajectory data enables the traffic flow to be esti-
mated for road segments (between any two sensor locations).
For example, the traffic flow of road segment AB can be
determined by T (t, A → B) and T (t, B → A), which
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denotes directional traffic flow at time t from A to B and
B to A respectively.

2) Social Media Data Modeling: Social media data are user-
generated content streams with faster information dissemina-
tion. A social media stream can be regarded as a dynamic
content stream which is a continuous stream of messages over
time (m1, m2, . . . mn) where each message consists of a short
text and a time-stamp. As the first step, the social media stream
is sampled using a fixed time interval (�t) which produces
batches of social media messages (B1, B2, . . . Bi ) where each
batch is a collection of social media messages collected for
time �t . Thus, for a given batch, the message collection for
�t could be defined as,

B i = {m}
t=(i+1)×�t
t=i×�t (1)

The granularity of the time period �t (e.g., hourly, daily,
weekly) can be customized to suit the velocity of the social
media stream as well as to match other application specific
requirements. Each batch is then taken for pre-processing. Dur-
ing the pre-processing tasks, duplicated values and stop words
are removed. Natural Language Processing (NLP) and regular
expressions are used to remove URLs, symbols, and emojis.
In addition, geolocation-based filtering is carried out to filter
messages relevant to the context being studied. Subsequent
to the aforesaid transformation, the data are utilized for the
analysis.

B. Unsupervised Concept Drift Detection Based on Online

Incremental Machine Learning

Following the data transformation process, feature vectors
that are mostly unstructured with unlabeled target variables are
passed on to L2. In L2, a novel online incremental machine
learning algorithm is proposed for real-time concept drift
detection and adaptation (Fig. 2). The underlying base algo-
rithm has been applied to examine context awareness in the
Aarhus city of Denmark motor traffic dataset [20] and to study
how the driver behavior change can affect the coordination
between autonomous and human-driven vehicles [21], and the
algorithm has been extended in this work for recurrent and
non-recurrent concept drift capture. The algorithm consists
of two forms of learning, online and offline. Online learning
addresses volume and velocity constraint. Data-driven triggers
are used to define the processing time window and level of
abstraction. The offline algorithm consists of two learning
features:

• Incremental learning to learn from evolving new con-
cepts, which effectively addresses both time and space
constraints. As the learning assumes the new incoming
data are similar to previously learnt concepts, incremen-
tal learning can be used to detect drift between the new
concept and old concept.

• Decremental learning to forget the concepts that are not
further relevant which allows the algorithm to adapt to
the new concept.

1) Online Learning: Online learning is handled by an online
adaptive clustering algorithm [22] where the model is updated
as the new data are presented. The online adaptive clustering

Fig. 2. Proposed data driven unsupervised concept drift detection algorithm.

algorithm periodically transfers an aggregated knowledge to
the offline learning algorithm. Transfer time window and initial
centroids for clustering are defined by the processing triggers.
The transfer time window is the time taken by the offline
algorithm to learn. Learning time is shorter when the algorithm
learns a previously learnt concept whereas it takes longer time
to learn a new concept. Weight vectors of the initial centroids
for clustering are assigned from the offline learning and this
allows the algorithm to quickly adapt to known concepts.

2) Incremental Learning: Incremental learning is based
on Incremental Knowledge Acquisition and Self Learn-
ing (IKASL) algorithm [23]. The algorithm continues to learn
from new data based on learning and generalization of the
past learning outcomes. The functionality of the learning
layer is based on Growing Self Organizing Maps (GSOM)
[24] that generates a dynamic feature map based on the
growing self-organizing process. For each output from the
online processing, Euclidean measurement is calculated to find
the closest node in the map. The winning node’s weight error
rate is increased and the weight vector is updated using Eq. 2,
where w j (t) ,w j (t + 1) are the weight vectors of node j

before and after adaptation, and Nn∗ is the neighborhood of
the winning node.

w j (t + 1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w j (t) ,

j /∈ Nn∗ (t + 1)

w j (t) + L R (t)
(

xk − w j (t)
)

,

j ∈ Nn∗ (t + 1)

(2)

Node growth occurs when this error value exceeds a
predefined growth threshold, GT . New nodes grow out of
the node with the highest accumulated error (Ne) and are
initialized to reflect the neighborhood of Ne . Upon learning for
a predefined number of epochs, a calibrating phase smooths
out irregularities in recent weight adaptations.

In the dynamic feature map, weight vectors of the nodes
and its neighborhood represent the current knowledge of
the concepts. Hence the proximity matrix, S is calculated
where skm (m-th node of the k-th neighborhood) represent
the proximity of nk (Hi)m corresponding to hit node, Hi . Use
of proximity matrix ensure the furthest neighborhood node
will have the strongest impact on the aggregate weight vector.
All such aggregated nodes form the x-th generalized layer Gx .
Each node in the generalization layer has the potential to grow
into a feature map. Each subsequent learning phase, Lx+1,
is started with a winning node from the generalization layer.
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This further learning enables incremental learning allowing the
algorithm to preserve knowledge.

3) Decremental Learning: In the implementation of decre-
mental learning, generalization nodes that do not become
a winner for any of the inputs are identified. These nodes
represent knowledge that is no longer relevant, hence will be
forgotten from the map. This allows the algorithm to adapt to
the new concepts more efficiently.

4) Concept Drift Detection: In concept drift detection,
the distance (d) between the generalized nodes in subsequent
learning layers (GNx ) is calculated as,

d(x) =

√

∑D

i=1

(

G N x
i − G N x−1

i

)2
(3)

where D is the number of dimensions of the input and x is the
learning phase (layer). The distance d(x) represents the new
knowledge acquired by GNx . Hence, a concept drift (CD) in
layer x can be identified as a concept drift when d(x) is a local
maximum.

Among CDs, non-recurrent CDs result in relatively higher
knowledge acquisition as they were not learned before, in con-
trast, recurrent CDs results in lower knowledge acquisition
as they were being learned before. Hence, in a non-recurrent
CD, d(x) should be significantly higher. To detect a non-
recurrent concept drift, the prominence of the distance change
is calculated. A non-recurrent concept drift can be identified
when there is a significant difference in distance.

Above mentions characteristics of CDs are being captured
by fC D in Eq. 4 to identify whether a layer x represent a
non-recurrent CD, recurrent CD or neither.
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if d(x) > d(x − 1) and,

non-recurrent CD d(x) > d(x + 1) and,

|d(x) − d(x + 1)| >

x
∑

j=1

d( j)

x

recurrent CD if d(x) > d(x − 1) and,

d(x) > d(x + 1)

no CD otherwise

(4)

C. Impact Propagation Estimation

The previously described layer L2 captures concept drifts
due to both recurrent and non-recurrent traffic incidents.
Such incidents not only impact the location of occurrence
but propagates through the road network. While the impact
propagation of recurrent incidents is known and accounted
in traffic planning, the impact prediction on non-recurrent
incidents in near-real times is crucial to remediate its impact.
Therefore, it is important to predict the impacted road segment
and the proportion of impact propagated.

Due to the lack of historical traffic data, such impact pre-
dictions are often carried-out using mathematical model based

Fig. 3. Sample road network.

simulations [25], which are often suboptimal as real-world
traffic conditions deviate from the underlying assumptions.
In contrast, there have been recent data-driven supervised
learning approaches which learn impact propagation models
from road occupancy data from induction loop networks and
incident data from historic incident reports [26]. However,
such an approach can only be accurately applied to locations
with a substantial amount of historic incident data.

This work proposes an unsupervised data-driven approach
to predict incident impact propagation across the arterial road
network based on historical data on vehicle trajectories. It is
based on the hypothesis that when the time and location of
the incident is s and t , the propagated impact of that incident
to a location Si is proportionate to the flow of traffic from Si

to s at time t i.e., T (t, Si → s). It assumes that when there
is an incident at s, it is going to block/slow down the traffic
that flows Si → s, thus impacts the traffic on Si .

Note that, since the availability of the historical vehicle
trajectory data, traffic flow between two points that are even
separated by several other junctions can be accurately esti-
mated.

The relative incident impact to the location Si is determined
based on the traffic flow Si → s relative to the aggregated
traffic flow goes through S at time t .

Let the n road segments connecting to S be {s1 →

s, . . . , sn → s}, the relative incident impact PI (t, Si → s)

to the location Si from an incident in s at time t is defined as,

PI (t, Si → s) =
T (t, Si → s)

∑n
j=1 T

(

t, S j → s
) (5)

The relative incident impact can be determined across the
road network for the reference points (e.g., junctions) that are
within a designated distance from the incident location. For
example, let A, B, C, and D be the junctions of the road-
network that connects to the incident location s as illustrated
in Fig. 3, then the relative incident impacton each junction
will be PI (t, A → s), PI (t, B → s), PI (t, C → s), and
PI (t, D → s).

The relative incident impact decreases as the junctions are
further from the incident location. Junctions with a significant
relative incident impact as well as the road network that
connects those junctions can be identified as the impacted
critical road segments of the network. Note that, an important
advantage of this approach is that, with the availability of
historical data, it takes into account the temporality of the
traffic flow when determining the relative incident impact,
as the impacted road segments may vary depending on the
usual traffic conditions at the time t of the incident.

D. Traffic Forecasting

Critical road segments pose highly unpredictable traffic con-
ditions and they can be determined using impact propagation
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estimation. Providing suitable traffic control mechanisms for
such critical road segments is an important consideration in
ITS to enable a smooth traffic flow over the arterial road
network. In order to develop a suitable control mechanism, it is
essential to be able to forecast the traffic flow of the critical
road segments. In this section, we propose an approach for
traffic prediction based on the current traffic flow condition of
the surrounding using a Deep Neural Networks (DNN) model.

Previous efforts in road traffic forecasting range from traffic
flow modeling to recent advancements in data-driven models.
With the recent advancement in deep learning paradigm,
the ITS research community has made efforts to extend the
ITS capabilities with deep learned modeling [17], [27], [28].
In the proposed STMP platform, we introduce a new DNN
based on LSTM [29] and enrich its prediction capabilities by
incorporating the surrounding traffic flow of influential road
segments.

Standard DNN architectures based on LSTM attempt to pre-
dict time series data singularly considering a single time scale,
where time series data such as road traffic flow often have a
temporal hierarchy with information spread out over multiple
time scales. With the introduction of cascade-connected layers
of LSTM networks, the abstraction of input observations
over multiple time scales can be incrementally extracted to
incorporate in modeling the input pattern [30], [31]. Therefore,
due to the complex and stochastic nature of the road traffic,
it is advantageous to model complex dependencies between the
time series input from the traffic flow. This has been recently
attempted in [32], where correlations of the traffic flow of
targeted road segment and that of its upstream and downstream
road segments are considered for the prediction. However, it is
imperative to capture the spatial correlation of the arterial road
network including the connected road segments that affect the
traffic flow of the targeted road segment.

We designed a DNN based on hierarchically stacked three
layered LSTM network architecture that consists of 256,
128 and 64 LSTM cells respectively, accommodating deeper
abstraction of temporal hierarchy to be trained by the pre-
diction model. The proposed DNN architecture captures the
correlation patterns of the targeted road segment and the
surrounding road segments that impact the traffic flow of
the targeted road segment, which was identified through the
impact propagation analysis. This proposed DNN architec-
ture has enabled the prediction model to incorporate longer
duration of current and previous traffic condition in order to
forecast the future traffic condition.

E. Intelligent Traffic Control

Real-time concept drift detection and traffic forecasting are
useful inputs for intelligent traffic control to optimize network
performance. Conventional control approaches to intelligent
traffic control such as static feedback control (SFC) and opti-
mal control and model predictive control (MPC) are developed
based on many assumptions and idealistic models [33]. As a
result, these approaches have trouble coping with the dynamics
of the traffic networks. Some traditional AI techniques such
as case-based reasoning and rule-based systems are used to

Fig. 4. Deep reinforcement learning for adaptive traffic control.

determine control actions based on recorded similar situations
(from historical data or off-line simulation) or based on simple
“if-then” rules. However, these techniques do not have a
learning mechanism to automatically update their model. Also,
they do not have a strong inference power to deal with unseen
situations.

DNN combined with reinforcement learning usually
referred to as Deep Reinforcement Learning (DRL) [34], is a
generic and flexible way to develop intelligent and adaptive
traffic control systems. Fig. 4 shows a DRL method for intel-
ligent traffic control in the proposed STMP. The goal of DRL
is to select the most suitable control program which decides
the duration for each time phase for each traffic light in the
network. In this method, the area of interest is first selected and
the corresponding road infrastructure of this area is obtained
using the data from OpenStreetMap (OSM) [35]. Because it is
very costly to test the algorithm on real environments, a virtual
environment is developed (via simulation) as a mean to vali-
date the effectiveness of the evolved controller. In our imple-
mentation, we feed the road information and the traffic data
into TraCI-SUMO [36] to generate simulation scenarios. Each
simulation run is for two hours and the information (s, a, r, s′)

of the current state (s), action (a), reward (r), and new state
(

s′
)

are recorded every 10 minutes in which s
a

−→ r, s′.
The inputs for the DRL algorithm are the numbers of

vehicles traveling through all lanes in the network (each road
segment can have many lanes). Based on the inputs, DRL will
calculate the expected values for each action (e.g., a control
program) and the action with the highest expected values will
be selected and applied to the traffic network. The proposed
DRL method has two fully connected hidden layers. The two
hidden layers use Rectified Linear Unit (ReLU) as activators.
The dimension of the output layer is the number of control
programs M (i.e the action a ∈ {C1, , . . . , CM ) that we want
to select and linear activators are employed. At the beginning
of each time interval, the most suitable control program is
selected by,

at =

{

Cr rand < ǫ

argmaxa Q(s
′
, a) otherwi se

(6)

where rand is a random number from 0 to 1, ǫ is exploration
factor which is decayed over time, Cr is the random control
program. In the proposed DRL algorithm, we apply Q-learning
in which DNN is used to represent the Q function [39].
To improve the stability of Q function in the training process,
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Fig. 5. High-level process of the proposed emotion analysis during an event.

we use the double learning and experience replay:

Q (s, a) = r + γ Q̃
(

s
′

, argmaxa Q
(

s
′

, a
))

(7)

where Q(s, a) is the primary Q network, Q̃(s, a) is the target
network, and γ is the discount factor [50]. This trick has been
shown to significantly improve the effectiveness of Deep Q-
learning.

The reward obtained for each time interval (e.g., 10 minutes)
is calculated as,

rt =

{

Wt − Wt−1 i f (Wt − Wt−1) < 0

−P ∗ (W t − Wt−1) otherwi se
(8)

where Wt is the average waiting of vehicles traveling on the
traffic network in the time interval t , and P is the penalty for
slowing down the traffic. Based on the recorded states, actions,
and rewards, DRL will update its parameters (i.e., connection
weights) to optimize its decisions by using back-propagation.
In this method, the traffic controller can be triggered via time-
based (e.g., every five minutes) or event-based mechanisms
(e.g., by anomaly detection).

F. Social Media Based Commuter Emotion Analysis

In the proposed architecture, once an event is detected using
the concept drift module (Section II-B), the emotion analysis is
used to capture the emotional behaviors of commuters from the
live social media stream. The importance and the applicability
of social media in transport sector have been stated in [38]
where it mentions that social media data from commuters
potentially enrich other data sources by providing a different
view of the commuters and their behaviors which are not cap-
tured from other traffic data sources. This analysis is conducted
as a supporting module to investigate commuter behaviors
during detected events, as social media platforms such as
Twitter are widely used communication platforms to notify
about significant events such as accidents, traffic congestions
and roadblocks [10]–[12] and in several studies, sentiment
analysis using Twitter has been carried out as a measure of
commuter satisfaction and to observe commuter behavior and
opinion patterns in order to improve the transportation services
[39], [40]. This work extends the traditional sentiment analysis
by extracting deeper emotion from twitter, thus enabling a
more granular analysis of user opinion and feeling. Fig. 5 is
a high-level illustration of the process.

Once an event is identified by the concept drift detection,
the Twitter data stream is analyzed to collect tweets that are
relevant to the event. Such tweets are defined as originating
within a radius re of the event for a time interval te since

Fig. 6. Bluetooth traffic monitoring system (BTMS).

the event. Twitter API is queried with re and te to collect the
relevant georeferenced tweets of the event. Note that, there are
advanced methods of localizing the non-georeferenced tweets
[41], however, such approaches are beyond the scope of this
work. The radius re is set based on the impact propagation
analysis of the accident by drawing a bounding circle covering
the road segments with significant relative incident impact.

The emotion extraction is based on Ekman’s model of
emotions where it presents six basic emotions (“Joy”, “Anger”,
“Surprise”, “Disgust”, “Fear”, “Sadness”) which are known as
universal emotions [42]. An emotion vocabulary was formed
by creating a dictionary of emotional expression per each
emotion category. Emotion expressions were obtained from
the LIWC dictionary [43] and other published research studies
[44]. Text mining and NLP techniques were used to extract
the emotion expressions from social media contents. Having
identified the emotions of a particular tweet, the weight of
each emotion (we) was calculated by taking the average
of emotional expressions present in each tweet in order to
determine the strength of the emotions expressed. Afterwards,
the accumulated emotion intensity level was calculated and
used to determine if the emotional behavior was significant.
Emotion intensity (It ) can be defined based on the aggregation
of emotions over a specified time period, commencing at
time t , where n denotes the number of tweets and m denotes
the number of emotions in the category, as expressed below.

It,t+�t =

n
∑

i=0

m
∑

j=0

wi j (9)

III. EXPERIMENTS

This section demonstrates the proposed STMP platform
using real traffic data from the arterial road network of the
State of Victoria, Australia.

The information on traffic has been acquired from the
Bluetooth Traffic Monitoring System (BTMS) that is used to
monitor the road traffic of arterial roads in Victoria. BTMS is
a type of automatic vehicle detectors that is used to estimate
travel times in a road network [45], [46]. For a comprehensive
understanding of the Bluetooth sites refer [47].

As shown in Fig. 6, BTMS consists of a network of
Bluetooth traffic scanners that are placed in the junctions of
arterial roads. These Bluetooth scanners capture the Bluetooth
devices that transit the scanning zone, which are either Blue-
tooth enabled vehicle stereo systems or the mobile devices
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Fig. 7. Schematic of the road network in the area of interest selected for
traffic analysis.

of the occupants. The scanners capture the unique electronic
identifier (MAC address) of the Bluetooth devices that tran-
sit the scanning area and the transit timestamp [46]. Each
Bluetooth scanner periodically transmits those records to a
central database. Since the electronic identifier is unique to
each Bluetooth devices, its travel path can be traced across the
network of Bluetooth scanners placed in the road network.

For this study, the dataset was obtained from Victoria
road authority (VicRoads) and comprises all vehicle records
for October 2017. This dataset consists of approximately
190 million vehicle records obtained from 1,408 Bluetooth
scanners placed at the junctions of arterial roads. It contains
records from 545,851 unique MAC-IDs, which is assumed to
be unique vehicles.

The capability of the proposed platform is demonstrated
by analyzing the traffic behavior around a key Shopping
Centre (SC), which is often a volatile traffic region in Vic-
toria. It is one of the largest stand-alone shopping centers
in Australia with over 20 million annual visitor turnarounds.
Thus, it accounts for a large traffic footprint in surrounding
arterial roads. In addition, it is sandwiched between two large
freeways (Princess Hwy and Monash Fwy) which are the
key freeways that connect Melbourne Metropolitan Area to
Southeast Victorian suburbs. The combination of the above-
mentioned factors yields unique and highly volatile traffic
patterns in the selected region. Moreover, the surrounding
arterial roads are often operated in near saturation, thus, any
non-recurrent incident can result in significant congestion and
its impact often propagated significantly across the arterial
road network. Fig. 7 presents a schematic of the selected SC
and the surrounding arterial roads.

A. Traffic Data Transformation

Each record in the dataset D = {(v, s, t)} can be denoted by
(v, s, t) where v is the vehicle denoted by the MAC-ID, s is
the location denoted by the site id and t is the time denoted by
the timestamp. The traffic flow of road segments was derived
from these traffic records.

Based on the definition of traffic flow in Section II-A,
the traffic flow T (t, A → B) of road segment AB can
be defined as the number of vehicles that are first detected

Fig. 8. Recurrent and non-recurrent concept drift detection.

in A at time t and subsequently detected in B, which can be
denoted as,

T (t, A → B) =

∫ t+�t

t

∑

∀v

I(v, A → B, t)dt (10)

where �t is the sampling interval for the traffic flow which
can be adjusted to obtain the required granularity of the traffic
flow. I (v, A → B, t) is an indicator function which is active
if the vehicle v is first detected at A at time t and subsequently
detected at B within a time threshold τ . It can be defined as,

I(v, A → B, t)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if ∃ (v, A, t) ∈ D and ∃ (v, B, t ′) ∈ D,

where t < t ′ ≤ t + τ

0 otherwise

(11)

where τ is the trip threshold which is set enough for a single
trip in the road segment. The idea of setting this threshold
is to filter out noisy trips [48] such as pedestrians as well as
vehicles that make a stop inside the segment.

B. Unsupervised Concept Drift Detection

Transformed data were emulated as a real data stream to
represent VicRoads live feed using an external application.
This data stream is presented to the unsupervised concept drift
detection algorithm explained in Section II-B. Fig. 8 illustrates
the concept drifts detected in the selected traffic area. The
x-axis denotes execution timestamps of incremental learning
and distance measure calculations from Eq. 3 of the algorithm
are denoted on the y-axis. Fig. 8 demonstrated the recurrent
and non-recurrent concept drifts identified by Eq. 4 of the
algorithm.

The algorithm identified three recurrent concept changes
throughout the data stream. These recurrent concept changes
relate to the traffic flow changes due to longer shopping hours,
weekdays to weekend traffic flow and vice versa. A summary
of the recurrent traffic flow changes is denoted in Table I.

Moreover, the algorithm identified two non-recurrent con-
cept drifts at execution timestamps [t22] and [t32], of which
the concept drift at [t32] is employed to demonstrate
the functionality of L3 of the proposed STMP platform.
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TABLE I

SUMMARY OF RECURRENT CONCEPT DRIFT DETECTION

Fig. 9. Evidence for non-recurrent concept drift detection, left: usual traffic
congestion is reduced in Warrigal Rd due to an accident in Monash Fwy, right:
accident on Warrigal Rd which has created traffic congestion on Warrigal Rd
and Monash Fwy.

This selected incident has occurred at the Warrigal Rd-Waverly
Rd intersection (see Fig. 7).

The tweets relevant to this incident were collected using
the technique delineated in Section II-F, in which the two
parameters are set as follows. The radius of the event (re)
is set to 3.7km which is the distance to the furthest location
(Warrigal Rd - Burwood Hwy intersection) with a significant
relative incident impact identified by the impact propagation
analysis in the next section (see Table II). The event duration
(te) is set experimentally to 1 hour to be suitable for both major
and minor incidents. From the collected tweets, it was found
that these non-recurrent traffic flow changes had occurred due
to an accident (Fig. 9). Tweets in Fig. 9 (right) shows that
there was a communication gap of more than 45 minutes to
gather information on the situation. Due to the data-driven
nature of the algorithm, concept drifts on traffic flow can be
detected almost real time. Being able to provide a real-time
notification on non-recurrent traffic flow changes will allow
better communications and effective optimizations.

The proposed algorithm has the capability of detecting
concept drifts with different granularities such as daily or
hourly. This can be achieved by changing the growth threshold
and distance measure. With the demonstrated granularity, out

TABLE II

INCIDENT IMPACT PROPAGATION FOR AN INCIDENT AT

WARRIGAL RD-WAVERLEY RD INTERSECTION

of detected concept drifts, 92.3% was in-line with the ground
truth validated by domain experts.

C. Impact Propagation Analysis

In Section II-D the impact propagation across the road
network due to a non-recurrent incident was derived based on
the traffic flow towards that location from other road segments.
This capability is demonstrated based on the Warrigal Rd -
Waverley Rd intersection (see Fig. 7) where the traffic incident
was identified in the previous section (non-recurrent concept
drift at timestamps [t32] in Fig. 8). Based on the Eq. 5
(Sec. II-C) the relative incident impact was derived for the
road segments that are close to the incident location.

Table II presents the road segments with a significant impact
from the incident with its respective relative incident impact
determined for the weekday 8 am traffic and weekday 8 pm
traffic. Note that two time-of-the-day values were selected to
compare and contrast differences in incident impact propaga-
tion due to different traffic behaviors.

As shown in Table II, the incident impact is mainly prop-
agated along the Warrigal Rd in both directions (south and
northbound), compared to relatively less impact on Waverley
Rd (east and westbound). This is because Warrigal Rd carries
a high traffic flow as it has entrance to the freeway. At 8 am,
the highest impact on Warrigal Rd is for Batesford Rd to
Waverley Rd traffic flow, as that traffic is bound to cross the
Warrigal Rd-Waverley Rd intersection and enter the Monash
Fwy towards the City. In contrast, impact at 8 pm is highest
on Monash Fwy to Waverley Rd, which consists of the traffic
coming from the city and exiting Monash Fwy to Warrigal Rd.
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TABLE III

EVALUATION OF ACCURACY BASED ON THE TIME-LAG

SELECTED FOR PREDICTION

The incident impact on Waverley Rd is relatively less, which
mostly impacts the eastbound traffic while the westbound
traffic is only impacted at 8 am.

D. Traffic Forecasting

The primary objective of the traffic forecasting experiment
is to evaluate the proposed DNN’s fitness in short-term traffic
flow forecasting. Based on the impact propagation analysis
conducted in the previous step, it was identified that the
traffic flow of the road segment on Warrigal Rd (annotated
as B to C in Fig. 7), in which heavy traffic congestion befall
in frequent time periods, is critically impacted by the road
segments; A to B, C to D and C to E. Therefore, in this
experiment we have evaluated the effect of the identified road
segments with respect to the traffic flow prediction of road
segment B to C. In the experiment, the data horizon is taken
as 15 minutes, where the data extension was 24 days (1st to
24th October 2017).

Based on the Eq. 10, traffic flow is determined for the
selected road segments using 15-minute sampling intervals
and utilized as the input sequences of the DNN. The data
was divided into training and testing subsets, in which the
first 24 days’ data were utilized for training of the model and
the remaining 7 days’ data was utilized for testing the model
performance. To validate the effectiveness of the algorithm,
the model performance was measured by means of Mean
Squared Error (MSE) and Mean Absolute Error (MAE).

Table III demonstrates the prediction performance with
respect to the measures selected. We evaluate the prediction
performance based on the multiple time-lags, which have
presented to the DNN as input, ranging from 15 minutes to
2 hours. The time lag with the highest performance is marked
in bold. The findings reveal that with the time lag increases
the model performance. However, after the time lag of 3,
the model performance begins to decrease, and it starts to
drastically reduce after the time lag of 5. Based on the internals
of the algorithms and the findings, it is evident that the DNN
with three LSTM layers can successfully model dependencies
between time series input (i.e., traffic flow data as input) for
a time lag of 3. However, the current model is not capable
enough to model complex dependencies over 3-time lags,
hence, the decline of the performance of the prediction model.

Fig. 10 presents the traffic flow prediction performance
comparison on the time period Oct. 25 to Oct. 31, 2017,
in order to examine the prediction performance visually.

Fig. 10. Traffic flow prediction performance comparison on the time period
Oct. 25 to Oct. 31, 2017.

The DNN trained upon input of 3 time-lags (i.e., 45 minutes
prior traffic flow data) was selected for the examination
in Fig. 10 to compare with the ground truth traffic flow
data. Based on the graphical representation of the prediction
performance, it is clear that the DNN model can successfully
model traffic flow with normal fluctuation, however, there are
limitations in predicting traffic flow that has severe fluctuations
which occur at a higher frequency. This limitation is expected
to be addressed when additional traffic data (e.g. roadworks,
incidents, events) is used for training the DNN model.

E. Intelligent Traffic Control

To illustrate the effectiveness of DRL for adaptive traffic
control, we apply it to the traffic network around the selected
shopping center (Fig. 7) to control the traffic light phases.
The selected area has 1805 lanes so the input dimension (i.e.,
the state S) of the proposed DNN model is 1805. In our
experiments, we perform 500 simulation runs (or epochs)
to learn the DNN model. Five master control programs are
considered, i.e., M = 5. The first program is the default
program determined by the SUMO’s generator [36]. The sec-
ond program set all phase durations to 60 seconds. The
third program doubles the phase durations for phases with
durations greater than 40 seconds. The fourth program double
the phase durations for all phases. The last program set the
phase durations for all phases to 30 seconds. The parameters
of the proposed DRL algorithm are: discount factor γ = 0.95,
initial exploration factor ǫ = 1, and decay factor = 0.99.
The network weights are updated using Adam optimizer with
the learning rate of 0.001 at the end of each simulation run
using the experience replayed from the agent’s memory. For
the reward function in Eq. 8, we use the penalty P = 5.

The results of DRL is shown in Fig. 11. It is easy to see
that the average waiting time is roughly reduced by half after
the 500 epochs. It demonstrates the ability of the proposed
DRL to learn effective control decisions even for a very large
traffic network.

The learning mechanism of the proposed DRL can be
adapted to different networks and other control problems
in intelligent traffic systems. Instead of periodically rese-
lect the control program, we can modify the algorithm to
adjust the control program based on the signal from con-
cept drift or abnormally detection. Compared to conventional
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Fig. 11. Training performance of the proposed DRL.

Fig. 12. Emotion fluctuations over time (hourly).

control methods, DRL is more suitable for high-dimensional
streaming data because high-level features can be automati-
cally extracted and DRL is data-driven and does not rely on
any explicit model.

F. Control Social Media Based Commuter Emotion Analysis

Based on the proposed model in Section II-F, an experiment
was carried out to detect significant emotional behaviors of
users who post about road conditions on social media. To con-
duct the experiment, Twitter data was collected on a day where
a service disruption had occurred, which has consequently led
to an increase in road traffic. Widely used hashtags (#VicTraf-
fic, #VicRoads, #MelbTraffic, #GettrafficVIC) related to trans-
portation in the selected region were used to filter the relevant
social media content. Following Fig. 12 illustrates the emotion
expression variations overtime on an hourly scale on this day.

Emotion intensity at each time frame was calculated and
was compared with a 3-point moving average to determine if
the change in the behavior was significant or not. This will
enable to identify abrupt peaks with high emotion intensities.
Based on the average, Table IV shows the significant times
which recorded a higher emotion intensity on Twitter. It can
be seen that traffic peak hours demonstrated a higher nega-
tive emotion intensity when compared to other times of the
day. We further explored the relationship between emotional
intensity and congestion using a Granger Causality test [49].

TABLE IV

HIGHER EMOTION INTENSITY TIMELINE

We found out that the association between emotional intensity
and congestion is statistically significant (p < 0.05).

Depending on the required sensitivity to detect emotion
events, the threshold value could be changed, and human mon-
itoring could be used to validate the significant events captured
by the algorithm. Incorporating real-time monitoring of crowd-
sourced data on social media would enable authorities to take
proactive decisions and gain a better understanding of the
user’s perception.

This section demonstrated each module of the proposed
multi-layered STMP platform using a dataset of 190 million
records of smart sensor network traffic data generated by
545,851 commuters and corresponding social media data on
the arterial road network of Victoria, Australia. Data received
from heterogeneous sources is integrated and transformed in
L1, in L2, concept drifts, recurrent and non-recurrent events
are identified by the online incremental machine learning
algorithm. Identified events are fed into the smart traffic
management modules in L3.

IV. CONCLUSION

This paper proposed a new smart traffic management plat-
form to capture dynamic patterns from traffic data streams
and to integrate AI modules for real-time traffic analysis and
adaptive traffic control. The main benefit of the proposed
platform is that its AI modules are designed to efficiently
cope with the key challenges of future transportation systems
where IoT devices are widely adopted, analysis and control
technologies must be more responsive and self-evolved, and
social behaviors need to be taken into consideration. Moreover,
the platform also overcomes the limitations of current algo-
rithms and technologies which rely heavily on limited labeled
data and strict assumptions about data and traffic behaviors.

To evaluate the feasibility and effectiveness of the proposed
platform, we have conducted a series of experiments based
on real-time Bluetooth sensor network data and social media
data from the arterial road network in Victoria, Australia. The
experimental results show that the platform can successfully
and in a timely manner detect recurrent and non-recurrent
events, and those results are further validated using the insights
automatically captured from social media. The experiments
also show that impact propagation and traffic flow prediction
modules can efficiently predict short-term impacts of the
events. Finally, the simulation of a large-scale traffic network
shows that the proposed deep reinforcement learning can learn
to improve traffic signal control decision based on many real-
time data streams.
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We acknowledge a number of potential areas for improve-
ment. Further research directions involve fusing data from
heterogeneous data sources such as security cameras, weather
information, and other transportation-related data sources.
Also, the interpretability of AI modules, especially ones based
on complicated techniques such as deep neural networks, are
worth investigating in the future to gain the acceptance of the
platforms.
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