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Abstract

This work investigates the problem of robust, long-

term visual tracking of unknown objects in unconstrained

environments. It therefore must cope with frame-cuts,

fast camera movements and partial/total object occlu-

sions/dissapearances. We propose a new approach,

called Tracking-Modeling-Detection (TMD) that closely

integrates adaptive tracking with online learning of the

object-specific detector. Starting from a single click in the

first frame, TMD tracks the selected object by an adaptive

tracker. The trajectory is observed by two processes (grow-

ing and pruning event) that robustly model the appearance

and build an object detector on the fly. Both events make

errors, the stability of the system is achieved by their can-

celation. The learnt detector enables re-initialization of

the tracker whenever previously observed appearance re-

occurs. We show the real-time learning and classification is

achievable with random forests. The performance and the

long-term stability of TMD is demonstrated and evaluated

on a set of challenging video sequences with various objects

such as cars, people and animals.

1. Introduction

In this paper, we propose a method addressing a prob-

lem of long-term online tracking with minimum prior infor-

mation. ”Long-term” refers to sequences of possibly infi-

nite length that contain frame-cuts, fast camera movements

and the object may temporarily disappears from the scene.

”Online” means that the tracking does not exploit informa-

tion from the future and processes the footage in one pass.

”Minimum prior information” indicates that the object is

not known in advance and the only information about it

comes from the first frame where it was selected by the user.

Standard tracking approaches [11] that perform frame-

to-frame tracking assume no complete occlusion or disap-

pearance. The research in such methods focuses on speed,

precision or on the development of more reliable methods

that extend the “lifetime” of the tracker [5], but do not ad-

dress directly the post-failure behavior and therefore can not

be directly used in the long-term tracking problem. We refer

to this group of algorithms as short-term trackers.

Clearly the solution of the long-term tracking problem

requires some detection capability, to re-detect the object

after a period when it is not in the field of view or af-

ter tracking failure. Tracking-by-detection methods [9] or

methods integrating a tracker and a detector [1, 17] address

the problem. However, detectors have to be designed or

trained before tracking starts and thus cannot be used when

the object of interest is not known in advance. The train-

ing of these detectors either requires a large hand-labeled

training sets [20], generates the training set by warping the

patches [9] or extracts the training data using some sophis-

ticated method [16, 18, 19]. All these methods strictly sep-

arate the training and testing phase which means that ap-

pearance variability not represented in the training set never

becomes part of the model.

The appearance change problem is addressed by adap-

tive tracking methods. These methods can be roughly

split into two categories based the model updating strategy.

Every-frame-update is most common for adaptive track-

ers [2, 4, 7, 6]. The tracker is expected to perform cor-

rectly and under this assumption, each observation updates

the object model. Such approaches enable to quickly adapt

to appearance changes but may also lead to acceleration of

the tracking failure. Selective-update strategies take into ac-

count the fact that the tracker is not always correct. There-

fore the update may be done only if the tracker is not far

from the model [13] or the new, unlabeled data can be inte-

grated to the model in a semi-supervised framework [8].

In this paper we propose a new approach to the long-term

tracking problem that exploits three components: track-

ing, modeling and detection (TMD). The object is tracked

by an adaptive short-term tracker based on Lucas-Kanade

method [11]. During the tracking, the appearance is mod-

eled in a novel unsupervised manner based on two events.

The model is iteratively extended by so called growing

events and refined by pruning events. These two events

are designed to correct errors of each other, which makes

This paper was published on 3rd On-line Learning for Computer Vision Workshop 2009, Kyoto, Japan, IEEE CS.



unknown object
manifold L*

Growing
event

x0

Object
model Lt

Pruning
event

F0

B0

feature space U

Figure 1. The online model is initialized in the first frame by the

selected sample x0. It is expanding by “growing events”, refined

by “pruning events” and slowly converges toward the unknown

object manifold.

the modeling robust to inevitable failures of the short-term

tracker. The result of the modeling is a collection of tem-

plates that represent the selectively pruned memory of the

system. Based on this collection, the object detector is built

online. The detector runs in parallel with the short-term

tracker and enables re-initialization after its failure. It has a

form a randomized forest, enables incremental update of its

decision boundary and real-time sequential evaluation dur-

ing run-time.

The paper has the following contributions: (i) formu-

lation of a new approach (TMD) that addresses the long-

term tracking problem, (ii) introduction of a novel learn-

ing method based on two error-canceling events that boot-

straps the object model from a single click, (iii) design

of an efficient detector structure enabling real-time learn-

ing/classification, (iv) new efficient local features, (v) intro-

duction of new sequences for the long-term tracking prob-

lem. In the experiments we observe that TMD performs

robust long-term tracking that automatically progress from

adaptive tracking to tracking-by-detection without the need

for off-line training. Also we empirically show that the sys-

tem performance monotonically improves over time.

The rest of the paper is organized as follows: Sec. 2

introduces the TMD framework and the events; Sec. 3 dis-

cusses our implementation of TMD; Sec. 4 first compares

several growing events and than evaluates TMD on standard

and new sequences; the paper’s observations are wrapped

up in Conclusions.

2. TMD Framework

In this section we present our tracking system and its

components (see Fig. 1 for illustration). Let Ft and Bt

be an image frame and an object bounding box in time t.
The pixel area (patch) within Bt is represented by a fea-

ture vector xt that encodes the object appearance. The

set of consecutive bounding boxes defines the track Tt =
{B0, B1, . . . , Bt} of length t+1 that represents a trajectory

of the target in image space. T f
t denotes the corresponding

trajectory in feature space U within which exist a subspace

L∗. L∗ represents all possible object appearances (mani-

fold) and is unknown apart from one single patch x0 ∈ L∗

that was selected for tracking. This sample represents our

online model L0 = {x0} in time t = 0.

The components of TMD interact as follows. The se-

lected object is tracked by a short-term tracker. The trajec-

tory in feature space is analyzed by two processes that con-

tinuously attempt to extend or to restrict the space covered

by the online model. Lt is extended with samples that are

likely to contain the object of interest. These samples are

identified by growing events. Lt is pruned from samples

that are considered as wrong. These samples are identified

by pruning events. The two events work in parallel with

the aim to converge Lt → L∗ (in Fig. 1 this corresponds to

fitting the white blob to the gray blob).

The main purpose of creating Lt is to represent the

“memory” of the system and to build an object detector

that is continuously updated and evaluated. It scans each

input frame Ft and outputs a set of bounding boxes with

appearances contained in Lt. These bounding boxes repre-

sent an alternative hypothesis to the position returned by the

tracker. The hypothesis fusion is performed by taking the

position that minimizes the distance to Lt. It follows that

if the patch given by the tracker is very close to Lt, false

responses of the detector do not affect the track unless their

distance to the online model is even closer. The minimal

distance to Lt becomes the negated confidence score of the

TMD system. Based on the confidence score, the tracker

decides if the object is visible or not.

Algorithm 1 TMD framework

Require: Select x0, L0 = {x0}
for t = 1 : ∞ do

Track last patch xt−1.

Detect patches contained in online model Lt−1.

Lt ← Lt−1 ∪ Positive samples from growing.

Lt ← Lt−1 r Negative samples from pruning.

xt ← Most confident patch (detected or tracked).

end for

So far we introduced the events that observe the unsta-

ble tracker with the purpose to learn the object appearance.

In the following, we specify in more detail how they work.

For this purpose, we distinguish two parts of Lt, the cor-

rect part Lc
t ∈ L∗ and the error part Le

t /∈ L∗, Lc
t ∪ Le

t =
Lt, L

c
t ∩Le

t = ∅. Coverage represents the proportion of the

object appearance that was already discovered by the unsu-

pervised learning process, i.e. coverage(Lt) = |Lc
t |/|L

∗|.
Impurity represents the fraction of Lt that is incorrect, i.e.

impurity(Lt) = |Le
t |/|Lt|. Operator |.| denotes size of the

set.



Growing events At time t the short-term tracker has pro-

duced a trajectory T f
t = {x0, x1, . . . , xt}. A growing event

first selects certain parts of this trajectory that are consid-

ered to be positive, P ∈ T f
t . The online model Lt is then

updated, i.e. Lt = Lt−1 + P . After the update, the cover-

age of the online model increases if P contains at least one

sample from L∗. In this paper we propose a new growing

event that takes advantage of the drift of an adaptive tracker.

This strategy will be discussed in section 3.2.

Pruning events It is impossible to devise an example

selection strategy that would allow only correct samples.

Therefore the impurity of Lt is increasing. Since our goal

is to converge Lt → L∗, the events that lead to reduced

impurity of online model Lt are essential. If online model

Lt is characterized by a certain level of impurity, a pruning

event is to identify a subset N of the online model that is

considered incorrect and removes it, i.e. Lt = Lt−1 − N .

Growing event alone leads to high impurity and there-

fore detector with low precision. Pruning event serves as a

“negative feedback”: the higher the impurity of the model,

the more negative samples are identified and removed from

the model. The dynamic interaction of growing and pruning

is crucial in making the TMD system ”stable” as we empir-

ically show in the experimental section.

3. Implementation

Short-term tracker. Our short-term tracker is based on

the Lucas-Kanade (LK) method [11]. First, a set of feature

points is sampled from a rectangular grid within the object

bounding box. Next, LK tracks the points from one frame to

another, resulting in a sparse motion field. Based on the mo-

tion field, the bounding box displacement and scale change

are robustly estimated as a median over the parameter distri-

bution. In each frame a completely new set of feature-points

is tracked which makes the tracker is very adaptive.

Online model. The online model is represented by a set

of 15x15 intensity normalized patches. Distance between

two patches is defined using normalized cross-correlation,

i.e. distance(xi, xj) = 1 − NCC(xi, xj). The dis-

tance of sample xi to the online model Lt is defined as

distance(xi, Lt) = minx∈Lt

(

distance(xi, x)
)

. The model

is based on patches to provide complementarity to efficient

but less discriminative detector features discussed in the fol-

lowing section.

3.1. Object detector

It is crucial to build fast and reliable detector able to

localize patches contained in the online model and to ef-

ficiently adjust its decision boundary by the growing and

pruning events.
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Figure 2. Local 2bit Binary Patterns used in our object detec-

tor. Features encode local gradient orientation withing the object

bounding box.

Realtime state-of-the art object detectors are typically

based on the AdaBoost [20] algorithm. They require large

training sets and are computationally expensive to train.

This approach is not applicable for the online setting. Ex-

isting online detectors [7] enable efficient training but their

purpose is to “adapt” to new samples and gradually dismiss

the old ones. In our case, the detector should rather “ab-

sorb” new samples and keep them in the model as long as

they are not removed by the pruning event.

Features. Our object detector is based on new features

that we call 2bit Binary Patterns (2bitBP). These features

measure gradient orientation within a certain area, quantize

it and output four possible codes (see Fig. 2 for illustration).

2bitBP were inspired by Local Binary Patterns [14] but

differ since standard LBP encodes 3 × 3-pixel surround-

ing and represents a certain area by a distribution of the

codes, but 2bitBP encodes the area by a single code. In this

sense the 2bitBP is similar to haar-like features [20] and the

multi-scale measurement is achieved using integral images.

Moreover, 2bitBP outputs just 4 codes in contrast to 256 for

standard LBP, which increases resistance to overfitting.

Sequential randomized forest. Each image patch is de-

scribed by a number of local 2bitBP which position, scale

and aspect ratio were generated at random. These features

are randomly partitioned into several groups of the same

size. Each group represents a different view of the patch

appearance. The response of each group is represented by a

discrete vector that will be called a “branch”.



The classifier used for detection has the form of a ran-

domized forest [3]. It enables online update and sequen-

tial evaluation. The forest consists of several trees, each of

them is build from one group of features. Every feature in

the group represents a measurement taken at a certain level

of the tree.

Growing and pruning of the forest is incremental – one

example is processed at a time. At the beginning, every tree

contains one single branch defined by the selected patch.

With every positive example selected by the growing event,

a new set of branches is added to the forest. Tree pruning

corresponds to removal of branches selected by the pruning

event.

Evaluation of an unknown patch by the tree is very effi-

cient. The features within each tree are measured sequen-

tially. If the patch reaches the end of the tree it is considered

as positive, otherwise if it differs from the defined branches

the measurement is terminated and the patch is considered

as negative. The sequential nature of the randomized tree

enables real-time evaluation on a large number of positions

and is different from [9, 15] where a fixed number of mea-

surements have to be taken. The input image is scanned

with a sliding window. At each position, every tree outputs

a decision whether the underlying patch is in the model or

not. The final decision is obtained by the majority vote.

One of the main differences from other implementations

of randomized trees is that training is performed using pos-

itive samples only. Negative samples influence the training

indirectly. If the pruning event finds a false positive de-

tection its corresponding branches are removed. In order

to increase the detection precision we further filter out de-

tections that are not similar to the online model (measured

by cross-correlation). This is performed only for the most

promising patches since the majority of them have been al-

ready rejected by the randomized forest.

The structure of the randomized forest was estimated

empirically on a set of sequences in order to achieve high

recall with constraint on real-time performance. We use 8

trees, each consists of 10 features, which corresponds to 410

possible leaves.

3.2. Events

The proposed TMD framework does not specify the

growing/pruning events explicitly as they can be designed

for a problem specific task. In this work we use events that

are generally applicable to a wide range of adaptive trackers

and detectors based on a scanning window. These events

are based on a similarity threshold θ: two patches on the

tracker’s trajectory are considered similar if their distance

is less than θ.

Growing events. Growing events consists of: selection of

appropriate samples from the tracker’s trajectory and model

update. Three selection strategies were implemented and

tested within our framework; the model update is performed

identically in all of them (as discussed in section ’Online

model’ and ’Sequential randomized forest’)

1. Absolute Distance from First Patch (ABS) Approves

all patches xt that are similar to the first patch x0.

2. Difference Between Consecutive Patches (DIFF). Ap-

proves patch xt if it is similar to patch xt−1. This strat-

egy accepts slow changes of the appearance.

3. Temporal Pattern (LOOP). This strategy, one of our

contributions in this paper, first converts the tracker’s

trajectory to a sequence of distances to the online

model and then searches for certain patterns in this se-

quence. The closed loop pattern is defined as follows:

starting from a patch similar to the online model, the

distance first exceeds the threshold θ and after a num-

ber of frames it becomes similar again (Fig. 1). In this

case, all the frames within the pattern are used for up-

date. This strategy exploits the property of an adaptive

tracker. If the tracker drifts away from the object, it

adapts to the appearance of the background and there-

fore it is very unlikely that it accidentally returns back

to the object. If it returns, it strongly suggests that the

increase of distance was due to changed appearance or

other image perturbations. This strategy allows to ac-

cept patches with strong appearance variations but still

representative for the object.

Pruning events. Our pruning event assumes that the

tracked object is unique within the scene. If the tracker and

the detector agree on the object position, all remaining de-

tections are considered false positives and removed from the

model. Section 4.2 demonstrates how pruning stabilizes the

modeling.

4. Experiments

This section first analyzes the proposed growing strate-

gies to identify the most reliable one. Next, we demon-

strate the need for an object detector in the case of long-

term tracking. We empirically show that growing alone is

not sufficient and has to be coupled with model pruning to

obtain a stable system. Finally, TMD is tested on standard

benchmark sequences and new challenging videos.

Evaluation of trajectories. Fig. 3 depicts the continu-

ous trajectory of the tracker (blue) and the corresponding

ground truth (red) in the image space. Suppose that a valida-

tion process selects only certain parts (blue thick) of the raw

trajectory; the non-selected parts represents frames where
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Figure 3. Introduction of precision/recall on imaginary tracking

in 1D. Tracker’s trajectory (blue) is compared with ground truth

(red). The tracker discovers 33% of the ground truth (Recall =

33%) with every 3rd sample being correct (Precision = 33%).

the object is not visible. By comparing the selected tra-

jectory (STR) with the ground truth (GT), each frame is as-

signed a label: True Positive (TP) if the bounding box of the

tracker overlaps with the ground truth by more than 70%,

otherwise False Positive (FP) is assigned. The overlap is

defined as a ratio of union to the intersection of the bound-

ing boxes. The overall tracker performance is evaluated by

two measures. Precision is the percentage of the selected

trajectory that is correct: Precision = |TP|/|STR|. Recall

represents the percentage of the ground truth that overlaps

with the selected trajectory: Recall = |TP|/|GT|. These

measures will be used for evaluation of the whole system

and also for evaluation of quality of growing strategies.

4.1. Selection of the growing event

This experiment focuses on the performance of different

growing events. Our goal is to identify the event that max-

imizes recall for a given precision (i.e. 95%) and to deter-

mine the value of parameter θ. A benchmark face tracking

video sequence from [12] is used for evaluation. Several

frames from the sequence are shown in Fig. 8 (a). The se-

quence contains 1006 frames and shows four face targets in

an indoor environment that undergo a variety of changes in-

cluding: fast motion, out of plane rotation, partial and full

occlusions. The subject that undergoes the most significant

changes was selected for tracking. The target trajectory was

manually marked; it was split into 16 continuous segments,

separated by full occlusions. In this experiment, we are in-

terested in the ability of identifying correct parts of the ob-

ject’s trajectory, therefore the tracker is initialized at the be-

ginning of every segment and is run up to its end, including

the occlusion. This produces 16 trajectories. The trajecto-

ries are analyzed by the growing event that accepts certain

parts of them (see Sec. 3.2). The quality of the selection

and its dependence upon the strategy’s internal parameter is

compared using precision/recall characteristics.

Fig. 4 shows the resulting precision/recall curves. The
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Figure 4. Precision/Recall characteristics of growing events as a

function of parameter θ defining when two patches are “similar”.

black dot in the bottom-right corner (point 1) corresponds

to performance of the short-term tracker alone (the entire

trajectory is considered) where recall is 87% and preci-

sion equals 90%. This performance corresponds to the case

when the track is manually re-initialized after occlusion (i.e.

as if an error-free detector is available). If the tracker is ini-

tialized only once, the recall drops to 23% since the object

disappears from the scene and the tracker fails in all frames

thereafter. The drop from 90% to 23% demonstrates that the

object detector is essential for long-term tracking. All grow-

ing strategies produce the same result (point 1) if a large

distance threshold θ is allowed, i.e. all samples on the tra-

jectory are accepted by the growing events. As θ decreases,

the strategies become more and more selective. The recall

of ABS and DIFF significantly drops compared to LOOP

strategy at precision of 92%. Notice the precision level of

95% denoted by the black dotted line. LOOP correctly iden-

tified almost 80% of the ground truth (point 2), while ABS

40% (point 3) and DIFF only 20% (point 4).

This experiment shows that the tracker trajectory can be

analyzed by different strategies, characterized by the preci-

sion/recall tradeoff. The LOOP strategy performs signifi-

cantly better than other approaches and will be used in fol-

lowing experiments with parameter θ corresponding to the

point no. 2 in Fig. 4.

4.2. System performance

The aim of this experiment is to quantitatively evaluate

the TMD system. As the system consists of several com-

ponents, we demonstrate the performance/functionality of

each of them. We start from the simplest form and progres-

sively add one component at a time: (i) adaptive tracker,

similar to [2, 4, 7], (ii) tracker + detector: the tracker is re-

initialized if the detector finds an appearance similar to the



first frame, Lt = {x0}, similar to [8], (iii) tracker + de-

tector + growing: Lt is growing and therefore allows more

frequent re-initialization, (iv) full TMD: in addition to the

previous case, the model is pruned. The combinations were

tested on the same face sequence as in the previous experi-

ment but the tracker is initialized just once.

The evaluation of system’s components Fig. 5 shows

the resulting precision/recall curves for different variants.

The baseline short-term tracker (black) correctly tracks the

target in the first few frames, but later the target moves away

from the field of view and the tracker drifts away. The tra-

jectory thus produced has 90% precision and 23% recall

(point 3). By adding detection to the tracking process, no

improvement was obtained, as the object model represented

only by the first patch was never detected again. By in-

corporating model growing into the process (red curve) the

detector gives many responses. This influences the recall in

two ways. First, the recall increases since correct detections

initialize the tracker in different frames. Second, the recall

decreases since false positives incorrectly re-initialize the

tracker. These two effects almost cancel each other resulting

in slight increase of recall compared to simple short-term

tracker. Precision drops significantly to 30% due to growing

number of false positives. However, if the learning is cou-

pled with pruning (blue curve), the approach significantly

outperforms all the other variants. The maximum recall for

precision 100% is 40% (point 2). If the entire trajectory is

considered the system is able to localize 55% of target ap-

pearances and makes an error of 10% (point 1). Fig. 5 shows

that there is a clear gain in performance when both model

growing and pruning are employed. The pruning signifi-

cantly reduces the number of false examples in the model

and thus reduces the probability of re-initialization on an

incorrect target.

Fig. 6 takes another look at the same experiment, i.e. dis-

plays cumulative number of false detections as a function

of time for runs without (iii) and with pruning (iv). No-

tice the black circle; up to this point no growing update oc-

curs, hence both approaches give the same number of detec-

tions. After the update, the number of false detections sig-

nificantly increases for the simple growing strategy. Grow-

ing coupled with pruning keeps the number of false alarms

always very low.

System stability and detector improvement. The TMD

system was run repeatedly on the face video sequence, with

the online model/detector being continuously updated. The

results are presented in table 1. After each run (7 in total)

the TMD system was evaluated using precision/recall. The

performance of TMD was compared with the performance

of the improving internal detector. This experiment was re-

peated four-times for different parameter θ.
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Figure 5. Performance of the adaptive tracker (black), tracker + de-

tector + growing (red) and the full TMD system (blue). The curves

are produced by thresholding the confidence score of resulting tra-

jectories.
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Figure 6. Cumulative number of false detections during tracking

increases rapidly if only model growing is used. The growth is

stabilized by introduction of model pruning.

Notice the third sub-table with θ = 0.20 which corre-

sponds to the value selected earlier. In the first iteration,

TMD discovers 22% of the trajectory, while the detector

8% at the same precision of 100%. With every iteration, the

recall of both of them increases. At the 7th iteration, TMD

finds 72% and the detector 64% of the target trajectory with

high precision of 87% and 89% respectively. The model

obtained after the 7th iteration is depicted in Fig. 7.

For θ = 0.05 the learning process does not start at all,

since the first appearance is never discovered again (the re-

quirement on similarity is too high). This demonstrate the

weakness of the LOOP strategy, i.e. the object may never

come back to the first appearance. For θ = 0.30 the over-

all performance first increases but around 5th iteration it

slightly drops and oscillates.

The experiment can be concluded by the following ob-

servations: (i) TMD is improving over time for wide range

of parameter θ, which suggests that the learning have po-

tential to work if other growing/pruning events are used in-

stead, (ii) the benefit from the short-term tracker is decreas-



θ = 0.05 1 2 3 4 5 6 7

TMD
Prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rec 0.01 0.01 0.02 0.02 0.03 0.03 0.03

DT
Prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rec 0.00 0.01 0.01 0.01 0.02 0.02 0.02

θ = 0.10

TMD
Prec 1.00 1.00 0.99 0.99 0.99 0.95 0.95

Rec 0.04 0.35 0.59 0.68 0.70 0.69 0.71

DT
Prec 1.00 0.99 1.00 0.99 0.99 0.98 0.98

Rec 0.01 0.25 0.49 0.58 0.58 0.61 0.63

θ = 0.20

TMD
Prec 1.00 0.97 0.94 0.91 0.91 0.90 0.87

Rec 0.22 0.59 0.70 0.72 0.72 0.71 0.72

DT
Prec 1.00 1.00 0.97 0.93 0.95 0.94 0.89

Rec 0.08 0.46 0.59 0.61 0.65 0.65 0.64

θ = 0.30

TMD
Prec 0.98 0.99 0.94 0.94 0.90 0.87 0.87

Rec 0.09 0.57 0.73 0.79 0.78 0.77 0.65

DT
Pre 1.00 1.00 0.99 0.97 0.94 0.90 0.93

Rec 0.01 0.35 0.57 0.66 0.68 0.67 0.59

Table 1. Performance of TMD and the internal online detector

(DT) as a function of number of iterations.

Figure 7. Online model obtained by the LOOP growing event con-

tains examples that are very diverse but correctly represent the ob-

ject. The LOOP exploits drift of adaptive trackers. The patch

selected for tracking is denoted by the red square.

ing as the system learns the object appearance and the track-

ing gradually progresses to tracking-by-detection without

the need for off-line training.

Long-term tracking of diverse objects. The aim of this

experiment is to evaluate the proposed approach on videos

containing diverse objects. The system was tested on four

videos, two of them are publicly available, the other two

are new and extremely challenging for standard approaches.

The following videos are used: (1) Plush Toy [10], consist-

ing of 1344 frames (1:07) that include slow movements,

illumination changes and small appearance changes; (2)

Pedestrian from Caviar dataset, TwoEnterShop2cor, frames

81-550 (0:23) that include full occlusion; (3) Volkswagen

on highway, containing 8576 frames (7:08) that include oc-

clusions, disappearance from the field of view, similar ob-

jects and camera shaking; (4) Motorbike, containing 2917

frames (2:33) that include occlusion, disappearance from

the field of view, fast movements, significant appearance

changes. Fig. 8 shows some frames from the sequences.

The sequences and hand labeled ground truth are available

online.1

Table 2 shows the resulting performance, where our ap-

proach (TMD) is compared to the short-term tracker (LK),

1http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/

Sequence
LK Online [7] Semi [8] TMD

Prec Rec Prec Rec Prec Rec Prec Rec

Plush Toy 0.83 0.83 0.62 0.62 0.39 0.39 0.98 0.98

Pedestrian 0.31 0.46 0.26 0.39 0.20 0.29 0.96 0.81

Volkswagen 0.75 0.05 0.18 0.31 0.04 0.07 0.88 0.82

Motocross 1.00 0.02 0.01 0.02 0.04 0.02 0.96 0.54

Table 2. System performance evaluated on standard (Plush Toy,

Pedestrian) and extremely challenging (Volkswagen, Motocross)

sequences.

Online Boosting [7] and Semi Boosting [8]. The perfor-

mance of TMD improves with multiple runs, but only the

first run is considered here. The Online and Semi-Boosting

tracker do not track scale changes which significantly af-

fects their results. The “Plush Toy” sequence can be suc-

cessfully tracked by LK alone, except for a slight drift at the

end. TMD is able to correct for this drift, leading to higher

performance. The “Pedestrian” sequence is more challeng-

ing as it contains full occlusion in the middle. TMD is able

to recover after the occlusion and continue successfully in

tracking. The appearance of the selected object does not

change much. The “Car” and “Motorbike” sequences are

very challenging for standard trackers and we are not aware

of any method able to achieve similar performance to ours

with no off-line training.

Conclusions

In this paper we introduced a new approach for gen-

eral long-term tracking. The system is capable of con-

tinuous tracking while building a reliable online detector

without using any prior information on the target. The

key components, the growing and pruning events are novel

for such systems and crucial for long term tracking as we

demonstrate in the experiments. Furthermore, we explic-

itly address the problem of recovering from tracking fail-

ures, which are inevitable in any long term tracking system.

Simple solutions have been adopted to make the approach

highly efficient and suitable for real time video processing

in surveillance applications. The current Matlab implemen-

tation operates at 20 fps. The proposed system was exten-

sively tested on a variety of objects and the results show

clear improvement compared to standard trackers. In the

future we plan to perform thorough analysis of the learning

based on growing and pruning, apply the TMD framework

to different combinations of trackers and detectors and ex-

tend the approach for multi-target tracking.
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Figure 8. Examples from tested sequences: (red) TMD, (yellow) LK. Error of object localization on the Motocross sequence. Black line

indicates the object visibility. See the webpage of the first author for full sequences.
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