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Abstract. We present an off-line variant of the mistake-bound model of learning. This is an intermediate model
between the on-line learning model (Littlestone, 1988, Littlestone, 1989) and the self-directed learning model
(Goldman, Rivest & Schapire, 1993, Goldman & Sloan, 1994). Just like in the other two models, a learner in the
off-line model has to learn an unknown concept from a sequence of elements of the instance space on which it
makes “guess and test” trials. In all models, the aim of the learner is to make as few mistakes as possible. The
difference between the models is that, while in the on-line model only the set of possible elements is known, in the
off-line model the sequence of elements (i.e., the identity of the elements as well as the order in which they are to
be presented) is known to the learner in advance. On the other hand, the learner is weaker than the self-directed
learner, which is allowed to choose adaptively the sequence of elements presented to him.

We study some of the fundamental properties of the off-line model. In particular, we compare the number of
mistakes made by the off-line learner on certain concept classes to those made by the on-line and self-directed
learners. We give bounds on the possible gaps between the various models and show examples that prove that our
bounds are tight.

Another contribution of this paper is the extension of the combinatorial tool of labeled trees to a unified approach
that captures the various mistake bound measures of all the models discussed. We believe that this tool will prove
to be useful for further study of models of incremental learning.

Keywords: On-Line Learning. Mistake-Bound, Rank of Trees

1. Introduction

The mistake-bound model of learning, introduced by Littlestone (Littlestone, 1988; 1989),
has attracted a considerable amount of attention (e.g., (Littleston, 1988, Littlestone, 1989,
Littlestone & Warmuth, 1994, Blum 1994, Blum 1992a, Maass, 1991, Chen & Maass,
1994, Helmbold, Littlestone & Long, 1992, Goldman, Rivest & Schapire, 1993, Goldman
& Sloan, 1994)) and is recognized as one of the central models of computational learning
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theory. Basically it models a process of incremental learning, where the learner discovers
the ‘labels’ of instances one by one. At any given stage of the learning process, the learner
has to predict the label of the next instance based on his current knowledge, i.e. the labels
of the previous instances that it has already seen. The quantity that the learner would like
to minimize is the number of mistakes it makes along this process. Two variants of this
model were considered, allowing the learner different degrees of freedom in choosing the
instances presented to him:

• The on-line model (Littlestone, 1988, Littlestone, 1989), in which the sequence of in-
stances is chosen by an adversary and the instances are presented to the learner one-by-
one.

• The self-directed model (Goldman, Rivest & Schapire, 1993, Goldman & Sloan, 1994),
in which the learner is the one who chooses the sequence of instances; moreover, it may
make his choices adaptively; i.e., each instance is chosen only after seeing the labels
of all previous instances.

In the on-line model, the learner is faced with two kinds of uncertainties. The first is which
function is the target function, out of all functions in the concept class which are consistent
with the data. The second is what are the instances that it would be challenged on in the
future. While the first uncertainty is common to almost any learning model, the second is
particular to the on-line learning model.

A central aim of this research is to focus on the uncertainty regarding the target function
by trying to “neutralize” the uncertainty that is involved in not knowing the future elements,
and to understand the effect that this uncertainty has on the mistake-bound learning model.
One way of doing this, is to allow the learner a full control of the sequence of instances, as
is done in the self-directed model. Our approach is different: we define the off-line learning
model as a one in which the learner knows the sequence of elements in advance. Since the
difference between the on-line learner and the off-line learner is the uncertainty regarding
the order of the instances, this comparison gives insight into the “information” that is in
knowing the sequence.

Once we define the off-line cost of a sequence of elements, we can also define a best
sequence (a sequence in which the optimal learner, knowing the sequence, makes the
fewest mistakes) and a worst sequence (a sequence in which the optimal learner, knowing
the sequence, makes the most mistakes). These are best compared to the on-line and
self-directed models if we think of them in the following way:

• The worst sequence (off-line) model is a one in which the sequence of instances is
chosen by an adversary but the whole sequence (without the labels) is presented to the
learner before the prediction process starts.

• The best sequence (off-line) model is a one in which the whole sequence of instances
is chosen by the learner before the prediction process starts.

Denote by Mon−line(C),Mworst (C),Mbest(C) and Msd (C) the number of mistakes made
by the best learning algorithm in the online, worst sequence, best sequence and self-directed
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model (respectively) on the worst target concept in a concept class C. Obviously, for all C,

Mon−line(C) ≥Mworst (C) ≥Mbest(C) ≥Msd (C).

The main issue we consider is to what degree these measures can differ from one another.
We emphasize that the only complexity measure is the number of mistakes and that other
complexity measures, such as the computational complexity of the learning algorithms, are
ignored. It is known that in certain cases Msd can be strictly smaller than Mon−line . For
example, consider the class of monotone monomials over n variables. It can be seen that
this class has Msd = 1 (Goldman & Sloan, 1994) but Mon−line = n (Littlestone, 1988,
Littlestone, 1989). In addition, we give examples that show, for certain concept classes,
that Msd may be smaller thanMbest by a multiplicative factor ofO(log n); hence, showing
the power of adaptiveness. The following example shows that there are also gaps between
Mbest and Mworst . Given n points in the interval [0, 1], consider the class of functions
which are a suffix of this interval (i.e., the functions fa(x) that are 1 for x ≥ a and 0
otherwise). As there are n points, there are only n + 1 possible concepts, and therefore
the Halving algorithm (Littlestone, 1988, Littlestone, 1989) is guaranteed to make at most
O(log n) mistakes, i.e. Mon−line = O(log n). For this class, a best sequence would
be receiving the points in increasing order, in which case the learner makes at most one
mistake (i.e., Mbest = 1). On the other hand, we show that the worst sequence forces
Mworst = Θ(log n) mistakes. An interesting question is what is the optimal strategy
for a given sequence. We show a simple optimal strategy and prove that the number of
mistakes is exactly the rank of a search tree (into which we insert the points in the order they
appear in the sequence). We generalize this example, and show that for any concept class,
the exact number of mistakes is the rank of a certain tree corresponding to the concept
class and the particular sequence (this tree is based on the consistent extensions). This
formalization of the number of mistakes, in the spirit of Littlestone‘s formalization for
the on-line case (Littlestone, 1988, Littlestone, 1989), provides a powerful combinatorial
characterization.

All the above examples raise the question of how large can these gaps be. We prove
that the gaps demonstrated by the above mentioned examples are essentially the largest
possible; more precisely, we show that Mon−line can be greater than Msd by at most a
factor of log |X |, where X is the instance space (e.g., in the monomials example X is the
set of 2n boolean assignments).

The aboveresult implies, in particular, that the ratio between the number of mistakes for the
best sequence and the worst sequence isO(log n), wheren is the length of the sequence.1 We
also show that Mworst = Ω(

√
log Mon−line), which implies that either both are constant

or both are non-constant. Finally we show examples in which Mon−line = 3
2
·Mworst ,

showing that Mworst 6= Mon−line . In a few cases we are able to derive better bounds: for
the cases that Mworst = 1 and Mworst = 2 we show simple on-line algorithms that have
at most 1 and 3 mistakes, respectively.

One way to view the relationships among the above models is through the model of “ex-
perts” (Cesa-Bianchi, et al., 1993, Feder, Merhav & Gutman, 1992, Merhav & Feder, 1993).
For each sequence σ there is an expert,Eσ , that makes its predictions under the assumption
that the sequence is σ. Let σ∗ be the sequence chosen by the adversary, then the expert



48 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

Eσ∗ makes at most Mworst mistakes. The on-line learner does not know the sequence σ∗

in advance, so the question is how close can it get to the best expert, Eσ∗ . The problem
is that the number of experts is overwhelming; initially there are n! experts (although the
number of experts consistent with the elements of the sequence σ∗ seen so far decreases
with each element presented). Therefore, previous results about experts do not apply here.

The rest of this paper is organized as follows: In Section 2, we give formal definitions
of the model and the measures of performance that are discussed in this paper, followed
by some simple properties of these definitions. In Section 3, we give the definition of the
rank of a tree (as well as some other related definitions) and prove some properties of it.
In Section 4, we present the various gaps. Then, we characterize the off-line complexity
(for completeness, we present in Section 4.2.1 a characterization of the same nature, based
on (Littlestone, 1988, Littlestone, 1989), for the on-line complexity and for the self-directed
complexity (Goldman & Sloan, 1994)) and we use these characterizations to obtain some
basic results. Finally, in Section 5, we use these characterizations to study the gap between
the on-line complexity and off-line complexity.

2. The Model

2.1. Basic Definitions

In this section we formally present our versions of the mistake bound learning model which
is the subject of this work. The general framework is similar to the on-line learning model
defined by Littlestone (Littlestone, 1988, Littlestone, 1989).

Let X be any set, and let C be a collection of boolean functions defined over the set X
(i.e. C ⊆ {f |f : X → {0, 1}}). We refer to X as the instance space and to C as the
concept class. Let S be a finite subset of X . An on-line learning algorithm with respect to
S (and a concept class C) is an algorithm A that is given (in advance) S as an input; Then,
it works in steps as follows: In the i-th step the algorithm is presented with a new element
si ∈ S. It then outputs its prediction pi ∈ {0, 1} and in response it gets the true value
ct(si), where ct ∈ C denotes the target function. The prediction pi may depend on the set
S, the values it has seen so far (and of course the concept class C). The process continues
until all the elements of S have been presented. Let σ = s1, s2, . . . , sn denote the order
according to which the elements of S are presented to the learning algorithm. Denote by
M(A[S], σ, ct) the number of mistakes made by the algorithm on a sequence σ as above
and target function ct ∈ C , when the algorithm is given S in advance (i.e., the number of
elements for which pi 6= ct(si)). Define the mistake bound of the algorithm, for a fixed S,

as M(A[S]) 4= maxσ,c t M(A[S], σ, ct). Finally, let

Mon-line(S,C) 4= min
A

M(A[S]) = min
A

max
σ,ct

M(A[S], σ, ct).

The original definitions of (Littlestone, 1988, Littlestone, 1989) are obtained (at least for
finite X ) by considering S = X .

An off-line learning algorithm is an algorithm A that is given (in advance) not only the
set S, but also the actual sequence σ as an input. The learning process remains unchanged



ONLINE LEARNING VERSUS OFFLINE LEARNING 49

(except that each prediction pi can now depend on the actual sequence, σ, and not only on
the set of elements, S). Denote byM(A[σ], ct) the number of mistakes made by an off-line

algorithm,A, on a sequence σ and a target ct. Define M(A[σ]) 4= maxct M(A[σ], ct) and
for a particular sequence σ, define

M(σ, C) 4= min
A

M(A[σ]) = min
A

max
ct

M(A[σ], ct).

For a given S, we are interested in the best and worst sequences. Denote by Mbest(S,C)
the smallest value of M(σ, C) over all σ, an ordering of S, and let σbest be a sequence that
achieves this minimum (if there are several such sequences pick one of them arbitrarily).
Similarly, Mworst(S, C) is the maximal value of M(σ,C) and σworst is a sequence such
that M(σworst, C) = Mworst(S, C).

A self-directed learning algorithmA is a one that chooses its sequence adaptively; hence
the sequence may depend on the classifications of previous instances (i.e., on the target
function). Denote by Msd(A[S], ct) the number of mistakes made by a self-directed algo-
rithmA on a target function ct ∈ C, when the algorithm is given in advanceS (the set from

which it is allowed to pick its queries). Define Msd(A[S]) 4= maxct Msd(A[S], ct) and

Msd(S,C)
4
= min

A
Msd(A[S]) = min

A
max
ct

Msd(A[S], ct).

The following is a simple consequence of the definitions:

Lemma 1 For any X ,C , and a finite S ⊆ X ,

Msd(S,C) ≤Mbest(S, C) ≤Mworst(S, C) ≤Mon-line(S,C).

2.2. Relations to Equivalence Query Models

It is well known that the on-line learning model is, basically, equivalent to the Equivalence
Query (EQ) model (Littlestone, 1989). It is not hard to realize that our versions of the
on-line scenario give rise to corresponding variants of the EQ model. For this we need the
following definitions:

• An equivalence-query learning algorithm with respect to S (and a concept class C) is
an algorithmA that is given in advanceS as an input; Then, it works in steps as follows:
In the i-th step the algorithm outputs its hypothesis, hi ⊆ S, and in response it gets a
counterexample; i.e., an element xi ∈ (hi∆ct) ∩ S, where ct ∈ C denotes the target
function. The process goes on until (hi∆ct) ∩ S = ∅ (i.e. hi = ct ∩ S).

• LetF denote the function that chooses the counterexamplesxi. We denote byEQ(A[S],
F, ct) the number of counterexamples, xi, presented by F to the algorithm, A, in the
course of a learning process on the target, ct, when A knows S in advance (but does
not know F ).
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• Finally, let EQ(S,C) 4= minA maxF,c t∈C EQ(A[S], F, ct).

Note that the original definitions of Angluin (Angluin, 1989) are obtained by considering
S = X . The following is a well known (and easy to prove) fact:

Claim 1 For every X , C and S ⊆ X as above, EQ(S, C) = Mon-line(S,C).

One aspect of the last definition above is that it considers the worst case performance of
the learner over all possible choices, F , of counterexamples to its hypotheses. It turns out
that by relaxing the definition so that the learner is only confronted with F ’s of a certain
type, one gets EQ models that match the various offline learning measures presented in the
previous subsection.

• Let σ denote an ordering of the set S. Let Fσ be the following strategy for choosing
counterexamples. Given a hypothesis h, the counterexample, Fσ(h), is the minimal
element of (h∆ct) ∩ S, according to the ordering σ.

• Let EQ(σ,C)
4
= minA maxct∈C EQ(A[σ], Fσ , ct).

• Let EQbest(S,C)
4
= minσ EQ(σ, C), and let EQworst(S, C)

4
= maxσ EQ(σ, C).

This variant of the equivalence query model in which the minimal counterexample is pro-
vided to the algorithm is studied, e.g., in (Porat & Feldman, 1991).

Claim 2 For every X , C and S ⊆ X as above, for every ordering σ of S, EQ(σ, C) =
M(σ,C).

Proof: Given an EQ algorithm for (S,C, σ) construct an off-line algorithm by predicting,
on each element si, the value that the current hypothesis of the EQ algorithm, hki , assigns to
si. Whenever the teacher’s response indicates a prediction was wrong, present that element
as a counterexample to the EQ algorithm (and replace the current hypothesis by its revised
hypothesis).

For the other direction, given an offline algorithm, define at each stage of its learning
process a hypothesis by assigning to each unseen element, s ∈ S, the value the algorithm
would have guessed for s if it got responses indicating it made no mistakes along the
sequence, σ, from the current stage up to that element. Whenever a counterexample is
being presented, pass on to the offline algorithm the fact that it has erred on that element
(and update the hypothesis according to its new guesses).

Corollary 1 For every X , C and S ⊆ X as above,

1. EQbest(S,C) = Mbest(S,C).

2. EQworst(S,C) = Mworst(S,C).
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3. Labeled Trees

A central tool that we employ in the quantitative analysis in this work is the notion of ranks
of trees. We shall consider certain classes of labeled trees, depending upon the classes to
be learned and the type of learning we wish to analyze. The following section introduces
these technical notions and their basic combinatorial properties.

3.1. Rank of Trees

In this subsection we define the notion of the rank of a binary tree (see, e.g., (Cormen,
Leiserson & Rivest, 1990, Ehrenfeucht & Haussler, 1989, Blum, 1992b)), which plays a
central role in this paper. We then prove some simple properties of this definition.

For a tree T , if T is empty then rank(T ) = −1. Otherwise, let TL be its left subtree and
TR be its right subtree. Then,

rank(T ) =
{

max{rank(TL), rank(TR)} if rank(TL) 6= rank(TR)
rank(TL) + 1 otherwise

For example, the rank of a leaf is 0.
Let

(
d
≤r

)
denotes

∑r
i=0

(
d
i

)
. The following lemma is a standard fact about the rank:

Lemma 2 A depth d rank r tree has at most
(
d
≤r

)
leaves.

Proof: By induction on d and r. If r = 0 then there is exactly one leaf (if there were two
or more, then their least common ancestor is of rank 1). If d = 1 either there is one leaf
(which is a special case of r = 0) or two leaves, in which case r must be 1. In all these
cases the claim holds. For the induction step, let T be a depth d rank r tree. Each of TL and
TR are of depth at most d− 1 and, by the definition of rank, in the worst case one of them
is of rank r and the other of rank r− 1. Hence, by the induction hypothesis, the number of
leaves is bounded by

r∑
i=0

(
d− 1
i

)
+

r−1∑
i=0

(
d− 1
i

)
=

(
d

0

)
+

r∑
i=1

((
d− 1
i

)
+

(
d− 1
i− 1

))
=

r∑
i=0

(
d

i

)
which completes the proof.

If r is small relative to d then it may be convenient to use the weaker dr (≥
(
d
≤r

)
) bound

on the number of leaves.

A subtree of a tree T is a subset of the nodes of T ordered by the order induced by T .

Lemma 3 The rank of a binary treeT is at least k iff it has a subtreeT ′ which is a complete
binary tree of depth k.

Proof: Mark in T the nodes where the rank increases. Those are the nodes of T ′. For a
marked node with rank i, each of its children in T has rank i − 1, hence it has a marked
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descendant with rank i− 1. Therefore T ′ is a complete binary tree. For the other direction,
note that the rank of a tree is at least the rank of any of its subtrees, and that a complete
binary tree of depth k has rank k.

Lemma 4 Let T be a complete binary tree of depth k. Let L1, . . . , Lt be a partition of
the leaves of T into t disjoint subsets. For 1 ≤ i ≤ t, define Ti to be the subtree induced by
the leaves in Li (that is, Ti is the tree consists of all ancestors of leaves in Li). Then, there
exists 1 ≤ i ≤ t such that

rank(Ti) ≥
⌊
k

t

⌋
.

Proof: The proof is by induction on t. For t = 1 we have T1 = T hence the claim is
obvious. For t > 1 we consider the nodes in depth bk/tc in T . There are two cases: (a) if
all these nodes belong to all trees Ti then each of these trees contains a complete subtree of
depth bk/tc and by Lemma 3 each of them has rank of at least bk/tc. (b) if there exists a
node v in depth bk/tcwhich does not belong to all the trees Ti then we consider the subtree
T ′ whose root is v and consists of all the nodes below v. By the definition of v, the leaves
of the tree T ′ belong to at most t− 1 of the sets Li. In addition the depth of T ′ is at least
(t−1)k

t . Hence, by induction hypothesis, one of the subtrees T ′i of T ′ is of rank at least⌊
1

t− 1
· (t− 1)k

t

⌋
=

⌊
k

t

⌋
.

Finally note that T ′i is a subtree of Ti hence Ti has the desired rank.

Let us just mention that the above lower bound, on the rank of the induced subtrees, is
essentially the best possible. For example, take T to be a complete binary tree. Each leaf
corresponds to a path from the root to this leaf. Call an edge of such a path a left (right)
edge if it goes from a node to its left (right) son. Let L0 (L1) be the set of leaves with more
left (right) edges. Then, it can be verified that rank(T0) = rank(T1) = k/2.

3.2. Labeled Trees

Let X denote some domain set, S ⊆ X and C ⊆ {0, 1}X as above.

• An X -labeled tree is a pair, (T, F ), where T is a binary tree and F a function mapping
the internal nodes of T intoX . Furthermore, we impose the following restriction onF :

∀t 6= t′ ∈ T, if t′ is an ancestor of t then F (t′) 6= F (t).

• A branch in a tree is a path from the root to a leaf. It follows that the above mapping
F is one to one on branches of T .

• A branch (t1, . . . , tn) of T realizes a function

h : {F (t1), . . . , F (tn−1)} 7→ {0, 1}
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if for all 1 ≤ i < n, ti+1 is a left son of ti if and only ifh(F (ti)) = 1. Note that a branch
can realize more than one function. On the other hand, if {F (t1), . . . , F (tn)} = X
then the branch realizes a single function.

• An X -labeled tree is an (S,C)-tree if the set of functions realized by its branches is
exactly CS .

• Let T CS denote the set of all (S, C)-trees.

• For a sequence σ = (s1, . . . , sn) of elements of X , let T Cσ denote the maximal tree in
T CS for which every node v in the k-th level is labeled F (v) = sk .

Note, that using this notation, a class C shatters the set of elements of a sequence, σ, if
and only if T Cσ is a complete binary tree (recall that a class C shatters a set {s1, . . . , sn} if
for every b1, . . . , bk ∈ {0, 1} there exists a function f ∈ C that for all i (1 ≤ i ≤ k) satisfies
f(si) = bi). We can therefore conclude that, for any class C,

VC-dim(C) = max{rank(T Cσ ) : T Cσ ∈ T CX and T Cσ is a complete binary tree}.

(We shall usually omit the superscript C when it is clear from the context.)

4. Gaps between the Complexity Measures

Lemma 1 provides the basic inequalities concerning the learning complexity of the different
models. In this section we turn to a quantitative analysis of the sizes of possible gaps between
these measures. We begin by presenting, in Section 4.1, some examples of concept classes
for which there exist large gaps between the learning complexity in different models. In
Section 4.3, we prove upper bounds on the possible sizes of these gaps, bounds that show
that the examples of Section 4.1 obtain the maximal possible gap sizes. A useful tool in
our analysis is a characterization of the various complexity measures as the ranks of certain
trees. This characterization is given in section 4.2.

Let us begin our quantitative analysis by stating a basic upper bound on the learning
complexity in the most demanding model (from the student’s point of view), namely,
Mon-line(S,C). Given an instance space X , a concept class C and a set S we define
CS to be the projection of the functions in C on the set S (note that several functions in C
may collide into a single function in CS). Using the Halving algorithm (Littlestone, 1988,
Littlestone, 1989) we get,

Theorem 1 For all X ,C and S as above Mon-line(S, C) ≤ log |CS |.

4.1. Some Examples

The first example demonstrates thatMbest(S, C) may be much smaller than Mworst(S,C)
and Mon-line(S,C). This example was already mentioned in the introduction and appears
here in more details.
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the corresponding function gi). Again, the elements x1, . . . , x2d are partitioned into 2d/d
blocks each of size d. In each of these blocks the 2d functions g1, . . . , g2d get all the 2d

possible combinations of values.
To see thatMsd(S, C) ≤ 2 we describe a self-directed learner for this concept class. The

learner first asks about z and predicts in an arbitrary way. Whether it is right or wrong the
answer indicates whether the target functions is one of the fi’s or one of the gi’s. In each
case the learner looks for the corresponding indicator. That is, if ct(z) = 0 it asks the x’s
one by one, predicting 0 on each. A mistake on some xi (i.e., ct(xi) = 1) immediately
implies that the target function is fi and no mistakes are made anymore. Symmetrically, if
ct(z) = 1 the learner asks the y’s one by one, predicting 0 on each. A mistake on some
yi (i.e., ct(yi) = 1) implies that the target function is gi and again no mistakes are made
anymore. In any case, the total number of mistakes is at most 2.

We now prove that Mbest(S,C) = Ω(log n).2 The idea is that a learner must choose
its sequence in advance, but does not know whether it looks for one of the fi’s or one
of the gi’s. Formally, let σ be the (best) sequence chosen by the learner. We describe
a strategy for the adversary to choose a target function in a way that forces the learner
at least d/4 = Ω(log n) mistakes. Let σ′ be a prefix of σ of length 2d. The adversary
considers the number of xi’s queried in σ′ versus the number of yi’s. Assume, without
loss of generality, that the number of xi’s in σ′ is smaller than the number of yi’s in σ′.
The adversary then restricts itself to choosing one of the fi’s. Moreover, it eliminates all
those functions fi whose corresponding element xi appears in σ′. Still, there are at least
2d/2 possible functions to choose from. Now, consider the y’s queried in σ′. By the
construction of C we can partition the elements y1, . . . , y2d into d “groups” of size 2d/d
such that every function fj gives the same value for all elements in each group. There are
at least 2d/2 elements y’s that are queried in σ′ and they belong to ` groups. By simple
counting, d

2
≤ ` ≤ d. We estimate the number of possible behaviors on these ` groups as

follows: originally all 2d behaviors on the d groups were possible. Hence, to eliminate one
of the behaviors on the ` elements one needs to eliminate 2d−` functions. As we eliminated
at most 2d/2 functions, the number of eliminated behaviors is at most 1

22d/2d−` = 1
22`. In

other words, there are at least 1
22` behaviors on these ` elements. On the other hand, if we

are guaranteed to make at most r mistakes it follows from Theorem 4 and Lemma 2 that the
number of functions is at most

(
`
≤r

)
. Hence, r must be at least `/2 ≥ d/4 = Ω(log n).

4.2. Characterizing M(σ, C) Using the Rank

The main goal of this section is to characterize the measureM(σ,C). As a by-product, we
present an optimal offline prediction algorithm. I.e., an algorithm, A, such that for every
sequence σ, M(A[σ]) = M(σ, C).

The next theorem provides a characterization of M(σ, C) in terms of the rank of the tree
T Cσ (for any concept class C and any sequence σ). A similar characterization was proved
by Littlestone (Littlestone, 1988, Littlestone, 1989) for the on-line case (see section 4.2.1
below).
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Theorem 2 For all X ,C and σ as above, M(σ,C) = rank(T Cσ ).

Proof: To show that M(σ, C) ≤ rank(Tσ) we present an appropriate algorithm. For
predicting on s1, the algorithm considers the tree Tσ, defined above, whose root is s1.
Denote by TL its left subtree and by TR its right subtree. If rank(TL) > rank(TR) the
algorithm predicts “0”, if rank(TL) < rank(TR) the algorithm predicts “1”, otherwise
(rank(TL) = rank(TR)) the algorithm can predict arbitrarily. Again, recall that in the
case that rank(TL) = rank(TR), by the definition of rank, both rank(TL) and rank(TR)
are smaller than rank(Tσ). Therefore, at each step the algorithm uses for the prediction a
subtree of Tσ which is consistent with all the values it has seen so far. To conclude, at each
step where the algorithm made a mistake, the rank decreased by (at least) 1, so no more
than rank(Tσ) mistakes are made.

To show that no algorithm can do better, we present a strategy for the adversary for
choosing a target in C so as to guarantee that a given algorithmA makes at least rank(Tσ)
mistakes. The adversary constructs for itself the tree Tσ. At step i, it holds a subtree T
whose root is a node marked si which is consistent with the values it already gave toA as
the classification of s1, . . . , si−1. After getting A’s prediction on si the adversary decides
about the true values as follows: If one of the subtrees, either TL or TR, has the same rank
as the rank of T then it chooses the value according to this subtree. Note that, by definition
of rank, at most one of the subtrees may have this property, so this is well defined. In
this case, it is possible that A guessed the correct value (for example, the algorithm we
described above does this) but the rank of the subtree that will be used by the adversary in
the i+1-th step is not decreased. The second possible case, by the definition of rank, is that
the rank of both TL and TR is smaller by 1 than the rank of T . In this case, the adversary
chooses the negation of A’s prediction; hence, in such a step A makes a mistake and the
rank is decreased by 1. Therefore, the adversary can force a total of rank(Tσ) mistakes.

The above theorem immediately implies:

Corollary 2 For all X ,C and S as above,

Mworst(S,C) = max
{

rank(T ) : T = T Cσ , σ is an ordering of S
}
.

Mbest(S,C) = min
{

rank(T ) : T = T Cσ , σ is an ordering of S
}
.

Remark. It is worth noting that, by Sauer’s Lemma (Sauer, 1972), if the concept class C
has V C dimension d then the size of T Cσ is bounded by nd (where n, as usual, is the length
of σ). It follows that, for C with small V C , the tree is small and therefore, if consistency
can be checked efficiently then the construction of the tree is efficient. This, in turn, implies
the efficiency of the generic (optimal) off-line algorithm of the above proof, for classes with
“small” VC dimension.

Example: Consider again the concept class of Example 4.1. Note that in this case, the tree
Tσ is exactly the binary search tree corresponding to the sequenceσ = s1s2 . . . sn. Namely,
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Tσ is the tree constructed by starting with an empty tree and performing the sequence of oper-
ations insert(s1), insert(s2), . . . , insert(sn) (for details see, e.g. (Cormen, Leiserson &
Rivest, 1990)). Hence, M(σ,C) is exactly the rank of this search tree.

4.2.1. Characterizing the On-line and Self-Directed Learning

To complete the picture one would certainly like to have a combinatorial characterization of
Mon-line(S,C) as well. Such a characterization was given by Littlestone (Littlestone, 1988,
Littlestone, 1989). We reformulate this characterization in terms of ranks of trees. The proof
remains similar to the one given by Littlestone (Littlestone, 1988, Littlestone, 1989) and
we provide it here for completeness.

Theorem 3 For all X ,C and S as above,

Mon-line(S,C) = max
{

rank(T ) : T ∈ T CS
}
.

Proof: To show that Mon-line(S,C) ≥ max
{

rank(T ) : T ∈ T CS
}

we use an adversary
argument similar to the one used in the proof of Theorem 2. The adversary uses the
tree that gives the maximum in the above expression to choose both the sequence and
the classification of its elements, so that at each time that the rank is decreased by 1 the
prediction algorithm makes a mistake.

To show that Mon-line(S, C) is at most m = max
{

rank(T ) : T ∈ T CS
}

we present an
appropriate algorithm, which is again similar to the one presented in the proof of Theorem 2.
For predicting on s ∈ S, we first define C0

S to be all the functions in CS consistent with
s = 0, and C1

S to be all the functions in CS consistent with s = 1. The algorithm compares

max
{

rank(T ) : T ∈ T C0

S

}
and max

{
rank(T ) : T ∈ T C1

S

}
and predicts according to

the larger one. The crucial point is that at least one of these two values must be strictly
smaller than m otherwise there is a tree in T CS whose rank is more than m. The prediction
continues in this way, so that the maximal rank is decreased with each mistake.

Finally, the following characterization is implicit in (Goldman & Sloan, 1994):

Theorem 4 For all X ,C and S as above,

Msd(S,C) = min
{

rank(T ) : T ∈ T CS
}
.

Proof: Consider the tree T whose rank is the minimal one in T CS . We will show that
Msd(S,C) is at most the rank of T . For this, we present an appropriate algorithm that
makes use of this tree. At each point, the learner asks for the instance which is the current
node in the tree. In addition, it predicts according to the subtree of the current node whose
rank is higher (arbitrarily, if the ranks of the two subtrees are equal). The true classification
determines the child of the current node from which the learner needs to proceed. It follows
from the definition of rank that whenever the algorithm makes a mistake the remaining
subtree has rank which is strictly smaller than the previous one.
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For the other direction, given a strategy for the learner that makes at most Msd(S,C)
mistakes we can construct a tree T that describes this strategy. Namely, at each point the
instances that the learner will ask at the next stage, given the possible classifications of
the current instance, determine the two children of the current node. Now, if the rank of
T was more than Msd(S,C) then this gives the adversary a strategy to fool the learner:
at each node classify the current instance according to the subtree with higher rank. If
the ranks of both subtrees are equal then on any answer by the algorithm the adversary
says the opposite. By the definition of rank, this gives rank(T ) mistakes. Hence, rank(T )
is at most Msd(S,C) and certainly the minimum over all trees can only be smaller.

4.3. A Bound on the Size of the Gap

A natural question is how large can be the gaps between the various complexity measures.
For example, what is the maximum ratio between Mworst(S, C) and Mbest(S, C). In
Example 4.1 the best is 1 and the worst is log n, which can be easily generalized to k versus
Θ(k log n). The following theorem shows that the gap between the smallest measure,
Msd(S,C), and the largest measure, the on-line cost, cannot exceed O(log n). This, in
particular, implies a similar bound for the gap between σbest and σworst. By Example 4.1,
the bound is tight; i.e., there are cases which achieve this gap. Similarly, the gap between
Msd(S,C) and Mbest(S, C) exhibited by Example is also optimal.

Theorem 5 For X , C and S of size n as above,

Mon-line(S,C) ≤Msd(S,C) · log n.

We shall present two quite simple but very different proofs for this theorem. The first
proof employs the tool of labeled trees (but gives a slightly weaker result) while the second
is by an information - theoretic argument.

Proof: [using labeled trees] Consider the tree T that gives the minimum in Theorem 4. Its
depth is n and its rank, by Theorem 4, is m = Msd(S,C). By Lemma 2, this tree contains
at most

(
n
≤m

)
leaves. That is, |CS | ≤

(
n
≤m

)
. By Theorem 1, Mon-line(S, C) ≤ log

(
n
≤m

)
=

O(m · log n).

Proof: [information theoretic argument] Let CS be the projection of the functions in C on
the set S (note that several functions in C may collide into a single function in CS). Consider
the number of bits required to specify a function in CS . On one hand, at least log |CS | bits
are required. On the other hand, any self-directed learning algorithm that learns this class
yields a natural coding scheme: answer the queries asked by the algorithm according to
the function c ∈ CS ; the coding consists of the list of names of elements of S on which the
prediction of the algorithm is wrong. This information is enough to uniquely identify c. It
follows that Msd(S, C) · log n bits are enough. Hence,

log |CS | ≤Msd(S, C) · log n.
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Finally, by the Halving algorithm (Littlestone, 1988, Littlestone, 1989), it is known that

Mon-line(S, C) ≤ log |CS |.

The theorem follows.

Corollary 3 For X ,C and S as above, Mworst(S,C) = O(Mbest(S,C) · log n).

Proof: Combine Theorem 5 with Lemma 1.

5. Mworst(S, C) vs. Mon-line(S, C)

In this section we further discuss the question of how much can a learner benefit from
knowing the learning sequence in advance. In the terminology of our model this is the issue
of determining the possible values of the gap between Mon-line(S,C) and Mworst(S, C).
We show (in Section 5.2) that if one of these two measures is non-constant then so is the
other. Quantitatively, if the on-line algorithm makesk mistakes, then any off-line algorithm
makes Ω(

√
log k) mistakes on σ. For the special cases where Mworst(S, C) is either 1 or

2, we prove (in Section 5.1) that Mon-line(S,C) is at most 1 or 3 (respectively).

5.1. Simple Algorithms

In this section we present two simple on-line algorithms, E1 and E2, for the case that the
off-line algorithm is bounded by one and two mistakes (respectively) for any sequence.

Let S be a set of elements of X . If for every sequence σ, which is a permutation of S,
the off-line learning algorithm makes at most one mistake, then we show that there is an
on-line algorithm E1 that makes at most one mistake on S, without knowing the actual
order in advance. The algorithm E1 uses the guaranteed off-line algorithm A and works
as follows:

• Given an elementx ∈ S, choose any sequenceσ that starts withx, and predict according
toA’s prediction onσ, i.e. A[σ]. If a mistake is made onx, thenA[σ] made a mistake and
it will not make any more mistakes on this sequence σ. Hence, we can useA[σ](ct(x))
to get the true values for all the elements of the sequence (where by A[σ](ct(x)) we
denote the predictions that A makes on the sequence σ after getting the value ct(x)).
In other words, for any y ∈ S there is a unique value that is consistent with the value
ct(x) 6= A[σ] (otherwiseA[σ] can make another mistake). Therefore, E1 will make at
most one mistake.

In the case that for any sequence the off-line learning algorithm makes at most two
mistakes, we present an on-line algorithm E2 that makes at most three mistakes (which is
optimal due to Claim 3 below).

Call an element x bivalent with respect to y if there exist sequences σ0 and σ1 that both
start with xy and for σ0 the on-line algorithm predicts “ct(x) = 0” and for σ1 the on-line
algorithm predicts “ct(x) = 1” (i.e., A[σ0] = 0 and A[σ1] = 1). Otherwise x is univalent
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with respect to y (we say that x is 1-univalent with respect to y if the prediction is always 1
and 0-univalent if the prediction is always 0). Our on-line procedure E2, on input x, works
as follows.

• So far we made no mistakes:
If there is no y such that x is 1-univalent with respect to y, predict “ct(x) = 0”. Else,
predict “ct(x) = 1”.

• So far we made one mistake on a positive w:
If we made such a mistake then we predicted “ct(w) = 0”, which implies that there is
no y such that w is 1-univalent with respect to y. In particular, with respect to x, w is
either 0-univalent or bivalent. In both cases there is a sequence σ = wxσ ′ such that
A[σ] predicts “ct(w) = 0” and makes a mistake. Use b = A[σ](1) as the prediction
on x (where again, A[σ](1) denotes the prediction that A makes on sequence σ after
getting the value ct(w) = 1). In case of another mistake, we have a sequence on which
we already made two mistakes so it will not make any more mistakes. Namely, we can
use A[σ](1, b̄) to get the value for all elements in S.

• So far we made one mistake on a negativew:
If w is either 1-univalent with respect to x or bivalent with respect to x then this is
similar to the previous case. The difficulty is that this time there is also a possibility
that w is 0-univalent with respect to x. However, in this case, if we made a mistake
this means that we predicted “ct(w) = 1”, which implies that there exists a y such that
w is 1-univalent with respect to y. Consider a sequence σ = wyxσ ′. By the definition
of y, A[σ] predicts “ct(w) = 1” and therefore makes its first mistake on w. Denote
by b = A[σ](0) the prediction on y. If this is wrong again then all the other elements
of the sequence are uniquely determined. Namely, there is a unique function f1 that
is consistent with ct(w) = 1, ct(y) = b̄. If, on the other hand, b is indeed the true
value of y, we denote by c = A[σ](0, b) its prediction on x. Again, if this is wrong, we
have a unique function f2 which is consistent with ct(w) = 1, ct(y) = b, ct(x) = c̄.
Therefore, we predict c on x. In case we made a mistake (this is our second mistake)
we know for sure that the only possible functions are f1 and f2 (in fact, if we are lucky
then f1(x) = c and we are done). To know which of the two functions is the target we
will need to make (at most) one more mistake (3 in total).

5.2. A General Bound

In this section we further discuss the gap between the measures Mon-line(S,C) and
Mworst(S,C). We show that if the on-line makes k mistakes, then any off-line algo-
rithm makes Ω(

√
log k) mistakes on σ. The proof makes use of the properties proved in

Section 3.1 and the characterizations of both the on-line and the off-line mistake bounds as
ranks of trees, proved in Section 4. More precisely, we will take a tree inT CS with maximum
rank (this rank by Theorem 3 exactly characterizes the number of mistakes made by the
on-line algorithm) and use it to construct a tree with rank which is “not too small” and such
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that the nodes at each level are labeled by the same element of S. Such a tree is of the form
Tσ , for some sequence σ.

Lemma 5 Given a complete labeled binary tree of depth k, (T,F ) ∈ T CS , there is a
sequence, σ, of elements of S, such that the tree T Cσ has rank Ω(

√
log k).

Proof: We will construct an appropriate sequence σ in phases. At phase i (starting with
i = 0) we add (at most 2i) new elements to σ, so that the rank of T Cσ is increased by at least
one (hence, at the beginning of the ith phase the rank is at least i). At the beginning of the
ith phase, we have a collection of 2i subtrees of T , each is of rank at least k/2O(i2) ≥ 1
(in particular, at the beginning of phase 0 there is a single subtree, T itself, whose rank is
k). Each of these subtrees is consistent with one of the leaves of the tree T Cσ we already
built in previous phases (i.e., the subtree is consistent with some assignment to the elements
included in σ in all previous phases). Moreover, the corresponding 2i leaves induce a
complete binary subtree of depth i.

In the ith phase, we consider each of the 2i subtrees in our collection. From each such
subtree T ′ we add to the sequence σ, an element r such that the rank of the subtree of T ′

rooted at r is rank(T ′) and the rank in each of the subtrees TL and TR corresponding to the
sons of r is rank(T ′) − 1. We remark that the order in which we treat the subtrees within
the ith phase is arbitrary and that if some of the elements r already appear in σ we do not
need to add them again. After adding all the `i ≤ 2i new elements of σ we examine again
the trees TL and TR corresponding to each subtree T ′. For each of them the other `i − 1
elements partitions the leaves of the tree into 2`i−1 groups according to the possible values
for the other `i − 1 elements. Hence, by Lemma 4, there exists subtrees T ′L and T ′R of TL

and Tr respectively which have rank at least
⌊

rank(T ′)−1
2`i−1

⌋
≥

⌊
rank(T ′)

2`i

⌋
and each of them

is consistent with one of the leaves of the extended T Cσ . The 2i+1 subtrees that we get in
this way form the collection of trees for phase i + 1. Finally note that by the choice of
elements r added to σ, we now get in T Cσ a complete binary subtree of depth i + 1.

If before the ith phase the rank of the subtrees in our collection is at least ki then after
the ith phase the rank of the subtrees in our collection is at least ki/2i. Hence, a simple
induction implies that

ki ≥
k

Πi
j=12j

=
k

2O(i2)
.

Therefore, we can repeat this process for Ω(
√

log k) phases hence obtaining a tree T Cσ of
rank Ω(

√
log k).

Theorem 6 Let C be a concept class,X an instance space andS ⊆ X the set of elements.
Then Mworst(S, C) = Ω(

√
log Mon-line(S, C)).

Proof: Assume that Mon-line(S, C) = k. By Theorem 3, there is a rank k tree in
T CS , and by Lemma 3 it contains a complete binary subtree T of depth k. By Lemma 5,
there is a sequence σ for which the tree T Cσ has rank Ω(

√
log k). Hence, by Theorem 2,

M(σ,C) ≥
√

log k.



62 S. BEN-DAVID, E. KUSHILEVITZ AND Y. MANSOUR

A major open problem is what is the exact relationship between the on-line and the off-line
mistake bounds. The largest gap we could show is a multiplicative factor of 3/2.

Claim 3 For all k ≥ 1, there exist X , C and S ⊆ X , for which Mon-line(S, C) = 3k
while Mworst(S, C) = 2k.

Proof: We first give an example for the case k = 1. LetX1 be a space of 4 elements, S =
X1, and C1 be the following 8 functions on the 4 elements: {0000, 0011, 0010, 0111, 1000,
1010, 1100, 1111}. It can be verified (by inspection) that Mon-line(S,C) = 3 while
Mworst(S,C) = 2.

For a general k, we just take k independent copies ofX1 and C1. That is, letXk be a space
of 4k elements partitioned into k sets of 4 elements. Let Ck be the 8k functions obtained
by applying one of the 8 functions in C1 to each of the k sets of elements. Let S = Xk.
Due to the independence of the k functions, it follows that Mon-line(S, C) = 3k while
Mworst(S,C) = 2k.

6. Discussion

In this work we analyze the effect of having various degrees of knowledge on the order of
elements in the mistake bound model of learning on the performance (i.e., the number of
mistakes) of the learner. We remark that in our setting the learner is deterministic. The
corresponding questions in the case of randomized learners remain for future research.

We can also analyze quantitatively the advantage that an online algorithm may gain from
knowing just the set of elements, S, in advance (without knowing the order, σ, of their
presentation). That is, we wish to compare the situation where the online algorithm knows
nothing a-priori about the sequence (other than that it consists of elements of X ) and the
case that the algorithm knows the set S from which the elements of the sequence are taken
(but has no additional information as for their order). The following example shows that
the knowledge of S gives an advantage to the learning algorithm:

Example: Consider the intervals concept class of Example 4.1, with the instance space X
restricted to { 1

n
, 2
n
, . . . , n

n
}. As proven,Mon-line(X ,C) = log(n+1) . On the other hand,

for every set S of size `, we showed that Mon-line(S, C) = log(` + 1) . Therefore, if S
is small compared to X (i.e., ` is small compared to n) the number of mistakes can be
significantly improved by the knowledge of S.
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Notes

1. A related result by (Blum, 1994) implies that if efficiency constraints are imposed on the model, then there
are cases in which some orders are “easy” and others are computationally “hard”.

2. Again, by the Halving algorithm, Mon-line(S, C) and therefore alsoMbest(S, C) are O(log n).
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