Machine Learning, 29, 45-63 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Online L earning ver sus Offline L ear ning:

SHAI BEN-DAVID shai @cs.technion.ac.il
Computer Science Dept., Technion, Israel.

EYAL KUSHILEVITZ** eyalk@cs.technion.ac.il
Computer Science Dept., Technion, Israel.

YISHAY MANSOURT mansour@gemini.math.tau.ac.il
Computer Science Dept., Tel-Aviv University, Isradl.

Editor: Saly Goldman

Abstract. We present an off-line variant of the mistake-bound model of learning. Thisis an intermediate model
between the on-line learning model (Littlestone, 1988, Littlestone, 1989) and the self-directed learning model
(Goldman, Rivest & Schapire, 1993, Goldman & Sloan, 1994). Just like in the other two models, alearner in the
off-line model has to learn an unknown concept from a sequence of elements of the instance space on which it
makes “guess and test” trials. In all models, the aim of the learner is to make as few mistakes as possible. The
difference between the modelsis that, while in the on-line model only theset of possible elementsisknown, in the
off-line model the sequence of elements(i.e., the identity of the elementsas well asthe order in which they are to
be presented) is known to the learner in advance. On the other hand, the learner is weaker than the self-directed
learner, which is allowed to choose adaptively the sequence of elements presented to him.

We study some of the fundamental properties of the off-line model. In particular, we compare the number of
mistakes made by the off-line learner on certain concept classes to those made by the on-line and self-directed
learners. We give bounds on the possible gaps between the various models and show examplesthat prove that our
bounds are tight.

Another contribution of thispaper isthe extension of the combinatorial tool of labeled treesto aunified approach
that captures the various mistake bound measures of all the modelsdiscussed. We believethat thistool will prove
to be useful for further study of models of incremental learning.

Keywords: On-Line Learning. Mistake-Bound, Rank of Trees

1. Introduction

The mistake-bound model of learning, introduced by Littlestone (Littlestone, 1988; 1989),
has attracted a considerable amount of attention (e.g., (Littleston, 1988, Littlestone, 1989,
Littlestone & Warmuth, 1994, Blum 1994, Blum 1992a, Maass, 1991, Chen & Maass,
1994, Helmbold, Littlestone & Long, 1992, Goldman, Rivest & Schapire, 1993, Goldman
& Sloan, 1994)) and is recognized as one of the central models of computational learning

This paper is an extended version of apaper that appeared in EuroCOLT 1995. In addition it contains some of
the results of the paper “On Self-Directed Learning” by S. Ben-David, N. Eiron, and E. Kushilevitz that appeared
in COLT 1995.

** http://www.cs.technion.ac.il/~eyalk. This research was supported by Technion V.PR. Fund 120-872 and by
Japan Technion Society Research Fund.

T http://www.math.tau.ac.il/ mansour. This research was supported in part by The Israel Science Foundation
administered by the Isragl Academy of Science and Humanities, and by a grant of the Isragli Ministry of Science
and Technology.

46 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

theory. Basically it models a process of incremental learning, where the learner discovers
the ‘labels’ of instances one by one. At any given stage of the learning process, the learner
has to predict the label of the next instance based on his current knowledge, i.e. the labels
of the previous instances that it has already seen. The quantity that the learner would like
to minimize is the number of mistakes it makes along this process. Two variants of this
model were considered, allowing the learner different degrees of freedom in choosing the
instances presented to him:

e Theon-line model (Littlestone, 1988, Littlestone, 1989), in which the sequence of in-
stancesis chosen by an adversary and the instances are presented to the learner one-by-
one.

e Thesdf-directedmodel (Goldman, Rivest & Schapire, 1993, Goldman & Sloan, 1994),
inwhich thelearner isthe one who chooses the sequence of instances; moreover, it may
make his choices adaptively; i.e., each instance is chosen only after seeing the labels
of all previous instances.

In the on-line model, the learner is faced with two kinds of uncertainties. Thefirst iswhich
function isthe target function, out of al functionsin the concept class which are consistent
with the data. The second is what are the instances that it would be challenged on in the
future. While the first uncertainty is common to amost any learning model, the second is
particular to the on-line learning model.

A central aim of thisresearch isto focus on the uncertainty regarding the target function
by trying to “ neutralize” the uncertainty that isinvolved in not knowing the future elements,
and to understand the effect that this uncertainty has on the mistake-bound learning model.
One way of doing this, isto allow the learner afull control of the sequence of instances, as
isdonein the self-directed model. Our approach is different: we define the off-linelearning
model asaonein which thelearner knows the sequence of el ements in advance. Since the
difference between the on-line learner and the off-line learner is the uncertainty regarding
the order of the instances, this comparison gives insight into the “information” that is in
knowing the sequence.

Once we define the off-line cost of a sequence of elements, we can aso define a best
sequence (a sequence in which the optimal learner, knowing the sequence, makes the
fewest mistakes) and aworst sequence (a sequence in which the optimal learner, knowing
the sequence, makes the most mistakes). These are best compared to the on-line and
self-directed models if we think of them in the following way:

e The worst sequence (off-line) model is a one in which the sequence of instances is
chosen by an adversary but the whole sequence (without the labels) is presented to the
learner before the prediction process starts.

e The best sequence (off-line) model is a one in which the whole sequence of instances
is chosen by the learner before the prediction process starts.

Denote by M, —tine (C)y Muyorst (C), Mpest (C) and Mgy (C) the number of mistakes made
by the best learning algorithm in the online, worst sequence, best sequence and self-directed

ONLINE LEARNING VERSUS OFFLINE LEARNING 47

model (respectively) on the worst target concept in a concept classC. Obviously, for al C,
Mon—line (C) Z Mworst(c) Z Mbest(c) Z Msd (C)

The main issue we consider isto what degree these measures can differ from one another.
We emphasize that the only complexity measure is the number of mistakes and that other
complexity measures, such as the computational complexity of the learning algorithms, are
ignored. It isknown that in certain cases M, can be strictly smaller than M., _jine. FOr
example, consider the class of monotone monomials over n variables. It can be seen that
this class has My = 1 (Goldman & Sloan, 1994) but M, _;ne = n (Littlestone, 1988,
Littlestone, 1989). In addition, we give examples that show, for certain concept classes,
that M., may be smaller than M,,...; by amultiplicativefactor of O(log n); hence, showing
the power of adaptiveness. The following example shows that there are also gaps between
Mpest and My,orst- Given n points in the interva [0, 1], consider the class of functions
which are a suffix of this interval (i.e., the functions f,(x) that are 1 for x > a and 0
otherwise). As there are n points, there are only n + 1 possible concepts, and therefore
the Halving algorithm (Littlestone, 1988, Littlestone, 1989) is guaranteed to make at most
O(log n) mistakes, i.e. Mg, —1ine = O(logn). For this class, a best sequence would
be receiving the points in increasing order, in which case the learner makes at most one
mistake (i.e., My.s; = 1). On the other hand, we show that the worst sequence forces
Myorst = O(logn) mistakes. An interesting question is what is the optimal strategy
for a given sequence. We show a simple optimal strategy and prove that the number of
mistakesisexactly therank of asearch tree (into which weinsert the pointsin the order they
appear in the sequence). We generalize this example, and show that for any concept class,
the exact number of mistakes is the rank of a certain tree corresponding to the concept
class and the particular sequence (this tree is based on the consistent extensions). This
formalization of the number of mistakes, in the spirit of Littlestone's formalization for
the on-line case (Littlestone, 1988, Littlestone, 1989), provides a powerful combinatorial
characterization.

All the above examples raise the question of how large can these gaps be. We prove
that the gaps demonstrated by the above mentioned examples are essentialy the largest
possible; more precisaly, we show that M, _;». Can be greater than M, by at most a
factor of log |X |, where X’ is the instance space (e.g., in the monomials example X’ is the
set of 2" boolean assignments).

Theaboveresultimplies, inparticular, that the ratio between the number of mistakesfor the
best sequence and theworst sequenceisO (log n), wheren isthelength of the sequencea We
also show that Myor st = Q(+/1og My, —1ine), Which implies that either both are constant
or both are non-constant. Finally we show examples in which M, _jine = % « Myor st »
showing that M,or ¢ # Mon —1ine- IN afew cases we are able to derive better bounds: for
the casesthat M,or ¢ = 1 and My, = 2 we show simple on-line algorithms that have
at most 1 and 3 mistakes, respectively.

One way to view the relationships among the above modelsis through the model of “ex-
perts’ (Cesa-Bianchi, et al., 1993, Feder, Merhav & Gutman, 1992, Merhav & Feder, 1993).
For each sequence o thereisan expert, E,,, that makes its predictions under the assumption
that the sequenceis . Let o* be the sequence chosen by the adversary, then the expert

48 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

E,« makes at most M., mistakes. The on-line learner does not know the sequence o*
in advance, so the question is how close can it get to the best expert, E,. The problem
is that the number of experts is overwhelming; initially there are n! experts (although the
number of experts consistent with the elements of the sequence o* seen so far decreases
with each element presented). Therefore, previous results about experts do not apply here.

The rest of this paper is organized as follows. In Section 2, we give formal definitions
of the model and the measures of performance that are discussed in this paper, followed
by some simple properties of these definitions. In Section 3, we give the definition of the
rank of atree (aswell as some other related definitions) and prove some properties of it.
In Section 4, we present the various gaps. Then, we characterize the off-line complexity
(for completeness, we present in Section 4.2.1 a characterization of the same nature, based
on (Littlestone, 1988, Littlestone, 1989), for the on-line complexity and for the self-directed
complexity (Goldman & Sloan, 1994)) and we use these characterizations to obtain some
basic results. Finally, in Section 5, we use these characterizations to study the gap between
the on-line complexity and off-line complexity.

2. TheModd
2.1. Basic Definitions

In this section we formally present our versionsof the mistake bound learning model which
is the subject of this work. The general framework is similar to the on-line learning model
defined by Littlestone (Littlestone, 1988, Littlestone, 1989).

Let X be any set, and let C be a collection of boolean functions defined over the set X
(e C C{fIf : X — {0,1}}). We refer to X as the instance space and to C as the
concept class. Let S be afinite subset of X'. An on-line learning algorithm with respect to
S (and a concept class C) is an algorithm A that is given (in advance) S as an input; Then,
it worksin steps as follows: In thei-th step the algorithm is presented with anew element
s;i € S. It then outputs its prediction p; € {0,1} and in response it gets the true value
ct(si), where ¢, € C denotesthe target function. The prediction pi may depend on the set
S, the valuesit has seen so far (and of course the concept classC). The process continues
until al the elements of S have been presented. Let o = s1, s, . .., s, denote the order
according to which the elements of .S are presented to the learning algorithm. Denote by
M (A[S], o, c;) the number of mistakes made by the algorithm on a sequence o as above
and target function ¢; € C, when the algorithm is given S in advance (i.e., the number of
elements for which pi # ¢;(s;)). Define the mistake bound of the algorithm, for afixed .S,

as M(A[S]) £ max,., M(A[S],,c;). Finally, let

Monling(S.C) = min M(A[S]) = min max M(A[S], o c:).
The original definitions of (Littlestone, 1988, Littlestone, 1989) are obtained (at least for
finite X’) by considering S = X.
An off-line learning algorithm is an algorithm A that is given (in advance) not only the
set S, but also the actual sequence o as an input. The learning process remains unchanged

ONLINE LEARNING VERSUS OFFLINE LEARNING 49

(except that each prediction p; can now depend on the actual sequence, o, and not only on
the set of elements, S). Denote by M (A[o], ¢;) the number of mistakesmade by an off-line

algorithm, A, on asequence o and atarget ¢;. Define M (A[o]) 2 max., M(Alo], ¢;) and
for a particular sequence o, define

M(7,€) < min M(Alo]) = min max M(Alo], ct).
For agiven S, we are interested in the best and wor st sequences. Denote by Mpe (.S, C)
the smallest valueof M (o, C) over al o, anordering of S, and let opeqt be a sequence that
achieves this minimum (if there are several such sequences pick one of them arbitrarily).
Similarly, Morst(S,C) is the maximal value of M (o,C) and oyyorst IS @ Sequence such
that M (oworst, C) = Mworst(S,C).

A sdlf-directed learning algorithm A isa onethat choosesits sequence adaptively; hence
the sequence may depend on the classifications of previous instances (i.e., on the target
function). Denote by Mgy(.A[S], ;) the number of mistakes made by a self-directed algo-
rithm .4 on atarget function ¢; € C, when the agorithmisgiven in advance S (the set from

which itis allowed to pick its queries). Define Mgy(A[S]) 2 max., Mgy(A[S], c:) and

Mgy(S.C) 2 min Meg(A[S]) = min max Mgj(A[S], o).

The following is a simple consegquence of the definitions:

LEMMA 1 Forany X,C, and afinite S C X,

Mgy(S,C) < Mpegt (S, C) < Myorst(S,C) < Mop|ine(S;C)-

2.2. Rdationsto Equivalence Query Models

Itiswell known that the on-line learning model is, basically, equivalent to the Equivalence
Query (EQ) model (Littlestone, 1989). It is not hard to realize that our versions of the
on-line scenario give rise to corresponding variants of the EQ model. For thiswe need the
following definitions:

e An equivalence-query learning algorithm with respect to S (and a concept classC) is
an agorithm A that isgivenin advance S asaninput; Then, it worksin stepsasfollows:
In the i-th step the algorithm outputs its hypothesis, h; C S, and in response it gets a
counterexample; i.e,, an element z; € (h;Act) NS, where ¢, € C denotes the target
function. The process goeson until (h;Ac;) NS =0 (i.e. by = ¢t N S).

e Let F denotethefunctionthat choosesthe counterexamplesz;. Wedenoteby EQ(A[S],
F ¢;) the number of counterexamples, x;, presented by F' to the algorithm, A, in the
course of a learning process on the target, ¢;, when A knows S in advance (but does
not know F).

50 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

o Findly, let EQ(S,C) £ min 4 maxp,.,cc EQ(A[S], F, cr).

Note that the original definitions of Angluin (Angluin, 1989) are obtained by considering
S = X. Thefollowing isawell known (and easy to prove) fact:

Cramv 1 Forevery X, Cand S C X asabove, EQ(S,C) = Mgn.Jine(S;C).

One aspect of the last definition aboveisthat it considers the worst case performance of
the learner over all possible choices, F', of counterexamples to its hypotheses. It turns out
that by relaxing the definition so that the learner is only confronted with F’s of a certain
type, one gets EQ models that match the various offline learning measures presented in the
previous subsection.

e Let o denote an ordering of the set S. Let F,, be the following strategy for choosing
counterexamples. Given a hypothesis &, the counterexample, F; (h), is the minimal
element of (hAc;) N S, according to the ordering o.

o Let EQ(JaC) é min 4 maXe,ec EQ(A[J]7FU7Ct)'
o Let EQpeg(S.C) £ min, EQ(c,C), and let EQuorgt(S,C) £ max, EQ(0,C).

This variant of the equivalence query model in which the minimal counterexampleis pro-
vided to the algorithm is studied, e.g., in (Porat & Feldman, 1991).

CrLamm 2 For every X, C and S C X as above, for every ordering o of S, EQ(c,C) =
M(o,C).

Proof: Givenan EQ agorithmfor (S, C, o) construct an off-line algorithm by predicting,
on each element s;, the value that the current hypothesisof the EQ agorithm, A, , assignsto
s;. Whenever the teacher’s response indicates a prediction waswrong, present that element
as a counterexample to the EQ algorithm (and replace the current hypothesis by its revised
hypothesis).

For the other direction, given an offline algorithm, define at each stage of its learning
process a hypothesis by assigning to each unseen element, s € S, the value the algorithm
would have guessed for s if it got responses indicating it made no mistakes along the
sequence, o, from the current stage up to that element. Whenever a counterexample is
being presented, pass on to the offline algorithm the fact that it has erred on that element
(and update the hypothesis according to its new guesses).]

COROLLARY 1 Forevery X, C and S C X asabove,

2. EQworst(S,C) = Mworst(S,C).

ONLINE LEARNING VERSUS OFFLINE LEARNING 51

3. Labeled Trees

A central tool that we employ in the quantitative analysisin thiswork is the notion of ranks
of trees. We shall consider certain classes of labeled trees, depending upon the classes to
be learned and the type of learning we wish to analyze. The following section introduces
these technical notions and their basic combinatorial properties.

3.1. Rank of Trees

In this subsection we define the notion of the rank of a binary tree (see, e.g., (Cormen,
Leiserson & Rivest, 1990, Ehrenfeucht & Haussler, 1989, Blum, 1992b)), which plays a
central rolein this paper. We then prove some simple properties of this definition.

For atree T, if T' isempty then rank(T") = —1. Otherwise, let T}, beits |eft subtree and
Tr beitsright subtree. Then,

[max{rank(7%),rank(Tr)} if rank(Ty) # rank(T'r)
rank(T) = { rank(7r) + 1L " otherwisé "

For example, the rank of aleaf is0.
Let () denotes 3°7_ (%). Thefollowing lemmais a standard fact about the rank:

%

LEMMA 2 Adepth d rank r tree hasat most (£) leaves.

Proof: By inductionond and r. If » = 0 then there is exactly one leaf (if there were two
or more, then their least common ancestor is of rank 1). If d = 1 either there is one leaf
(which is a specia case of » = 0) or two leaves, in which case » must be 1. In all these
casesthe claim holds. For theinduction step, let T be adepth d rank r tree. Each of 77, and
Tg are of depth at most d — 1 and, by the definition of rank, in the worst case one of them
isof rank r and the other of rank » — 1. Hence, by the induction hypothesis, the number of
leavesis bounded by

r r—1 r r
d—1 d—1 d d—1 d—1 d
()R ()02 () (00)) -5 0)
1=0 1=0 =1 1=0
which completes the proof.]
If r issmall relativeto d then it may be convenient to use the weaker d” (> (<dr)) bound

on the number of leaves.

A subtree of atree T is asubset of the nodes of T" ordered by the order induced by T'.

LEMMA 3 TherankofabinarytreeT isatleast k iff it hasa subtreeT” whichisa complete
binary tree of depth k.

Proof: Mark in T the nodes where the rank increases. Those are the nodes of 7”. For a
marked node with rank ¢, each of its children in T hasrank 7z — 1, hence it has a marked

52 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

descendant withrank 7 — 1. Therefore T is a complete binary tree. For the other direction,
note that the rank of atreeis at least the rank of any of its subtrees, and that a complete
binary tree of depth k hasrank k.]

LEMMA 4 Let T be a complete binary tree of depth k. Let Lq,..., L, be a partition of
theleaves of T into ¢ disjoint subsets. For 1 < ¢ < ¢, define T; to be the subtree induced by
theleavesin L; (thatis, T; isthetree consists of all ancestors of leavesin L;). Then, there

exists1 < ¢ < ¢ such that

rank(T;) > EJ .

Proof: The proof is by induction on ¢. For ¢ = 1 we have 77 = T hence the claim is
obvious. For ¢ > 1 we consider the nodesin depth |k /¢ | in T. There are two cases. (a) if
all these nodes belong to al trees T;; then each of these trees contains a complete subtree of
depth | k/t | and by Lemma 3 each of them has rank of at least | /¢ |. (b) if there existsa
nodew in depth | k /¢ | which does not belong to all the trees T; then we consider the subtree
T’ whose root is v and consists of all the nodes below v. By the definition of v, the leaves
of thetree T belong to at most ¢ — 1 of the sets L,. In addition the depth of T” is at least
(t%&. Hence, by induction hypothesis, one of the subtrees T/ of T" is of rank at least

-

Finally note that 77 is a subtree of T; hence T; hasthe desired rank. [|

Let us just mention that the above lower bound, on the rank of the induced subtrees, is
essentially the best possible. For example, take T" to be a complete binary tree. Each |eaf
corresponds to a path from the root to this leaf. Call an edge of such a path a left (right)
edgeif it goesfrom anodetoitsleft (right) son. Let Ly (L) be the set of leaveswith more
left (right) edges. Then, it can be verified that rank (Ty) = rank(Th) = k/2.

3.2. Labeled Trees

Let X' denote some domainset, S C X andC C {0, 1}~ asabove.

e An X-labeledtreeisapair, (T, F'), where T isabinary tree and F' afunction mapping
the internal nodes of 7" into X’. Furthermore, we impose thefollowing restriction on F':

Vt At €T, ift’ isanancestor of tthen F(t') # F(t).

e A branchinatreeisa path from the root to aleaf. It follows that the above mapping
Fisoneto one on branches of 7T'.

e A branch (¢4,...,t,) of T realizes a function

h . {F(tl), ey F(tn—l)} — {0, 1}

ONLINE LEARNING VERSUS OFFLINE LEARNING 53

ifforal 1 <i < n,t;4 isaleftsonoft; if andonlyif h(F(¢;)) = 1. Notethat abranch
can realize more than one function. On the other hand, if {F(t1),..., F(t,)} = X
then the branch realizes a single function.

e An X-labeled treeis an (S, C)-tree if the set of functions realized by its branches is
exactly Cs.

o Let 7§ denotethe set of all (S, C)-trees.

e Forasequenceo = (s1,...,s,) of dementsof X, let TS denote the maximal treein
T£ for which every node v in the k-th level islabeled F'(v) = sy.

Note, that using this notation, a class C shatters the set of elements of a sequence, o, if
and only if ¢ isacomplete binary tree (recall that aclassC shattersaset {si, ..., s, } if
forevery by,..., b € {0,1} thereexistsafunction f € Cthatforall i (1 < i < k) satisfies
f(si) = b;). We can therefore conclude that, for any classC,

VC-dim(C) = max{rank(T¢) : T¢ ¢ T¢ and T¢ isacomplete binary tree}.

(We shall usually omit the superscript C when it is clear from the context.)

4. Gapsbetween the Complexity M easures

Lemma 1 providesthe basic inequalities concerning thelearning complexity of the different
models. Inthissectionweturnto aquantitativeanalysisof thesizesof possiblegapsbetween
these measures. We begin by presenting, in Section 4.1, some examples of concept classes
for which there exist large gaps between the learning complexity in different models. In
Section 4.3, we prove upper bounds on the possible sizes of these gaps, bounds that show
that the examples of Section 4.1 obtain the maximal possible gap sizes. A useful tool in
our analysisisacharacterization of the various complexity measures as the ranks of certain
trees. This characterization is givenin section 4.2.

Let us begin our quantitative analysis by stating a basic upper bound on the learning
complexity in the most demanding model (from the student’s point of view), namely,
Mgn-line(S;C). Given an instance space X', a concept class C and a set S we define
Cs to be the projection of the functionsin C on the set S (note that several functionsin C
may collide into asingle functionin Cg). Using the Halving algorithm (Littlestone, 1988,
Littlestone, 1989) we get,

TueOREM 1 For all X',C and S asabove Mgp_jine(S; C) < log [Cs|.

4.1. Some Examples

The first example demonstrates that Myeq (.S, C) may be much smaller than Myyorst (S, C)
and Mon_1ine(S; C). This example was already mentioned in the introduction and appears
here in more details.

54 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

2o 33 .. wa . e E |y w va o |
h)] 1 o a 0 o] 1) 0 o o0 0 o 0 1]
£ lle]lo 1 [} o oo o 0o 1 0 0 o 1
f;d 0 a 0] L. 1] 1 1 1 1 1 H 1 1 1
g1 1 [i] 0 0 o ¢ 0 0 ¢ 1 0 Q 0 o
a2 1 0 2]] 1 g 0 0 1 D 1 a 1] 0
Gpd 1 1 1 1 1 L 1 1 1] a e 0 1

Figure 1. The concept class of Example

Example: Let X be the unit interval [0,1]. For, 0 < a < 1 define the function f,(z)

tobe 0ifx < aandlifzx > a LetC = {fo : 0<a<1}. In other words, the
concept class C consists of all intervals of the form [a, 1} for 0 < e < 1. Letn = 2™ and
S={% 2 ... 2} ByTheorem I, itis easy to see that in this example My, jine(S,C) <
log(n + 1). We would like to understand how an off-line algorithm performs in this case.

Clearly, for every sequence o, an adversary can always force a mistake on the first
element of the sequence. Hence, Mpact(S,C) > 1. To see that M}y (S5,C) = 1 let
Obest = (%, %, ...,). On this sequence the following strategy makes at most 1 mistake:
predict “0” until a mistake is made. Then, all the other elements are “1”s of the function.
For a worst sequence consider

1 13 1335
Tworst = 311 8%

It may be seen that the adversary can force the learning algorithm to make one mistake on
eachofthesets {1}, {1,231 {1,232 I} ... {s 50, ..., 2:=11, and hence a total
of m = log n mistakes. This is the worst poss1b1e, as this performance is already granted
for an on-line algorithm as discussed above (and, by Lemma 1 an off-line algorithm can
always match the on-line performance). O

The next example shows that for all n there exist sets = A" of size n, and a concept
class C, such that My4(S,C) < 2 and Miyeq (S, C) = Q(logn).

Example: Without loss of generality, assume that for some value d, » = 2 - 2¢ 4 1. Let
S=X=1{z21,...,%T94,Y1,---,Yae}. The concept class C (see Figure 1) consists of
224 functions f1, ..., fad, g1, ..., gsa. Bach function f; is defined as follows: f;(z) = 0;
fi(zi) = 1; fi(z;) = Oforall j # i (i.e., there is a single z; which is assigned 1 and hence
can be viewed as an indicator for the corresponding function f;). The elements 1, ..., Yaa
are partitioned into 2¢/d “blocks” each of size d. In each of these blocks the 27 functions
fi,..., foa get all the 27 possible combinations of values (as in Figure 1). The functions
g1, ..., goa are defined similarly by switching the roles of z’s and y’s. More precisely,
gi(z) = 15 gi(ys) = 1; gs(y;) = O for all j # i (i.e., this time y; serves as an indicator for

ONLINE LEARNING VERSUS OFFLINE LEARNING 55

the corresponding function g;). Again, theelementszy, . . ., 2, are partitioned into 2¢/d
blocks each of size d. In each of these blocks the 2¢ functions g1, . . ., g,« get al the 2¢
possible combinations of values.

Toseethat Mgy(.S,C) < 2 we describe aself-directed learner for this concept class. The
learner first asks about = and predictsin an arbitrary way. Whether it is right or wrong the
answer indicates whether the target functions is one of the f;'s or one of the g;'s. In each
case the learner looks for the corresponding indicator. That is, if ¢;(z) = 0 it asksthe z’s
one by one, predicting 0 on each. A mistake on some z; (i.e, c¢:(z;) = 1) immediately
impliesthat the target function is f; and no mistakes are made anymore. Symmetricaly, if
ct(z) = 1 the learner asks the y's one by one, predicting 0 on each. A mistake on some
y; (i.e, ci(y;) = 1) impliesthat the target function is g; and again no mistakes are made
anymore. In any case, the total number of mistakesis at most 2.

We now prove that Mpegt(S,C) = Q(log n).2 The idea is that a learner must choose
its sequence in advance, but does not know whether it looks for one of the f;'s or one
of the g;'s. Formally, let o be the (best) sequence chosen by the learner. We describe
a strategy for the adversary to choose a target function in a way that forces the learner
at least d/4 = Q(log n) mistakes. Let o’ be a prefix of o of length 2¢. The adversary
considers the number of x;'s queried in o’ versus the number of y;’s. Assume, without
loss of generdlity, that the number of z;'sin ¢’ is smaller than the number of y;'sin ¢’.
The adversary then restricts itself to choosing one of the f;'s. Moreover, it eliminates all
those functions f; whose corresponding element x; appearsin ¢’. Still, there are at least
24 /2 possible functions to choose from. Now, consider the y's queried in o’. By the
construction of C we can partition the elements yy, . .. , yoa into d “groups’ of size 2¢/d
such that every function f; gives the same value for al elements in each group. There are
at least 24 /2 elements y's that are queried in ¢’ and they belong to ¢ groups. By simple
counting, g < £ < d. We estimate the number of possible behaviors on these ¢ groups as
follows: originally all 24 behaviors on the d groups were possible. Hence, to eliminate one
of the behaviors on the ¢ elements one needs to eliminate 29— functions. Aswe eliminated
at most 2¢ /2 functions, the number of eliminated behaviorsisat most £24/2¢-¢ = 12¢.In
other words, there are at least %2‘ behaviors on these ¢ elements. On the other hand, if we
are guaranteed to make at most » mistakesit followsfrom Theorem 4 and Lemma 2 that the
number of functionsis at most (). Hence, r must be at least ¢/2 > d/4 = Q(log n).

O

4.2. Characterizing M (o, C) Using the Rank

Themain goal of this section is to characterize the measure M (o, C). Asaby-product, we
present an optimal offline prediction agorithm. 1.e., an algorithm, A, such that for every
sequence o, M (Alo]) = M(o,C).

The next theorem provides a characterization of M (o, C) interms of the rank of the tree
T (for any concept class C and any sequence o). A similar characterization was proved
by Littlestone (Littlestone, 1988, Littlestone, 1989) for the on-line case (see section 4.2.1
below).

56 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

TueorEM 2 For all X,C and o asabove, M (c,C) = rank(TYS).

Proof: To show that M (o,C) < rank(T,) we present an appropriate algorithm. For
predicting on s, the algorithm considers the tree T,,, defined above, whose root is s .
Denote by T7, its left subtree and by T', its right subtree. If rank(77,) > rank(T'r) the
agorithm predicts “0”, if rank(77,) < rank(Tg) the agorithm predicts “1”, otherwise
(rank(T,) = rank(Tr)) the algorithm can predict arbitrarily. Again, recall that in the
case that rank(T,) = rank(T'r), by the definition of rank, both rank(T},) and rank(T’r)
are smaller than rank(T,). Therefore, at each step the algorithm uses for the prediction a
subtree of T, which is consistent with all the valuesit has seen so far. To conclude, at each
step where the algorithm made a mistake, the rank decreased by (at least) 1, so no more
than rank (7,) mistakes are made.

To show that no algorithm can do better, we present a strategy for the adversary for
choosing atarget in C so asto guarantee that a given algorithm .4 makes at least rank(7},)
mistakes. The adversary constructs for itself the tree T,,. At step ¢, it holds a subtree T’
whose root is a node marked s; which is consistent with the valuesit aready gaveto A as
the classification of sy, ..., s;_1. After getting A’s prediction on s; the adversary decides
about the true values as follows: If one of the subtrees, either T, or T'r, has the same rank
astherank of T' then it chooses the value according to this subtree. Note that, by definition
of rank, at most one of the subtrees may have this property, so thisis well defined. In
this case, it is possible that .4 guessed the correct value (for example, the algorithm we
described above does this) but the rank of the subtree that will be used by the adversary in
the: 4 1-th step is not decreased. The second possible case, by the definition of rank, isthat
the rank of both 77, and Ty is smaller by 1 than the rank of 7. In this case, the adversary
chooses the negation of A’s prediction; hence, in such a step A makes a mistake and the
rank is decreased by 1. Therefore, the adversary can force atotal of rank(7,) mistakes.

[|

The above theorem immediately implies:
COROLLARY 2 For all X,C and S as above,
Myorst(S,C) = max {rank(T) : T =T¢, o isanorderingof S} .

Mpegt(S,€) = min {rank(T") : T =T, o isanorderingof S} .

Remark. It isworth noting that, by Sauer’'s Lemma (Sauer, 1972), if the concept classC
has V'C dimension d then the size of T is bounded by n? (where n, asusual, isthe length
of o). It follows that, for C with small V' C, the treeis small and therefore, if consistency
can be checked efficiently then the construction of thetreeisefficient. This, inturn, implies
the efficiency of the generic (optimal) off-line algorithm of the above proof, for classes with
“small” VC dimension.

Example: Consider again the concept class of Example 4.1. Notethat in this case, thetree
T, isexactly thebinary searchtreecorresponding tothesequences = s s ... s,. Namely,

ONLINE LEARNING VERSUS OFFLINE LEARNING 57

T, isthetreeconstructed by starting with an empty treeand performing the sequence of oper-
ationsinsert(sy), insert(ss), ..., insert(s,) (for details see, e.g. (Cormen, Leiserson &
Rivest, 1990)). Hence, M (o, C) isexactly therank of this search tree. O

4.2.1. Characterizing the On-line and Self-Directed Learning

To complete the picture onewould certainly liketo haveacombinatorial characterization of
Mgn-line(S; C) aswell. Suchacharacterizationwasgiven by Littlestone (Littlestone, 1988,
Littlestone, 1989). Wereformulatethischaracterizationintermsof ranksof trees. Theproof
remains similar to the one given by Littlestone (Littlestone, 1988, Littlestone, 1989) and
we provide it here for completeness.

THEOREM 3 For all X,C and S as above,

Mon-tine(S,€) = max {rank(T) : T € T } .

Proof: To show that Mqp jine(S,C) > max {rank(T) : T € 7§} we use an adversary
argument similar to the one used in the proof of Theorem 2. The adversary uses the
tree that gives the maximum in the above expression to choose both the sequence and
the classification of its elements, so that at each time that the rank is decreased by 1 the
prediction algorithm makes a mistake.

To show that Mgy jine(S; C) isat most m = max {rank(T') : T € T§ } we present an
appropriate algorithm, whichisagain similar to the one presentedin the proof of Theorem 2.
For predicting on s € S, we first define C to be all the functions in Cs consistent with
s =0, and C} tobeal thefunctionsin Cs consistent with s = 1. The algorithm compares

max {rank(T) :Te TSCU} and max {rank(T) :Te TSCI} and predicts according to
the larger one. The crucial point is that at least one of these two values must be strictly

smaller than m otherwise thereis atree in 7§ whose rank is more than m. The prediction
continues in this way, so that the maximal rank is decreased with each mistake.]

Finally, the following characterization isimplicit in (Goldman & Sloan, 1994):
THEOREM 4 For all X,C and S as above,

Mgq(S,C) = min {rank(T) : T € T§}.

Proof: Consider the tree T whose rank is the minimal one in Z§. We will show that
Mgy(S,C) is at most the rank of 7'. For this, we present an appropriate algorithm that
makes use of thistree. At each point, the learner asks for the instance which is the current
node in the tree. In addition, it predicts according to the subtree of the current node whose
rank ishigher (arbitrarily, if the ranks of the two subtrees are equal). Thetrue classification
determinesthe child of the current node from which the learner needsto proceed. It follows
from the definition of rank that whenever the algorithm makes a mistake the remaining
subtree has rank which is strictly smaller than the previous one.

58 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

For the other direction, given a strategy for the learner that makes at most Mgy(S,C)
mistakes we can construct atree T' that describes this strategy. Namely, at each point the
instances that the learner will ask at the next stage, given the possible classifications of
the current instance, determine the two children of the current node. Now, if the rank of
T was more than Mgy(S,C) then this gives the adversary a strategy to fool the learner:
at each node classify the current instance according to the subtree with higher rank. If
the ranks of both subtrees are equal then on any answer by the algorithm the adversary
says the opposite. By the definition of rank, this gives rank(7") mistakes. Hence, rank(7")
is a most Mgy(S,C) and certainly the minimum over all trees can only be smaller.

[|

4.3. A Bound on the Size of the Gap

A natural question is how large can be the gaps between the various complexity measures.
For example, what is the maximum ratio between Myyorgt(S,C) and Mpeg(S,C). In
Example 4.1 thebest is1 and theworst islog n, which can be easily generalized to k versus
©(klog n). The following theorem shows that the gap between the smallest measure,
Mgy(S,C), and the largest measure, the on-line cost, cannot exceed O(log n). This, in
particular, impliesasimilar bound for the gap between opyeq and oy orst- By Example4.1,
the bound is tight; i.e., there are cases which achieve this gap. Similarly, the gap between
Mgy(S,C) and Mpegt (S, C) exhibited by Example is also optimal.

THEOREM 5 For X',C and S of size n as above,

Mon-line(S,C) < Mgy(S,C) - log n.

We shall present two quite simple but very different proofs for this theorem. The first
proof employsthetool of labeled trees (but gives adightly weaker result) while the second
is by an information - theoretic argument.

Proof: [using labeled trees] Consider thetree T that givesthe minimum in Theorem 4. Its
depthisn and itsrank, by Theorem 4, ism = Mgy(.S,C). By Lemma 2, this tree contains
atmost () leaves. Thatis, [Cs| < (.},)- By Theorem 1, Mgp.jine(S, C) <log () =

O(m -log n). [|

Proof: [information theoretic argument] Let Cs be the projection of the functionsin C on
theset S (notethat several functionsinC may collideintoasinglefunctioninCg). Consider
the number of bits required to specify afunction in Cs. On one hand, at least log |Cs | bits
arerequired. On the other hand, any self-directed learning algorithm that learns this class
yields a natural coding scheme: answer the queries asked by the algorithm according to
the function ¢ € Cg; the coding consists of thelist of names of elements of S on which the
prediction of the algorithm iswrong. This information is enough to uniquely identify c. It
followsthat Mgy(.S, C) - log n bits are enough. Hence,

log [Cs| < Mgy(S,C) - log n.

ONLINE LEARNING VERSUS OFFLINE LEARNING 59

Finally, by the Halving algorithm (Littlestone, 1988, Littlestone, 1989), it is known that
Mon-ine(5,C) <log[Cs|.

The theorem follows. [|

CoroOLLARY 3 For X,C and S asabove, Myygrst(S,C) = O(Mpeg(S,C) - log n).

Proof: Combine Theorem 5 with Lemma 1. [|

5 Myorgt(S;C) vs. Mon|ine(S; C)

In this section we further discuss the question of how much can a learner benefit from
knowing the learning sequencein advance. Intheterminology of our model thisistheissue
of determining the possible values of the gap between Mg _jine(S,C) and Myorst(S, C).
We show (in Section 5.2) that if one of these two measures is non-constant then so is the
other. Quantitatively, if the on-lineagorithm makesk mistakes, then any off-line algorithm
makes Q(+/log k) mistakes on . For the special cases where Myyort (S, C) iseither 1 or
2, we prove (in Section 5.1) that Mgn_|ine(S,C) isat most 1 or 3 (respectively).

5.1. SimpleAlgorithms

In this section we present two simple on-line algorithms, E'1 and E2, for the case that the
off-line algorithm is bounded by one and two mistakes (respectively) for any sequence.

Let S be aset of elements of X. If for every sequence o, which is a permutation of S,
the off-line learning algorithm makes at most one mistake, then we show that there is an
on-line algorithm E1 that makes at most one mistake on S, without knowing the actual
order in advance. The algorithm E'1 uses the guaranteed off-line algorithm A and works
asfollows:

e Givenanelementx € S, chooseany sequenceo that startswith x, and predict according
to A’spredictionono,i.e. Afo]. If amistakeismadeonz, then A[o] madeamistakeand
it will not make any more mistakes on this sequence o. Hence, we can use A[o](c:(x))
to get the true values for al the elements of the sequence (where by A[o](c;(x)) we
denote the predictions that .4 makes on the sequence o after getting the value ¢, (z)).
In other words, for any y € S there is a unique value that is consistent with the value
c(x) # Alo] (otherwise A[o] can make another mistake). Therefore, E1 will make at
most one mistake.

In the case that for any sequence the off-line learning algorithm makes at most two
mistakes, we present an on-line algorithm E'2 that makes at most three mistakes (which is
optimal due to Claim 3 below).

Call an element x bivalent with respect to y if there exist sequences oy and o that both
start with zy and for o the on-line algorithm predicts “c;(z) = 0” and for o, the on-line
agorithm predicts “c,(z) = 1" (i.e., Alog] = 0 and A[o1] = 1). Otherwise x is univalent

60 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

with respect to y (we say that x is 1-univalent with respect to y if the prediction isalways 1
and 0-univalent if the prediction isalways0). Our on-line procedure £2, on input =, works
asfollows.

e Sofar we made no mistakes:
If there is no y such that = is 1-univalent with respect to y, predict “c;(z) = 0". Else,
predict “c;(x) =17,

e Sofar we made one mistake on a positive w:

If we made such a mistake then we predicted “c,(w) = 0", which impliesthat thereis
no y such that w is 1-univalent with respect to y. In particular, with respect to x, w is
either 0-univalent or bivalent. In both cases there is a sequence o = wxo’ such that
Alo] predicts “c;(w) = 0" and makes a mistake. Use b = A[o](1) as the prediction
on z (where again, A[o](1) denotes the prediction that .A makes on sequence o after
getting thevalue c;(w) = 1). In case of another mistake, we have a sequence on which
we aready made two mistakes so it will not make any more mistakes. Namely, we can
use Alo](1,b) to get the valuefor all elementsin S.

e Sofar we made one mistake on a negative w:

If w is either 1-univalent with respect to = or bivalent with respect to = then thisis
similar to the previous case. The difficulty isthat this time there is also a possibility
that w is 0-univalent with respect to z. However, in this case, if we made a mistake
this means that we predicted “c;(w) = 1", which impliesthat there exists ay such that
w is 1-univalent with respect to y. Consider a sequence o = wyxo’. By the definition
of y, Alo] predicts “c;(w) = 1" and therefore makes its first mistake on w. Denote
by b = A[c](0) the prediction on y. If thisiswrong again then all the other elements
of the sequence are uniquely determined. Namely, there is a unique function f; that
is consistent with ¢, (w) = 1,¢,(y) = b. If, on the other hand, b is indeed the true
value of y, we denote by ¢ = A[0](0, b) its prediction on z. Again, if thisiswrong, we
have a unique function f» which is consistent with ¢;(w) = 1,¢(y) = b, e (z) = €.
Therefore, we predict ¢ on . In case we made a mistake (this is our second mistake)
we know for sure that the only possiblefunctionsare f; and f> (infact, if we are lucky
then f;(x) = ¢ and we are done). To know which of the two functionsis the target we
will need to make (at most) one more mistake (3 in total).

5.2. A General Bound

In this section we further discuss the gap between the measures My |ine(S;C) and
Mworst(S,C). We show that if the on-line makes k& mistakes, then any off-line algo-
rithm makes Q(+/log k) mistakes on o. The proof makes use of the properties proved in
Section 3.1 and the characterizations of both the on-line and the off-line mistake bounds as
ranks of trees, proved in Section 4. More precisely, wewill takeatreein TS with maximum
rank (this rank by Theorem 3 exactly characterizes the number of mistakes made by the
on-line algorithm) and useit to construct a tree with rank which is“not too small” and such

ONLINE LEARNING VERSUS OFFLINE LEARNING 61

that the nodes at each level are labeled by the same element of S. Such atreeis of theform
T,, for some sequence o.

LeEmMA 5 Given a complete labeled binary tree of depth &, (T, F) € 7§, thereis a
sequence, o, of elements of S, such that the tree TS has rank Q(v/log k).

Proof: Wewill construct an appropriate sequence o in phases. At phasei (starting with
i = 0) we add (at most 2°) new elementsto o, so that the rank of 7€ isincreased by at least
one (hence, at the beginning of the ith phase therank is at least 7). At the beginning of the
ith phase, we have a collection of 2¢ subtrees of T, each is of rank at least k/200") > 1
(in particular, at the beginning of phase 0 there is a single subtree, T" itself, whose rank is
k). Each of these subtrees is consistent with one of the leaves of the tree T¢ we already
built in previousphases (i.e., the subtreeis consistent with some assignment to the elements
included in o in al previous phases). Moreover, the corresponding 2¢ leaves induce a
complete binary subtree of depth :.

In the ith phase, we consider each of the 2¢ subtreesin our collection. From each such
subtree T we add to the sequence o, an element r such that the rank of the subtree of T”
rooted at r isrank(7"”) and the rank in each of the subtrees T, and T’y corresponding to the
sons of r isrank(T”) — 1. We remark that the order in which we treat the subtrees within
the ith phase is arbitrary and that if some of the elements r already appear in o we do not
need to add them again. After adding all the¢; < 2i new elements of o we examine again
the trees T}, and T'r corresponding to each subtree T”. For each of them the other ¢, — 1
elements partitions the leaves of the tree into 2% —* groups according to the possible values
for the other ¢; — 1 elements. Hence, by Lemma 4, there exists subtrees T'; and T, of T},

and 7T, respectively which haverank at least Vank((:fl J > {ran;g:r’)J and each of them
is consistent with one of the leaves of the extended 7. The 2/ subtrees that we get in
this way form the collection of trees for phase ¢ + 1. Finally note that by the choice of
elements r added to o, we now get in TS acomplete binary subtree of depth i + 1.

If before the ith phase the rank of the subtrees in our collection is at least k; then after

the ith phase the rank of the subtrees in our collection is at least k; /2. Hence, asimple
induction implies that

stk
T2 2000

Therefore, we can repeat this process for Q(y/log k) phases hence obtaining atree TS of

rank Q(v/log k). [

THEOREM 6 LetC beaconcept class, X aninstancespaceand S C X theset of elements.
Then MWOfSt(S C \/IOg Mon |me(5’ C))

Proof: Assume that Mgn |ine(S,C) = k. By Theorem 3, there is arank k tree in
7§, and by Lemma 3 it contains a complete binary subtree 7' of depth k. By Lemma5,
there is a sequence o for which the tree TS has rank Q(+/log k). Hence, by Theorem 2,

M(o,C) > /log k. [|

62 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

A major open problem iswhat isthe exact rel ationship between the on-lineand the off-line
mistake bounds. The largest gap we could show is a multiplicative factor of 3/2.

Cramv 3 For all k > 1, thereexist &,C and S C X, for which Mgp_jine(S;C) = 3k
WhileMworst(S, C) = 2k.

Proof: Wefirst givean examplefor thecasek = 1. Let X, beaspace of 4 elements, S =
X1, and C; bethefollowing 8 functions on the 4 elements: {0000, 0011, 0010, 0111, 1000,
1010, 1100, 1111}. It can be verified (by inspection) that Mg |ine(S,C) = 3 while
Mworst(S5,C) = 2.

For ageneral k, wejust take k independent copiesof X} andC;. Thatis, let Xk be aspace
of 4k elements partitioned into k sets of 4 elements. Let C;, be the 8% functions obtained
by applying one of the 8 functions in C; to each of the k sets of elements. Let S = A.
Due to the independence of the & functions, it follows that Mg |ine(S,C) = 3k while
Mworst(s,c) = 2]{/’ |

6. Discussion

In this work we analyze the effect of having various degrees of knowledge on the order of
elements in the mistake bound model of learning on the performance (i.e., the number of
mistakes) of the learner. We remark that in our setting the learner is deterministic. The
corresponding questions in the case of randomized learners remain for future research.

We can also analyze quantitatively the advantage that an online algorithm may gain from
knowing just the set of elements, .S, in advance (without knowing the order, o, of their
presentation). That is, we wish to compare the situation where the online a gorithm knows
nothing a-priori about the sequence (other than that it consists of elements of X’) and the
case that the algorithm knows the set S from which the elements of the sequence are taken
(but has no additional information as for their order). The following example shows that
the knowledge of S gives an advantage to the learning algorithm:

Example: Consider the intervals concept class of Example 4.1, with the instance space X
restrictedto {1, 2,... 2}, Asproven, Mqp jine(X,C) = log (n+ 1). Onthe other hand,
for every set S of size £, we showed that Mgp_jine(S,C) = log(¢ + 1). Therefore, if S
is small compared to X (i.e., ¢ is small compared to n) the number of mistakes can be
significantly improved by the knowledge of S. O

Acknowledgments

We wish to thank Andris Ambainis, Moti Frances and Nati Linial for helpful discussions.
In particular a discussion with Andris led to an improvement in Lemma 5 over a previous
version of this paper.

ONLINE LEARNING VERSUS OFFLINE LEARNING 63

Notes

1. A related result by (Blum, 1994) implies that if efficiency constraints are imposed on the model, then there
are casesin which some orders are “easy” and others are computationally “hard”.

2. Again, by the Halving algorithm, Mgy |ine(S, C) and therefore also Mpeg (S, C) are O(log n).

References

D. Angluin, (1989). “Equivalence Queries and Approximate Fingerprints’, Proc. of 2nd COLT pp. 134-145.

A. Blum, (1994). “ Separating Distribution-Free and Mistake-Bound L earning Models over the Boolean Domain”,
S AM Journal on Computing, Vol. 23, No. 4, pp. 373-386. (Also, Proceedings of FOCS90, pp. 211-218, 1990.)

A. Blum, (1992a). “Learning Boolean Functionsin an Infinite Attribute Space”, Machine Learning, Vol. 9. (Also,
Proceedings of STOC90, pp. 6472, 1990.)

A. Blum, (1992b). “Rank-r Decision Trees are a Subclass of r-Decision Lists’, Information Processing Letters,
Vol. 42, pp. 183-185.

N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. E. Schapire, & M. K. Warmuth, (1993). “How to
Use Expert Advice”, Proceedings of STOC93, pp. 382-391.

Z. Chen, & W. Maass, (1994). “On-line Learning of Rectangles’, Machine Learning, Vol. 17, pp. 23-50. (Also,
Proceedings of COLT92, pp. 16-27, 1992.)

T. H. Cormen, C. E. Leiserson, & R. L. Rivest, (1990). Introduction to Algorithms. MIT Press.

A. Ehrenfeucht & D. Haussler, (1989). “Learning Decision Trees from Random Examples’, Information and
Computation, Vol. 82, pp. 231-246.

M. Feder, N. Merhav, & M. Gutman, (1992). “Universa Prediction of Individual Sequences’, IEEE Trans. on
Information Theory, IT-38, No. 4, pp. 1258-1270.

S. A. Goldman, R. L. Rivest, & R. E. Schapire, (1993). “Learning Binary Relations and Total Orders’, SAM
Journal on Computing, Vol. 22, No. 5, pp. 1006-1034.

S. A. Goldman, & R. H. Sloan, (1994). “The Power of Self-Directed Learning”, Machine Learning, Vol. 14, pp.
271-294.

D.P.Helmbold, N. Littlestone, & PM. Long, (1992). “AppleTastingand Nearly One-Sided L earning”, Proceedings
of FOCS92, pp. 493-502.

N. Littlestone, (1988). “Learning when Irrelevant Attributes Abound: A New Linear-Threshold Algorithm”,
Machine Learning, Vol. 2, pp. 285-318.

N. Littlestone, (1989). “Mistake Bounds and Logarithmic Linear-Threshold Learning Algorithms”, PhD thesis,
U.C. Santa Cruz.

N. Littlestone & M. K. Warmuth, (1994). “The Weighted Magjority Algorithm”, Information and Computation,
Vol. 108, pp. 212-261. (Also, Proceedings of FOCS89, pp. 256-261, 1989.)

W. Maass, (1991). “On-line Learning with an Oblivious Environment and the Power of Randomization”, Pro-
ceedings of COLT91, pp. 167-175.

N. Merhav & M. Feder, (1993). “Universal Sequential Decision Schemes from Individual Sequences’, |[EEE
Trans. on Information Theory, 1T-39, pp. 1280-1292.

S. Porat & J. Feldman, (1991). “Learning Automata from Ordered Examples’, Machine Learning, Vol. 7, pp.
109-138. (Also, Proc. of 1st COLT pp. 386-396, 1988.)

N. Sauer, (1972). “On the Density of Families of Sets’, Journal of Combinatorial Theory (A), Vol. 13, pp.
145-147,.

Received March 29, 1996
Accepted January 27, 1997
Final Manuscript July 3, 1997

