
Online Learning of Inverse Dynamics via Gaussian Process Regression*

Joseph Sun de la Cruz1, William Owen2 and Dana Kulić2

Abstract— Model-based control strategies for robot manip-
ulators can present numerous performance advantages when
an accurate model of the system dynamics is available. In
practice, obtaining such a model is a challenging task which
involves modeling such physical processes as friction, which
may not be well understood and difficult to model. This
paper proposes an approach for online learning of the inverse
dynamics model using Gaussian Process Regression. The Sparse
Online Gaussian Process (SOGP) algorithm is modified to allow
for incremental updates of the model and hyperparameters. The
influence of initialization on the performance of the learning
algorithms, based on any a-priori knowledge available, is also
investigated. The proposed approach is compared to existing
learning and fixed control algorithms and shown to be capable
of fast initialization and learning rate.

I. INTRODUCTION

The use of robotics worldwide is most prevalent in the

manufacturing industry where the environment is highly

controlled and relatively constant. Simple decentralized con-

trol strategies such as independent joint PD control [1] are

commonly used for basic manipulation tasks such as pick-

and-place motions. Unlike decentralized controllers, control

strategies that are based on the dynamic model of the manip-

ulator, known as model-based controllers, present numerous

advantages such as increased performance during high-speed

movements, reduced energy consumption, improved tracking

accuracy and the possibility of compliance [2]. However,

model based controllers require an accurate model of the

system dynamics to achieve good performance. Deriving an

accurate model analytically is a difficult task, especially due

to physical phenomena which are not well understood or

difficult to model, such as friction. Even with the use of

dynamic parameter estimation [3], unmodeled dynamics can

still reduce the performance of model-based control systems.

While adaptive controllers [4], [5], [1] are able to deal

with gradual changes in parameter values that may occur

from daily wear and tear, they are still unable to account

for modeling errors or changes in the model structure. As

an alternative to modeling the complex behaviour of these

systems, machine learning algorithms for supervised learning

can be applied to learn the dynamics. Recent developments in

this area of learning control have already yielded promising

results that enable robots to learn their own inverse dynamics

function with no a-priori knowledge of the system [6],[7].

Locally Weighted Projection Regression (LWPR) is fre-

quently applied [6],[7],[8] to learn the inverse dynamics of
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a manipulator, due to its use of simple local, linear models

which allow online and incremental learning. However, due

to its highly localized learning, the system must be first be

trained in the expected regions of operation, or appropriately

initialized through, for example, motor babbling [8], [6], [9].

Other regression techniques have also been investigated for

learning control. Gaussian Process Regression (GPR) has

been applied [10] to learn the inverse dynamics function

of a manipulator, but due to its heavy computational re-

quirements, GPR has been limited mainly to offline learning.

More recent efforts [11],[12] in making GPR computation-

ally tractable for real-time control have resulted in several

approximations which operate on a select subset, or sparse

representation of the entire training data set.

A comparison between learning approaches such as LWPR

and classical control techniques [13] shows that both the

adaptive controller and LWPR controller have comparable

performance in the presence of parametric uncertainty. How-

ever, the learning controller is unable to generalize well

outside of the regions in which it has been trained. Hence,

achieving good performance requires significant amounts of

training in the anticipated region of operation. On the other

hand, the adaptive controller shows poor performance when

the structure of the dynamics is not fully known, and when

the trajectories executed are not persistently exciting.

This paper develops an online, incremental learning algo-

rithm based on Gaussian Process learning, which does not

require any knowledge of the structure of the dynamics. A

modified version of the the Sparse Online Gaussian Processes

(SOGP) algorithm is proposed to allow for online, incremen-

tal updates of both the training set and the hyperparameters.

We demonstrate the advantage of incorporating any prior

knowledge into the learning model by updating the means

of the GP model. It is shown that the proposed approach

allows the system to operate well even without any initial

training data, and further performance improvement can be

achieved with additional online training. Furthermore, even

partial knowledge of the system dynamics, for example, only

the gravity loading vector, can be used effectively to initialize

the learning.

II. INVERSE DYNAMICS LEARNING FOR ROBOT

MANIPULATORS

The dynamics of a manipulator characterizes the relation-

ship between its motion (position, velocity and acceleration)

and the joint torques that cause these motions. The closed-

form solution for this relationship is

M(q)q̈+C(q, q̇) +G(q) = τ +Vf (1)



where q is the n × 1 joint position vector, M(q) is the

n × n inertia matrix, C(q, q̇) is the n × 1 centripetal and

Coriolis torque vector, G(q) is the gravity loading vector,

τ is the torque vector, and Vf describes additional torque

components due to forces not included in the rigid body

model, such as friction and contact forces.

Model-based controllers are a broad class of controllers

which apply the joint space dynamic equation (1) to cancel

the nonlinear and coupling effects of the manipulator.

One example is the inverse dynamics approach [4],[10],

also known as computed torque control. In this approach,

equation (1) is applied to compensate for nonlinear and

coupling effects.The control signal, u is computed as:

u = M̂(q)q̈r + Ĉ(q, q̇) + Ĝ(q) (2)

While model-based approaches can provide superior per-

formance to independent joint control [2], this is contingent

upon the assumption that the dynamic model (1) closely

matches the actual system, both in the values of the pa-

rameters and the structure of the dynamics. In practice,

obtaining such a model is a challenging task which involves

modeling physical processes that are not well understood or

difficult to model, such as friction [14]. Changes to operating

conditions can also cause the structure of the system model

to change, causing imperfect cancelation of the nonlinearities

and coupling in (1).

One solution is the use of dynamic parameter identification

[15], [3]. Because the identification procedure is carried out

offline, the trajectories can be optimized specifically to excite

the dynamics of the system in order to yield more accurate

results. However, due to its offline nature, this procedure is

not well-suited to deal with systems in which the parameters

may vary over time. Adaptive control [4], [16] deals with

model uncertainty by attempting to identify a more accurate

model of the system through online parameter update laws.

While adaptive control can provide an online estimate of the

dynamic parameters, is still reliant upon adequate knowledge

of the structure of the dynamic model and is thus particularly

susceptible to the effects of unmodeled dynamics [13].

Newer approaches to manipulator control involve data-

driven learning of the inverse dynamics relationship of a

manipulator, thus eliminating the need for a-priori knowledge

of the system model. By analyzing the input torques and

resulting motion of the manipulator, an approximation of

the dynamic equation of the manipulator can be obtained.

Unlike the adaptive control strategies, many of these ap-

proaches do not assume an underlying structure but rather

attempt to infer a model which describes the observed

data as closely as possible. Thus, it is possible to encode

nonlinearities whose structure may not be well-known. They

are particularly useful for modeling processes which are

not easily modeled by Newtonian physics, such as non-

linear friction. Related work in supervised learning can be

broadly categorized into two types [8] - global methods such

Gaussian Process Regression (GPR) [17] and Support Vector

Regression (SVR) [2], and local methods such as Locally

Weighted Projection Regression (LWPR) [7]. Local learning

approaches fit nonlinear functions with spatially localized

models, usually in the original input space of the training

data [8] [7]. Typically, simple models (linear or low-order

polynomial) are used for the local models, and the learning

algorithm automatically adjusts the complexity (i.e., number

of local models and their locality) to accurately account for

the nonlinearities and distributions of the target function.

Global learning methods fit nonlinear functions globally,

typically by transforming the input space with predefined or

parameterized basis functions and subsequent linear combi-

nations of the transformed inputs. Gaussian Process Regres-

sion (GPR) [17] is a global supervised learning technique

which employs Gaussian process (GP) models to formulate a

Bayesian framework for regression. A GP is characterized by

its mean and covariance functions which provide the prior for

Bayesian inference. After updating the GP prior with training

data to yield the posterior GP, the parameters of the mean

and covariance function, known as the hyperparameters, are

updated according to the training data. This is typically done

by selecting hyperparameters that maximize the probability

of observing the training data. The GPR framework has

been applied in several previous works [18],[9],[10],[17] to

learn the inverse dynamics function of a robot manipulator.

However, due to the computational complexity of GPR

which scales cubically with the number of training points

(O(N3)), the learning is performed entirely offline. Several

approaches to alleviate this problem have been proposed

[19] [11],[17],[12]. In [19], online learning is achieved by

combining GPR with the approach of local learning, such

that each local GP sees only a fraction of the total training

data and hence remains computationally tractable. Other

researchers rely on sparse representations of the full GP

which typically involves representing the full training data

set of size N with a subset of data consisting of Ms elements,

where Ms << N [11],[17],[12]. A common method of

choosing this subset of the data is based on an information

gain criterion [12].

A recent example of an approximation of the full GPR

procedure is the Sparse Pseudo-input Gaussian Processes

(SPGP) [12]. SPGP introduces a method of simultaneously

finding an active set of point locations for ‘pseudo-inputs’,

denoted by X̄ while learning the hyperparameters of the

Gaussian process in a smooth joint optimization scheme.

These pseudo-inputs can be viewed as a parametrization of

an approximation of the GP covariance function [12]. Unlike

other sparse approximations, the pseudo-inputs are not a

fixed subset of the training data but are treated as parameters

to be optimized to yield a better fit to the data.

Similar to SPGP, Sparse Online Gaussian Processes

(SOGP) [11],[20] is another sparse approximation of the

full GPR framework which reduces the computational load

of GPR by keeping track of a sparse set of inputs named

Basis Vectors (BV). SOGP also incorporates a method of

incrementally processing data by treating the posterior mean

f̄N and covariance functions K(X,X) as linear combinations

of the prior covariance functions K0(x,x
′).



The initial performance of on-line learning algorithms

can be significantly improved by appropriate initialization.

Recent work in learning control aims to incorporate the RBD

model (1), to provide a global characterization of the dynam-

ics and improve performance in terms of generalization and

prediction accuracy [21].

III. THE SPARSE ONLINE GP ALGORITHM

The goal of GPR is to find the function f which maps the

inputs X to their target output values y. A single observed

output can be described by

y ∼ N (0,K(X,X) + σ2
nIn) (3)

where σ2
n is the noise variance, In is the n × n identity

matrix, and K(X,X) is the covariance matrix which is

composed of the covariances, k(x,x′), evaluated at all pairs

of the training points. When applying the GPR process to

learning the inverse dynamics of a robot manipulator, X are

set to the joint angles, velocities and accelerations q, q̇, q̈,

and y is the joint torques τ . A widely used covariance

function is given by the squared exponential (SE) form as

k(x,x′) = θ1 exp(−θ2‖x− x′‖2) (4)

where θ1 and θ2 are the two hyperparameters of the SE

covariance term which control the amplitude and character-

istic length-scale respectively. The hyperparameters of the

Gaussian process can be learned for a particular data set by

maximizing the log marginal likelihood using optimization

procedures such as gradient-based methods.

To make a prediction f̄∗(x∗) given a new input vector x∗,
the joint distribution of the output values and the predicted

function is given by[
y

f̄∗(x∗)

]
∼ N (0,

([
K(X,X) + σ2

nIn k(X,x∗)
k(x∗,X) k(x∗,x∗)

])

(5)

A training data set of size N requires the inversion of

the N ×N matrix, resulting in a computational complexity

of O(N3) for training with the standard GPR. Once this

inversion is done, prediction of the mean and variance require

O(N) and O(N2) respectively.

Sparse Online Gaussian Processes (SOGP) [11],[20] is

a sparse approximation of the full GPR framework which

reduces the computational load of GPR by keeping track

of a sparse set of inputs named Basis Vectors (BV). SOGP

also incorporates a method of incrementally processing data

by treating the posterior mean f̄N and covariance functions

K(X,X) as linear combinations of the prior covariance

functions K0(x,x
′):

f̄N = f̄0 +
N∑
i=1

K0(x,xi)αN (i) = f̄0 +αT
Nkx (6)

K(X,X) = K0(x,x
′) + kT

xC
GP
N kx′ (7)

where αN = [αN (1), ..., αN (t)]T , CGP
N = {CN (ij)}i,j=1

are the mean and covariance parameters, and kx =

[K0(x1,x), ..,K0(xN ,x)]T is the vector of kernel functions

centered on each combination of training points. The param-

eters α and CGP can be iteratively updated [11] through the

following:

αN+1 = TN+1(αN ) + qN+1(sN+1) (8)

CGP
N+1 = UN+1(C

GP
N ) + rN+1(sN+1s

T
N+1)

sN+1 = TN+1(C
GP
N kN+1) + eN+1

where eN+1 = [0, .., 1]T is a unit vector of length N + 1,

and the vector sN+1 is introduced for clarity of the equations.

Operators TN+1 and UN+1 extend an N -dimensional vector

and N × N dimensional matrix to an N + 1 vector and

(N +1)× (N +1) matrix respectively by appending a zero

to the end of the vector, and a zero row and column to the

matrix. The scalars qN+1 and rN+1 are computed as follows:

qN+1 = δ
δf̄N (xN+1)

ln〈P (yN+1|fN (xN+1)〉N
rN+1 = δ2

δf̄2
N (xN+1)

ln〈P (yN+1|fN (xN+1)〉N
(9)

where 〈〉N denotes the average with respect to the GP at

the N th iteration. As seen in Equation 8, the dimensions

of α and CGP increase with each data point added, which

is problematic for computational tractability when dealing

with large data sets. However, if the new input xN+1 can be

represented by a linear combination of covariance functions

constructed about the existing N data points, the dimensions

of α and CGP do not need to be increased. This is expressed

in the following:

K(x,xN+1) =

N∑
i=1

êN+1(i)K0(x,xi) (10)

If the vector êN+1 can be found, then the updated GP could

be represented using only the first N inputs. However, for

most covariance functions and inputs xN+1, Equation 10

cannot be satisfied for all x [11]. Instead, an approximation

of the solution can be achieved by minimizing the error

measure:∥∥∥∥∥K0(x,xN+1)−
N∑
i=1

êN+1(i)K0(x,xi)

∥∥∥∥∥
2

(11)

where ‖·‖2 is a suitably defined norm, which is selected in

[11] as a kernel Hilbert space norm. The solution of the

minimization problem in Equation 11 is given by:

êN+1 = K−1
N kN+1 (12)

where KN = {K0(xi,xj)}i,j=1. Applying this solution to

Equation 10 results in:

K̂0(x,xN+1) =
N∑
i=1

êN+1(i)K0(x,xi) (13)

where K̂0(x,xN+1) can be seen as the orthogonal projec-

tion of K0(x,xN+1) on the linear span of the functions

K0(x,xi).

To determine whether or not the current input xN will be



Algorithm 1 Sparse Online Gaussian Process Regression

1: For a new data point, (yN+1,xN+1)
2: Compute qN+1, rN+1 (9), êN+1 (12), and γN+1 (14)

3: if γN+1 < εtol then
4: Compute α and CGP without extending their

size:

5: αN+1 = (αN ) + qN+1(sN+1)
6: CGP

N+1 = CGP
N + rN+1sN+1(s

T
N+1)

7: sN+1 = CGP
N kN+1 + êN+1 where êN+1 is

computed according to (12)

8: else
9: Compute α and CGP according to (8)

10: Add current input xB+1 to the BV set

11: end if
12: if Size of BV set > MBV then
13: Compute the novelty, γ, of each BV and re-

move the lowest scoring one

14: end if

included in the BV set, the residual error vector from the

projection in (13) is calculated:

γN+1 = K0(xN+1,xN+1)− kT
N+1K

−1
N kN+1 (14)

where γN+1 can be treated as a measure of the ‘novelty’ of

the current input. An input resulting in a high value of γ
indicates that the new data cannot be described well through

linear combinations of the existing data points, and hence

should be added to the BV set. The overall SOGP algorithm

is described in Algorithm 1.

IV. ADAPTATION FOR INCREMENTAL LEARNING

AND INITIALIZATION

The RBD equation (1) provides a globally valid model

representing the dynamics of a robot manipulator. Hence,

providing the RBD equation as prior knowledge to the learn-

ing controllers would greatly improve their generalization

performance. However, due to the complexity of robotic

systems, obtaining a complete and accurate RBD model can

be difficult and tedious. Therefore, even if partial knowledge

of the RBD model is available, this information should be

incorporated into the learning algorithms to potentially boost

performance. The simplest term of the RBD model in (1) is

the gravity loading vector, G(q), as it depends upon the least

number of inertial parameters of the system compared to the

inertia and centripetal/Coriolis terms of the model [1].

With Gaussian process regression techniques, including

the SPGP and SOGP algorithms described above, typically

a zero mean function for the Gaussian process is assumed,

and hence predictions in areas of the workspace where few

training points have been observed are inaccurate. A simple

method of incorporating a-priori knowledge is to set the

mean function in Equation (3) equal to the available model

of the system, thus biasing the system towards the specified

a-priori knowledge [21].

While the mean function is biased towards the prior knowl-

edge, the covariance function k (3) still requires adaptation

to the data that is observed. The SOGP algorithm proposed

by Csato and Opper [11] does not provide a mechanism for

incrementally updating the hyperparameters, which can lead

to poor performance compared to other GP methods [2].

The hyperparameters of the covariance function should be

optimized to the incoming training data. Nonlinear conjugate

gradient descent (NCG) [22] is used to minimize the negative

log marginal likelihood with respect to the hyperparameters,

Θ. As an iterative gradient-based optimization technique,

NCG requires the specification of an initial guess of Θ,

which is determined by performing the optimization on a

batch of training data collected from the system during motor

babbling [13].

With standard gradient descent optimization, the location,

χ, of the extremum of a function, f , is found by iteratively

taking steps in the direction of the gradient of the function

at the current point. That is:

χi+1 = χi + aidi (15)

where χi is the current solution (ith iteration) to the opti-

mization problem, ai represents the length of the step to be

taken, and di is the step direction. This iterative procedure

often results in steps being taken in the same direction

as in earlier steps resulting in a slower convergence. By

employing NCG, this repetition is avoided by ensuring that

all search directions are conjugate, or A-orthogonal, and

that the necessary step lengths are taken such that only one

step must be taken in each search direction to arrive at

the extremum for that direction. Thus, the convergence of

NCG is better than or at least the same as standard gradient

descent.

In order to find the set of conjugate search directions, d,

the Polak-Ribiére formula is used to generate coefficients ξ:

ξi+1 =
rTi+1(ri+1 − ri)

rTi ri
(16)

where i represents the current iteration, and the residual r is

set to the negation of the gradient at the current location χi,

i.e. r = −f ′(χi). Thus, the conjugate search directions, d,

can be determined:

di+1 = ri+1 + ξi+1di (17)

With the selection of the step direction, di, the problem

is reduced to a one-dimensional optimization case which

involves finding the best step length, a, to take in direction

di. This is done by a line search procedure which finds the

ai that minimizes f(χi + aidi). The interpolation method

of line searching achieves this by firstly approximating the

function f(χ+ ad) as a polynomial through a Taylor series

expansion. Here we drop the iteration index for simplicity:

f(χ+ ad) ≈f(χ) + a[
d

da
f(χ+ ad)]a=0

+
a2

2
[
d2

da2
f(χ+ ad)]a=0

=f(χ) + a[f ′(χ)]Td+
a2

2
dT f ′′(χ)d

(18)



Algorithm 2 Nonlinear Conjugate Gradient Optimization

1: given: initial guess χ, maximum allowable CG and line

search iterations, εCG, εLS

2: initialize: r← −f ′(χ), d← r, i← 0
3: while i < imax and ‖ri‖ ≤ εCG‖r0‖ do
4: initialize: j ← 0
5: ζprev ← [f ′(χ+ σd)]Td
6: do
7: ζ ← [f ′(χ)]Td
8: a← −σ ζ

ζprev−ζ

9: χ← χ+ adi

10: ζprev ← ζ
11: j ← j + 1
12: while j < jmax and ‖ad‖ ≤ εLS

13: rprev ← r
14: r← −f ′(χ)
15: ξ ← rT (r−rprev)

rTprevrprev

16: d← r+ ξd
17: i← i+ 1
18: end while

The secant method is then used to approximate the second

derivative, f ′′, as a finite difference equation of the first

derivative f ′ evaluated at two points, a = 0 and a = σ:

d2

da2
≈ 1

σ
[f ′(χ+ σd)]Td− [f ′(χ)]Td (19)

where σ is a non-zero number such that the closer σ is

to 0, the better the approximation of the second derivative.

Substituting this expression into (18) and differentiating:

d

da
f(χ+ad) ≈ [f ′(χ)]Td+

a

σ

{
[f ′(χ+ σd)]Td− [f ′(χ)]Td

}
(20)

Minimization of f(χ+ad) can then be achieved by equating

its derivative to zero and rearranging for a:

a = −σ ζ

ζprev − ζ
(21)

where ζprev = [f ′(χ + σd)]Td and ζ = [f ′(χ)]Td. This

process is then repeated, with the current χ equated to the

value of χ + ad calculated in the previous iteration. The

stop condition for the line search is based on the gradient

approaching orthogonality with the current search direction,

i.e. f ′ Td ≈ 0. High tolerances for this term have been found

to be too computationally inefficient for the relatively small

gain in accuracy [22] that is achieved.

In order to test the effects of limiting the maximum

number of line search iterations on the accuracy of the SOGP

algorithm, the system was trained on data sets obtained from

[13] and the MSE of prediction was monitored. In the first

case, illustrated at the top of Figure 1, up to 50 line search

iterations were allowed (i.e. jmax = 50), and below in

the second graph, 25 iterations were allowed. Despite this

difference, the final MSE of both cases is nearly identical.

The only noticeable discrepancy is the initially slower rate

of convergence of the joints in the case of early line search

termination. Joint 1 also exhibits non-monotonic convergence

initially. However, due to the lower number of allowable

line search iterations, the computational burden is reduced

and thus the frequency at which the overall hyperparameter

updates are performed can be increased. Hence, for the

simulations, less accurate, but more frequent line searches

were used by terminating the search after 25 iterations.
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Fig. 1. Prediction MSE

Despite its improved convergence over standard gradient

descent, each call to NCG optimization requires a significant

number of time steps of the control loop to compute. Thus,

the code is broken down into a sequence of smaller, ‘atomic’

code segments, so that the computation of NCG occurs

over multiple controller time steps. This was done so that

each code segment would have at most one call to evaluate

the function derivative f ′. Based on Algorithm 2, the code

segments are separated into lines 1 : 2, 3 : 5, 6 : 12 and

13 : 18, with each code segment being executed over a

single time step of the controller. The optimized location

of the hyperparameters, represented by χ, is not used in the

control loop until the entire algorithm has been executed.

V. SIMULATIONS

The proposed approach is evaluated in simulation on a 6-

DOF Puma 560 robot using the Robotics Toolbox (RTB)

[23] and compared to prior-knowledge initialized LWPR

[24] and standard computed torque control. The open-source

LWPR [8], SPGP [12] and SOGP [11] code were modified

to incorporate a-priori knowledge and incremental updating

as described above. In order to simulate the nonlinearities

present in a physical robot, the effects of Coloumb and

viscous friction were simulated with the friction constants

obtained from the defaults for the Puma 560 in the RTB.

Furthermore, to simulate the effects of imprecise knowledge

of the inertial parameters of the robot, a 10% percent error in

the inertial parameters of the a-priori knowledge was intro-

duced. For both SPGP and SOGP, the maximum size of the

sparse subset of datapoints, M , was set to 35. This number

was chosen as the smallest possible value before a noticeable

degradation in prediction performance was introduced.

A-priori knowledge from the full RBD model in (1), or

partial knowledge from the gravity loading vector are used



to initialize each algorithm.

Tracking performance of the controllers is evaluated on

a ‘star-like’ asterisk pattern [25]. The asterisk trajectory,

shown in Figure 2, is challenging due to the high components

of velocity and acceleration, and thus requires model-based

control for good tracking accuracy. Inverse kinematics is used

to convert this trajectory from task to joint space.
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Fig. 2. ‘Asterisk’ trajectory
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Fig. 3. Initial Tracking Performance for Joint 2 with full RBD Prior and
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1) Full Knowledge of RBD: Figure 3 depicts the joint

space tracking performance of the computed torque (CT)

controller using a model with 10% error in the inertial and

friction parameters of the system. As seen from the figure,

the parameter error causes poor tracking results. The same

RBD model is used to initialize both GP and LWPR models,

and the resulting controllers are trained online while tracking

the asterisk trajectory. Figure 3 and Table I show the joint

space tracking performance after one cycle of the trajectory.

The performance of the GP controllers is very similar to that

of the computed torque controller, as they are initialized with

the same RBD equation. On the other hand, as the LWPR

model is initialized with a set of linear approximations of

RBD equation, the initial performance of LWPR is not as

good as the GP or the CT methods.

Figure 4 and Table I show the results after 90 seconds of

additional training. Due to the high computational efficiency

of LWPR, incremental updates are made at a rate of 400

Hz, while the more computationally taxing GP algorithms

limit updates to a rate of 100 Hz. Hence, as time progresses,

LWPR is able to accumulate more training data than the GP
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Fig. 4. Final Tracking Performance for Joints 2 with full RBD Prior

controllers, eventually performing nearly as well as SPGP

and SOGP. Initially, SPGP performs better than SOGP due

to the fact that SPGP uses the full M = 35 sparse inputs from

the start, whereas SOGP is initialized with M = 1 and adds

sparse inputs as data is incrementally processed until the limit

M = 35 is reached. Thus, after seeing significant amounts of

training data, both SOGP and SPGP perform very similarly.

Lastly, given sufficient data, all three learning controllers are

able to outperform the CT method by learning the nonlinear

behaviour of Coloumb and viscous friction and compensating

for the initial inaccurate knowledge of the RBD equation.

TABLE I

RMS TRACKING ERROR WITH FULL KNOWLEDGE (DEG)

Joint 1 2 3 4 5 6 Avg

LWPR, Init 1.25 2.26 1.74 0.65 0.75 0.80 1.24

LWPR, 90s 0.75 0.94 0.82 0.25 0.38 0.45 0.60

SPGP, Init 1.10 1.75 1.55 0.60 0.68 0.75 1.07

SPGP, 90s 0.70 0.85 0.78 0.22 0.32 0.45 0.55

SOGP, Init 1.21 1.88 1.60 0.63 0.70 0.82 1.14

SOGP, 90s 0.72 0.84 0.80 0.22 0.32 0.47 0.56

2) Partial Knowledge of RBD: Figure 5 and Table II

illustrate the joint space tracking performance of the SPGP,

SOGP and LWPR models when initialized with only the

gravity loading vector of the RBD equation. In this case,

LWPR outperforms SPGP during the first cycle. This can

be attributed to the higher update rate of LWPR, allowing

the model to adapt more quickly to the data it receives.

After multiple cycles through the trajectory, this advantage

of LWPR vanishes, as the GP models have then observed

enough training data across the entire asterisk trajectory to

learn a more accurate model. Figure 6 and Table II illustrate

the performance after 150 seconds of training. Similarly

to the case of full knowledge of the RBD, the learning

controllers have all compensated for friction and clearly

outperform the CT controller. However, since the system was

initialized with only partial knowledge of the RBD equation,

it has taken longer for both models to achieve the same

tracking performance in the case of full RBD knowledge.

Similarly to the case of full knowledge of RBD, SPGP

initially performs better than SOGP, but after training this



discrepancy is minimized.
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Fig. 5. Initial Tracking Performance for Joint 2 with Gravity Prior and No
Prior
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Fig. 6. Final Tracking Performance for Joints 2 with Gravity Prior

TABLE II

RMS TRACKING ERROR WITH PARTIAL KNOWLEDGE (DEG)

Joint 1 2 3 4 5 6 Avg

LWPR, Init 2.57 4.78 3.62 0.95 0.80 0.75 2.25

LWPR, 150s 0.80 0.95 0.80 0.22 0.41 0.44 0.60

SPGP, Init 0.48 6.66 5.29 0.05 0.12 0.27 2.15

SPGP, 150s 0.75 0.84 0.75 0.25 0.30 0.40 0.55

SOGP, Init 0.50 6.75 5.43 0.10 0.14 0.30 2.20

SOGP, 150s 0.77 0.83 0.76 0.25 0.32 0.39 0.55

Without the use of a-priori knowledge, learning algo-

rithms were typically initialized with large training data sets

obtained through motor babbling [8], [6], [9] in order to

achieve decent tracking performance. By incorporating a-

priori knowledge of the RBD equation, whether partial or

full, it is shown in these results that the proposed systems are

able to perform reasonably well from the start, even without

undergoing such an initialization procedure.
3) Algorithm Computation Time: In order to evaluate

the computational efficiency of LWPR, SPGP and SOGP,

each algorithm was trained on data sets of varying size

(2,4,6,8,10,12 and 14 thousand training points) obtained from

simulation. Figure 7 illustrates the computation time required

to compute a single torque prediction given an input x∗ as

a function of the number of training data points that the

algorithm has processed. The results were obtained on a PC

running Windows XP with a CPU clock speed of 2.66 GHz

and 4 GB of RAM. For SOGP and SPGP, the maximum size

of the sparse representation set was limited to 35.

As seen in Figure 7, LWPR has the lowest computational

cost which remains relatively constant with an increasing

data set size. This is due to the fact that LWPR does not

explicitly store the entire training set, but rather incorporates

them into local linear models. For the sparse GP techniques,

SOGP clearly outperforms SPGP. This can be attributed to

the online procedure of SOGP which allows data points

to be processed incrementally. Although SPGP also uses a

sparse representation, data is still processed in batches, and

no provision for incremental updates is provided. Because of

this, the computation time for a single prediction from SPGP

increases much more rapidly than SOGP as the number of

training points increases.

Although the simulation results show that the SPGP

controller marginally outperforms the SOGP controller in

terms of tracking performance (see Tables I and II), the

performance gains from SPGP are not significant enough

to offset the higher computational costs which increase

significantly as the training data set increases. While the

simulation platform was able to handle the computational

requirements for SPGP while maintaining near-real time

performance, it should be noted that this was only for

150 seconds of operation (corresponding to 15,000 training

points). For long-term incremental learning, it is expected

that the computational requirements of SPGP will prohibit

real-time control.
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Fig. 7. Computation time required for a single prediction

VI. CONCLUSIONS

An incremental, online learning method was proposed for

approximating the inverse dynamics equation while incor-

porating full or partial knowledge of the RBD equation.

Prior knowledge was incorporated into the GP framework by

setting the mean function equal to the RBD equation. The

incorporation of prior knowledge improves generalization

performance, as the model is able to perform comparably

to computed torque control without having seen any relevant

training data beforehand. Online learning with SOGP was

achieved by spreading out the optimization phase of the

algorithm over several timesteps, allowing the system to train

itself at a rate of 10 Hz. The approach was compared to CT



control and a local learning method, LWPR. Although the

greater computational efficiency of LWPR allows updates to

occur at a rate of 100 Hz, after a short period of training,

the performance of LWPR and SOGP was nearly identical

in simulation, even though LWPR had accumulated more

training data, due to the global nature of GPR techniques.

Both approaches are able to compensate for the nonlinear

effects of friction, as well as the initial inaccuracy in the

known inertial parameters.

In future work, we intend to validate the proposed algo-

rithm on an experimental platform, and compare to other

control strategies such as adaptive control. The simulation

work suggests that SOGP will yield tracking results that are

very similar to LWPR, but the rate of convergence of the

error will be much faster for SOGP.
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