
Journal of Machine Learning Research 11 (2010) 19-60 Submitted 7/09; Revised 11/09; Published 1/10

Online Learning for Matrix Factorization and Sparse Coding

Julien Mairal JULIEN.MAIRAL@INRIA.FR

Francis Bach FRANCIS.BACH@INRIA.FR

INRIA - WILLOW Project-Team

Laboratoire d’Informatique de l’Ecole Normale Supérieure (INRIA/ENS/CNRS UMR 8548)

23, avenue d’Italie 75214 Paris CEDEX 13, France

Jean Ponce JEAN.PONCE@ENS.FR

Ecole Normale Supérieure - WILLOW Project-Team

Laboratoire d’Informatique de l’Ecole Normale Supérieure (INRIA/ENS/CNRS UMR 8548)

45, rue d’Ulm 75230 Paris CEDEX 05, France

Guillermo Sapiro GUILLE@UMN.EDU

Department of Electrical and Computer Engineering

University of Minnesota

200 Union Street SE, Minneapolis, MN 55455, USA

Editor: Hui Zou

Abstract

Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is

widely used in machine learning, neuroscience, signal processing, and statistics. This paper fo-

cuses on the large-scale matrix factorization problem that consists of learning the basis set in order

to adapt it to specific data. Variations of this problem include dictionary learning in signal pro-

cessing, non-negative matrix factorization and sparse principal component analysis. In this paper,

we propose to address these tasks with a new online optimization algorithm, based on stochastic

approximations, which scales up gracefully to large data sets with millions of training samples, and

extends naturally to various matrix factorization formulations, making it suitable for a wide range

of learning problems. A proof of convergence is presented, along with experiments with natural

images and genomic data demonstrating that it leads to state-of-the-art performance in terms of

speed and optimization for both small and large data sets.

Keywords: basis pursuit, dictionary learning, matrix factorization, online learning, sparse cod-

ing, sparse principal component analysis, stochastic approximations, stochastic optimization, non-

negative matrix factorization

1. Introduction

The linear decomposition of a signal using a few atoms of a learned dictionary instead of a pre-

defined one—based on wavelets (Mallat, 1999) for example—has recently led to state-of-the-art

results in numerous low-level signal processing tasks such as image denoising (Elad and Aharon,

2006; Mairal et al., 2008b), texture synthesis (Peyré, 2009) and audio processing (Grosse et al.,

2007; Févotte et al., 2009; Zibulevsky and Pearlmutter, 2001), as well as higher-level tasks such as

image classification (Raina et al., 2007; Mairal et al., 2008a, 2009b; Bradley and Bagnell, 2009;

Yang et al., 2009), showing that sparse learned models are well adapted to natural signals. Unlike

decompositions based on principal component analysis and its variants, these models do not im-

c©2010 Julien Mairal, Francis Bach, Jean Ponce and Guillermo Sapiro.

MAIRAL, BACH, PONCE AND SAPIRO

pose that the basis vectors be orthogonal, allowing more flexibility to adapt the representation to

the data.1 In machine learning and statistics, slightly different matrix factorization problems are

formulated in order to obtain a few interpretable basis elements from a set of data vectors. This in-

cludes non-negative matrix factorization and its variants (Lee and Seung, 2001; Hoyer, 2002, 2004;

Lin, 2007), and sparse principal component analysis (Zou et al., 2006; d’Aspremont et al., 2007,

2008; Witten et al., 2009; Zass and Shashua, 2007). As shown in this paper, these problems have

strong similarities; even though we first focus on the problem of dictionary learning, the algorithm

we propose is able to address all of them. While learning the dictionary has proven to be critical to

achieve (or improve upon) state-of-the-art results in signal and image processing, effectively solv-

ing the corresponding optimization problem is a significant computational challenge, particularly in

the context of large-scale data sets that may include millions of training samples. Addressing this

challenge and designing a generic algorithm which is capable of efficiently handling various matrix

factorization problems, is the topic of this paper.

Concretely, consider a signal x in R
m. We say that it admits a sparse approximation over a

dictionary D in R
m×k, with k columns referred to as atoms, when one can find a linear combination

of a “few” atoms from D that is “close” to the signal x. Experiments have shown that modelling a

signal with such a sparse decomposition (sparse coding) is very effective in many signal processing

applications (Chen et al., 1999). For natural images, predefined dictionaries based on various types

of wavelets (Mallat, 1999) have also been used for this task. However, learning the dictionary

instead of using off-the-shelf bases has been shown to dramatically improve signal reconstruction

(Elad and Aharon, 2006). Although some of the learned dictionary elements may sometimes “look

like” wavelets (or Gabor filters), they are tuned to the input images or signals, leading to much better

results in practice.

Most recent algorithms for dictionary learning (Olshausen and Field, 1997; Engan et al., 1999;

Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al., 2007) are iterative batch procedures,

accessing the whole training set at each iteration in order to minimize a cost function under some

constraints, and cannot efficiently deal with very large training sets (Bottou and Bousquet, 2008),

or dynamic training data changing over time, such as video sequences. To address these issues, we

propose an online approach that processes the signals, one at a time, or in mini-batches. This is

particularly important in the context of image and video processing (Protter and Elad, 2009; Mairal

et al., 2008c), where it is common to learn dictionaries adapted to small patches, with training

data that may include several millions of these patches (roughly one per pixel and per frame). In

this setting, online techniques based on stochastic approximations are an attractive alternative to

batch methods (see, e.g., Bottou, 1998; Kushner and Yin, 2003; Shalev-Shwartz et al., 2009). For

example, first-order stochastic gradient descent with projections on the constraint set (Kushner and

Yin, 2003) is sometimes used for dictionary learning (see Aharon and Elad, 2008; Kavukcuoglu

et al., 2008 for instance). We show in this paper that it is possible to go further and exploit the

specific structure of sparse coding in the design of an optimization procedure tuned to this problem,

with low memory consumption and lower computational cost than classical batch algorithms. As

demonstrated by our experiments, it scales up gracefully to large data sets with millions of training

samples, is easy to use, and is faster than competitive methods.

The paper is structured as follows: Section 2 presents the dictionary learning problem. The

proposed method is introduced in Section 3, with a proof of convergence in Section 4. Section 5

1. Note that the terminology “basis” is slightly abusive here since the elements of the dictionary are not necessarily

linearly independent and the set can be overcomplete—that is, have more elements than the signal dimension.

20

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

extends our algorithm to various matrix factorization problems that generalize dictionary learning,

and Section 6 is devoted to experimental results, demonstrating that our algorithm is suited to a wide

class of learning problems.

1.1 Contributions

This paper makes four main contributions:

• We cast in Section 2 the dictionary learning problem as the optimization of a smooth non-

convex objective function over a convex set, minimizing the (desired) expected cost when the

training set size goes to infinity, and propose in Section 3 an iterative online algorithm that

solves this problem by efficiently minimizing at each step a quadratic surrogate function of

the empirical cost over the set of constraints. This method is shown in Section 4 to converge

almost surely to a stationary point of the objective function.

• As shown experimentally in Section 6, our algorithm is significantly faster than previous ap-

proaches to dictionary learning on both small and large data sets of natural images. To demon-

strate that it is adapted to difficult, large-scale image-processing tasks, we learn a dictionary

on a 12-Megapixel photograph and use it for inpainting—that is, filling some holes in the

image.

• We show in Sections 5 and 6 that our approach is suitable to large-scale matrix factorization

problems such as non-negative matrix factorization and sparse principal component analysis,

while being still effective on small data sets.

• To extend our algorithm to several matrix factorization problems, we propose in Appendix

B efficient procedures for projecting onto two convex sets, which can be useful for other

applications that are beyond the scope of this paper.

1.2 Notation

We define for p≥ 1 the ℓp norm of a vector x in R
m as ||x||p △

= (∑m
i=1 |x[i]|p)1/p, where x[i] denotes

the i-th coordinate of x and ||x||∞ △

= maxi=1,...,m |x[i]|= limp→∞ ||x||p. We also define the ℓ0 pseudo-

norm as the sparsity measure which counts the number of nonzero elements in a vector:2 ||x||0 △

=
#{i s.t. x[i] 6= 0}= limp→0+(∑m

i=1 |x[i]|p). We denote the Frobenius norm of a matrix X in R
m×n by

||X||F △

= (∑m
i=1 ∑n

j=1 X[i, j]2)1/2. For a sequence of vectors (or matrices) xt and scalars ut , we write

xt = O(ut) when there exists a constant K > 0 so that for all t, ||xt ||2 ≤ Kut . Note that for finite-

dimensional vector spaces, the choice of norm is essentially irrelevant (all norms are equivalent).

Given two matrices A in R
m1×n1 and B in R

m2×n2 , A⊗B denotes the Kronecker product between A

and B, defined as the matrix in R
m1m2×n1n2 , defined by blocks of sizes m2×n2 equal to A[i, j]B. For

more details and properties of the Kronecker product, see Golub and Van Loan (1996), and Magnus

and Neudecker (1999).

2. Note that it would be more proper to write ||x||00 instead of ||x||0 to be consistent with the traditional notation ||x||p.

However, for the sake of simplicity, we will keep this notation unchanged.

21

MAIRAL, BACH, PONCE AND SAPIRO

2. Problem Statement

Classical dictionary learning techniques for sparse representation (Olshausen and Field, 1997; En-

gan et al., 1999; Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al., 2007) consider a

finite training set of signals X = [x1, . . . ,xn] in R
m×n and optimize the empirical cost function

fn(D)
△

=
1

n

n

∑
i=1

ℓ(xi,D), (1)

where D in R
m×k is the dictionary, each column representing a basis vector, and ℓ is a loss function

such that ℓ(x,D) should be small if D is “good” at representing the signal x in a sparse fashion.

The number of samples n is usually large, whereas the signal dimension m is relatively small, for

example, m = 100 for 10×10 image patches, and n≥ 100,000 for typical image processing appli-

cations. In general, we also have k≪ n (e.g., k = 200 for n = 100,000), but each signal only uses a

few elements of D in its representation, say 10 for instance. Note that, in this setting, overcomplete

dictionaries with k > m are allowed. As others (see for example Lee et al., 2007), we define ℓ(x,D)
as the optimal value of the ℓ1 sparse coding problem:

ℓ(x,D)
△

= min
α∈Rk

1

2
||x−Dα||22 +λ||α||1, (2)

where λ is a regularization parameter. This problem is also known as basis pursuit (Chen et al.,

1999), or the Lasso (Tibshirani, 1996).3 It is well known that ℓ1 regularization yields a sparse

solution for α, but there is no direct analytic link between the value of λ and the corresponding

effective sparsity ||α||0. To prevent D from having arbitrarily large values (which would lead to

arbitrarily small values of α), it is common to constrain its columns d1, . . . ,dk to have an ℓ2-norm

less than or equal to one. We will call C the convex set of matrices verifying this constraint:

C
△

= {D ∈ R
m×k s.t. ∀ j = 1, . . . ,k, dT

j d j ≤ 1}.

Note that the problem of minimizing the empirical cost fn(D) is not convex with respect to D. It

can be rewritten as a joint optimization problem with respect to the dictionary D and the coefficients

α = [α1, . . . ,αn] in R
k×n of the sparse decompositions, which is not jointly convex, but convex with

respect to each of the two variables D and α when the other one is fixed:

min
D∈C ,α∈Rk×n

n

∑
i=1

(1

2
||xi−Dαi||22 +λ||αi||1

)

. (4)

This can be rewritten as a matrix factorization problem with a sparsity penalty:

min
D∈C ,α∈Rk×n

1

2
||X−Dα||2F +λ||α||1,1,

3. To be more precise, the original formulation of the Lasso is a constrained version of Eq. (2), with a constraint on the

ℓ1-norm of α:

min
α∈Rk

1

2
||x−Dα||22 s.t. ||α||1 ≤ T. (3)

Both formulations are equivalent in the sense that for every λ > 0 (respectively every T > 0), there exists a scalar T

(respectively λ) so that Equations (2) and (3) admit the same solutions.

22

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

where, as before, X = [x1, . . . ,xn] is the matrix of data vectors, and ||α||1,1 denotes the ℓ1 norm of

the matrix α—that is, the sum of the magnitude of its coefficients. A natural approach to solving

this problem is to alternate between the two variables, minimizing over one while keeping the other

one fixed, as proposed by Lee et al. (2007) (see also Engan et al. 1999 and Aharon et al. 2006, who

use ℓ0 rather than ℓ1 penalties, or Zou et al. 2006 for the problem of sparse principal component

analysis).4 Since the computation of the coefficients vectors αi dominates the cost of each iteration

in this block-coordinate descent approach, a second-order optimization technique can be used to

accurately estimate D at each step when α is fixed.

As pointed out by Bottou and Bousquet (2008), however, one is usually not interested in the

minimization of the empirical cost fn(D) with high precision, but instead in the minimization of the

expected cost

f (D)
△

= Ex[ℓ(x,D)] = lim
n→∞

fn(D) a.s.,

where the expectation (which is supposed finite) is taken relative to the (unknown) probability dis-

tribution p(x) of the data.5 In particular, given a finite training set, one should not spend too much

effort on accurately minimizing the empirical cost, since it is only an approximation of the ex-

pected cost. An “inaccurate” solution may indeed have the same or better expected cost than a

“well-optimized” one. Bottou and Bousquet (2008) further show that stochastic gradient algorithms,

whose rate of convergence is very poor in conventional optimization terms, may in fact in certain

settings be shown both theoretically and empirically to be faster in reaching a solution with low

expected cost than second-order batch methods. With large training sets, the risk of overfitting is

lower, but classical optimization techniques may become impractical in terms of speed or memory

requirements.

In the case of dictionary learning, the classical projected first-order projected stochastic gradient

descent algorithm (as used by Aharon and Elad 2008; Kavukcuoglu et al. 2008 for instance) consists

of a sequence of updates of D:

Dt = ΠC

[

Dt−1−δt ∇ Dℓ(xt ,Dt−1)
]

,

where Dt is the estimate of the optimal dictionary at iteration t, δt is the gradient step, ΠC is the

orthogonal projector onto C , and the vectors xt are i.i.d. samples of the (unknown) distribution p(x).
Even though it is often difficult to obtain such i.i.d. samples, the vectors xt are in practice obtained

by cycling on a randomly permuted training set. As shown in Section 6, we have observed that

this method can be competitive in terms of speed compared to batch methods when the training set

is large and when δt is carefully chosen. In particular, good results are obtained using a learning

rate of the form δt
△

= a/(t + b), where a and b have to be well chosen in a data set-dependent way.

Note that first-order stochastic gradient descent has also been used for other matrix factorization

problems (see Koren et al., 2009 and references therein).

The optimization method we present in the next section falls into the class of online algorithms

based on stochastic approximations, processing one sample at a time (or a mini-batch), but further

exploits the specific structure of the problem to efficiently solve it by sequentially minimizing a

quadratic local surrogate of the expected cost. As shown in Section 3.5, it uses second-order infor-

mation of the cost function, allowing the optimization without any explicit learning rate tuning.

4. In our setting, as in Lee et al. (2007), we have preferred to use the convex ℓ1 norm, that has empirically proven to be

better behaved in general than the ℓ0 pseudo-norm for dictionary learning.

5. We use “a.s.” to denote almost sure convergence.

23

MAIRAL, BACH, PONCE AND SAPIRO

3. Online Dictionary Learning

We present in this section the basic components of our online algorithm for dictionary learning

(Sections 3.1–3.3), as well as a few minor variants which speed up our implementation in practice

(Section 3.4) and an interpretation in terms of a Kalman algorithm (Section 3.5).

3.1 Algorithm Outline

Our procedure is summarized in Algorithm 1. Assuming that the training set is composed of

i.i.d. samples of a distribution p(x), its inner loop draws one element xt at a time, as in stochastic

gradient descent, and alternates classical sparse coding steps for computing the decomposition αt

of xt over the dictionary Dt−1 obtained at the previous iteration, with dictionary update steps where

the new dictionary Dt is computed by minimizing over C the function

f̂t(D)
△

=
1

t

t

∑
i=1

(1

2
||xi−Dαi||22 +λ||αi||1

)

, (5)

and the vectors αi for i < t have been computed during the previous steps of the algorithm. The

motivation behind this approach is twofold:

• The function f̂t , which is quadratic in D, aggregates the past information with a few sufficient

statistics obtained during the previous steps of the algorithm, namely the vectors αi, and it is

easy to show that it upperbounds the empirical cost ft(Dt) from Eq. (1). One key aspect of

our convergence analysis will be to show that f̂t(Dt) and ft(Dt) converge almost surely to the

same limit, and thus that f̂t acts as a surrogate for ft .

• Since f̂t is close to f̂t−1 for large values of t, so are Dt and Dt−1, under suitable assumptions,

which makes it efficient to use Dt−1 as warm restart for computing Dt .

3.2 Sparse Coding

The sparse coding problem of Eq. (2) with fixed dictionary is an ℓ1-regularized linear least-squares

problem. A number of recent methods for solving this type of problems are based on coordinate

descent with soft thresholding (Fu, 1998; Friedman et al., 2007; Wu and Lange, 2008). When the

columns of the dictionary have low correlation, we have observed that these simple methods are

very efficient. However, the columns of learned dictionaries are in general highly correlated, and

we have empirically observed that these algorithms become much slower in this setting. This has

led us to use instead the LARS-Lasso algorithm, a homotopy method (Osborne et al., 2000; Efron

et al., 2004) that provides the whole regularization path—that is, the solutions for all possible values

of λ. With an efficient Cholesky-based implementation (see Efron et al., 2004; Zou and Hastie,

2005) for brief descriptions of such implementations), it has proven experimentally at least as fast

as approaches based on soft thresholding, while providing the solution with a higher accuracy and

being more robust as well since it does not require an arbitrary stopping criterion.

3.3 Dictionary Update

Our algorithm for updating the dictionary uses block-coordinate descent with warm restarts (see

Bertsekas, 1999). One of its main advantages is that it is parameter free and does not require any

24

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

Algorithm 1 Online dictionary learning.

Require: x ∈ R
m ∼ p(x) (random variable and an algorithm to draw i.i.d samples of p), λ ∈ R

(regularization parameter), D0 ∈ R
m×k (initial dictionary), T (number of iterations).

1: A0 ∈ R
k×k← 0, B0 ∈ R

m×k← 0 (reset the “past” information).

2: for t = 1 to T do

3: Draw xt from p(x).
4: Sparse coding: compute using LARS

αt
△

= argmin
α∈Rk

1

2
||xt−Dt−1α||22 +λ||α||1.

5: At ← At−1 +αtαT
t .

6: Bt ← Bt−1 +xtαT
t .

7: Compute Dt using Algorithm 2, with Dt−1 as warm restart, so that

Dt
△

= argmin
D∈C

1

t

t

∑
i=1

(1

2
||xi−Dαi||22 +λ||αi||1

)

,

= argmin
D∈C

1

t

(1

2
Tr(DT DAt)−Tr(DT Bt)

)

. (6)

8: end for

9: Return DT (learned dictionary).

Algorithm 2 Dictionary Update.

Require: D = [d1, . . . ,dk] ∈ R
m×k (input dictionary),

A = [a1, . . . ,ak] ∈ R
k×k

B = [b1, . . . ,bk] ∈ R
m×k

1: repeat

2: for j = 1 to k do

3: Update the j-th column to optimize for (6):

u j←
1

A[j, j]
(b j−Da j)+d j,

d j←
1

max(||u j||2,1)
u j.

(7)

4: end for

5: until convergence

6: Return D (updated dictionary).

learning rate tuning. Moreover, the procedure does not require to store all the vectors xi and αi, but

only the matrices At = ∑t
i=1 αiαT

i in R
k×k and Bt = ∑t

i=1 xiαT
i in R

m×k. Concretely, Algorithm 2

sequentially updates each column of D. A simple calculation shows that solving (6) with respect

to the j-th column d j, while keeping the other ones fixed under the constraint dT
j d j ≤ 1, amounts

to an orthogonal projection of the vector u j defined in Eq. (7), onto the constraint set, namely

25

MAIRAL, BACH, PONCE AND SAPIRO

the ℓ2-ball here, which is solved by Eq. (7). Since the convex optimization problem (6) admits

separable constraints in the updated blocks (columns), convergence to a global optimum is guaran-

teed (Bertsekas, 1999). In practice, the vectors αi are sparse and the coefficients of the matrix At

are often concentrated on the diagonal, which makes the block-coordinate descent more efficient.6

After a few iterations of our algorithm, using the value of Dt−1 as a warm restart for computing Dt

becomes effective, and a single iteration of Algorithm 2 has empirically found to be sufficient to

achieve convergence of the dictionary update step. Other approaches have been proposed to up-

date D: For instance, Lee et al. (2007) suggest using a Newton method on the dual of Eq. (6), but

this requires inverting a k× k matrix at each Newton iteration, which is impractical for an online

algorithm.

3.4 Optimizing the Algorithm

We have presented so far the basic building blocks of our algorithm. This section discusses a few

simple improvements that significantly enhance its performance.

3.4.1 HANDLING FIXED-SIZE DATA SETS

In practice, although it may be very large, the size of the training set often has a predefined finite

size (of course this may not be the case when the data must be treated on the fly like a video stream

for example). In this situation, the same data points may be examined several times, and it is very

common in online algorithms to simulate an i.i.d. sampling of p(x) by cycling over a randomly

permuted training set (see Bottou and Bousquet, 2008 and references therein). This method works

experimentally well in our setting but, when the training set is small enough, it is possible to further

speed up convergence: In Algorithm 1, the matrices At and Bt carry all the information from the past

coefficients α1, . . . ,αt . Suppose that at time t0, a signal x is drawn and the vector αt0 is computed. If

the same signal x is drawn again at time t > t0, then it is natural to replace the “old” information αt0

by the new vector αt in the matrices At and Bt—that is, At ← At−1 + αtαT
t − αt0αT

t0
and Bt ←

Bt−1 +xtαT
t −xtαT

t0
. In this setting, which requires storing all the past coefficients αt0 , this method

amounts to a block-coordinate descent for the problem of minimizing Eq. (4). When dealing with

large but finite sized training sets, storing all coefficients αi is impractical, but it is still possible to

partially exploit the same idea, by removing the information from At and Bt that is older than two

epochs (cycles through the data), through the use of two auxiliary matrices A′t and B′t of size k× k

and m×k respectively. These two matrices should be built with the same rules as At and Bt , except

that at the end of an epoch, At and Bt are respectively replaced by A′t and B′t , while A′t and B′t are

set to 0. Thanks to this strategy, At and Bt do not carry any coefficients αi older than two epochs.

3.4.2 SCALING THE “PAST” DATA

At each iteration, the “new” information αt that is added to the matrices At and Bt has the same

weight as the “old” one. A simple and natural modification to the algorithm is to rescale the “old”

information so that newer coefficients αt have more weight, which is classical in online learning.

For instance, Neal and Hinton (1998) present an online algorithm for EM, where sufficient statistics

are aggregated over time, and an exponential decay is used to forget out-of-date statistics. In this

6. We have observed that this is true when the columns of D are not too correlated. When a group of columns in D are

highly correlated, the coefficients of the matrix At concentrate instead on the corresponding principal submatrices

of At .

26

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

paper, we propose to replace lines 5 and 6 of Algorithm 1 by

At ← βtAt−1 +αtαT
t ,

Bt ← βtBt−1 +xtαT
t ,

where βt
△

=
(

1− 1
t

)ρ
, and ρ is a new parameter. In practice, one can apply this strategy after a few

iterations, once At is well-conditioned. Tuning ρ improves the convergence rate, when the training

sets are large, even though, as shown in Section 6, it is not critical. To understand better the effect

of this modification, note that Eq. (6) becomes

Dt
△

= argmin
D∈C

1

∑t
j=1(j/t)ρ

t

∑
i=1

(i

t

)ρ(1

2
||xi−Dαi||22 +λ||αi||1

)

,

= argmin
D∈C

1

∑t
j=1(j/t)ρ

(1

2
Tr(DT DAt)−Tr(DT Bt)

)

.

When ρ = 0, we obtain the original version of the algorithm. Of course, different strategies and

heuristics could also be investigated. In practice, this parameter ρ is useful for large data sets only

(n ≥ 100000). For smaller data sets, we have not observed a better performance when using this

extension.

3.4.3 MINI-BATCH EXTENSION

In practice, we can also improve the convergence speed of our algorithm by drawing η > 1 signals

at each iteration instead of a single one, which is a classical heuristic in stochastic gradient descent

algorithms. In our case, this is further motivated by the fact that the complexity of computing η
vectors αi is not linear in η. A Cholesky-based implementation of LARS-Lasso for decomposing a

single signal has a complexity of O(kms+ks2), where s is the number of nonzero coefficients. When

decomposing η signals, it is possible to pre-compute the Gram matrix DT
t Dt and the total complexity

becomes O(k2m+η(km+ks2)), which is much cheaper than η times the previous complexity when

η is large enough and s is small. Let us denote by xt,1, . . . ,xt,η the signals drawn at iteration t. We

can now replace lines 5 and 6 of Algorithm 1 by

At ← At−1 +
1

η

η

∑
i=1

αt,iαT
t,i,

Bt ← Bt−1 +
1

η

η

∑
i=1

xt,iαT
t,i.

3.4.4 SLOWING DOWN THE FIRST ITERATIONS

As in the case of stochastic gradient descent, the first iterations of our algorithm may update the

parameters with large steps, immediately leading to large deviations from the initial dictionary.

To prevent this phenomenon, classical implementations of stochastic gradient descent use gradient

steps of the form a/(t + b), where b “reduces” the step size. An initialization of the form A0 = t0I

and B0 = t0D0 with t0 ≥ 0 also slows down the first steps of our algorithm by forcing the solution of

the dictionary update to stay close to D0. As shown in Section 6, we have observed that our method

does not require this extension to achieve good results in general.

27

MAIRAL, BACH, PONCE AND SAPIRO

3.4.5 PURGING THE DICTIONARY FROM UNUSED ATOMS

Every dictionary learning technique sometimes encounters situations where some of the dictionary

atoms are never (or very seldom) used, which typically happens with a very bad initialization. A

common practice is to replace these during the optimization by randomly chosen elements of the

training set, which solves in practice the problem in most cases. For more difficult and highly

regularized cases, it is also possible to choose a continuation strategy consisting of starting from an

easier, less regularized problem, and gradually increasing λ. This continuation method has not been

used in this paper.

3.5 Link with Second-order Stochastic Gradient Descent

For unconstrained learning problems with twice differentiable expected cost, the second-order stochas-

tic gradient descent algorithm (see Bottou and Bousquet, 2008 and references therein) improves

upon its first-order version, by replacing the learning rate by the inverse of the Hessian. When this

matrix can be computed or approximated efficiently, this method usually yields a faster convergence

speed and removes the problem of tuning the learning rate. However, it cannot be applied easily

to constrained optimization problems and requires at every iteration an inverse of the Hessian. For

these two reasons, it cannot be used for the dictionary learning problem, but nevertheless it shares

some similarities with our algorithm, which we illustrate with the example of a different problem.

Suppose that two major modifications are brought to our original formulation: (i) the vectors αt

are independent of the dictionary D—that is, they are drawn at the same time as xt ; (ii) the op-

timization is unconstrained—that is, C = R
m×k. This setting leads to the least-square estimation

problem

min
D∈Rm×k

E(x,α)

[

||x−Dα||22
]

, (8)

which is of course different from the original dictionary learning formulation. Nonetheless, it is

possible to address Eq. (8) with our method and show that it amounts to using the recursive formula

Dt ← Dt−1 +(xt−Dt−1αt)αT
t

(t

∑
i=1

αiαT
i

)−1

,

which is equivalent to a second-order stochastic gradient descent algorithm: The gradient obtained

at (xt ,αt) is the term−(xt−Dt−1αt)αT
t , and the sequence (1/t)∑t

i=1 αiαT
i converges to the Hessian

of the objective function. Such sequence of updates admit a fast implementation called Kalman

algorithm (see Kushner and Yin, 2003 and references therein).

4. Convergence Analysis

The main tools used in our proofs are the convergence of empirical processes (Van der Vaart, 1998)

and, following Bottou (1998), the convergence of quasi-martingales (Fisk, 1965). Our analysis is

limited to the basic version of the algorithm, although it can in principle be carried over to the

optimized versions discussed in Section 3.4. Before proving our main result, let us first discuss the

(reasonable) assumptions under which our analysis holds.

28

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

4.1 Assumptions

(A) The data admits a distribution with compact support K. Assuming a compact support for

the data is natural in audio, image, and video processing applications, where it is imposed by the

data acquisition process.

(B) The quadratic surrogate functions f̂t are strictly convex with lower-bounded Hessians. We

assume that the smallest eigenvalue of the positive semi-definite matrix 1
t
At defined in Algorithm 1

is greater than or equal to some constant κ1. As a consequence, At is invertible and f̂t is strictly

convex with Hessian I⊗ 2
t
At . This hypothesis is in practice verified experimentally after a few it-

erations of the algorithm when the initial dictionary is reasonable, consisting for example of a few

elements from the training set, or any common dictionary, such as DCT (bases of cosines products)

or wavelets (Mallat, 1999). Note that it is easy to enforce this assumption by adding a term κ1

2
||D||2F

to the objective function, which is equivalent to replacing the positive semi-definite matrix 1
t
At by

1
t
At +κ1I. We have omitted for simplicity this penalization in our analysis.

(C) A particular sufficient condition for the uniqueness of the sparse coding solution is satis-

fied. Before presenting this assumption, let us briefly recall classical optimality conditions for the

ℓ1 decomposition problem in Eq. (2) (Fuchs, 2005). For x in K and D in C , α in R
k is a solution of

Eq. (2) if and only if

dT
j (x−Dα) = λ sign(α[j]) if α[j] 6= 0,

|dT
j (x−Dα)| ≤ λ otherwise.

(9)

Let α⋆ be such a solution. Denoting by Λ the set of indices j such that |dT
j (x−Dα⋆)|= λ, and DΛ

the matrix composed of the columns from D restricted to the set Λ, it is easy to see from Eq. (9) that

the solution α⋆ is necessary unique if (DT
ΛDΛ) is invertible and that

α⋆
Λ = (DT

ΛDΛ)−1(DT
Λx−λεΛ), (10)

where α⋆
Λ is the vector containing the values of α⋆ corresponding to the set Λ and εΛ[j] is equal to the

sign of α⋆
Λ[j] for all j. With this preliminary uniqueness condition in hand, we can now formulate

our assumption: We assume that there exists κ2 > 0 such that, for all x in K and all dictionaries D

in the subset of C considered by our algorithm, the smallest eigenvalue of DT
ΛDΛ is greater than

or equal to κ2. This guarantees the invertibility of (DT
ΛDΛ) and therefore the uniqueness of the

solution of Eq. (2). It is of course easy to build a dictionary D for which this assumption fails.

However, having DT
ΛDΛ invertible is a common assumption in linear regression and in methods

such as the LARS algorithm aimed at solving Eq. (2) (Efron et al., 2004). It is also possible to

enforce this condition using an elastic net penalization (Zou and Hastie, 2005), replacing ||α||1 by

||α||1 + κ2

2
||α||22 and thus improving the numerical stability of homotopy algorithms, which is the

choice made by Zou et al. (2006). Again, we have omitted this penalization in our analysis.

4.2 Main Results

Given assumptions (A)–(C), let us now show that our algorithm converges to a stationary point

of the objective function. Since this paper is dealing with non-convex optimization, neither our

algorithm nor any one in the literature is guaranteed to find the global optimum of the optimization

problem. However, such stationary points have often been found to be empirically good enough

29

MAIRAL, BACH, PONCE AND SAPIRO

for practical applications, for example, for image restoration (Elad and Aharon, 2006; Mairal et al.,

2008b).

Our first result (Proposition 2 below) states that given (A)–(C), f (Dt) converges almost surely

and f (Dt)− f̂t(Dt) converges almost surely to 0, meaning that f̂t acts as a converging surrogate

of f . First, we prove a lemma to show that Dt−Dt−1 = O(1/t). It does not ensure the convergence

of Dt , but guarantees the convergence of the positive sum ∑∞
t=1 ||Dt −Dt−1||2F , a classical condition

in gradient descent convergence proofs (Bertsekas, 1999).

Lemma 1 [Asymptotic variations of Dt].

Assume (A)–(C). Then,

Dt+1−Dt = O
(1

t

)

a.s.

Proof This proof is inspired by Prop 4.32 of Bonnans and Shapiro (2000) on the Lipschitz regularity

of solutions of optimization problems. Using assumption (B), for all t, the surrogate f̂t is strictly

convex with a Hessian lower-bounded by κ1. Then, a short calculation shows that it verifies the

second-order growth condition

f̂t(Dt+1)− f̂t(Dt)≥ κ1||Dt+1−Dt ||2F . (11)

Moreover,

f̂t(Dt+1)− f̂t(Dt) = f̂t(Dt+1)− f̂t+1(Dt+1)+ f̂t+1(Dt+1)− f̂t+1(Dt)+ f̂t+1(Dt)− f̂t(Dt)

≤ f̂t(Dt+1)− f̂t+1(Dt+1)+ f̂t+1(Dt)− f̂t(Dt),

where we have used that f̂t+1(Dt+1)− f̂t+1(Dt) ≤ 0 because Dt+1 minimizes f̂t+1 on C . Since

f̂t(D) = 1
t
(1

2
Tr(DT DAt)−Tr(DT Bt)), and ||D||F ≤

√
k, it is possible to show that f̂t − f̂t+1 is Lip-

schitz with constant ct = (1/t)(||Bt+1−Bt ||F +
√

k||At+1−At ||F), which gives

f̂t(Dt+1)− f̂t(Dt)≤ ct ||Dt+1−Dt ||F . (12)

From Eq. (11) and (12), we obtain

||Dt+1−Dt ||F ≤
ct

κ1

.

Assumptions (A), (C) and Eq. (10) ensure that the vectors αi and xi are bounded with probability

one and therefore ct = O(1/t) a.s.

We can now state and prove our first proposition, which shows that we are indeed minimizing a

smooth function.

Proposition 2 [Regularity of f].

Assume (A) to (C). For x in the support K of the probability distribution p, and D in the feasible

set C , let us define

α⋆(x,D) = argmin
α∈Rk

1

2
||x−Dα||22 +λ||α||1. (13)

Then,

30

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

1. the function ℓ defined in Eq. (2) is continuously differentiable and

∇ Dℓ(x,D) =−(x−Dα⋆(x,D))α⋆(x,D)T .

2. f is continuously differentiable and ∇ f (D) = Ex

[

∇ Dℓ(x,D)
]

;

3. ∇ f (D) is Lipschitz on C .

Proof Assumption (A) ensures that the vectors α⋆ are bounded for x in K and D in C . Therefore,

one can restrict the optimization problem (13) to a compact subset of R
k. Under assumption (C),

the solution of Eq. (13) is unique and α⋆ is well-defined. Theorem 5 in Appendix A from Bonnans

and Shapiro (1998) can be applied and gives us directly the first statement. Since K is compact, and

ℓ is continuously differentiable, the second statement follows immediately.

To prove the third claim, we will show that for all x in K, α⋆(x, .) is Lipschitz with a constant in-

dependent of x,7 which is a sufficient condition for ∇ f to be Lipschitz. First, the function optimized

in Eq. (13) is continuous in α, D, x and has a unique minimum, implying that α⋆ is continuous in x

and D.

Consider a matrix D in C and x in K and denote by α⋆ the vector α⋆(x,D), and again by Λ the set

of indices j such that |dT
j (x−Dα⋆)|= λ. Since dT

j (x−Dα⋆) is continuous in D and x, there exists

an open neighborhood V around (x,D) such that for all (x′,D′) in V , and j /∈Λ, |dT
j

′
(x′−D′α⋆′)|< λ

and α⋆′[j] = 0, where α⋆′ = α⋆(x′,D′).
Denoting by UΛ the matrix composed of the columns of a matrix U corresponding to the index

set Λ and similarly by uΛ the vector composed of the values of a vector u corresponding to Λ, we

consider the function ℓ̃

ℓ̃(x,DΛ,αΛ)
△

=
1

2
||x−DΛαΛ||22 +λ||αΛ||1,

Assumption (C) tells us that ℓ̃(x,DΛ, .) is strictly convex with a Hessian lower-bounded by κ2. Let

us consider (x′,D′) in V . A simple calculation shows that

ℓ̃(x,DΛ,α⋆
Λ
′)− ℓ̃(x,DΛ,α⋆

Λ)≥ κ2||α⋆
Λ
′−α⋆

Λ||22.

Moreover, it is easy to show that ℓ̃(x,DΛ, .)− ℓ̃(x′,D′Λ, .) is Lipschitz with constant e1||DΛ−D′Λ||F +
e2||x−x′||2, where e1,e2 are constants independent of D,D′,x,x′ and then, one can show that

||α⋆′−α⋆||2 = ||α⋆
Λ
′−α⋆

Λ||2 ≤
1

κ2

(

e1||D−D′||F + e2||x−x′||2
)

.

Therefore, α⋆ is locally Lipschitz. Since K×C is compact, α⋆ is uniformly Lipschitz on K×C ,

which concludes the proof.

Now that we have shown that f is a smooth function, we can state our first result showing that

the sequence of functions f̂t acts asymptotically as a surrogate of f and that f (Dt) converges almost

surely in the following proposition.

7. From now on, for a vector x in R
m, α⋆(x, .) denotes the function that associates to a matrix D verifying Assump-

tion (C), the optimal solution α⋆(x,D). For simplicity, we will use these slightly abusive notation in the rest of the

paper.

31

MAIRAL, BACH, PONCE AND SAPIRO

Proposition 3 [Convergence of f (Dt) and of the surrogate function]. Let f̂t denote the surrogate

function defined in Eq. (5). Assume (A) to (C). Then,

1. f̂t(Dt) converges almost surely;

2. f (Dt)− f̂t(Dt) converges almost surely to 0;

3. f (Dt) converges almost surely.

Proof Part of this proof is inspired by Bottou (1998). We prove the convergence of the se-

quence f̂t(Dt) by showing that the stochastic positive process

ut
△

= f̂t(Dt)≥ 0,

is a quasi-martingale and use Theorem 6 from Fisk (1965) (see Appendix A), which states that if

the sum of the “positive” variations of ut are bounded, ut is a quasi-martingale, which converges

with probability one (see Theorem 6 for details). Computing the variations of ut , we obtain

ut+1−ut = f̂t+1(Dt+1)− f̂t(Dt)

= f̂t+1(Dt+1)− f̂t+1(Dt)+ f̂t+1(Dt)− f̂t(Dt)

= f̂t+1(Dt+1)− f̂t+1(Dt)+
ℓ(xt+1,Dt)− ft(Dt)

t +1
+

ft(Dt)− f̂t(Dt)

t +1
,

(14)

using the fact that f̂t+1(Dt) = 1
t+1

ℓ(xt+1,Dt)+ t
t+1

f̂t(Dt). Since Dt+1 minimizes f̂t+1 on C and Dt is

in C , f̂t+1(Dt+1)− f̂t+1(Dt)≤ 0. Since the surrogate f̂t upperbounds the empirical cost ft , we also

have ft(Dt)− f̂t(Dt) ≤ 0. To use Theorem 6, we consider the filtration of the past information Ft

and take the expectation of Eq. (14) conditioned on Ft , obtaining the following bound

E[ut+1−ut |Ft]≤
E[ℓ(xt+1,Dt)|Ft]− ft(Dt)

t +1

≤ f (Dt)− ft(Dt)

t +1

≤ || f − ft ||∞
t +1

,

For a specific matrix D, the central-limit theorem states that E[
√

t(f (Dt)− ft(Dt))] is bounded.

However, we need here a stronger result on empirical processes to show that E[
√

t|| f − ft ||∞] is

bounded. To do so, we use the Lemma 7 in Appendix A, which is a corollary of Donsker theorem

(see Van der Vaart, 1998, chap. 19.2). It is easy to show that in our case, all the hypotheses are

verified, namely, ℓ(x, .) is uniformly Lipschitz and bounded since it is continuously differentiable

on a compact set, the set C ⊂ R
m×k is bounded, and Ex[ℓ(x,D)2] exists and is uniformly bounded.

Therefore, Lemma 7 applies and there exists a constant κ > 0 such that

E[E[ut+1−ut |Ft]
+]≤ κ

t
3
2

.

Therefore, defining δt as in Theorem 6, we have

∞

∑
t=1

E[δt(ut+1−ut)] =
∞

∑
t=1

E[E[ut+1−ut |Ft]
+] < +∞.

32

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

Thus, we can apply Theorem 6, which proves that ut converges almost surely and that

∞

∑
t=1

|E[ut+1−ut |Ft]|< +∞ a.s.

Using Eq. (14) we can show that it implies the almost sure convergence of the positive sum

∞

∑
t=1

f̂t(Dt)− ft(Dt)

t +1
.

Using Lemma 1 and the fact that the functions ft and f̂t are bounded and Lipschitz, with a constant

independent of t, it is easy to show that the hypotheses of Lemma 8 in Appendix A are satisfied.

Therefore

ft(Dt)− f̂t(Dt) −→
t→+∞

0 a.s.

Since f̂t(Dt) converges almost surely, this shows that ft(Dt) converges in probability to the same

limit. Note that we have in addition || ft − f ||∞→t→+∞ 0 a.s. (see Van der Vaart, 1998, Theorem

19.4 (Glivenko-Cantelli)). Therefore,

f (Dt)− f̂t(Dt) −→
t→+∞

0 a.s.

and f (Dt) converges almost surely, which proves the second and third points.

With Proposition 3 in hand, we can now prove our final and strongest result, namely that first-

order necessary optimality conditions are verified asymptotically with probability one.

Proposition 4 [Convergence to a stationary point]. Under assumptions (A) to (C), the distance

between Dt and the set of stationary points of the dictionary learning problem converges almost

surely to 0 when t tends to infinity.

Proof Since the sequences of matrices At ,Bt are in a compact set, it is possible to extract converg-

ing subsequences. Let us assume for a moment that these sequences converge respectively to two

matrices A∞ and B∞. In that case, Dt converges to a matrix D∞ in C . Let U be a matrix in R
m×k.

Since f̂t upperbounds ft on R
m×k, for all t,

f̂t(Dt +U)≥ ft(Dt +U).

Taking the limit when t tends to infinity,

f̂∞(D∞ +U)≥ f (D∞ +U).

Let ht > 0 be a sequence that converges to 0. Using a first order Taylor expansion, and using the

fact that ∇ f is Lipschitz and f̂∞(D∞) = f (D∞) a.s., we have

f (D∞)+Tr(htU
T ∇ f̂∞(D∞))+o(htU)≥ f (D∞)+Tr(htU

T ∇ f (D∞))+o(htU),

and it follows that

Tr
(1

||U||F
UT ∇ f̂∞(D∞)

)

≥ Tr
(1

||Ut ||F
UT ∇ f (D∞)

)

,

33

MAIRAL, BACH, PONCE AND SAPIRO

Since this inequality is true for all U, ∇ f̂∞(D∞) = ∇ f (D∞). A first-order necessary optimality condi-

tion for D∞ being an optimum of f̂∞ is that −∇ f̂∞ is in the normal cone of the set C at D∞ (Borwein

and Lewis, 2006). Therefore, this first-order necessary conditions is verified for f at D∞ as well.

Since At ,Bt are asymptotically close to their accumulation points,−∇ f (Dt) is asymptotically close

the normal cone at Dt and these first-order optimality conditions are verified asymptotically with

probability one.

5. Extensions to Matrix Factorization

In this section, we present variations of the basic online algorithm to address different optimization

problems. We first present different possible regularization terms for α and D, which can be used

with our algorithm, and then detail some specific cases such as non-negative matrix factorization,

sparse principal component analysis, constrained sparse coding, and simultaneous sparse coding.

5.1 Using Different Regularizers for α

In various applications, different priors for the coefficients α may lead to different regularizers ψ(α).
As long as the assumptions of Section 4.1 are verified, our algorithm can be used with:

• Positivity constraints on α that are added to the ℓ1-regularization. The homotopy method

presented in Efron et al. (2004) is able to handle such constraints.

• The Tikhonov regularization, ψ(α) = λ1

2
||α||22, which does not lead to sparse solutions.

• The elastic net (Zou and Hastie, 2005), ψ(α) = λ1||α||1 + λ2

2
||α||22, leading to a formulation

relatively close to Zou et al. (2006).

• The group Lasso (Yuan and Lin, 2006; Turlach et al., 2005; Bach, 2008), ψ(α) = ∑s
i=1 ||αi||2,

where αi is a vector corresponding to a group of variables.

Non-convex regularizers such as the ℓ0 pseudo-norm, ℓp pseudo-norm with p < 1 can be used as

well. However, as with any classical dictionary learning techniques exploiting non-convex regular-

izers (e.g., Olshausen and Field, 1997; Engan et al., 1999; Aharon et al., 2006), there is no theoretical

convergence results in these cases. Note also that convex smooth approximation of sparse regulariz-

ers (Bradley and Bagnell, 2009), or structured sparsity-inducing regularizers (Jenatton et al., 2009a;

Jacob et al., 2009) could be used as well even though we have not tested them.

5.2 Using Different Constraint Sets for D

In the previous subsection, we have claimed that our algorithm could be used with different regu-

larization terms on α. For the dictionary learning problem, we have considered an ℓ2-regularization

on D by forcing its columns to have less than unit ℓ2-norm. We have shown that with this constraint

set, the dictionary update step can be solved efficiently using a block-coordinate descent approach.

Updating the j-th column of D, when keeping the other ones fixed is solved by orthogonally pro-

jecting the vector u j = d j + (1/A[j, j])(b j−Da j) on the constraint set C , which in the classical

dictionary learning case amounts to a projection of u j on the ℓ2-ball.

34

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

It is easy to show that this procedure can be extended to different convex constraint sets C ′

as long as the constraints are a union of independent constraints on each column of D and the

orthogonal projections of the vectors u j onto the set C ′ can be done efficiently. Examples of different

sets C ′ that we propose as an alternative to C are

• The “non-negative” constraints:

C ′ = {D ∈ R
m×k s.t. ∀ j = 1, . . . ,k, ||d j||2 ≤ 1 and d j ≥ 0}.

• The “elastic-net” constraints:

C ′
△

= {D ∈ R
m×k s.t. ∀ j = 1, . . . ,k, ||d j||22 +γ||d j||1 ≤ 1}.

These constraints induce sparsity in the dictionary D (in addition to the sparsity-inducing reg-

ularizer on the vectors αi). By analogy with the regularization proposed by Zou and Hastie

(2005), we call these constraints “elastic-net constraints.” Here, γ is a new parameter, con-

trolling the sparsity of the dictionary D. Adding a non-negativity constraint is also possible in

this case. Note that the presence of the ℓ2 regularization is important here. It has been shown

by Bach et al. (2008) that using the ℓ1-norm only in such problems lead to trivial solutions

when k is large enough. The combination of ℓ1 and ℓ2 constraints has also been proposed re-

cently for the problem of matrix factorization by Witten et al. (2009), but in a slightly different

setting.

• The “fused lasso” (Tibshirani et al., 2005) constraints. When one is looking for a dictionary

whose columns are sparse and piecewise-constant, a fused lasso regularization can be used.

For a vector u in R
m, we consider the ℓ1-norm of the consecutive differences of u denoted by

FL(u)
△

=
m

∑
i=2

|u[i]−u[i−1]|,

and define the “fused lasso” constraint set

C ′
△

= {D ∈ R
m×k s.t. ∀ j = 1, . . . ,k, ||d j||22 +γ1||d j||1 +γ2 FL(d j)≤ 1}.

This kind of regularization has proven to be useful for exploiting genomic data such as CGH

arrays (Tibshirani and Wang, 2008).

In all these settings, replacing the projections of the vectors u j onto the ℓ2-ball by the projections

onto the new constraints, our algorithm is still guaranteed to converge and find a stationary point

of the optimization problem. The orthogonal projection onto the “non negative” ball is simple

(additional thresholding) but the projection onto the two other sets is slightly more involved. In

Appendix B, we propose two algorithms for efficiently solving these problems. The first one is

presented in Section B.1 and computes the projection of a vector onto the elastic-net constraint

in linear time, by extending the efficient projection onto the ℓ1-ball from Maculan and de Paula

(1989) and Duchi et al. (2008). The second one is a homotopy method, which solves the projection

on the fused lasso constraint set in O(ks), where s is the number of piecewise-constant parts in the

solution. This method also solves efficiently the fused lasso signal approximation problem presented

in Friedman et al. (2007):

min
u∈Rn

1

2
||b−u||22 +γ1||u||1 +γ2 FL(u)+γ3||u||22.

35

MAIRAL, BACH, PONCE AND SAPIRO

Being able to solve this problem efficiently has also numerous applications, which are beyond the

scope of this paper. For instance, it allows us to use the fast algorithm of Nesterov (2007) for solving

the more general fused lasso problem (Tibshirani et al., 2005). Note that the proposed method could

be used as well with more complex constraints for the columns of D, which we have not tested in

this paper, addressing for instance the problem of structured sparse PCA (Jenatton et al., 2009b).

Now that we have presented a few possible regularizers for α and D, that can be used within

our algorithm, we focus on a few classical problems which can be formulated as dictionary learning

problems with specific combinations of such regularizers.

5.3 Non Negative Matrix Factorization

Given a matrix X = [x1, . . . ,xn] in R
m×n, Lee and Seung (2001) have proposed the non negative

matrix factorization problem (NMF), which consists of minimizing the following cost

min
D∈C ,α∈Rk×n

n

∑
i=1

1

2
||xi−Dαi||22 s.t. D≥ 0, ∀ i, αi ≥ 0.

With this formulation, the matrix D and the vectors αi are forced to have non negative components,

which leads to sparse solutions. When applied to images, such as faces, Lee and Seung (2001) have

shown that the learned features are more localized than the ones learned with a classical singular

value decomposition. As for dictionary learning, classical approaches for addressing this problem

are batch algorithms, such as the multiplicative update rules of Lee and Seung (2001), or the pro-

jected gradient descent algorithm of Lin (2007).

Following this line of research, Hoyer (2002, 2004) has proposed non negative sparse coding

(NNSC), which extends non-negative matrix factorization by adding a sparsity-inducing penalty to

the objective function to further control the sparsity of the vectors αi:

min
D∈C ,α∈Rk×n

n

∑
i=1

(1

2
||xi−Dαi||22 +λ

k

∑
j=1

αi[j]
)

s.t. D≥ 0, ∀ i, αi ≥ 0.

When λ = 0, this formulation is equivalent to NMF. The only difference with the dictionary learning

problem is that non-negativity constraints are imposed on D and the vectors αi. A simple modifica-

tion of our algorithm, presented above, allows us to handle these constraints, while guaranteeing to

find a stationary point of the optimization problem. Moreover, our approach can work in the setting

when n is large.

5.4 Sparse Principal Component Analysis

Principal component analysis (PCA) is a classical tool for data analysis, which can be interpreted

as a method for finding orthogonal directions maximizing the variance of the data, or as a low-

rank matrix approximation method. Jolliffe et al. (2003), Zou et al. (2006), d’Aspremont et al.

(2007), d’Aspremont et al. (2008), Witten et al. (2009) and Zass and Shashua (2007) have proposed

different formulations for sparse principal component analysis (SPCA), which extends PCA by

estimating sparse vectors maximizing the variance of the data, some of these formulations enforcing

orthogonality between the sparse components, whereas some do not. In this paper, we formulate

SPCA as a sparse matrix factorization which is equivalent to the dictionary learning problem with

36

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

eventually sparsity constraints on the dictionary—that is, we use the ℓ1-regularization term for α
and the “elastic-net” constraint for D (as used in a penalty term by Zou et al. 2006):

min
α∈Rk×n

n

∑
i=1

(1

2
||xi−Dαi||22 +λ||αi||1

)

s.t. ∀ j = 1, . . . ,k, ||d j||22 +γ||d j||1 ≤ 1.

As detailed above, our dictionary update procedure amounts to successive orthogonal projection of

the vectors u j on the constraint set. More precisely, the update of d j becomes

u j←
1

A[j, j]
(b j−Da j)+d j,

d j← argmin
d∈Rm

||u j−d||22 s.t. ||d||22 +γ||d||1 ≤ 1,

which can be solved in linear time using Algorithm 3 presented in Appendix B. In addition to that,

our SPCA method can be used with fused Lasso constraints as well.

5.5 Constrained Sparse Coding

Constrained sparse coding problems are often encountered in the literature, and lead to different

loss functions such as

ℓ′(x,D) = min
α∈Rk
||x−Dα||22 s.t. ||α||1 ≤ T, (15)

or

ℓ′′(x,D) = min
α∈Rk
||α||1 s.t. ||x−Dα||22 ≤ ε, (16)

where T and ε are pre-defined thresholds. Even though these loss functions lead to equivalent

optimization problems in the sense that for given x,D and λ, there exist ε and T such that ℓ(x,D),
ℓ′(x,D) and ℓ′′(x,D) admit the same solution α⋆, the problems of learning D using ℓ, ℓ′ of ℓ′′ are

not equivalent. For instance, using ℓ′′ has proven experimentally to be particularly well adapted to

image denoising (Elad and Aharon, 2006; Mairal et al., 2008b).

For all T , the same analysis as for ℓ can be carried for ℓ′, and the simple modification which

consists of computing αt using Eq. (15) in the sparse coding step leads to the minimization of the

expected cost minD∈C Ex[ℓ
′(x,D)].

Handling the case ℓ′′ is a bit different. We propose to use the same strategy as for ℓ′—that is,

using our algorithm but computing αt solving Eq. (16). Even though our analysis does not apply

since we do not have a quadratic surrogate of the expected cost, experimental evidence shows that

this approach is efficient in practice.

5.6 Simultaneous Sparse Coding

In some situations, the signals xi are not i.i.d samples of an unknown probability distribution, but

are structured in groups (which are however independent from each other), and one may want to ad-

dress the problem of simultaneous sparse coding, which appears also in the literature under various

names such as group sparsity or grouped variable selection (Cotter et al., 2005; Turlach et al., 2005;

Yuan and Lin, 2006; Obozinski et al., 2009, 2008; Zhang et al., 2008; Tropp et al., 2006; Tropp,

2006). Let X = [x1, . . . ,xq] ∈ R
m×q be a set of signals. Suppose one wants to obtain sparse decom-

positions of the signals on the dictionary D that share the same active set (non-zero coefficients).

37

MAIRAL, BACH, PONCE AND SAPIRO

Let α = [α1, . . . ,αq] in R
k×q be the matrix composed of the coefficients. One way of imposing this

joint sparsity is to penalize the number of non-zero rows of α. A classical convex relaxation of this

joint sparsity measure is to consider the ℓ1,2-norm on the matrix α

||α||1,2
△

=
k

∑
j=1

||α j||2,

where α j is the j-th row of α. In that setting, the ℓ1,2-norm of α is the ℓ1-norm of the ℓ2-norm of

the rows of α.

The problem of jointly decomposing the signals xi can be written as a ℓ1,2-sparse decomposition

problem, which is a subcase of the group Lasso (Turlach et al., 2005; Yuan and Lin, 2006; Bach,

2008), by defining the cost function

ℓ′′′(X,D) = min
α∈Rk×q

1

2
||X−Dα||2F +λ||α||1,2,

which can be computed using a block-coordinate descent approach (Friedman et al., 2007) or an

active set method (Roth and Fischer, 2008).

Suppose now that we are able to draw groups of signals Xi, i = 1, . . . ,n which have bounded size

and are independent from each other and identically distributed, one can learn an adapted dictionary

by solving the optimization problem

min
D∈C

lim
n→∞

1

n

n

∑
i=1

ℓ′′′(Xi,D).

Being able to solve this optimization problem is important for many applications. For instance, in

Mairal et al. (2009c), state-of-the-art results in image denoising and demosaicking are achieved with

this formulation. The extension of our algorithm to this case is relatively easy, computing at each

sparse coding step a matrix of coefficients α, and keeping the updates of At and Bt unchanged.

All of the variants of this section have been implemented. Next section evaluates some of

them experimentally. An efficient C++ implementation with a Matlab interface of these variants is

available on the Willow project-team web page http://www.di.ens.fr/willow/SPAMS/.

6. Experimental Validation

In this section, we present experiments on natural images and genomic data to demonstrate the effi-

ciency of our method for dictionary learning, non-negative matrix factorization, and sparse principal

component analysis.

6.1 Performance Evaluation for Dictionary Learning

For our experiments, we have randomly selected 1.25× 106 patches from images in the Pascal

VOC’06 image database (Everingham et al., 2006), which is composed of varied natural images;

106 of these are kept for training, and the rest for testing. We used these patches to create three data

sets A, B, and C with increasing patch and dictionary sizes representing various settings which are

typical in image processing applications: We have centered and normalized the patches to have unit

ℓ2-norm and used the regularization parameter λ = 1.2/
√

m in all of our experiments. The 1/
√

m

38

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

Data set Signal size m Nb k of atoms Type

A 8×8 = 64 256 b&w

B 12×12×3 = 432 512 color

C 16×16 = 256 1024 b&w

term is a classical normalization factor (Bickel et al., 2009), and the constant 1.2 has shown to yield

about 10 nonzero coefficients for data set A and 40 for data sets B and C in these experiments.

We have implemented the proposed algorithm in C++ with a Matlab interface. All the results

presented in this section use the refinements from Section 3.4 since this has lead empirically to

speed improvements. Although our implementation is multithreaded, our experiments have been

run for simplicity on a single-CPU, single-core 2.66Ghz machine.

The first parameter to tune is η, the number of signals drawn at each iteration. Trying different

powers of 2 for this variable has shown that η = 512 was a good choice (lowest objective function

values on the training set—empirically, this setting also yields the lowest values on the test set).

Even though this parameter is fairly easy to tune since values of 64, 128, 256 and 1024 have given

very similar performances, the difference with the choice η = 1 is significant.

Our implementation can be used in both the online setting it is intended for, and in a regular

batch mode where it uses the entire data set at each iteration. We have also implemented a first-

order stochastic gradient descent algorithm that shares most of its code with our algorithm, except

for the dictionary update step. This setting allows us to draw meaningful comparisons between our

algorithm and its batch and stochastic gradient alternatives, which would have been difficult other-

wise. For example, comparing our algorithm to the Matlab implementation of the batch approach

from Lee et al. (2007) developed by its authors would have been unfair since our C++ program has

a built-in speed advantage.8 To measure and compare the performances of the three tested meth-

ods, we have plotted the value of the objective function on the test set, acting as a surrogate of the

expected cost, as a function of the corresponding training time.

6.1.1 ONLINE VS. BATCH

The left column of Figure 1 compares the online and batch settings of our implementation. The full

training set consists of 106 samples. The online version of our algorithm draws samples from the

entire set, and we have run its batch version on the full data set as well as subsets of size 104 and

105 (see Figure 1). The online setting systematically outperforms its batch counterpart for every

training set size and desired precision. We use a logarithmic scale for the computation time, which

shows that in many situations, the difference in performance can be dramatic. Similar experiments

have given similar results on smaller data sets. Our algorithm uses all the speed-ups from Section

3.4. The parameter ρ was chosen by trying the values 0,5,10,15,20,25, and t0 by trying different

powers of 10. We have selected (t0 = 0.001,ρ = 15), which has given the best performance in

terms of objective function evaluated on the training set for the three data sets. We have plotted

three curves for our method: OL1 corresponds to the optimal setting (t0 = 0.001,ρ = 15). Even

though tuning two parameters might seem cumbersome, we have plotted two other curves showing

that, on the contrary, our method is very easy to use. The curve OL2, corresponding to the setting

8. Both LARS and the feature-sign algorithm (Lee et al., 2007) require a large number of low-level operations which

are not well optimized in Matlab. We have indeed observed that our C++ implementation of LARS is up to 50 times

faster than the Matlab implementation of the feature-sign algorithm of Lee et al. (2007) for our experiments.

39

MAIRAL, BACH, PONCE AND SAPIRO

(t0 = 0.001,ρ = 10), is very difficult to distinguish from the first curve and we have observed a

similar behavior with the setting (t0 = 0.001,ρ = 20). showing that our method is robust to the

choice of the parameter ρ. We have also observed that the parameter ρ is useful for large data sets

only. When using smaller ones (n≤ 100,000), it did not bring any benefit.

Moreover, the curve OL3 is obtained without using a tuned parameter t0—that is, ρ = 15 and

t0 = 0, and shows that its influence is very limited since very good results are obtained without using

it. On the other hand, we have observed that using a parameter t0 too big, could slightly slow down

our algorithm during the first epoch (cycle on the training set).

6.1.2 COMPARISON WITH STOCHASTIC GRADIENT DESCENT

Our experiments have shown that obtaining good performance with stochastic gradient descent

requires using both the mini-batch heuristic and carefully choosing a learning rate of the form

a/(ηt + b). To give the fairest comparison possible, we have thus optimized these parameters. As

for our algorithm, sampling η values among powers of 2 (as before) has shown that η = 512 was a

good value and gives a significant better performance than η = 1.

In an earlier version of this work (Mairal et al., 2009a), we have proposed a strategy for our

method which does not require any parameter tuning except the mini-batch η and compared it with

the stochastic gradient descent algorithm (SGD) with a learning rate of the form a/(ηt). While our

method has improved in performance using the new parameter ρ, SGD has also proven to provide

much better results when using a learning rate of the form a/(ηt +b) instead of a/(ηt), at the cost

of an extra parameter b to tune. Using the learning rate a/(ηt) with a high value for a results indeed

in too large initial steps of the algorithm increasing dramatically the value of the objective function,

and a small value of a leads to bad asymptotic results, while a learning rate of the form a/(ηt + b)
is a good compromise.

We have tried different powers of 10 for a and b. First selected the couple (a = 100,000,b =
100,000) and then refined it, trying the values 100,000× 2i for i = −3, . . . ,3. Finally, we have

selected (a = 200,000,b = 400,000). As shown on the right column of Figure 1, this setting repre-

sented by the curve SG1 leads to similar results as our method. The curve SG2 corresponds to the

parameters (a = 400,000,b = 400,000) and shows that increasing slightly the parameter a makes

the curves worse than the others during the first iterations (see for instance the curve between 1 and

102 seconds for data set A), but still lead to good asymptotic results. The curve SG3 corresponds

to a situation where a and b are slightly too small (a = 50,000,b = 100,000). It is as good as SG1

for data sets A and B, but asymptotically slightly below the others for data set C. All the curves

are obtained as the average of three experiments with different initializations. Interestingly, even

though the problem is not convex, the different initializations have led to very similar values of the

objective function and the variance of the experiments was always insignificant after 10 seconds of

computations.

6.2 Non Negative Matrix Factorization and Non Negative Sparse Coding

In this section, we compare our method with the classical algorithm of Lee and Seung (2001) for

NMF and the non-negative sparse coding algorithm of Hoyer (2002) for NNSC. The experiments

have been carried out on three data sets with different sizes:

• Data set D is composed of n = 2,429 face images of size m = 19× 19 pixels from the the

MIT-CBCL Face Database #1 (Sung, 1996).

40

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

10
−1

10
0

10
1

10
2

10
3

10
4

0.275

0.28

0.285

0.29

0.295

0.3

0.305

Evaluation set A

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Batch n=10
4

Batch n=10
5

Batch n=10
6

OL1

OL2

OL3

10
−1

10
0

10
1

10
2

10
3

10
4

0.275

0.28

0.285

0.29

0.295

0.3

0.305

Evaluation set A

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

SG1
SG2
SG3
OL1

10
−1

10
0

10
1

10
2

10
3

10
4

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

Evaluation set B

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Batch n=10
4

Batch n=10
5

Batch n=10
6

OL1

OL2

OL3

10
−1

10
0

10
1

10
2

10
3

10
4

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

Evaluation set B

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

SG1
SG2
SG3
OL1

10
−1

10
0

10
1

10
2

10
3

10
4

0.215

0.22

0.225

0.23

0.235

0.24

0.245

Evaluation set C

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Batch n=10
4

Batch n=10
5

Batch n=10
6

OL1

OL2

OL3

10
−1

10
0

10
1

10
2

10
3

10
4

0.215

0.22

0.225

0.23

0.235

0.24

0.245

Evaluation set C

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

SG1
SG2
SG3
OL1

Figure 1: Left: Comparison between our method and the batch approach for dictionary learning.

Right: Comparison between our method and stochastic gradient descent. The results are

reported for three data sets as a function of computation time on a logarithmic scale. Note

that the times of computation that are less than 0.1s are not reported. See text for details.

41

MAIRAL, BACH, PONCE AND SAPIRO

• Data set E is composed of n = 2,414 face images of size m = 192× 168 pixels from the

Extended Yale B Database (Georghiades et al., 2001; Lee et al., 2005).

• Data set F is composed of n = 100,000 natural image patches of size m = 16×16 pixels from

the Pascal VOC’06 image database (Everingham et al., 2006).

We have used the Matlab implementations of NMF and NNSC of P. Hoyer, which are freely avail-

able at http://www.cs.helsinki.fi/u/phoyer/software.html. Even though our C++ imple-

mentation has a built-in advantage in terms of speed over these Matlab implementations, most of

the computational time of NMF and NNSC is spent on large matrix multiplications, which are typ-

ically well optimized in Matlab. All the experiments have been run for simplicity on a single-CPU,

single-core 2.4GHz machine, without using the parameters ρ and t0 presented in Section 3.4—that

is, ρ = 0 and t0 = 0. As in Section 6.1, a minibatch of size η = 512 is chosen. Following the original

experiment of Lee and Seung (2001) on data set D, we have chosen to learn k = 49 basis vectors for

the face images data sets D and E, and we have chosen k = 64 for data set F. Each input vector is

normalized to have unit ℓ2-norm.

The experiments we present in this section compare the value of the objective function on the

data sets obtained with the different algorithms as a function of the computation time. Since our

algorithm learns the matrix D but does not provide the matrix α, the computation times reported for

our approach include two steps: First, we run our algorithm to obtain D. Second, we run one sparse

coding step over all the input vectors to obtain α. Figure 2 presents the results for NMF and NNSC.

The gradient step for the algorithm of Hoyer (2002) was optimized for the best performance and λ
was set to 1√

m
. Both D and α were initialized randomly. The values reported are those obtained for

more than 0.1s of computation. Since the random initialization provides an objective value which

is by far greater than the value obtained at convergence, the curves are all truncated to present

significant objective values. All the results are obtained using the average of 3 experiments with

different initializations. As shown on Figure 2, our algorithm provides a significant improvement in

terms of speed compared to the other tested methods, even though the results for NMF and NNSC

could be improved a bit using a C++ implementation.

6.3 Sparse Principal Component Analysis

We present here the application of our method addressing SPCA with various types of data: faces,

natural image patches, and genomic data.

6.3.1 FACES AND NATURAL PATCHES

In this section, we compare qualitatively the results obtained by PCA, NMF, our dictionary learning

and our sparse principal component analysis algorithm on the data sets used in Section 6.2. For

dictionary learning, PCA and SPCA, the input vectors are first centered and normalized to have a

unit norm. Visual results are presented on figures 3, 4 and 5, respectively for the data sets D, E and F.

The parameter λ for dictionary learning and SPCA was set so that the decomposition of each input

signal has approximately 10 nonzero coefficients. The results for SPCA are presented for various

values of the parameter γ, yielding different levels of sparsity. The scalar τ indicates the percentage

of nonzero values of the dictionary.

Each image is composed of k small images each representing one learned feature vector. Nega-

tive values are blue, positive values are red and the zero values are represented in white. Confirming

42

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

10
−1

10
0

10
1

10
2

10
3

10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Evaluation set D

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Lee & Seung

10
−1

10
0

10
1

10
2

10
3

10
4

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Evaluation set D

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Our method

Hoyer

10
−1

10
0

10
1

10
2

10
3

10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Evaluation set E

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Lee & Seung

10
−1

10
0

10
1

10
2

10
3

10
4

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Evaluation set E

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Hoyer

10
−1

10
0

10
1

10
2

10
3

10
4

1

2

3

4

5

6

7

x 10
−3 Evaluation set F

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Lee & Seung

10
−1

10
0

10
1

10
2

10
3

10
4

0.0614

0.0616

0.0618

0.062

0.0622

0.0624

Evaluation set F

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Our method

Hoyer

Figure 2: Left: Comparison between our method and the approach of Lee and Seung (2001) for

NMF. Right: Comparison between our method and the approach of Hoyer (2002) for

NNSC. The value of the objective function is reported for three data sets as a function of

computation time on a logarithmic scale.

43

MAIRAL, BACH, PONCE AND SAPIRO

earlier observations from Lee and Seung (2001), PCA systematically produces features spread out

over the images, whereas NMF produces more localized features on the face databases D and E.

However, neither PCA, nor NMF are able to learn localized features on the set of natural patches F.

On the other hand, the dictionary learning technique is able to learn localized features on data set F,

and SPCA is the only tested method that allows controlling the level of sparsity among the learned

matrices.

6.3.2 GENOMIC DATA

This experiment follows Witten et al. (2009) and demonstrates that our matrix decomposition tech-

nique can be used for analyzing genomic data. Gene expression measurements and DNA copy

number changes (comparative genomic hybridization CGH) are two popular types of data in ge-

nomic research, which can be used to characterize a set of abnormal tissue samples for instance.

When these two types of data are available, a recent line of research tries to analyze the correla-

tion between them—that is, to determine sets of expression genes which are correlated with sets

of chromosomal gains or losses (see Witten et al., 2009 and references therein). Let us suppose

that for n tissue samples, we have a matrix X in R
n×p of gene expression measurements and a ma-

trix Y in R
n×q of CGH measurements. In order to analyze the correlation between these two sets of

data, recent works have suggested the use of canonical correlation analysis (Hotelling, 1936), which

solves9

min
u∈Rp,v∈Rq

cov(Xu,Yv) s.t. ||Xu||2 ≤ 1 and ||Yv||2 ≤ 1.

When X and Y are centered and normalized, it has been further shown that with this type of data,

good results can be obtained by treating the covariance matrices XT X and YT Y as diagonal, leading

to a rank-one matrix decomposition problem

min
u∈Rp,v∈Rq

||XT Y−uvT ||2F s.t. ||u||2 ≤ 1, and ||v||2 ≤ 1.

Furthermore, as shown by Witten et al. (2009), this method can benefit from sparse regularizers

such as the ℓ1 norm for the gene expression measurements and a fused lasso for the CGH arrays,

which are classical choices used for these data. The formulation we have chosen is slightly different

from the one used by Witten et al. (2009) and can be addressed using our algorithm:

min
u∈Rp,v∈Rq

||YT X−vuT ||2F +λ||u||2 s.t. ||v||22 +γ1||v||1 +γ2 FL(v)≤ 1. (17)

In order to assess the effectivity of our method, we have conducted the same experiment as Witten

et al. (2009) using the breast cancer data set described by Chin et al. (2006), consisting of q = 2,148

gene expression measurements and p = 16,962 CGH measurements for n = 89 tissue samples. The

matrix decomposition problem of Eq. (17) was addressed once for each of the 23 chromosomes, us-

ing each time the CGH data available for the corresponding chromosome, and the gene expression

of all genes. Following the original choice of Witten et al. (2009), we have selected a regulariza-

tion parameter λ resulting in about 25 non-zero coefficients in u, and selected γ1 = γ2 = 1, which

results in sparse and piecewise-constant vectors v. The original matrices (X,Y) are divided into a

training set (Xtr,Ytr) formed with 3/4 of the n samples, keeping the rest (Xte,Yte) for testing. This

9. Note that when more than one couple of factors are needed, two sequences u1,u2, . . . and v1,v2, . . . of factors can be

obtained recursively subject to orthogonality constraints of the sequences Xu1,Xu2, . . . and Yv1,Yv2,

44

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

(a) PCA (b) SPCA, τ = 70%

(c) NMF (d) SPCA, τ = 30%

(e) Dictionary Learning (f) SPCA, τ = 10%

Figure 3: Results obtained by PCA, NMF, dictionary learning, SPCA for data set D.

45

MAIRAL, BACH, PONCE AND SAPIRO

(a) PCA (b) SPCA, τ = 70%

(c) NMF (d) SPCA, τ = 30%

(e) Dictionary Learning (f) SPCA, τ = 10%

Figure 4: Results obtained by PCA, NMF, dictionary learning, SPCA for data set E.

46

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

(a) PCA (b) SPCA, τ = 70%

(c) NMF (d) SPCA, τ = 30%

(e) Dictionary Learning (f) SPCA, τ = 10%

Figure 5: Results obtained by PCA, NMF, dictionary learning, SPCA for data set F.

47

MAIRAL, BACH, PONCE AND SAPIRO

experiment is repeated for 10 random splits, for each chromosome a couple of factors (u,v) are

computed, and the correlations corr(Xtru,Ytrv) and corr(Xteu,Ytev) are reported on Figure 6. The

average standard deviation of the experiments results was 0.0339 for the training set and 0.1391 for

the test set.

Comparing with the original curves reported by Witten et al. (2009) for their penalized matrix

decomposition (PMD) algorithm, our method exhibits in general a performance similar as PMD.10

Nevertheless, the purpose of this section is more to demonstrate that our method can be used with

genomic data than comparing it carefully with PMD. To draw substantial conclusions about the

performance of both methods, more experiments would of course be needed.

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Genomic Experiment: Correlation Analysis

Chromosome

C
o

rr
e

la
ti
o

n

Train PMD

Test PMD

Train OL

Test OL

Figure 6: SPCA was applied to the covariance matrix obtained from the breast cancer data (Chin

et al., 2006). A fused lasso regularization is used for the CGH data. 3/4 of the n samples

are used as a training set, keeping the rest for testing. Average correlations from 10

random splits are reported for each of the 23 chromosomes, for PMD (Witten et al., 2009)

and our method denoted by OL.

10. The curves for PMD were generated with the R software package available at http://cran.r-project.org/web/
packages/PMA/index.html and a script provided by Witten et al. (2009).

48

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

Figure 7: Inpainting example on a 12-Megapixel image. Top: Damaged and restored images. Bot-

tom: Zooming on the damaged and restored images. Note that the pictures presented here

have been scaled down for display. (Best seen in color).

6.4 Application to Large-Scale Image Processing

We demonstrate in this section that our algorithm can be used for a difficult large-scale image

processing task, namely, removing the text (inpainting) from the damaged 12-Megapixel image

of Figure 7. Using a multi-threaded version of our implementation, we have learned a dictionary

with 256 elements from the roughly 7× 106 undamaged 12× 12 color patches in the image with

two epochs in about 8 minutes on a 2.4GHz machine with eight cores. Once the dictionary has been

learned, the text is removed using the sparse coding technique for inpainting of Mairal et al. (2008b).

Our intent here is of course not to evaluate our learning procedure in inpainting tasks, which would

require a thorough comparison with state-the-art techniques on standard data sets. Instead, we just

wish to demonstrate that it can indeed be applied to a realistic, non-trivial image processing task on

a large image. Indeed, to the best of our knowledge, this is the first time that dictionary learning

is used for image restoration on such large-scale data. For comparison, the dictionaries used for

inpainting in Mairal et al. (2008b) are learned (in batch mode) on 200,000 patches only.

49

MAIRAL, BACH, PONCE AND SAPIRO

7. Conclusion

We have introduced in this paper a new stochastic online algorithm for learning dictionaries adapted

to sparse coding tasks, and proven its convergence. Experiments demonstrate that it is significantly

faster than batch alternatives such as Engan et al. (1999), Aharon et al. (2006) and Lee et al. (2007)

on large data sets that may contain millions of training examples, yet it does not require a careful

learning rate tuning like regular stochastic gradient descent methods. Moreover, we have extended

it to other matrix factorization problems such as non negative matrix factorization, and we have pro-

posed a formulation for sparse principal component analysis which can be solved efficiently using

our method. Our approach has already shown to be useful for image restoration tasks such as de-

noising (Mairal et al., 2009c); more experiments are of course needed to better assess its promise in

bioinformatics and signal processing. Beyond this, we plan to use the proposed learning framework

for sparse coding in computationally demanding video restoration tasks (Protter and Elad, 2009),

with dynamic data sets whose size is not fixed, and extending this framework to different loss func-

tions (Mairal et al., 2009b) to address discriminative tasks such as image classification, which are

more sensitive to overfitting than reconstructive ones.

Acknowledgments

This paper was supported in part by ANR under grant MGA ANR-07-BLAN-0311. The work of

Guillermo Sapiro is partially supported by ONR, NGA, NSF, ARO, and DARPA. The authors would

like to like to thank Sylvain Arlot, Léon Bottou, Jean-Philippe Vert, and the members of the Willow

project-team for helpful discussions, and Daniela Witten for providing us with her code to generate

the curves of Figure 6.

Appendix A. Theorems and Useful Lemmas

We provide in this section a few theorems and lemmas from the optimization and probability litera-

ture, which are used in this paper.

Theorem 5 [Corollary of Theorem 4.1 from Bonnans and Shapiro (1998), due to Danskin

(1967)].

Let f : R
p×R

q→R. Suppose that for all x∈R
p the function f (x, .) is differentiable, and that f and

∇ u f (x,u) the derivative of f (x, .) are continuous on R
p×R

q. Let v(u) be the optimal value function

v(u) = minx∈C f (x,u), where C is a compact subset of R
p. Then v(u) is directionally differentiable.

Furthermore, if for u0 ∈R
q, f (.,u0) has a unique minimizer x0 then v(u) is differentiable in u0 and

∇ uv(u0) = ∇ u f (x0,u0).

Theorem 6 [Sufficient condition of convergence for a stochastic process, see Bottou (1998) and

references therein (Métivier, 1983; Fisk, 1965)].

Let (Ω,F ,P) be a measurable probability space, ut , for t ≥ 0, be the realization of a stochastic

process and Ft be the filtration determined by the past information at time t. Let

δt =

{

1 if E[ut+1−ut |Ft] > 0,
0 otherwise.

50

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

If for all t, ut ≥ 0 and ∑∞
t=1 E[δt(ut+1−ut)] < ∞, then ut is a quasi-martingale and converges almost

surely. Moreover,
∞

∑
t=1

|E[ut+1−ut |Ft]|< +∞ a.s.

Lemma 7 [A corollary of Donsker theorem see Van der Vaart, 1998, chap. 19.2, lemma 19.36

and example 19.7].

Let F = { fθ : χ→R,θ∈Θ} be a set of measurable functions indexed by a bounded subset Θ of R
d .

Suppose that there exists a constant K such that

| fθ1
(x)− fθ2

(x)| ≤ K||θ1−θ2||2,

for every θ1 and θ2 in Θ and x in χ. Then, F is P-Donsker (see Van der Vaart, 1998, chap. 19.2).

For any f in F, Let us define Pn f , P f and Gn f as

Pn f =
1

n

n

∑
i=1

f (Xi), P f = EX [f (X)], Gn f =
√

n(Pn f −P f).

Let us also suppose that for all f , P f 2 < δ2 and || f ||∞ < M and that the random elements X1,X2, . . .
are Borel-measurable. Then, we have

EP||Gn||F = O(1),

where ||Gn||F = sup f∈F |Gn f |. For a more general variant of this lemma and additional explana-

tions and examples, see Van der Vaart (1998).

Lemma 8 [A simple lemma on positive converging sums].

Let an, bn be two real sequences such that for all n, an ≥ 0,bn ≥ 0, ∑∞
n=1 an = ∞, ∑∞

n=1 anbn < ∞,

∃K > 0 s.t. |bn+1−bn|< Kan. Then, limn→+∞ bn = 0.

Proof The proof is similar to Bertsekas (1999, prop 1.2.4).

Appendix B. Efficient Projections Algorithms

In this section, we address the problem of efficiently projecting a vector onto two sets of constraints,

which allows us to extend our algorithm to various other formulations.

B.1 A Linear-time Projection on the Elastic-Net Constraint

Let b be a vector of R
m. We consider the problem of projecting this vector onto the elastic-net

constraint set:

min
u∈Rm

1

2
||b−u||22 s.t. ||u||1 +

γ
2
||u||22 ≤ τ. (18)

To solve efficiently the case γ> 0, we propose Algorithm 3, which extends Maculan and de Paula

(1989) and Duchi et al. (2008), and the following lemma which shows that it solves our problem.

Lemma 9 [Projection onto the elastic-net constraint set].

For b in R
m, γ≥ 0 and τ > 0, Algorithm 3 solves Eq. (18).

51

MAIRAL, BACH, PONCE AND SAPIRO

Proof First, if b is a feasible point of (18), then b is a solution. We suppose therefore that it is not

the case—that is,||b||1 + γ
2
||b||22 > τ. Let us define the Lagrangian of (18)

L(u,λ) =
1

2
||b−u||22 +λ

(

||u||1 +
γ
2
||u||22− τ

)

.

For a fixed λ, minimizing the Lagrangian with respect to u admits a closed-form solution u⋆(λ), and

a simple calculation shows that, for all j,

u⋆(λ)[j] =
sign(b[j])(|b[j]|−λ)+

1+λγ
.

Eq. (18) is a convex optimization problem. Since Slater’s conditions are verified and strong duality

holds, it is equivalent to the dual problem

max
λ≥0

L(u⋆(λ),λ).

Since λ = 0 is not a solution, denoting by λ⋆ the solution, the complementary slackness condition

implies that

||u⋆(λ⋆)||1 +
γ
2
||u⋆(λ⋆)||22 = τ. (19)

Using the closed form of u⋆(λ) is possible to show that the function λ→ ||u⋆(λ)||1 + γ
2
||u⋆(λ)||22,

is strictly decreasing with λ and thus Eq. (19) is a necessary and sufficient condition of optimality

for λ. After a short calculation, one can show that this optimality condition is equivalent to

1

(1+λγ)2 ∑
j∈S(λ)

(

|b[j]|+ γ
2
|b[j]|2−λ

(

1+
γλ
2

)

)

= τ,

where S(λ) = { j s.t. |b[j]| ≥ λ}. Suppose that S(λ⋆) is known, then λ⋆ can be computed in closed-

form. To find S(λ⋆), it is then sufficient to find the index k such that S(λ⋆) = S(|b[k]|), which is the

solution of

max
k∈{1,...,m}

|b[k]| s.t.
1

(1+ |b[k]|γ)2 ∑
j∈S(|b[k]|)

(

|b[j]|+ γ
2
|b[j]|2−|b[k]|

(

1+
γ|b[k]|

2

)

)

< τ.

Lines 4 to 14 of Algorithm 3 are a modification of Duchi et al. (2008) to address this problem.

A similar proof as Duchi et al. (2008) shows the convergence to the solution of this optimization

problem in O(m) in the average case, and lines 15 to 18 of Algorithm 3) compute λ⋆ after that S(λ⋆)
has been identified. Note that setting γ to 0 leads exactly to the algorithm of Duchi et al. (2008).

As for the dictionary learning problem, a simple modification to Algorithm 3 allows us to handle

the non-negative case, replacing the scalars |b[j]| by max(b[j],0) in the algorithm.

B.2 A Homotopy Method for Solving the Fused Lasso Signal Approximation

Let b be a vector of R
m. We define, following Friedman et al. (2007), the fused lasso signal approx-

imation problem P (γ1,γ2,γ3):

min
u∈Rm

1

2
||b−u||22 +γ1||u||1 +γ2 FL(u)+

γ3

2
||u||22, (20)

52

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

Algorithm 3 Efficient projection on the elastic-net constraint.

Require: τ ∈ R; γ∈ R; b ∈ R
m;

1: if ||b||1 + γ
2
||b||22 ≤ τ then

2: Return u← b.

3: else

4: U ←{1, . . . ,m}; s← 0; ρ← 0.

5: while U 6= /0 do

6: Pick k ∈U at random.

7: Partition U :

G = { j ∈U s.t. |b[j]| ≥ |b[k]|},
L = { j ∈U s.t. |b[j]|< |b[k]|}.

8: ∆ρ← |G|; ∆s← ∑ j∈G |b[j]|+ γ
2
|b[j]|2.

9: if s+∆s− (ρ+∆ρ)(1+ γ
2
|b[k]|)|b[k]|< τ(1+γ|b[k]|)2 then

10: s← s+∆s;ρ← ∆ρ;U ← L.

11: else

12: U ← G\{k}.
13: end if

14: end while

15: a← γ2τ + γ
2
ρ,

16: b← 2γτ+ρ,

17: c← τ− s,

18: λ← −b+
√

b2−4ac
2a

19:

∀ j = 1, . . . ,n,u[j]← sign(b[j])(|b[j]|−λ)+

1+λγ
20: Return u.

21: end if

the only difference with Friedman et al. (2007) being the addition of the last quadratic term. The

method we propose to this problem is a homotopy, which solves P (τγ1,τγ2,τγ3) for all possible

values of τ. In particular, for all ε, it provides the solution of the constrained problem

min
u∈Rm

1

2
||b−u||22 s.t. γ1||u||1 +γ2 FL(u)+

γ3

2
||u||22 ≤ ε. (21)

The algorithm relies on the following lemma

Lemma 10 Let u⋆(γ1,γ2,γ3) be the solution of Eq. (20), for specific values of γ1,γ2,γ3. Then

• u⋆(γ1,γ2,γ3) = 1
1+γ3

u⋆(γ1,γ2,0).

• For all i, u⋆(γ1,γ2,0)[i] = sign(u⋆(0,γ2,0)[i])max(|u⋆(0,γ2,0)[i]|−λ1,0)—that is, u⋆(γ1,γ2,0)
can be obtained by soft thresholding of u⋆(0,γ2,0).

53

MAIRAL, BACH, PONCE AND SAPIRO

The first point can be shown by short calculation. The second one is proven in Friedman et al.

(2007) by considering subgradient optimality conditions. This lemma shows that if one knows the

solution of P (0,γ2,0), then P (γ1,γ2,γ3) can be obtained in linear time.

It is therefore natural to consider the simplified problem

min
u∈Rm

1

2
||b−u||22 +γ2 FL(u). (22)

With the change of variable v[1] = u[1] and v[i] = u[i]−u[i−1] for i > 1, this problem can be recast

as a weighted Lasso

min
v∈Rm

1

2
||b−Dv||22 +

m

∑
i=1

wi|v[i]|, (23)

where w1 = 0 and wi = γ2 for i > 1, and D[i, j] = 1 if i ≥ j and 0 otherwise. We propose to use

LARS (Efron et al., 2004) and exploit the specific structure of the matrix D to make this approach

efficient, by noticing that:

• For a vector w in R
m, computing e = Dw requires O(m) operations instead of O(m2), by using

the recursive formula e[1] = w[1], e[i+1] = w[i]+ e[i].

• For a vector w in R
n, computing e = DT w requires O(m) operations instead of O(m2), by

using the recursive formula e[n] = w[n], e[i−1] = w[i−1]+ e[i].

• Let Γ = {a1, . . . ,ap} be an active set and suppose a1 < .. . < ap. Then (DT
Γ DΓ)−1 admits the

closed form value

(DT
Γ DΓ)−1 =

c1 −c1 0 . . . 0 0

−c1 c1 + c2 −c2 . . . 0 0

0 −c2 c2 + c3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . cp−2 + cp−1 −cp−1

0 0 0 . . . −cp−1 cp−1 + cp

,

where cp = 1
n+1−ap

and ci = 1
ai+1−ai

for i < p.

This allows the implementation of this homotopy method without using matrix inversion or Cholesky

factorization, solving Eq. (23) in O(ms) operations, where s is the number of non-zero values of the

optimal solution v.11

Adapting this method for solving Eq. (21) requires following the regularization path of the

problems P (0,τγ2,0) for all values of τ, which provides as well the regularization path of the prob-

lem P (τλ1,τλ2,τλ3) and stops whenever the constraint becomes unsatisfied. This procedure still

requires O(ms) operations.

Note that in the case γ1 = 0 and γ3 = 0, when only the fused-lasso term is present in Eq (20),

the same approach has been proposed in a previous work by Harchaoui and Lévy-Leduc (2008),

and Harchaoui (2008) to solve Eq. (22), with the same tricks for improving the efficiency of the

procedure.

11. To be more precise, s is the number of kinks of the regularization path. In practice, s is roughly the same as the

number of non-zero values of the optimal solution v.

54

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

References

M. Aharon and M. Elad. Sparse and redundant modeling of image content using an image-signature-

dictionary. SIAM Journal on Imaging Sciences, 1(3):228–247, July 2008.

M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An algorithm for designing of overcom-

plete dictionaries for sparse representations. IEEE Transactions on Signal Processing, 54(11):

4311–4322, November 2006.

F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning

Research, 9:1179–1224, 2008.

F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical report, 2008.

Preprint arXiv:0812.1869.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 1999.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals

of statistics, 37(4):1705–1732, 2009.

J. F. Bonnans and A. Shapiro. Optimization problems with perturbations: A guided tour. SIAM

Review, 40(2):202–227, 1998.

J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. Springer, 2000.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and Exam-

ples. Springer, 2006.

L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online Learning

and Neural Networks. 1998.

L. Bottou and O. Bousquet. The trade-offs of large scale learning. In J.C. Platt, D. Koller, Y. Singer,

and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, pages

161–168. MIT Press, 2008.

D. M. Bradley and J. A. Bagnell. Differentiable sparse coding. In D. Koller, D. Schuurmans, Y. Ben-

gio, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21,

pages 113–120. 2009.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM

Journal on Scientific Computing, 20:33–61, 1999.

K. Chin, S. DeVries, J. Fridlyand, P.T. Spellman, R. Roydasgupta, W. L. Kuo, A. Lapuk, R. M.

Neve, Z. Qian, T. Ryder, et al. Genomic and transcriptional aberrations linked to breast cancer

pathophysiologies. Cancer Cell, 10(6):529–541, 2006.

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado. Sparse solutions to linear inverse prob-

lems with multiple measurement vectors. IEEE Transactions on Signal Processing, 53(7):2477–

2488, 2005.

55

MAIRAL, BACH, PONCE AND SAPIRO

J. M. Danskin. The theory of max-min, and its application to weapons allocation problems.

Ökonometrie und Unternehmensforschung, 1967.

A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse

PCA using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component

analysis. Journal of Machine Learning Research, 9:1269–1294, 2008.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the ℓ1-ball for

learning in high dimensions. In Proceedings of the International Conference on Machine Learn-

ing (ICML), 2008.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32

(2):407–499, 2004.

M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned

dictionaries. IEEE Transactions on Image Processing, 54(12):3736–3745, December 2006.

K. Engan, S. O. Aase, and J. H. Husoy. Frame based signal compression using method of opti-

mal directions (MOD). In Proceedings of the 1999 IEEE International Symposium on Circuits

Systems, volume 4, 1999.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual

Object Classes Challenge 2006 (VOC2006) Results, 2006.

C. Févotte, N. Bertin, and J. L. Durrieu. Nonnegative matrix factorization with the itakura-saito

divergence: With application to music analysis. Neural Computation, 21(3):793–830, 2009.

D. L. Fisk. Quasi-martingales. Transactions of the American Mathematical Society, 120(3):359–

388, 1965.

J. Friedman, T. Hastie, H. Hölfling, and R. Tibshirani. Pathwise coordinate optimization. Annals of

Applied Statistics, 1(2):302–332, 2007.

W. J. Fu. Penalized regressions: The bridge versus the Lasso. Journal of Computational and

Graphical Statistics, 7:397–416, 1998.

J. J. Fuchs. Recovery of exact sparse representations in the presence of bounded noise. IEEE

Transactions on Information Theory, 51(10):3601–3608, 2005.

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone

models for face recognition under variable lighting and pose. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(6):643–660, 2001.

G. H. Golub and C. F. Van Loan. Matrix computations. John Hopkins University Press, 1996.

R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant sparse coding for audio classification.

In Proceedings of the Twenty-third Conference on Uncertainty in Artificial Intelligence (UAI),

2007.

56

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

Z. Harchaoui. Méthodes à Noyaux pour la Détection. PhD thesis, Télécom ParisTech, 2008.

Z. Harchaoui and C. Lévy-Leduc. Catching change-points with Lasso. In J.C. Platt, D. Koller,

Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, vol-

ume 20, pages 161–168. MIT Press, 2008.

H. Hotelling. Relations between two sets of variates. Biometrika, 28:321–377, 1936.

P. O. Hoyer. Non-negative sparse coding. In Proc. IEEE Workshop on Neural Networks for Signal

Processing, 2002.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine

Learning Research, 5:1457–1469, 2004.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlap and graph Lasso. In Proceedings

of the International Conference on Machine Learning (ICML), 2009.

R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms.

Technical report, 2009a. Preprint arXiv:0904.3523v1.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical

report, 2009b. Preprint arXiv:0909.1440v1.

I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal component technique based on

the Lasso. Journal of Computational and Graphical Statistics, 12(3):531–547, 2003.

K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in sparse coding algorithms with

applications to object recognition. Technical report, Computational and Biological Learning Lab,

Courant Institute, NYU, 2008.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE

Computer, 42(8):30–37, 2009.

H. J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications.

Springer, 2003.

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural

Information Processing Systems, pages 556–562, 2001.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In B. Schölkopf,

J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems, volume 19,

pages 801–808. MIT Press, 2007.

K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable

lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):684–698, 2005.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Computation,

12(2):337–365, 2000.

C.J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19

(10):2756–2779, 2007.

57

MAIRAL, BACH, PONCE AND SAPIRO

N. Maculan and J. R. G. Galdino de Paula. A linear-time median-finding algorithm for projecting a

vector on the simplex of Rn. Operations Research Letters, 8(4):219–222, 1989.

J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and

Econometrics, revised edition. John Wiley, Chichester, 1999.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for

local image analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2008a.

J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Trans-

actions on Image Processing, 17(1):53–69, January 2008b.

J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image and video

restoration. SIAM Multiscale Modelling and Simulation, 7(1):214–241, April 2008c.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In

Proceedings of the International Conference on Machine Learning (ICML), 2009a.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. In

D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information

Processing Systems, volume 21, pages 1033–1040. MIT Press, 2009b.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image

restoration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),

2009c.

S. Mallat. A Wavelet Tour of Signal Processing, Second Edition. Academic Press, New York,

September 1999.

M. Métivier. Semi-martingales. Walter de Gruyter, 1983.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and

other variants. Learning in Graphical Models, 89:355–368, 1998.

Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, Cen-

ter for Operations Research and Econometrics (CORE), Catholic University of Louvain, 2007.

G. Obozinski, M. J. Wainwright, and M. I. Jordan. Union support recovery in high-dimensional

multivariate regression. UC Berkeley Technical Report 761, August 2008.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for

multiple classification problems. Statistics and Computing, 2009. Published online.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed

by V1? Vision Research, 37:3311–3325, 1997.

M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable selection in least squares

problems. IMA Journal of Numerical Analysis, 20(3):389–403, 2000.

58

ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

G. Peyré. Sparse modeling of textures. Journal of Mathematical Imaging and Vision, 34(1):17–31,

May 2009.

M. Protter and M. Elad. Image sequence denoising via sparse and redundant representations. IEEE

Transactions on Image Processing, 18(1):27–36, 2009.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from

unlabeled data. In Proceedings of the International Conference on Machine Learning (ICML),

2007.

V. Roth and B. Fischer. The Group-Lasso for generalized linear models: uniqueness of solutions

and efficient algorithms. In Proceedings of the International Conference on Machine Learning

(ICML), 2008.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In

22nd Annual Conference on Learning Theory (COLT), 2009.

K.-K. Sung. Learning and Example Selection for Object and Pattern Recognition. PhD thesis, MIT,

Artificial Intelligence Laboratory and Center for Biological and Computational Learning, 1996.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical

Society. Series B, 58(1):267–288, 1996.

R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for CGH data using the fused

Lasso. Biostatistics, 9(1):18–29, 2008.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused

lasso. Journal of the Royal Statistical Society Series B, 67(1):91–108, 2005.

J. A. Tropp. Algorithms for simultaneous sparse approximation. part ii: Convex relaxation. Signal

Processing, Special Issue ”Sparse Approximations in Signal and Image Processing”, 86:589–

602, April 2006.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse approximation.

part i: Greedy pursuit. Signal Processing, Special Issue ”Sparse Approximations in Signal and

Image Processing”, 86:572–588, April 2006.

B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection. Technometrics,

47(3):349–363, 2005.

A. W. Van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications

to sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515–534,

2009.

T. T. Wu and K. Lange. Coordinate descent algorithms for Lasso penalized regression. Annals of

Applied Statistics, 2(1):224–244, 2008.

59

MAIRAL, BACH, PONCE AND SAPIRO

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for

image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2009.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal

of the Royal Statistical Society Series B, 68:49–67, 2006.

R. Zass and A. Shashua. Nonnegative sparse PCA. In B. Schölkopf, J. Platt, and T. Hoffman,

editors, Advances in Neural Information Processing Systems, volume 19, pages 1561–1568. MIT

Press, 2007.

H. H. Zhang, Y. Liu, Y. Wu, and J. Zhu. Selection for the multicategory svm via adaptive sup-norm

regularization. Electronic Journal of Statistics, 2:149–167, 2008.

M. Zibulevsky and B. A. Pearlmutter. Blind source separation by sparse decomposition in a signal

dictionary. Neural Computation, 13(4):863–882, 2001.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society Series B, 67(2):301–320, 2005.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computa-

tional and Graphical Statistics, 15(2):265–286, 2006.

60

