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Instituto Superior Técnico,
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Abstract

Training structured predictors often requires a

considerable time selecting features or tweak-

ing the kernel. Multiple kernel learning (MKL)

sidesteps this issue by embedding the kernel

learning into the training procedure. Despite the

recent progress towards efficiency of MKL al-

gorithms, the structured output case remains an

open research front. We propose a family of on-

line algorithms able to tackle variants of MKL

and group-LASSO, for which we show regret,

convergence, and generalization bounds. Exper-

iments on handwriting recognition and depen-

dency parsing attest the success of the approach.

1 INTRODUCTION

Structured prediction is characterized by strong interdepen-

dence among the output variables, usually with sequential,

graphical, or combinatorial structure (Bakır et al., 2007).

Despite all the advances, obtaining good predictors still re-

quires a large effort in feature/kernel design and tuning (of-

ten via cross-validation). Because discriminative training

of structured predictors can be quite slow, it is appealing to

learn the kernel function simultaneously.

In MKL (Lanckriet et al., 2004), the kernel is learned as

a linear combination of prespecified base kernels. This

framework has been made scalable with the advent of

wrapper-based methods, in which a standard learning prob-

lem (e.g., an SVM) is repeatedly solved in an inner loop up

to a prescribed accuracy (Sonnenburg et al., 2006; Rako-

tomamonjy et al., 2008; Kloft et al., 2010). Unfortu-

nately, extending such methods to structured prediction

raises practical hurdles: since the output space is large, so

are the kernel matrices, and the number of support vectors.
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Moreover, since it is typically prohibitive to tackle the inner

learning problem in its batch form, one often needs to re-

sort to online algorithms (Ratliff et al., 2006; Vishwanathan

et al., 2006; Collins et al., 2008); the latter are fast learners

but slow optimizers (Bottou and Bousquet, 2007), hence

using them in the inner loop with early stopping can mis-

guide the overall MKL optimization.

In this paper, we overcome the above difficulty by propos-

ing a stand-alone online MKL algorithm which iterates

between subgradient and proximal steps. The algorithm,

which when applied to structured prediction is termed

SPOM (Structured Prediction by Online MKL), has im-

portant advantages: (i) it is simple, flexible, and compat-

ible with sparse and non-sparse MKL, (ii) it is adequate

for structured prediction, (iii) it offers regret, convergence,

and generalization guarantees. Our approach extends and

kernelizes the forward-backward splitting scheme FOBOS

(Duchi and Singer, 2009), whose regret bound we improve.

Our paper is organized as follows: after reviewing struc-

tured prediction and MKL (§2), we present a class of online

proximal algorithms which handle composite regularizers

(§3). We derive convergence rates and show how these al-

gorithms are applicable in MKL, group-LASSO, and other

structural sparsity formalisms. In §4, we apply this algo-

rithm for structured prediction (yielding SPOM) in two ex-

perimental testbeds: sequence labeling for handwritten text

recognition, and natural language dependency parsing. We

show the potential of SPOM by learning combinations of

kernels from tens of thousands of training instances, with

encouraging results in terms of runtimes and accuracy.

2 STRUCTURED PREDICTION & MKL

2.1 Inference and Learning with Structured Outputs

We denote by X and Y the input and output sets, respec-

tively. Given an input x ∈ X , we let Y(x) ⊆ Y be its

set of admissible outputs; in structured prediction, this set

is assumed to be structured and exponentially large. Two

important examples of structured prediction problems are:

sequence labeling, in which x is an observed sequence and
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each y ∈ Y(x) is a corresponding sequence of labels;

and natural language parsing, where x is a string and each

y ∈ Y(x) is a possible parse tree that spans that string.

Let U , {(x, y) | x ∈ X , y ∈ Y(x)} denote the set of ad-

missible input-output pairs. In supervised learning, we are

given a labeled dataset D , {(x1, y1), . . . , (xN , yN )} ⊆
U , and the goal is to learn a compatibility function fθ :U→
R that allows to make predictions on unseen data via

x 7→ ŷ(x) , arg max
y∈Y(x)

fθ(x, y). (1)

Problem (1) is called inference (decoding) and, in strutured

prediction, often involves combinatorial optimization (e.g.,

dynamic programming). In this paper, we consider linear

functions, fθ(x, y) , 〈θ,φ(x, y)〉, where θ is a parameter

vector and φ(x, y) a feature vector. To be general, we let

these vectors live in a Hilbert space H, with reproducing

kernel K : U ×U → R. In the sequel, features will be used

implicitly or explicitly, as convenience determines.

We want fθ to generalize well, i.e., given a cost function

c : Y × Y → R+ (with c(y, y) = 0, ∀y) we want the

corresponding inference criterion to have low expected risk

EX,Y c(Y, ŷ(X)). To achieve this, one casts learning as the

minimization of a regularized empirical risk functional,

min
fθ∈H

λΩ(fθ) +
1

N

N
∑

i=1

L(fθ;xi, yi), (2)

where Ω : H → R+ is a regularizer, λ ≥ 0 is the regular-

ization constant, and L : H×X ×Y → R is a convex loss

function. Common choices are the logistic loss, in condi-

tional random fields (CRF, Lafferty et al. 2001), and the

structured hinge loss, in structural support vector machines

(SVM, Taskar et al. 2003; Tsochantaridis et al. 2004):

LCRF(fθ;x, y) , log
∑

y′∈Y(x) exp(δfθ(x, y
′, y)), (3)

LSVM(fθ;x, y) , maxy′∈Y(x) δfθ(x, y
′, y)+c(y′, y), (4)

where δfθ(x, y
′, y) , fθ(x, y

′)− fθ(x, y).

If the regularizer is Ω(fθ) = 1
2‖θ‖

2 (ℓ2-regularization),

the solution of (2) can be expressed as a kernel expan-

sion (structured version of the representer theorem, Hof-

mann et al. 2008, Corollary 13). We next discuss alternative

forms of regularization that take into consideration another

level of structure—now in the feature space.

2.2 Block-Norm Regularization and Kernel Learning

Selecting relevant features or picking a good kernel are

ubiquitous problems in statistical learning, both of which

have been addressed with sparsity-promoting regularizers.

We first illustrate this point for the explicit feature case.

Often, features exhibit a natural block structure: for ex-

ample, many models in NLP consider feature templates—

these are binary features indexed by each word w in the vo-

cabulary, by each part-of-speech tag t, by each pair (w, t),

etc. Each of these templates correspond to a block (also

called a group) in the feature space H. Thus, H is endowed

with a block structure, where each block (indexed by m =
1, . . . ,M ) is itself a “smaller” feature space Hm; formally,

H is a direct sum of Hilbert spaces: H =
⊕M

m=1 Hm.

Group-LASSO. Consider the goal of learning a model in

the presence of many irrelevant feature templates. A well-

known criterion is the group-LASSO (Bakin, 1999; Yuan

and Lin, 2006), which uses the following block-norm reg-

ularizer: ΩGL(fθ) =
∑M

m=1 ‖θm‖. This can be seen as

the ℓ1-norm of the ℓ2-norms: it promotes sparsity w.r.t. the

number of templates (groups) that are selected. When ΩGL

is used in (2), the following happens within the mth group:

either the optimal θ∗
m is identically zero—in which case the

entire group is discarded—or it is non-sparse.

Sparse MKL. In MKL (Lanckriet et al. 2004), we learn

a kernel as a linear combination K =
∑M

m=1 βmKm of M
prespecified base kernels {K1, . . . ,KM}, where the coef-

ficients β = (β1, . . . , βM ) are constrained to the simplex

∆M , {β ≥ 0 | ‖β‖1 = 1}. This is formulated as an

outer minimization of (2) w.r.t. β ∈ ∆M :

min
β∈∆M

min
fθ∈H

λ

2

M
∑

m=1

βm‖θm‖2 +

1

N

N
∑

i=1

L

(

M
∑

m=1

βmfθm
;xi, yi

)

. (5)

Remarkably, as shown by Bach et al. (2004) and Rako-

tomamonjy et al. (2008), this joint optimization over β

and θ can be transformed into a single optimization of the

form (2) with a block-structured regularizer ΩMKL(fθ) =
1
2 (
∑M

m=1 ‖θm‖)2. Note that this coincides with the square

of the group-LASSO regularizer; in fact, the two problems

are equivalent up to a change of λ (Bach, 2008a). Hence,

this MKL formulation promotes sparsity in the number of

selected kernels (i.e., only a few nonzero entries in β).

Non-Sparse MKL. A more general MKL formulation

(not necessarily sparse) was recently proposed by Kloft

et al. (2010). Define, for p ≥ 1, the set ∆M
p , {β ≥

0 | ‖β‖p = 1}. Then, by modifying the constraint in (5) to

β ∈ ∆M
p , the resulting problem can be again transformed

in one of the form (2) with the block-structured regularizer:

ΩMKL,q(fθ) =
1

2

( M
∑

m=1

‖θm‖q
)2/q

,
1

2
‖θ‖22,q, (6)

where q = 2p/(p + 1). The function ‖.‖2,q satisfies the

axioms of a norm, and is called the ℓ2,q mixed norm. Given

a solution θ∗, the optimal kernel coefficients can be com-

puted as β∗
m ∝ ‖θ∗

m‖2−q . Note that the case p = q = 1
corresponds to sparse MKL and that p = ∞, q = 2 corre-

sponds to standard ℓ2-regularization with a sum-of-kernels.
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2.3 Learning the Kernel in Structured Prediction

Up to now, all formulations of MKL apply to classifica-

tion problems with small numbers of classes. The algorith-

mic challenges that prevent the straightforward application

of these formulations to structured prediction will be dis-

cussed in §2.4; here, we formally present our MKL formu-

lation for structured prediction.

In structured prediction, model factorization assumptions

are needed to make the inference problem (1) tractable.

This can be accomplished by defining a set of parts over

which the model decomposes. Suppose, for example, that

outputs correspond to vertex labelings in a Markov net-

work (V,E). Then, we may let each part be either a ver-

tex or an edge, and write the feature vector as φ(x, y) =
(φV (x, y),φE(x, y)), with

φV (x, y) =
∑

i∈V

ψV (x, i)⊗ ζV (yi) (7)

φE(x, y) =
∑

ij∈E

ψE(x, ij)⊗ ζE(yi, yj), (8)

where ⊗ denotes the Kronecker product between feature

vectors, ψV and ψE are input feature vectors (which may

depend globally on x), and ζV and ζE are local output

feature vectors which only look, respectively, at a sin-

gle vertex and a single edge. A common simplifying as-

sumption is to let ζV be the identity feature mapping,

ψE ≡ 1, and to define ζE as the identity feature map-

ping scaled by β0 > 0. We can then learn the kernel

KX,V ((x, i), (x
′, i′)) , 〈ψV (x, i),ψV (x

′, i′)〉 as a com-

bination of basis kernels {KX,V,m}Mm=1. This yields a ker-

nel decomposition of the form

K((x, y), (x′, y′)) = β0 · |{ij, i
′j′ ∈ E : yi = y′i′ , yj = y′j′}|

+
∑

i,i′∈V :yi=y′

i′

M∑

m=1

βmKX,V,m((x, i), (x′, i′)).

In our sequence labeling experiments (§4), vertices and

edges correspond to label unigrams and bigrams. We ex-

plore two strategies: learning β1, . . . , βM , with β0 = 1
fixed, or also learning β0.

2.4 Existing MKL Algorithms

Early approaches to MKL (Lanckriet et al., 2004; Bach

et al., 2004) considered the dual of (5) in the form

of a second order cone program, thus were limited to

small/medium scale problems. Subsequent work focused

on scalability: Sonnenburg et al. (2006) proposes a semi-

infinite LP formulation and a cutting plane algorithm;

Rakotomamonjy et al. (2008) proposes a gradient-based

method (SimpleMKL) for optimizing the kernel coefficients

β; Kloft et al. (2010) performs Gauss-Seidel alternate op-

timization of β and of SVM instances; Xu et al. (2009)

proposes an extended level method.

The methods mentioned in the previous paragraph are all

wrapper-based algorithms: they repeatedly solve prob-

lems of the form (2) (or smaller chunks of it, as in Kloft

et al. 2010). Although warm-starting may offer consid-

erable speed-ups, convergence relies on the exactness (or

prescribed accuracy in the dual) of these solutions, which

constitutes a serious obstacle when using such algorithms

for structured prediction. Large-scale solvers for structured

SVMs lack strong convergence guarantees; the best meth-

ods require O( 1
ǫ
) rounds to converge to ǫ-accuracy. So-

phisticated second-order methods are intractable, since the

kernel matrix is exponentially large and hard to invert; fur-

thermore, there are typically many support vectors, since

they are indexed by elements of Y(xi).

In contrast, we tackle (5) in primal form. Rather than re-

peatedly calling off-the-shelf solvers for (2), we propose a

stand-alone online algorithm with runtime comparable to

that of solving a single instance of (2) by fast online meth-

ods. This paradigm shift paves the way for extending MKL

to structured prediction, a vast unexplored territory.

3 ONLINE PROXIMAL ALGORITHMS

FOR KERNEL LEARNING

3.1 An Online Proximal Gradient Scheme

The general algorithmic scheme that we propose and an-

alyze in this paper is presented as Alg. 1. It deals (in an

online fashion1) with problems of the form

min
θ∈Θ

λΩ(θ) + 1

N

∑N

i=1
L(θ;xi, yi), (9)

where Θ ⊆ H is a convex set and the regularizer Ω has

a composite form Ω(θ) =
∑J

j=1
Ωj(θ). This encom-

passes all formulations described in §2.1–2.2: standard ℓ2-

regularized SVMs and CRFs, group LASSO, and sparse and

non-sparse variants of MKL. For all these, we have Θ = H
and J = 1. Moreover, with J > 1 it allows new variants of

block-norm regularization, as we will discuss in §3.2.

Alg. 1 is similar to stochastic gradient descent (SGD, Bot-

tou 1991), in that it also performs “noisy” (sub-)gradient

steps2 by looking only at a single instance (line 4). Hence,

as SGD, it is also suitable for problems with large N . The

difference is that these subgradients are only w.r.t. the loss

function L, i.e., they ignore the regularizer Ω.

In turn, each round of Alg. 1 makes J proximal steps, one

per each term Ωj (line 7). Given a function Φ : H → R,

1For simplicity, we focus on the pure online setting, i.e., each
parameter update uses a single observation; analogous algorithms
may be derived for the batch and mini-batch cases.

2Given a convex function Φ : H → R, its subdifferential at

θ is the set ∂Φ(θ) , {g ∈ H | ∀θ′ ∈ H, Φ(θ′) − Φ(θ) ≥
〈g,θ′ − θ〉}, the elements of which are the subgradients.
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the Φ-proximity operator (Moreau, 1962) is defined as:

proxΦ(θ) = argmin
ξ∈H

1

2
‖ξ − θ‖2 +Φ(ξ). (10)

For sparsity-promoting regularizers, such as Φ(ξ) = ‖ξ‖1
or Φ(ξ) = ‖ξ‖2,1, proxΦ has a shrinkage and threshold-

ing effect on the parameter vector, pushing Alg. 1 to return

sparse solutions. This does not usually happen in standard

SGD: since those regularizers are non-differentiable at the

origin, each subgradient step in SGD causes oscillation and

the final solution is rarely sparse. Contrarily, Alg. 1 is par-

ticularly appropriate for learning sparse models.

Finally, the projection step (line 9) can be used as a trick

to accelerate convergence: for example, if we take the un-

constrained version of (9) and we know beforehand that the

optimum lies in a convex set Θ, then the constraint θ ∈ Θ is

“vacuous,” but line 9 ensures that each iterate θt is confined

to a bounded region containing the optimum. This idea is

also used in PEGASOS (Shalev-Shwartz et al., 2007).

Before analyzing Alg. 1, we remark that it includes, as par-

ticular cases, many well-known online learners:

• if Ω = 0 and ηt ∝ 1√
t
, Alg. 1 is the online projected

subgradient algorithm of Zinkevich (2003);

• if Ω = 0, L = LSVM + λ
2
‖θ‖2, and ηt = 1

λt
, Alg. 1

becomes PEGASOS, a popular algorithm for learning

SVMs that has been extended to structured prediction

(Shalev-Shwartz et al., 2007, 2010);

• If Ω(θ) = ‖θ‖1, Alg. 1 was named truncated gradient

descent and studied by Langford et al. (2009);

• If J = 1, Alg. 1 coincides with FOBOS (Duchi and

Singer, 2009), which was used for learning SVMs and

also for group-LASSO (but not for structured prediction).

In §3.4, we show how to kernelize Alg. 1 and apply it to

sparse MKL. The case J > 1 has applications in vari-

ants of MKL or group-LASSO with composite regularizers

(Tomioka and Suzuki, 2010; Friedman et al., 2010; Bach,

2008b; Zhao et al., 2008). In some of those cases, the prox-

imity operators of Ω1, ...,ΩJ are easier to compute than

their sum Ω, making Alg. 1 more suitable than FOBOS.

3.2 Proximity Operators of Block-Norm Regularizers

For Alg. 1 to handle the MKL and group-LASSO prob-

lems (described in §2.2), it needs to compute the proximal

steps for block-norm regularizers. The following proposi-

tion (proved in App. A) is crucial for this purpose.

Proposition 1 If Φ(θ) = ϕ((‖θm‖)Mm=1) depends on each

block only through its ℓ2-norm, where ϕ : RM → R, then,

[proxΦ(θ)]m = [proxϕ(‖θ1‖, . . . , ‖θM‖)]m(θm/‖θm‖).

Algorithm 1 Online Proximal Algorithm

1: input: dataset D, parameter λ, number of rounds T ,

learning rate sequence (ηt)t=1,...,T

2: initialize θ1 = 0; set N = |D|
3: for t = 1 to T do

4: take training pair (xt, yt) and obtain a subgradient

g ∈ ∂L(θt;xt, yt)
5: θ̃t = θt − ηtg (gradient step)

6: for j = 1 to J do

7: θ̃t+
j

J
= proxηtλΩj

(θ̃t+
j−1

J
) (proximal step)

8: end for

9: θt+1 = ΠΘ(θ̃t+1) (projection step)

10: end for

11: output: the last model θT+1 or the averaged model

θ̄ = 1

T

∑T

t=1
θt

Hence, any ℓ r2,q-proximity operator can be reduced to an ℓ rq
one: its effect is to scale the weights of each block by an

amount that depends on the latter. Examples follow.

Group-LASSO. This corresponds to q = r = 1, so we

are left with the problem of computing the τ‖·‖1-proximity

operator, which has a well-known closed form solution: the

soft-threshold function (Donoho and Johnstone, 1994),

proxτ‖·‖1
(b) = soft(b, τ), (11)

where [soft(b, τ)]k , sgn(bk) ·max{0, |bk| − τ}.

Sparse MKL. This corresponds to q = 1, r = 2, and

there are two options: one is to transform the problem back

into group-LASSO, by removing the square from ΩMKL (as

pointed out in §2, these two problems are equivalent in the

sense that they have the same regularization path); the other

option (that we adopt) is to tackle ΩMKL directly.3 Prop. 1

enables reducing the evaluation of a ‖·‖22,1-proximity oper-

ator to that of a squared ℓ1. However the squared ℓ1 is not

separable (unlike ℓ1), hence the proximity operator cannot

be evaluated coordinatewise as in (11). This apparent diffi-

culty has led some authors (e.g., Suzuki and Tomioka 2009)

to stick with the first option. However, despite the non-

separability of ℓ21, this proximal step can still be efficiently

computed, as shown in Alg. 2. This algorithm requires

sorting the weights of each group, which has O(M logM)
cost. Correctness of this algorithm is shown in App. E.4

Non-Sparse MKL. For the case q ≥ 1 and r = 2, a di-

rect evaluation of proxτ‖·‖2

2,q
is more involved. It seems

advantageous to transform this problem into an equiva-

lent one, which uses a separable ℓq2,q regularizer instead

(the two problems are also equivalent up to a change in

3This makes possible the comparison with other MKL algo-
rithms, for the same values of λ, as reported in §4.

4A similar algorithm was proposed independently by Kowal-
ski and Torrésani (2009) in a different context.
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André F. T. Martins∗† Noah A. Smith∗ Eric P. Xing∗ Pedro M. Q. Aguiar‡ Mário A. T. Figueiredo†

Algorithm 2 Proximity Operator of ℓ21

1: input: vector x ∈ R
M and parameter λ > 0

2: sort the entries of |x| into y (yielding y1 ≥ . . . ≥ yM )

3: set ρ = max
{

j ∈ {1, ...,M} | yj − λ
1+jλ

∑j

r=1
yr > 0

}

4: output: z = soft(x, τ), where τ = λ
1+ρλ

∑ρ

r=1
yr

the regularization constant). The resulting proximal step

amounts to solving (on b) M scalar equations of the form

b − b0 + τqbq−1 = 0, also valid for q ≥ 2 (unlike the

method described by Kloft et al. 2010). This can be done

very efficiently using Newton’s method.

Other variants. Many other variants of MKL and group-

LASSO can be handled by Alg. 1, with J > 1. For ex-

ample, the elastic net MKL (Tomioka and Suzuki, 2010)

uses a sum of two regularizers, σ
2
‖.‖2 + 1−σ

2
‖.‖22,1. In hi-

erarchical LASSO and group-LASSO with overlaps (Bach,

2008b; Zhao et al., 2008; Jenatton et al., 2009), each feature

may appear in more than one group. Alg. 1 handles these

problems seamlessly by enabling a proximal step for each

group.5 Sparse group-LASSO (Friedman et al., 2010) si-

multaneously promotes group-sparsity and sparsity within

each group, via σ‖.‖2,1+(1−σ)‖.‖1 regularization; Alg. 1

can handle this regularizer by using two proximal steps,

both involving simple soft-thresholding: one at the group

level, and another within each group.

3.3 Regret, Convergence, and Generalization Bounds

We next show that, for a convex loss L and under standard

assumptions, Alg. 1 converges up to ǫ precision, with high

confidence, in O(1/ǫ2) iterations. If L or Ω are strongly

convex,6 this bound is improved to Õ(1/ǫ), where Õ hides

logarithmic terms. Our proofs combine tools of online con-

vex programming (Zinkevich, 2003; Hazan et al., 2007)

and classical results about proximity operators (Moreau,

1962). The key is the following lemma (proved in App. B).

Lemma 2 Assume that L is convex and G-Lipschitz7 on Θ,

and that Ω =
∑J

j=1
Ωj satisfies the following conditions:

(i) each Ωj is convex; (ii) ∀θ ∈ Θ, ∀j′ < j, Ωj′(θ) ≥
Ωj′(proxλΩj

(θ)) (each proximity operator proxλΩj
does

not increase the previous Ωj′ ); (iii) Ω(θ) ≥ Ω(ΠΘ(θ))
(projecting the argument onto Θ does not increase Ω).

5Recently, a lot of effort has been placed on ways for com-
puting the proximal step for regularizers with overlapping groups
(Liu and Ye, 2010a,b; Mairal et al., 2010). Alg. 1 suggests
an alternative approach: split the regularizer into several non-
overlapping parts and apply sequential proximal steps. Although
in general proxΩJ

◦ . . . ◦proxΩ1
6= proxΩJ◦...◦Ω1

, Alg. 1 is still
applicable, as we will see in §3.3.

6Φ is σ-strongly convex in S if ∀θ ∈ S, ∀g ∈ ∂Φ(θ), ∀θ′ ∈
H, Φ(θ′) ≥ Φ(θ) + 〈g,θ′ − θ〉+ σ

2
‖θ′ − θ‖2.

7Φ is G-Lipschitz in S if ∀θ ∈ S, ∀g ∈ ∂Φ(θ), ‖g‖ ≤ G.

Then, for any θ̄ ∈ Θ, at each round t of Alg. 1,

L(θt) + λΩ(θt+1) ≤ L(θ̄) + λΩ(θ̄) + ǫ, (12)

where ǫ = ηt

2
G2 + ‖θ̄−θt‖

2−‖θ̄−θt+1‖
2

2ηt
.

If L is σ-strongly convex this bound can be strengthened to

L(θt) + λΩ(θt+1) ≤ L(θ̄) + λΩ(θ̄) + ǫ′, (13)

where ǫ′ = ǫ− σ
2
‖θ̄ − θt‖2.

A related, but less tight, bound for J = 1 was derived

by Duchi and Singer (2009); instead of our term η
2
G2 in

ǫ, theirs is 7η
2
G2.8 When Ω = ‖ · ‖1, FOBOS becomes

the truncated gradient algorithm of Langford et al. (2009)

and our bound matches the one therein derived, closing

the gap between Duchi and Singer (2009) and Langford

et al. (2009). Finally, note that the conditions (i)–(iii) are

not restrictive: they hold whenever the proximity operators

are shrinkage functions—e.g., if Ωj(θ) = ‖θGj
‖qj2,pj

, with

pj , qj ≥ 1 and Gj ⊆ {1, . . . ,M}, which also covers the

overlapping group case where
⋂J

j=1
Gj 6= ∅.

We next use Lemma 2 to characterize Alg. 1 in terms of its

cumulative regret w.r.t. the best fixed hypothesis, i.e.,

RegT ,
∑T

t=1
(λΩ(θt) + L(θt;xt, yt))

− minθ∈Θ

∑T

t=1
(λΩ(θ) + L(θ;xt, yt)) . (14)

Proposition 3 (regret bounds) Assume the conditions of

Lemma 2, along with Ω ≥ 0 and Ω(0) = 0. Then:

1. Running Alg. 1 with fixed learning rate η yields

RegT ≤ ηT

2
G2 +

‖θ∗‖2
2η

, (15)

where θ
∗ = argminθ∈Θ

∑T

t=1
(λΩ(θ) + L(θ;xt, yt)).

Setting η = ‖θ∗‖/(G
√
T ) yields a sublinear regret of

‖θ∗‖G
√
T . (Note that this requires knowing in advance

‖θ∗‖ and the number of rounds T .)

2. Assume that Θ is bounded with diameter F (i.e.,

∀θ,θ′ ∈ Θ, ‖θ − θ
′‖ ≤ F ). Let the learning rate be

ηt = η0/
√
t, with arbitrary η0 > 0. Then,

RegT ≤
(

F 2

2η0
+G2η0

)√
T . (16)

With η0 = F/(
√
2G), we obtain RegT ≤ FG

√
2T .

3. If L is σ-strongly convex, and ηt = 1/(σt), we obtain a

logarithmic regret bound:

RegT ≤ G2(1 + log T )/(2σ). (17)

Proof: See App. C.

8This can be seen from their Eq. 9 with A = 0 and ηt = η
t+ 1

2
.
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Similarly to other analyses of online learning algorithms,

once an online-to-batch conversion is specified, regret

bounds allow us to obtain PAC bounds on optimization

and generalization errors. The following proposition can be

proved using the techniques of Cesa-Bianchi et al. (2004)

and Shalev-Shwartz et al. (2007).

Proposition 4 (optimization and estimation error)

If the assumptions of Prop. 3 hold and ηt = η0/
√
t

as in item 2 in Prop. 3, then the version of Alg. 1 that

returns the averaged model solves (9) with ǫ-accuracy in

T = O((F 2G2 + log(1/δ))/ǫ2) iterations with proba-

bility at least 1 − δ. If L is also σ-strongly convex and

ηt = 1/(σt) as in item 3 of Prop. 3, then, for the version of

Alg. 1 that returns θT+1, we get T = Õ(G2/(σδǫ)). The

generalization bounds are of the same orders.

We now pause to examine some concrete cases. The re-

quirement that the loss is G-Lipschitz holds for the hinge

and logistic losses, where G = 2maxu∈U ‖φ(u)‖ (see

App. D). These losses are not strongly convex, and there-

fore Alg. 1 has only O(1/ǫ2) convergence. If the regular-

izer Ω is σ-strongly convex, a possible workaround to ob-

tain Õ(1/ǫ) convergence is to let L “absorb” that strong

convexity by redefining L̃(θ;xt, yt) = L(θ;xt, yt) +
σ‖θ‖2/2. Since neither the ℓ2,1-norm nor its square are

strongly convex, we cannot use this trick for the MKL

case, but it does apply for non-sparse MKL (ℓ22,q-norms are

strongly convex for q > 1) and for elastic MKL. Still, the

O(1/ǫ2) rate for MKL is competitive with the best batch

algorithms that tackle the dual; e.g., the method of Xu et al.

(2009) achieves ǫ primal-dual gap in O(1/ǫ2) iterations.9

Some losses of interest (e.g., the squared loss, or the modi-

fied loss L̃ above) are G-Lipschitz in any compact subset of

H but not in H. However, if the optimal solution is known

to lie in some compact set Θ, we can run Alg. 1 with the

projection step, making the analysis still applicable.

3.4 SPOM: Structured Prediction with Online MKL

The instantiation of Alg. 1 for structured prediction and

ΩMKL(θ) =
1
2‖θ‖22,1 yields the SPOM algorithm (Alg. 3).

We consider L = LSVM; adapting to any generalized linear

model (e.g., L = LCRF) is straightforward. As discussed

in the last paragraph of §3.3, the inclusion of a vacuous

projection may accelerate convergence. Hence, an optional

upper bound γ on ‖θ‖ is accepted as input. Suitable values

of γ for the SVM and CRF case are given in App. D.

In line 5, the scores of candidate outputs are computed

blockwise; as described in §2.3, a factorization over parts

is assumed and the scores are for partial output assign-

ments. Line 6 gathers all these scores and decodes (loss-

9On the other hand, batch proximal gradient methods for
smooth losses can be accelerated to achieve O(1/

√

ǫ) conver-
gence in the primal objective (Beck and Teboulle, 2009).

Algorithm 3 SPOM

1: input: D, λ, T , radius γ, learning rates (ηt)
T
t=1

2: initialize θ1 ← 0

3: for t = 1 to T do

4: sample an instance xt, yt
5: compute scores for m = 1, . . . ,M :

fm(xt, y
′
t) = 〈θt

m,φm(xt, y
′
t)〉

6: decode: ŷt ∈ argmax
y′

t∈Y(x)

∑M

m=1 fm(xt, y
′
t)+ c(y′t, yt)

7: Gradient step for m = 1, . . . ,M :

θ̃
t

m = θt
m − ηt(φm(xt, ŷt)− φm(xt, yt))

8: compute weights for m = 1, . . . ,M : b̃tm = ‖θ̃t

m‖
9: shrink weights bt = proxηtλ‖.‖2

2,1
(b̃t) with Alg. 2

10: Proximal step for m = 1, . . . ,M : θ̃
t+1

m = btm/b̃tm·θ̃
t

m

11: Projection step: θt+1 = θ̃
t+1 ·min{1, γ/‖θ̃t+1‖}

12: end for

13: compute βm ∝ ‖θT+1
m ‖ for m = 1, . . . ,M

14: return β, and the last model θT+1

augmented inference for the SVM case, or marginal infer-

ence for the CRF case). Line 10 is where the block struc-

ture is taken into account, by applying a proximity operator

which corresponds to a blockwise shrinkage/thresolding.

Although Alg. 3 is described with explicit features, it can

be kernelized, as shown next (one can also use explicit fea-

tures in some groups, and implicit in others). Observe that

the parameters of the mth block after round t can be written

as θt+1
m =

∑t

s=1 α
t+1
ms (φm(xs, ys)− φm(xs, ŷs)), where

αt+1
ms = ηs

t
∏

r=s

(

(brm/b̃rm)min{1, γ/‖θ̃r+1‖}
)

=

{

ηt(b
t
m/b̃tm)min{1, γ/‖θ̃t+1‖} if s = t

αt
ms(b

t
m/b̃tm)min{1, γ/‖θ̃t+1‖} if s < t.

Therefore, the inner products in line 5 can be kernel-

ized. The cost of this step is O(min{N, t}), instead of the

O(dm) (where dm is the dimension of the mth block) for

the explicit feature case. After the decoding step (line 6),

the supporting pair (xt, ŷt) is stored. Lines 9, 11 and 13

require the norm of each group, which can be manipulated

using kernels: indeed, after each gradient step (line 7), we

have (denoting ut = (xt, yt) and ût = (xt, ŷt))

‖θ̃t

m‖2 = ‖θt
m‖2 − 2ηt〈θt

m,φm(ut)〉+
η2t ‖φm(ût)− φm(ut)‖2

= ‖θt
m‖2 − 2ηtfm(ût) +

η2t (Km(ut, ut) +Km(ût, ût)− 2Km(ut, ût));

and the proximal and projection steps merely scale these

norms. When the algorithm terminates, it returns the kernel

coefficients β and the sequence (αT+1
mt ).
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In case of sparse explicit features, an implementation trick

analogous to the one used by Shalev-Shwartz et al. (2007)

(where each θm is represented by its norm and an un-

normalized vector) can substantially reduce the amount of

computation. In the case of implicit features with a sparse

kernel matrix, a sparse storage of this matrix can also sig-

nificantly speed up the algorithm, eliminating its depen-

dency on N in line 5. We do that in the experiments (§4).

Note that all steps involving block-specific computation

can be carried out in parallel using multi-core machines,

making Alg. 3 capable of handling many kernels (large M ).

4 EXPERIMENTS

We evaluate SPOM (Alg. 3) on two structured prediction

tasks: a sequence labeling task (handwriting recognition)

and a natural language parsing task (dependency parsing).

4.1 Handwriting Recognition

We use the OCR dataset of Taskar et al. (2003), which has

a total of 6,877 words and 52,152 characters.10 Each char-

acter (the input) is a 16 × 8 binary image, with one of 26
labels (a-z, the output to predict). As Taskar et al. (2003),

we address this sequence labeling problem with a structural

SVM; however, we use the SPOM algorithm to learn the

kernel from the data. We use an indicator basis function to

represent the correlation between consecutive outputs.

MKL versus average kernel. Our first experiment (up-

per part of Table 1; solid lines in Figure 1) compares lin-

ear, quadratic, and Gaussian kernels, either used individ-

ually, combined via a simple average, or with MKL (via

SPOM). The results show that MKL outperforms the oth-

ers by ≥ 2%, and that learning the bigram weight β0 (§2.3)

does not make any difference. Figure 1 shows that the

MKL approach is able to achieve an accurate model sooner.

Feature and kernel sparsity. The second experiment

aims at showing SPOM’s ability to exploit both feature and

kernel sparsity. We learn a combination of a linear ker-

nel (explicit features) with a generalized B1-spline kernel,

given by K(x,x′) = max{0, 1 − ‖x − x
′‖/h}, with h

chosen so that the kernel matrix has ∼ 95% zeros. The ra-

tionale is to combine the strength of a simple feature-based

kernel with that of one depending only on a few nearest

neighbors. The results (bottom part of Tab. 1) show that

the MKL outperforms by ∼ 10% the individual kernels,

and by more than 2% the averaged kernel. The accuracy

is not much worse than the best one obtained in the previ-

ous experiment, while the runtime is much faster (15 versus

279 seconds). Figure 1 (dashed lines) is striking. in show-

ing the ability of producing a reasonable model very fast.

SPOM versus wrapper-based methods. To assess the

effectiveness of SPOM as a kernel learning algorithm, we

10Available at www.cis.upenn.edu/˜taskar/ocr.

Table 1: Results for handwriting recognition. Averages

over 10 runs (same folds as Taskar et al. (2003), training on

one and testing on the others). The linear and quadratic ker-

nels are normalized to unit diagonal. In all cases, 20 epochs

were used, with η0 in (16) picked from {0.01, 0.1, 1, 10}
by selecting the one that most decreases the objective af-

ter 5 epochs. In all cases, the regularization coefficient

C = 1/(λN) was chosen with 5-fold cross-validation from

{0.1, 1, 10, 102, 103, 104}.

Kernel Training Test Acc.
Runtimes (per char.)

Linear (L) 6 sec. 71.8± 3.9%
Quadratic (Q) 116 sec. 85.5± 0.3%
Gaussian (G) (σ2 = 5) 123 sec. 84.1± 0.4%
Average (L+Q+G)/3 118 sec. 84.3± 0.3%
MKL β1L+ β2Q+ β3G 279 sec. 87.5± 0.3%
MKL β0, β1L+ β2Q+ β3G 282 sec. 87.5± 0.4%
B1-Spline (B1) 8 sec. 75.4± 0.9%
Average (L+B1)/2 15 sec. 83.0± 0.3%
MKL β1L+ β2B1 15 sec. 85.2± 0.3%
MKL β0, β1L+ β2B1 16 sec. 85.2± 0.3%
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Figure 1: Test set accuracies of single kernel and multiple

kernel methods as a function of the training stopping times.

compare it with two wrapper-based MKL algorithms: a

Gauss-Seidel method alternating between optimizing the

SVM and the kernel coefficients (see, e.g., Kloft et al.

2010), and a gradient method (SimpleMKL, Rakotoma-

monjy et al. 2008).11 In both cases, the SVMs were tackled

with structured PEGASOS. Despite the fact that each SVM

is strongly convex and has O( 1
ǫ
) convergence, its combi-

nation with a outer loop becomes time-consuming, even if

we warm-start each SVM. This is worse when regulariza-

tion is weak (small λ). In contrast, SPOM, with its overall

O( 1

ǫ
2 ) convergence, is stable and very fast to converge to a

near-optimal region, as attested in Fig. 2. This suggests its

usefulness in settings where each epoch is costly.

4.2 Dependency Parsing

We trained non-projective dependency parsers for English,

using the CoNLL-2008 shared task dataset (Surdeanu et al.,

2008), in a total of 39,278 training and 2,399 test sentences.

The output to be predicted from each input sentence is the

11We used the code in http://asi.insa-rouen.fr/

enseignants/˜arakotom/code/mklindex.html.

www.cis.upenn.edu/~taskar/ocr
http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
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Figure 2: Comparison between SPOM (Alg. 3) and two

wrapper based methods in the OCR dataset, with C = 100.

The wrapper-based methods run 20 epochs of PEGASOS in

their first SVM call; subsequent calls run 3 epochs with

warm-starting. With only 20–30 passes over the data,

SPOM approaches a region very close to the optimum; the

wrapper-based methods need about 100 epochs.

set of dependency arcs, linking heads to modifiers, that

must define a spanning tree (see example in Fig. 3). We use

arc-factored models, for which exact inference is tractable

via minimum spanning tree algorithms (McDonald et al.,

2005). We defined M = 507 feature templates for each

candidate arc by conjoining the words, lemmas, and parts-

of-speech of the head and the modifier, as well as the parts-

of-speech of the surrounding words, and the distance and

direction of attachment. This instantiates > 50 million

features. The feature vectors associated with each candi-

date arc, however, are very sparse and this is exploited in

the implementation. We ran SPOM with explicit features,

with each group standing for a feature template. MKL (via

SPOM) did not outperform a standard SVM in this exper-

iment (90.67% against 90.92%); however, it showed good

performance at pruning irrelevant feature templates (see

Fig. 3, bottom right). Besides interpretability, which may

be useful for the understanding of the syntax of natural lan-

guages, and memory efficiency (creating a smaller model),

this pruning is also appealing in a two-stage architecture,

where a learner at a second stage will only need to handle

a small fraction of the templates initially hypothesized.

5 RELATED WORK

Discriminative learning of structured predictors has been

an active area of research since the seminal works of Laf-

ferty et al. (2001); Collins (2002); Altun et al. (2003);

Taskar et al. (2003); Tsochantaridis et al. (2004).

Following the introduction of MKL by Lanckriet et al.

(2004), a string of increasingly efficient algorithms were

proposed (Sonnenburg et al., 2006; Zien and Ong, 2007;

Rakotomamonjy et al., 2008; Chapelle and Rakotoma-

monjy, 2008; Xu et al., 2009; Suzuki and Tomioka, 2009;

Kloft et al., 2010), although none was applied to structured

prediction. Group LASSO is due to Bakin (1999); Yuan

and Lin (2006), after which many variants and algorithms

appeared, all working in batch form: Bach (2008b); Zhao

Figure 3: Top: a dependency tree (adapted from McDonald

et al. 2005). Bottom left: group weights along the epochs

of Alg. 3. Bottom right: results of standard SVMs with

feature templates of sizes {107, 207, 307, 407, 507}, either

selected via a standard SVM or by MKL, via SPOM (the

UAS—unlabeled attachment score—is the fraction of non-

punctuation words whose head was correctly assigned.)

et al. (2008); Jenatton et al. (2009); Friedman et al. (2010).

Independently from us, Jie et al. (2010) proposed an online

algorithm for multi-class MKL (called OM-2), which per-

form coordinate descent in the dual. Our algorithm is more

flexible: while OM-2 is limited to ℓ2
2,q

-regularization, with

q > 1, and becomes slow when q → 1, we efficiently han-

dle the ℓ2
2,1

case as well as arbitrary composite regularizers.

Proximity operators are well known in convex analysis and

optimization (Moreau, 1962; Lions and Mercier, 1979) and

have recently seen wide use in signal processing; see Com-

bettes and Wajs (2006), Wright et al. (2009), and references

therein. Specifically, the theory of proximity operators (see

App. A) underlies the proofs of our regret bounds (Prop. 3).

6 CONCLUSIONS

We proposed a new method for kernel learning and feature

template selection of structured predictors. To accomplish

this, we introduced a class of online proximal algorithms

applicable to many variants of MKL and group-LASSO.

We studied its convergence rate and used the algorithm for

learning the kernel in structured prediction tasks.

Our work may impact other problems. In structured predic-

tion, the ability to promote structural sparsity can be useful

for learning simultaneously the structure and parameters of

graphical models. We will explore this in future work.
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