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and Machine Learning, University College London, WC1E 6BT, U.K.

This review examines kernel methods for online learning, in partic-
ular, multiclass classification. We examine margin-based approaches,
stemming from Rosenblatt’s original perceptron algorithm, as well as
nonparametric probabilistic approaches that are based on the popular
gaussian process framework. We also examine approaches to online
learning that use combinations of kernels—online multiple kernel learn-
ing. We present empirical validation of a wide range of methods on
a protein fold recognition data set, where different biological feature
types are available, and two object recognition data sets, Caltech101 and
Caltech256, where multiple feature spaces are available in terms of dif-
ferent image feature extraction methods.

1 Introduction

In its canonical form, the term online learning refers to the paradigm where
the “learner” (i.e. algorithm) receives data instances and labels in a sequen-
tial fashion (Freund & Schapire, 1997). The goal of the learner is to predict
the label yt ∈ Y of the instance xt ∈ X at time t, after which the true label
is revealed. This differs from batch learning, where a (training) data set S
consisting of m pairs of examples {xi, yi} is given, and incremental learn-
ing, where multiple batches St, t = 1, .. , T are given. Typically in batch and
incremental learning, it is assumed that the data are generated indepen-
dent and identically (iid) from an underlying data-generating distribution
D = {X × Y}. In this scenario, the goal of the learner in incremental learn-
ing is to build a model that closely approximates the model that would be
learned if all the batches of the data were given at once, with computa-
tional advantages of efficient incremental updates and processing only on
the batch at any one time. Of course, if the size of each batch is 1, this would
reduce to the online learning setting, with the assumption that the data are
generated i.i.d. However, often online learning algorithms (and the theory
associated with them) does not assume that the data are generated i.i.d.
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(i.e., the underlying data distribution may be shifting or switching), so this
reduction of incremental to online learning is to a restricted case only.

The perceptron algorithm (Rosenblatt, 1958) is an online algorithm that
iteratively builds a hyperplane to separate data into two classes. It pro-
ceeds by adjusting the hyperplane whenever a mistake is made and has
been shown to have favorable convergence properties if the data are lin-
early separable (Novikoff, 1962). In the case where the data are noisy, the
perceptron may never converge, but this can be alleviated by fixing the
model after a period of time or through the use of a regularization term in
the cost function. If the goal is to find the hyperplane that best separates
the data, it stands to reason that casting this goal as an optimization prob-
lem is a sensible thing to do. The support vector machine (SVM) (Vapnik,
1995) does exactly this: it seeks to find the hyperplane that maximizes the
margin between two classes of data. It has since been shown that a mi-
nor modification of the perceptron (the margin perceptron; see Duda and
Hart, 1973) would be equivalent to an unregularized SVM, with the only re-
maining difference appearing to be the training method: stochastic gradient
descent (SGD) for the perceptron and quadratic programming for the SVM
(Collobert & Bengio, 2004). In fact, since the SVM can be solved using
SGD as well, this link is probably even deeper (Bordes, Ertekin, Weston, &
Bottou, 2005). Since the perceptron has long stood as a benchmark in online
learning, it should come as no surprise that the SVM stands as the bench-
mark in the batch classification setting, certainly in terms of kernel methods
(see section 1.2).

These distinctions will become clearer when we discuss specific algo-
rithms, as some algorithms are designed from the batch or incremental
perspective, sometimes even requiring that several (pseudo-online) passes
over the (batch) data set are required, and others are “true” online. We will
refer to the former as “online batch” and the latter as “true online.” This
often leads to confusion as often both are referred to as online learning. In
fact, it is also possible to distinguish two separate cases in the online-batch
setting (approaches based on Monte Carlo sampling techniques): only one
pass over the training data, which is known as stochastic approximation
(SA), and multiple passes over the training data, which is known as sample
average approximation (SAA) (Nemirovski, Juditsky, Lan, & Shapiro, 2009).
Neither is related to the true-online setting, but when the data are i.i.d., they
can be used to obtain classifiers with generalization error bounds. In SA,
the aim is to approximate a problem of the form

min
w

R(w) + E[L(w,X ,Y )], (1.1)

where R is the regularization function, w is the solution vector, and L is the
loss function. In SAA, the above problem is approximated with

min
w

R(w) + 1

T

T∑

i=1

L(wi, xi, yi), (1.2)
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which can be minimized, such as with stochastic methods. The solutions
of the algorithms will differ greatly, even if their instantiations are similar
(Nemirovski et al., 2009). A full analysis of these methods is outside the
scope of this review.

1.1 Online-to-Batch Conversions. Note that in general, it is always
possible to transform an online algorithm into a batch algorithm. From a
theoretical perspective, if it is known that the samples are i.i.d., it is possible
to transform a regret bound for an online algorithm into a convergence rate
or generalization bound for the equivalent batch problem. However the
opposite is not true; algorithms that are designed specifically to work with
i.i.d. samples with a proven generalization error bound in principle cannot
be used in the pure online setting and do not have a regret bound guarantee.
Examples of this are the algorthms based on stochastic gradient descent
(SGD) analyzed by Zhang (2004). These have finite-sample convergence
rate bounds but cannot be used in the online setting without projections
(see Zinkevich, 2003).

When an online algorithm is converted to a batch algorithm, the resulting
batch algorithm often closely resembles some form of SGD algorithm. This
online-to-batch conversion can be carried out in different ways. It may
seem like the simplest method is to take the last solution. However, if the
algorithm has not yet converged, the last solution may be arbitrarily bad.
For convex loss functions, the simplest approach that mitigates this problem
is to take the average of all of the solutions generated at each time step, (see
Cesa-Bianchi, Conconi, & Gentile, 2004, for details). For nonconvex losses,
a complex procedure is also described in Cesa-Bianchi et al. (2004), which
enables one to obtain generalization error bounds from regret bounds, such
as for the 0–1 loss function of the perceptron algorithm.

We will attempt to disambiguate from a wide set of algorithms that have
been proposed, and for a representative selection of these, we evaluate
their performance in terms of their true online performance, as well as their
online-batch performance, that is, how well the model trained on a data
set in an online fashion then performs on a separate test set. We will not
consider the incremental setting in this study except where it is necessary
for the algorithm to run in a reasonable time frame.

For the purposes of this study, for one set of experiments we use the
online-to-batch conversion mechanism described in Cesa-Bianchi et al.
(2004)—averaging the hyperplanes generated at each step in the learning
phase.

1.2 Kernel Methods in Online Learning. We restrict this survey to so-
called kernel methods (Shawe-Taylor & Cristianini, 2004), a more rigorous
definition of which will be given in section 2. Briefly, a kernel function κ

is a function that for all x, z ∈ X satisfies κ(x, z) = 〈φ(x), φ(z)〉, where φ :
X �→ H is a mapping from X to an (inner product) Hilbert space H. This al-
lows inner products between nonlinear mappings (when φ(·) is a nonlinear
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function), as long as the inner product κ(xi, x j) = 〈φ(xi), φ(x j)〉 can be eval-

uated efficiently. In many cases, this inner product or kernel function can
be evaluated much more efficiently than the feature vector itself, which can
even be infinite-dimensional in principle. For a given kernel function, the
associated feature space is not necessarily unique. A commonly used kernel
function for which this is the case is the radial basis function (RBF) kernel,
defined as

κγ (x, z) = exp

(
−‖x − z‖2

γ

)
. (1.3)

The RBF kernel projects the data into a (nonunique) infinite-dimensional
Hilbert space. One drawback, as with most other kernel methods, is that
storing large kernel matrices is computationally prohibitive: it requires
O(m2) data storage.1 When kernel methods are used in online learning, this
data storage requirement is dropped at the expense of extra kernel com-
putations. An online algorithm will have to calculate the kernel function
between the new data point and any points that are stored from previous
rounds that may be used in calculating the decision function or updating of
the statistical model at time t. The set of points stored by the algorithm will
be called the active set and denoted by A henceforth. In many cases, it is
more practical to store the original data points rather than the kernel evalu-
ations, at the expense of the computational cost per iteration. The use of an
active set means that the memory requirements at time t are only O(|At |)
(or O(|At |2) if the kernel evaluations are stored) where typically |At | ≪ t,
and in many cases can be fixed a priori. We will see that how this active set
is created and maintained, together with the statistical model being gener-
ated, are the two key features that differentiate between the algorithms we
investigate here.

1.3 Online Multiple Kernel Learning. Online learning and kernel
learning are two active research topics in machine learning. Although each
has been studied extensively, only recently have efforts in addressing the
intersecting research been made. Some early work that did not specifically
refer to the multiple kernel learning (MKL) problem examined the situation
where a set of “experts” is employed, and relative loss bounds were devel-
oped using weighted combinations of these experts (Herbster & Warmuth,
1998).2 Of course, each expert could be the same algorithm (such as a kernel
perceptron) using a different feature space, in which case this resembles an
MKL approach (and as we will see particularly resembles the approach to

1For online learning, m = T. For batch learning, m is then the number of training
points.

2See Gönen and Alpaydin (2011) for a recent review.
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online MKL of Jin, Hoi, & Yang, 2010). However the goal of the framework
was to model situations in which the data-generating distribution of the
examples changes (or switches), and different experts are best for certain
segments of the sequence of examples. The algorithm has been shown to
perform well on data organized in temporal blocks (Herbster & Warmuth,
2001; Herbster, 2001). Here we restrict ourselves to algorithms that attempt
to find a stable combination of the feature spaces. Two notable approaches
to online multiple kernel learning (OMKL) have been made, both of which
try to learn a kernel-based prediction function from a pool of predefined
kernels (or kernel functions) in the online learning framework (Jin et al.,
2010; Luo, Orabona, Fornoni, Caputo, & Cesa-Bianchi, 2010). The problem
of OMKL is generally more challenging than typical online learning be-
cause both the kernel classifiers and the (linear) combination of these must
be learned simultaneously. The specific approaches outlined by Jin et al.
(2010) and Luo et al. (2010) are discussed in section 3.3.

1.4 Probabilistic Online Learning. Another approach to the online
learning problem is the probabilistic or Bayesian approach. Traditional
Bayesian inference requires the definition of prior and likelihood distri-
butions, and then computation of the posterior conditioned on the data
and the prior. In the online setting, the true posterior distribution is re-
placed with a simpler parametric distribution, and following on from this,
one can define an online algorithm by alternating between updates of
the approximate posterior when a new example arrives, and an optimal
projection into the parametric family (Opper, 1998). Predictions are made
by averaging over the approximate posterior. It was also suggested that
minimizing the difference between the batch and the approximate poste-
rior optimizes the performance of the Bayes online algorithm (Winther &
Solla, 1998). These methods were demonstrated in neural network learning
(Opper, 1998) and linear perceptron learning with binary or continuous
weight priors (Winther & Solla, 1998).

The SVM is perhaps the state of the art in kernel-based classification
of batch data sets. In the (nonparametric) Bayesian framework, gaussian
process classifiers (GPC) (Rasmussen & Williams, 2005) produce solutions
that often generalize as well as or better than the SVM solutions (Kuss,
Rasmussen, & Herbrich, 2005), while providing additional information,
namely, confidence of predictions, in return for added computational com-
plexity. The gaussian process is used as a prior probability distribution over
functions, where a multivariate gaussian whose covariance matrix param-
eter is the Gram matrix of the set of m data points with some desired kernel
function. There have been efforts to create sparse efficient versions of the
GPC, such as the informative vector machine (IVM) (Lawrence, Seeger, &
Herbrich, 2002), where a reduced set of points (support vectors) is used
for final classification. This leads to the possibility that the estimation of
the model parameters can be done in an online fashion, with the support
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vectors also being chosen online (again forming an active set again). There
have been several attempts to do this, notably sparse online gaussian pro-
cesses (SOGP) (Csató & Opper, 2002), the virtual vector machine (VVM)
(Minka, Xiang, & Qi, 2009), and predictive active set selection methods for
gaussian Processes (PASS-GP) (Henao & Winther, 2010). These methods are
discussed further in section 3.5.

1.5 Outline. The rest of the review is set out as follows. In section 2, we
formally introduce the notation that will be used throughout the review.
In section 3, we describe each of the algorithms that we will be examin-
ing. These will be presented in (roughly) chronological order and divided
into several subsections: those that come from a decision-theoretic perspec-
tive (section 3.1), perceptron based (section 3.2), margin-based perspective
(section 3.2.4), and those that come from a probabilistic (Bayesian) perspec-
tive (section 3.5). In section 4 we provide extensive empirical testing of the
proposed methods, and in section 5 we conclude with a discussion.

2 Preliminaries

In the binary online classification framework with a single feature space,
we assume that at time t, we are given an example xt ∈ R

n, and the goal is
to make a prediction ŷt ∈ {−1, 1}, after which the true label yt ∈ {−1, 1} is
revealed.

Define I(z) as the indicator function that returns 1 if z > 0 and 0 other-
wise, sgn(z) as the function that returns −1 if z < 0 and 1 otherwise, 1 as
a vector of all ones, I ∈ R

m×m as the m-dimensional identity matrix, and zI
as the vector indexed by the index set I. z′ and A′ denote the transposes of
the vector z and matrix A, respectively.

We aim to learn a linear function f (x) = 〈w, φ(x)〉, which due to the rep-
resenter theorem can be rewritten in the form f (x) =

∑
i αi〈φ(xi), φ(x)〉 =∑

i αiκ(xi, x), where κ is the kernel function described in the following
definition:

Definition 1. A kernel is a function κ that for all x, z ∈ X satisfies

κ(x, z) = 〈φ(x), φ(z)〉,

where φ is a mapping from X to an (inner product) Hilbert space H,

φ : X �→ H.

For a kernel function defined in this way, its reproducing property can
be stated as f (xi) = 〈 f, κ(xi, ·)〉H for the reproducing kernel κ for every
function f (xi) belonging to H.
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In the multiple kernel learning setting, we are given a finite number of
kernel functions (a kernel family) κβ = {κ1, . . . , κk}, which can be combined
using a convex combination as follows:3

κβ (x, z) =
k∑

j=1

β jκ j(x, z), with β j ≥ 0,

k∑

j=1

β j = 1, (2.1)

where x, z ∈ R
n.

The explicit feature mapping induced by each kernel function is defined
as φ j : x �→ φ j(x) ∈ H j, j = 1, . . . , k, where H j is the Hilbert space of the jth

feature space. We will denote the set of weight vectors for each feature map
as w̄ = {w1, . . . , wk} and the kernel coefficients as β = (β1, . . . , βk)

′.

2.1 Batch Multiple Kernel Learning. The primal optimization of mul-
tiple kernel learning (MKL) (which we refer to as “ℓ1 MKL”), as defined in
Rakotomamonjy, Bach, Canu, and Grandvalet (2008), can be written as

min
1

2

k∑

j=1

(
1

β j

‖w j‖2

)
+ C

m∑

i=1

ξi

w.r.t. w̄ ∈ R
n×k,β ∈ R

k, ξ ∈ R
m, b ∈ R,

s.t. yi

(
k∑

j=1

〈w j, φ j(xi)〉 + b

)
≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0, i = 1, . . . , m,

k∑

j=1

β j = 1, β j ≥ 0, j = 1, . . . , k, (2.2)

with the following decision rule,

f (x) = sgn

(
k∑

j=1

β∗
j 〈w∗

jφ j(x)〉 + b∗

)

= sgn

(
k∑

j=1

β∗
j

m∑

i=1

α∗
i κ j(x, xi) + b∗

)

= sgn

(
m∑

i=1

α∗
i κβ (x, xi) + b∗

)
, (2.3)

3There exist other combinations such as linear combinations (as convex but without
the nonnegativity constraint), multiplicative combinations, and nonlinear combinations.
Here we restrict ourselves to convex combinations only.
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where κβ is defined as in equation 2.1. The ℓ1 norm penalty on the kernel
coefficients leads to a sparse subselection of kernels in the kernel combina-
tion. This is often seen as desirable for computational and interpretability
reasons, but a sparse subselection of kernels may not always be desirable.
The formulation above can be generalized to the case of generic ℓp norms,

p ≥ 1 (see, for example, Kloft, Brefeld, Sonnenburg, & Zien, 2011).
It will also be useful to define the ℓ2,p-group norm ‖w̄‖2,p of w̄ as

‖w̄‖2,p
.= ‖(‖w1‖2, ‖w2‖2, . . . , ‖wk‖2)‖p

2.2 Gaussian Processes for (Online) Classification. Here we briefly
review the application of gaussian processes for classification and how
they are used in an online setting.

A gaussian process is defined as a gaussian distribution over latent func-
tions. Given the consistency property of gaussian distributions, whereby
marginals are also gaussian, pointwise evaluations at the data points
f = [ f (x1), . . . , f (xT )]T are jointly gaussian. By specifying a covariance
function C(x, x′) and a mean function h(x), we see that f ∼ N (h, K) where
h = [h(x1, . . . , xT )] and K is the covariance matrix, which is equivalent to the
Gram matrix in kernel methods. Since the data points appear in the expres-
sion only through the covariance matrix, and hence through inner products,
any nonlinear mapping that produces valid covariances (kernels) can be
used, as before. For classification, it is assumed that the labels are observed
independently, and a probit likelihood function g(yt | f (xt )) = Q( ftyt ) where
Q(·) is the gaussian cumulative density function.4 The (intractable) poste-
rior is then

p(f|X, y) = 1

Z
p(f|X)

T∏

t=1

g(yt | f (xt )),

where the normalizing constant Z = p(y|X) is the marginal likelihood. Cur-
rently the most accurate deterministic approximation to this is through the
use of expectation propagation (EP) (Rasmussen & Williams, 2005). In EP,
the likelihood is approximated by an unnormalized gaussian to give

p(f|X, y)= 1

ZEP

p(f|X)

T∏

t=1

1

Zt

g̃(yt | f (xt )),

= 1

ZEP

p(f|X)N (f|h̃, C̃),

=N (f|h, C),

4A logit likelihood function can also be used.
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where ZEP and Zt are normalization coefficients, ˜g(yt | f (xt )) and N (f|h̃, C̃)

are the gaussian approximations to g(yt | f (xt )) at each site xt . In order to
obtain the full (approximate) posterior q(f|X, y), one would start by using
the prior, q(f|X, y) = p(f|X), and update each site approximation g̃(·) se-
quentially. In order to do this, the so-called cavity distribution q̃(f|X, yt )

is used—the current posterior with the point xt removed. In the “online”
methods of Csató and Opper (2002), Lawrence et al. (2002), and Henao
and Winther (2010), the full posterior approximation is achieved only after
(at least one) full pass through the data set. If time is unbounded, then this
method is not possible. The alternative is to process the data in minibatches,
where the EP step is run each time a batch of points is included, with the
predictions of those points being made on the basis of the model at the
previous time step. Of course, if the batch size is set to 1, this would be a
true online setting, but the EP updates are generally too expensive to com-
pute at that frequency. There is a further problem: unless some kind of
active set is used, all of the data points up to time t would be required,
which would lead to an unbounded increase in computational complexity.
Csató and Opper (2002), Lawrence et al. (2002), and Henao and Winther
(2010) all use an “active set”; they store a restricted set of data points used
for EP updates. The methods are differentiated by how examples are in-
cluded and excluded from the active set, which we discuss in section 3.5.
Another approach, known as the virtual vector machine Minka et al. (2009),
which we also discuss, is to use “virtual vectors”—vectors that are created
by merging existing data points—as a proxy for the full data set.

2.3 Multiclass Classification. Most linear classifiers, whether online or
offline, can be naturally generalized to multiclass classification. Here, the
input x and the output y are drawn from the label set Y . The classification
function (or latent function in the GP setting) f (x, y) maps each possible
input-output pair to a finite-dimensional real-valued feature vector. The
resulting score is used to choose among many possible outputs:

ŷt = arg max
y∈Y

f (xt, y).

For example, in the case of the perceptron algorithm, the function f would
simply be f (xt, y = y j) = w′

jx j. The notion of the kernel-defined feature

space can be extended to be defined jointly on the space X × Y , in which
case f (xt, y = y j) = w′

jφ j(x j, y j) (see Fink & Singer, 2006). In the multiclass

setup, with multiple feature spaces, for each class y j, j = 1, . . . ,C, we define

φ j(x j, y j) = (0, . . . , 0, ψ j(x j)︸ ︷︷ ︸
y

j

, 0, . . . , 0),
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where ψ j(·) is a label-independent feature map. Similarly, w consists of C

blocks, and hence by construction w′φ j(x j, y j) = w′
jψ j(x j).

3 Online Learning with Kernels

In this section, we describe a range of the different approaches to online
learning that have been proposed, with particular attention to those that
have been extended using kernel methods.

3.1 Decision-Theoretic Approaches. The Hedge algorithm (Freund &
Schapire, 1997; Vovk, 1998) is an algorithm for prediction with expert advice,
which comes from a decision-theoretic generalization of online learning.
Freund and Schapire (1997, theorem 2) prove that for any sequence of
outcomes,

LT ≤ ln 1/β

1 − β
LT (k) + ln K

1 − β
,

for all T and k, where β ∈ [0, 1] is a parameter, LT is the loss suffered by the

algorithm over the first T trials and LT (k) =
∑T

t=1 ωt
k is the loss (or expected

loss) suffered by the kth expert over the first T trials. The inequality above
was improved by Vovk (1998) using the strong aggregating algorithm,

LT ≤ c(β)LT (k) + c(β)

ln(1/β)
ln K,

where c(β) = (ln 1
β
)/(K ln K

K+β−1
). The same method can be applied if the

experts and the algorithm provide the probability distribution over the
outcome space and they suffer the expected loss of a decision randomly
selected according to this distribution. In this case, the algorithm predicts
simply the weighted average of the experts predictions. The theoretical
bound for the loss of the Hedge algorithm is

LT ≤ LT (k) +
√

2L ln K + ln K.

The constant L is a prior upper bound on the loss of the best strategy and in

the worst case is TL̃, where L̃ is the bound for the loss used. The weights are
updated by the rule wk := wkβ

λ
k , where β = 1

1+
√

2 ln K/L
, and then they are

normalized. The bounds for some particular loss functions, such as square
loss function, can be easily derived from the bound described above using
geometrical inequalities. This bound justifies the use of the Hedge algo-
rithm in a setting where a mixture of experts is combined using a weighted
average; this is in turn a justification for the approach to online MKL by
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Jin et al. (2010) which uses the Hedge algorithm to combine multiple kernel
perceptrons.

Under a framework of the “best expert” (Herbster & Warmuth, 1998),
worst-case loss bounds for online algorithms were generalized to the case
where the additional loss of the algorithm on the whole sequence of exam-
ples was bounded over the loss of the best expert (which cannot be known
a priori). The sequence is partitioned into segments, and the goal is to bound
the additional loss of the algorithm over the sum of the losses of the best
experts of each segment. The idea behind this was to model situations in
which the examples change and different experts are best for certain seg-
ments of the sequence of examples, which may happen if the underlying
probability distribution is multimodal or there are switches between phases
in the data (e.g., caused by underlying trends or transient states). In the sin-
gle expert case, the additional loss is proportional to log(k), where k is the
number of experts and the constant of proportionality depends on the loss
function. When the number of segments is at most s + 1 and the sequence
of length ℓ, the additional loss of their algorithm can be bounded over the
best partitioning by O(s log(k) + s log(ℓ/s)). The algorithms for tracking
the best expert are simple adaptations of Vovk’s original algorithm for the
single best expert case. These algorithms keep one weight per expert and
spend O(1) time per weight in each trial. The results were later extended to
linear combinations (Herbster & Warmuth, 2001).

3.2 Perceptron and Variants. The perceptron was proposed as a bio-
logically plausible model for learning from vectorial data, where a learning
rule is constructed that is a linear combination of the examples (Rosenblatt,
1958; Block, 1962; Vapnik & Chervonenkis, 1964). Novikoff (1962) showed
that the perceptron algorithm converges after a finite number of iterations
if the data set is linearly separable. The idea of the proof is that the weight
vector is always adjusted by a bounded amount in a direction that it has

a negative dot product with, and thus can be bounded above by, O(
√

δ),
where δ is the number of changes to the weight vector. Furthermore, it can
also be bounded below by O(δ) because if there exists an (unknown) satis-
factory weight vector, then every change makes progress in this (unknown)
direction by a positive amount that depends on only the input vector. This
can be used to show that the number δ of updates to the weight vector

is bounded by R2

γ 2 , where R is the radius of the ℓ2-norm ball enclosing the

input space and γ is the margin (the distance between the closest points
from each class).

Note that the decision boundary of a perceptron is invariant with respect
to scaling of the weight vector that is, a perceptron trained with initial
weight vector w and learning rate τ , results in an identical classifier to a
perceptron trained with initial weight vector w

τ
, and learning rate 1. Thus,

since the initial weights become irrelevant with an increasing number of
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iterations, the learning rate does not matter in the case of the perceptron
and is usually just set to one.

3.2.1 Kernel Perceptron. The perceptron algorithm was first extended
for use in kernel-defined Hilbert spaces by Freund and Schapire (1999),
resulting in the kernel perceptron (KP). In addition they combined the
classical perceptron algorithm with Helmbold and Warmuth’s (1995) leave-
one-out method in order to perform the online-to-batch conversion.5 The
resulting algorithm is simpler to implement and much more efficient in
terms of computation time than the SVM, while the performance is close to
(but not as good as) the performance of maximal-margin classifiers on the
same problem.

3.2.2 Budgeted Perceptron Variants. If the data are not linearly separable,
the (kernel) perceptron algorithm will never stop updating, meaning that
the size of the support set is unbounded. For most practical problems, this
makes it impractical for most real-world problems. The first approach to
bound the growth of the support set was the budget perceptron (Crammer,
Kandola, & Singer, 2003), which removes seemingly redundant examples
from the support set by examining the margin conditions of old examples.
This was later improved (tigher budget perceptron) by Weston, Bordes,
and Bottou (2005) to account for noisy data sets. However, neither of these
algorithms has any performance guarantees in terms of bounded numbers
of errors. The forgetron (Dekel, Shwartz, & Singer, 2008) was the first budget
perceptron that had a formal performance guarantee. It enforces a strict
bound on the size of the active set by removing vectors. First, the weights
of every vector in the active set are reduced; then it discards the oldest
vector in the active set, which has the smallest weight. This is done only
when the size of the active set exceeds the budget, so applying this removal
procedure on every error will ensure that the size of the active set will
not exceed the budget. Due to the repeated weight reductions, the oldest
vector will have small weight, so removing it will not change the decision
function significantly. The factor by which the forgetron reduces weight is
not constant and differs from error to error.

The randomized budget perceptron (RBP) of Cavallanti, Bianchi, and
Gentile (2007) is considerably simpler than the forgetron: whenever it makes
an error and the size of the active set exceeds the budget, a vector is chosen
at random from its active set to be discarded. It was shown that both of
these algorithms have bounds of similar order (Sutskever, 2009). Another
algorithm, the projectron (Orabona, Keshet, & Caputo, 2009), has been pro-
posed in which the instances are not discarded but projected onto the space
spanned by the previous online hypothesis. The authors derive a relative

5Note that the KP can be used without the Helmbold and Warmuth method.
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mistake bound and compare the algorithm both analytically and empiri-
cally to the forgetron, showing favorable results. Since the RBP is by far the
simplest of the budgeted perceptron algorithms, we used this method in
the experiments. We also ran preliminary experiments with the projectron,
but when compared to the RBP, we found it to be much slower without
discernable performance gains.

3.2.3 Relation Between the Perceptron and the Support Vector Machine. For
linearly separable data, the perceptron algorithm can be modified such
that it seeks to find the largest separating margin between the classes. The
“perceptron of optimal stability” can be solved through iterative schemes,
such as the AdaTron (Anlauf & Biehl, 1989), which exploits the fact that the
corresponding quadratic optimization problem is convex. The perceptron
of optimal stability is, together with the kernel trick, one of the conceptual
foundations of the SVM. Later it was shown that the SVM solution could
be approximated by the kernel Adatron with an exponentially fast rate of
convergence to the optimal solution (Friess, Cristianini, & Campbell, 1998),
which completes the link. Note, however, that the Adatron falls under
the category of online-batch algorithms rather than being a true online
algorithm.

3.2.4 Online Support Vector Machines. Following on from the AdaTron
algorithm, several attempts have been made to adapt the SVM for online
learning. The incremental and decremental SVM (Cauwenberghs & Poggio,
2000) is an online recursive algorithm for training SVMs using “adiabatic
increments.”6 An adiabatic process in thermodynamics is one in which heat
transfer is zero. Here it refers to the “equilibrium” of the training data—that
KKT conditions are satisfied for the whole data set, which, in a number of
analytical steps, ensure that the KKT conditions (Kuhn & Tucker, 1951) are
satisfied on all previously seen training data. Interestingly, the incremental
procedure is reversible, and decremental “unlearning” offers an efficient
method to exactly evaluate leave-one-out generalization performance, as
well as giving some intuition about the relationship between generalization
and the geometry of the data. However, since the algorithm requires the
storage of the inverse of the Jacobian (second derivatives of the objective
function), which scales as |A|2, which is in turn unbounded, the algorithm
is more suited as an online-batch approach than a true online algorithm.

Kivinen, Smola, and Williamson (2002) combine classical stochastic gra-
dient descent within a feature space and some straightforward tricks to
develop simple and computationally efficient algorithms for a wide range

6An adiabatic process in thermodynamics is one in which heat transfer is zero. Here it
refers to the “equilibrium” of the training data—that KKT conditions are satisfied for the
whole data set.
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of problems such as classification, regression, and novelty detection. The
authors specifically consider using online large margin classification algo-
rithms in a setting where the target classifier may change over time, but they
also show how to exploit the kernel trick in an online setting. They show
that their naive online regularized-risk minimization algorithm (NORMA)
has appealing worst-case loss bounds and converges to the minimizer of
the regularized risk functional. A similar approach was taken to create
the implicit online learning with kernels (ILK) and sparse ILK (SILK) al-
gorithms (Cheng, Vishwanathan, Schuurmans, Wang, & Caelli, 2006). An
implicit update technique was used that can be applied to a wide variety
of convex loss functions. The authors prove loss bounds, analyze the con-
vergence rate of both algorithms, and show that empirically the algorithms
outpeform NORMA.

Later, a family of margin-based online learning algorithms was devel-
oped for various prediction tasks under the umbrella term of online SVM
and passive agressive (Crammer, Dekel, Keshet, Shalev-Shwartz, & Singer,
2006). The update steps of the algorithms are based on analytical solutions
to simple constrained optimization problems. This allowed them to prove
worst-case loss bounds for the different algorithms and for the various de-
cision problems based on a single lemma. The bounds on the cumulative
loss of the algorithms are relative to the smallest loss that can be attained
by any fixed hypothesis, as in the “best expert” framwork (Herbster & War-
muth, 1998), and as such are applicable to both realizable and unrealizable
settings.

Bordes et al. (2005) present another online variant of the SVM, LASVM,
an approximate SVM solver that uses online approximation and was shown
empirically to reach accuracies similar to that of a real SVM after performing
a single sequential pass through the training examples. The authors also
show that additional benefits can be achieved using selective sampling
techniques to choose which example should be considered next—so-called
active learning, which was introduced in the context of the SVM by Tong,
Koller, and Kaelbling (2001). The algorithm alternates between two steps:
process, which decides whether a point should be added into the active set,
and reprocess, which examines the active set to see if any points should be
removed. For each data vector, these steps can be repeated several times. The
algorithm is fast and performs well in the online-batch setting, but this time
suffers from the need to choose both the C parameter (SVM regularization
parameter) and an additional τ parameter (for active set inclusion) a priori,
which limits its use in a true online setting.

Finally, Orabona, Castellini, Caputo, Jie, and Sandini (2009) present on-
line independent support vector machines (OISVMs), which approximately
converge to the standard SVM solution each time new observations are
added. The approximation is controlled via a user-defined parameter, which
again poses a problem in the online setting. The method employs a set of lin-
early independent observations and tries to project every new observation
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onto the set obtained so far, dramatically reducing time and space require-
ments at the price of a negligible loss in accuracy. This is similar in flavor to
the projectron algorithm (Orabona, Keshet, & Caputo, 2009).

3.3 Online Multiple Kernel Learning. Recently there have been at-
tempts to extend the multiple kernel learning (MKL) (Bach, Lanckriet, &
Jordan, 2004; Lanckriet, Cristianini, Bartlett, Ghaoui, & Jordan, 2004; Rako-
tomamonjy et al., 2008) framework to the online learning setting. An incre-
mental multiple kernel learning (IMKL) approach was proposed for object
recognition that initializes on a generic training database and then tunes
itself to the classification task at hand (Kembhavi, Siddiquie, Miezianko,
McCloskey, & Davis, 2009). Their system simultaneously updates the train-
ing data set as well as the weights used to combine multiple information
sources. An online approach to MKL for structured prediction was outlined
(Martins, Smith, Xing, Aguiar, & Figueiredo, 2010) using a new family of
online proximal algorithms. These algorithms can be used for MKL as well
as for group-lasso (Bach, 2008) and variants thereof, and the authors give
regret, convergence, and generalization bounds for the proposed methods.
However, in the empirical evaluations, they state that multiple passes are
required, meaning that the algorithms are not well suited to the true online
setting.

3.3.1 OM2 Algorithm. Luo et al. (2010) introduced a theoretically moti-
vated and efficient online learning algorithm for the multiclass MKL prob-
lem called OM2. For this algorithm, they prove a theoretical bound on the
number of multiclass mistakes made on any arbitrary data sequence. More-
over, they show empirically that its performance is on par with, or better
than, standard batch MKL, such as SimpleMKL (Rakotomamonjy et al.,
2008) algorithms.

Using the group norm notation described above, the MKL problem can
be defined in generic form as

min
w̄

λ

2
‖w̄‖2

2,1 +
T∑

t=1

L
(
w̄, xt, yt

)
,

which can be extended to the more general ℓ2,p case as

min
w̄

λ

2
‖w̄‖2

2,p +
T∑

t=1

L
(
w̄, xt, yt

)
,

with 1 < p ≤ 2. This objective function is λ/q strongly convex, where q is
the dual norm of p satisfying 1/p + 1/q = 1. The authors use the “follow the
regularized leader” framework (Shalev-Shwartz & Singer, 2007; Kakade,
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Shalev-Shwartz, & Tewari, 2009), in which the loss function is replace by its
subgradient, meaning that at each step, the following optimization problem
must be solved,

w̄t = arg min
w̄

ηw̄′
t−1∑

i=1

∂L(w̄i, xi, yi) + R(w̄),

where R(·) is a regularization function and η > 0 is a parameter. The lin-
earization of the loss function through the subgradient provides an efficient
closed form for the updates and allows regret bounds to be proven. The so-
lution of the above gives the following update,

w̄t = ∇R∗

(
−η

t−1∑

i=1

∂L
(
w̄i, xi, yi

)
)

,

where R∗ is the Fenchel conjugate of R, defined as R∗(u) = supv∈S(v′u −
R(v)). For the OM2 algorithm using the ℓ2,p-norm formulation, the regu-

larizer is R(w̄) = q
2
‖w̄‖2

2,p, and therefore

R∗(θ̄) = 1

2q
‖θ̄‖2

2,q,

∇R∗(θ̄) = 1

q

(
‖θ j‖2

‖θ̄‖2
2,q

)q−2

θ j, j = 1, . . . , k,

which is then used to make updates whenever a mistake is made or when
the multiclass loss is greater than 0. The authors further propose a variant
of the “follow the regularized leader” framework in which the parameter
η = ηt is changed at each time step if a mistake is made (see algorithm 1 in
Luo et al., 2010) and prove that the cumulative number of mistakes made
on any sequence of T observations is roughly equal to the optimum value
of the original MKL problem.

3.3.2 OMKL Algorithm. Recently an approach to online multiple kernel
learning (OMKL) was proposed that aims to learn a kernel-based predic-
tion function from a pool of predefined kernels in an online learning fashion
(Jin et al., 2010). The authors consider two setups for OMKL, combining bi-
nary predictions or real-valued outputs from multiple kernel classifiers, and
they propose both deterministic and stochastic approaches in the two setups
for OMKL, leading to six algorithms. The deterministic approach updates
all kernel classifiers for every misclassified example, while the stochastic
approach randomly chooses a classifier for updating according to some
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sampling strategies. The methods are derived from a single simple exten-
sion of the kernel perceptron (KP); the idea is to combine the outputs from
KPs learned on each feature space separately using the Hedge algorithm. In
effect, this makes it more of a classifier combination algorithm than a true
MKL algorithm, but we will continue to call the algorithm OMKL in the
rest of this review. Mistake bounds are derived for all the proposed OMKL
algorithms, along with pseudo-code for the algorithms, but no experimen-
tal results are given, and in fact no implementation has been tested before
now.7

We chose to focus on the first two algorithms, DA for OMKL-P (1) and DA
for OMKL-P (2), the only difference between the two being that the second
version allows for misclassifications (at the cost of an extra parameter),
whereas the first one does not. However in practice, we found very little
difference in performance between the two and therefore chose to use the
first variant because it has only one parameter (the discount parameter β).

3.4 Boosting and Random Forest Approaches to Online Learning. Re-
cently a set of methods has been proposed that extend the boosting (Freund
& Schapire, 1997) and random forest (Breiman, 2001; Bosch, Zisserman,
& Munoz, 2007a) methods to the online setting; it is called online multi-
class LPBoost, online multiclass gradient boost, and online random forest
(Saffari, Leistner, Santner, Godec, & Bischof, 2009; Saffari, Godec, Pock,
Leistner, & Bischof, 2010). These were designed for object detection in im-
ages. These are not kernel methods per se, as the nonlinearity comes through
the use of so-called weak learners. However the link between ℓ1-norm
MKL and LPBoost has been observed (Hussain & Shawe-Taylor, 2010). This
perhaps provides a further avenue for research for the derivation of new
multiclass MKL methods.

3.5 Probalistic Approaches to Online Learning. The first attempt to
discuss online learning from the viewpoint of Bayesian statistical inference
was that of Opper (1998) and Opper and Winther (1999). By replacing
the true posterior distribution with a simpler parametric distribution, one
can define an online algorithm by a repetition of two steps: an update of
the approximate posterior, when a new example arrives, and an optimal
projection into the parametric family. Choosing this family to be gaussian,
Opper showed that the algorithm achieves asymptotic effciency.

The most interesting approaches to online learning in a probabilistic set-
ting have been online and incremental approaches gaussian proscess (GP)
regression and classification. One of the first attempts to create an online ap-
proximation of the GP model was the sparse online GP of Csató and Opper
(2002). The authors developed an approach for sparse representations of GP

7Personal correspondence with the authors, March 16, 2011.
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models in order to overcome their limitations caused by large data sets. The
method is based on a combination of a Bayesian online algorithm together
with a sequential construction of an active set that fully specifies the predic-
tion of the GP model. By using an appealing parametrization and projection
techniques that use the RKHS norm, recursions for the effective parameters
and a sparse gaussian approximation of the posterior process are obtained.
This allows both a propagation of predictions and Bayesian error measures.
However, the repeated projections into low-dimensional subspaces can be
computationally costly because they require matrix multiplications.

Around the same time, the informative vector machine (IVM) was pro-
posed as a practical method for gaussian process regression and classifica-
tion (Lawrence et al., 2002). The IVM produces a sparse approximation to
a gaussian process by combining assumed density filtering (Opper, 1998)
with a heuristic for choosing points based on minimizing posterior entropy.
This is notionally simper than the approach of Csató and Opper (2002),
while obtaining similar results.

A method for the sparse greedy approximation of GP regression was
given by Seeger, Seeger, Williams, Lawrence, and Dp (2003), featuring
a novel heuristic for very fast-forward selection. The advantage of this
method is that it is essentially as fast as an equivalent one that selects the
support patterns at random yet was shown to outperform random selec-
tion on difficult curve-fitting tasks. More important, it leads to a sufficiently
stable approximation of the log marginal likelihood of the training data,
which can be optimized to adjust a large number of hyperparameters auto-
matically. It is, however, limited to the regression setting.

Minka et al. (2009) took a slightly different approach, the virtual vec-
tor machine (VVM), in which information contained in the preceding
data stream is summarized by a gaussian distribution of the classification
weights plus a constant number of “virtual” data points, which are de-
signed to include nongaussian information about the classification weights
and in theory allows a smooth trade-off between prediction accuracy and
memory size. To maintain the constant number of virtual points, the vir-
tual vector machine adds the current real data point into the virtual point
set, merges the two most similar virtual points into a new virtual point,
or deletes a virtual point that is far from the decision boundary. The infor-
mation lost in this process is absorbed into the gaussian distribution. The
authors suggest that the extra information provided by the virtual points
leads to improved predictive accuracy over previous online classification
algorithms.

Most recently, Henao and Winther (2010) proposed a new approxima-
tion method for GP learning for large data sets, known as PASS-GP, that
combines inline active set selection with hyperparameter optimization. The
predictive probability of the label is used for ranking the data points. They
use the leave-one-out predictive probability (the so-called cavity distri-
bution) available in GPs to make a common ranking for both active and
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inactive points, allowing points to be removed again from the active set.
This is important for keeping the complexity down and at the same time
focusing on points close to the decision boundary. The authors demonstrate
state-of-the-art results (e.g., 0.86% error on MNIST) with reasonable time
complexity.

One approach that has tried to bridge the gap between probabilistic- and
optimization-based methods for online learning is TONGA (topmoumoute
online natural gradient algorithm; Roux, Manzagol, & Bengio, 2007). The
approach is guided by the goal of obtaining an optimization method that
is both fast and yields good generalization, and to this end they study
the descent direction that maximally decreases the generalization error or
the probability of not increasing generalization error. From both Bayesian
and frequentist perspectives, this can yield the natural gradient direction;
although this can be expensive to compute, an efficient, general, online ap-
proximation is possible. This may be a possible avenue forward for unifiying
the two approaches.

Another general approach to the problem of extracting informative ex-
emples from a data stream is stream greedy (Gomes & Krause, 2010). The
authors state that this method includes diverse approaches such as
exemplar-based clustering and nonparametric inference, such as GP regres-
sion, on massive data sets. They show that the common theme underlying
these problems is the maximization of a submodular function that captures
the informativeness of a set of examples over a data stream. The stream
greedy algorithm is guaranteed to obtain a constant fraction of the value
achieved by the optimal solution to these NP-hard optimization problems,
and could therefore provide a way of improving the efficiency of proba-
bilistic methods such as PASS-GP.

Table 1 gives a taxonomy of the methods discussed in (roughly) chrono-
logical order.

3.6 Selection of Kernel Hyperparameters in Online Learning. If linear
kernels are being used, the kernel function κ is simply the inner product
between data examples, so there is no problem using this form of kernel in
online learning. However, when nonlinear mappings are used, such as those
defined by the RBF kernel function κγ as defined in equation 1.3, usually one
or more hyperparameters need to be chosen. In the batch learning setting,
a heuristic method such as κ-fold cross-validation is performed on the
training set, and then the best parameter over the k-folds is used to retrain
the model before testing on a separate test set. With no such deliniation
between training and testing phases, the choice of kernel hyperparameters
is clearly a tricky problem in the online learning setting. Among the several
possible approaches to this problem are these:

� Pseudo-validation set. The simplest method is to assume that the
first m points form a validation set, in which case the models can
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be run using a range of parameters, and the model chosen would
be the one with the highest cumulative accuracy after m steps. The
problem with this method is that without knowing which model
will be selected, the predictions for the first m points will have to be
made by randomly choosing a classifier from the pool of classifiers,
arbritarily selecting one of them, using a voting scheme, or some
other classifier combination method.

� Large sets of kernels. For the MKL algorithms, one could define a
range of kernel functions for each feature space and each parameter
setting. The algorithm would then select from among these automat-
ically to find the best hyperparameters. This would lead to a large
number of possibly redundant kernels and, consequently, a large
number of unnecessary kernel evaluations.

� Hoeffding races. Hoeffding races (Maron & Moore, 1994), or the
more recent Bernstein races (Heidrich-Meisner & Igel, 2009) are a
technique for finding a good model from a selection of models by
quickly discsarding bad models and concentrating the computational
resources on differentiating among the better ones. These methods
provide a more principled approach than the pseudo-validation set
and offer a promising avenue of research.

� Sequential Monte Carlo. A recent study in the field of reinforcement
learning (RL) develops replacing-kernel RL (RKRL) (Reisinger et al.,
2008), an online model selection method for gaussian process tempo-
ral difference (GPTD: a Bayesian RL model by Engel, Engel, Mannor,
& Meir, 2005) using sequential Monte Carlo (SMC) methods Doucet,
De Freitas, & Gordon, 2001). SMC is used to select good kernel hy-
perparameter settings by choosing models according to their relative
predictive likelihood instead of the true model likelihood. As a result,
RKRL devotes more time to evaluating hyperparameter settings that
correspond to areas with high predictive likelihood (i.e., maximizes
online reward). When GPTD is used, the current value function esti-
mate is formed from the combination of the kernel parameterization
determining the prior covariance function and the dictionary gath-
ered incrementally from observing state transitions. Each sampling
step increases information about the predictive likelihood in the sam-
ple (exploitation), while sampling from the transition kernel reduces
such information (exploration). This approach is certainly promising
for the gaussian process–based approaches.

� Nonparametric approaches. Nonparametric kernel learning (NPKL)
was introduced by Hoi, Jin, and Lyu (2007) as an alternative to MKL,
in which a fully nonparametric kernel matrix is learned using pair-
wise constraints and can be solved using standard semidefinite pro-
gramming (SDP) techniques. An efficient approach to NPKL from
side information, SimpleNPKL, which can efficiently learn nonpara-
metric kernels from large sets of pairwise constraints, was recently
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introduced (Zhuang, Tsang, & Hoi, 2009). It would be interesting to
investigate possible online extensions of this methodology.

The application of these methods is outside of the scope of this study but
offers several potential avenues for further research.

3.7 Normalization. Normalizing features (so that each feature has ℓ2-
norm one across all training examples) or standardizing them (so that each
feature has mean 0 and standard deviation 1 across all training examples) is
known to be important for regularized linear classifiers or kernel classifiers
(Duda & Hart, 1973; Shawe-Taylor & Cristianini, 2004). Empirically this has
been shown to be especially important for MKL (Bach et al., 2004; Lanckriet
et al., 2004), whether the kernels are linear or nonlinear. Kloft et al. (2011)
suggest that the importance of normalization is owed to the bias introduced
by regularization. As the optimal feature and kernel weights are requested
to be small by imposing penalties on their norms, it stands to reason that this
will be easier to achieve for features (or entire feature spaces, as implied
by kernels) that are scaled to be of large magnitude, while downscaling
them would require a correspondingly upscaled weight for representing the
same predictive model. Hence the upscaling or downscaling of features is
equivalent to modifying regularizers such that they penalize those features
less or more. Generally the solution to this is to use isotropic regularizers,
which penalize all dimensions uniformly. As a result, the kernels should
be normalized (or standardized) in a sensible way in order to represent an
isotropic prior over the features and the feature spaces, one that penalizes
all weights in the same way.

Kloft et al. (2011) describe several approaches to normalization and
use two particular types in their empirical analysis. They describe these
methods:

1. Multiplicative normalization. As described by Shawe-Taylor and
Cristianini (2004) and examined empirically by Zien and Ong (2007),
this involves normalizing the kernels to have uniform variance of
data points in the features space. Normally this method is combined
with centering (the empirical mean of the data points in the feature
space lies on the origin), which simplifies the normalization rule.

2. Spherical normalization. Each data point is rescaled to lie on the
unit sphere. This may also have an effect on the scale of the fea-
tures, as a spherically normalized and centered kernel is also always
multiplicatively normalized.

3. Input space normalization. Each data point is normalized in the
original space.

4. Input space standardization. Each data point is standardized in the
original space, that is, shifted and rescaled to have mean 0 and stan-
dard deviation 1, before mapping into the feature space. Similar to
spherical normalization, this will also affect the scale of the features
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5. Incremental standardization. The mean and standard deviation of
each feature within each feature space are updated incrementally
using the update equations (see equation 3.1). Note, however, that
the active set needs to be restandardized at each step as well,8 leading
to additional computational burden not found in methods 3 and 4:

µt = t − 1

t
µt−1 + 1

t
xt,

σt =
√

t − 1

t
σ 2

t−1 + t − 1

t2

(
xt − µt−1

)2
. (3.1)

However, in online learning, where the full kernels are not observed be-
forehand, methods 1 and 2 are clearly not possible, even where the explicit
feature space is available (as in the case of linear kernels for example), since
it requires the entire training set to be present. Since normalization is impor-
tant for (most) multiple kernel methods, this poses a problem. Methods 3
to 5 are the only possibilities available, but they represent a weaker com-
promise. Normalization or standardization in the input space clearly does
not imply normalization or standardization in the feature space. However,
it does represent a form of control over the vector sizes in the feature space
and, as seen in the experimental section, does improve performance over
no normalization.

The final method on the surface appears to make sense for linear kernels,
as it should asymptotically converge to the standardization of the entire data
set in the original space. We present experimental results for methods 3 to
5, as well as using no normalization.

Note also that it is possible to design online algorithms that automatically
adapt to the norm of the samples observed up to any given time point.
For example, Figures 5.2 and 5.3 of Shalev-Shwartz (2007) describe self-
adaptive variants of the Winnow algorithm and aggressive quasi-additive
family of algorithms, respectively, for binary classification. More recent
approaches to solving this problem include an algorithm that adaptively
chooses its regularization function based on the loss functions observed so
far (McMahan & Streeter, 2010) and a new family of subgradient methods
that dynamically incorporate the geometry of the data observed in earlier
iterations to perform more informative gradient-based learning (Duchi,
Hazan, & Singer, 2011). However, these methods are much more complex
and are outside of the scope of this study.

8The restandardization of the active set can be ignored but will lead to poor perfor-
mance if data points are kept in the active set from early on in the learning process, at
which point the online estimate of the moments of the data may have been poor. We found
this to be an essential step for this method to work. It should be noted that this actually
breaks the theoretical guarantees of the algorithms.
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4 Experiments

In this section, we present some empirical comparisons of a representative
selection of the algorithms discussed earlier. In section 4.2, we present the
analysis of a relatively small (in online learning terms) protein fold predic-
tion data set. Due to the fact that multiple feature spaces are available, this
data set has been used to benchmark and develop various different multiple
kernel learning algorithms. Its compact nature allows us to rapidly evalu-
ate a wide range of algorithms, discarding any that are too computationally
expensive or show poor performance. Following on from this, we narrow
down our selection of algorithms and analyze two object categorization
data sets in section 4.3.

4.1 Algorithms and Specific Implementation Issues. This section lists
the algorithms we evaluated, along with any specific implementation is-
sues that arose with these algorithms. All algorithms were implemented in
Matlab version 7.7 (R2008b).

Since the data sets we are using have multiple feature spaces, they natu-
rally lend themselves to the application of multiple kernel learning (MKL)
algorithms. Note, however, that most of the algorithms presented here are
single kernel algorithms. Of course we can create MKL algorithms from any
of the single kernel algorithms by using ad hoc kernel combination rules.
One such rule is simply to use an (unweighted) sum of kernels, which cor-
responds to concatenating the feature spaces before creating a single kernel.
Other kernel combinations could be used, such as products of kernels or
nonlinear combinations of kernels, but these are outside the scope of this
study. In order to do a complete analysis, ideally we would test each of
the kernels separately using the single kernel methods as well as the ker-
nel combinations. However, to keep the analysis contained, we treat the
kernel perceptron (KP) as the benchmark algorithm. In doing so, we ran
KP on each of the kernels separately, as well as with an unweighted sum
of kernels (KP-sum). We then ran each of the single kernel methods using
the unweighted sum in order to compare them with both KP-sum and the
MKL methods. Of course, updating the kernel weights as well as the (dual)
weight vectors in an online fashion is the ultimate goal, which at present
only the OM-2 and OMKL methods attempt to do. Similar approaches could
be taken to each of the single kernel methods, leading to many variants of
online MKL, but that is outside of the scope of this work:

� Kernel perceptron. We used the vanilla (dual) implementation, which
was then extended to the multiclass setting using the method of
Zien and Ong (2007) as provided by the DOGMA toolbox (Orabona,
2009). We used a budget of 1000 (see section 3.2.2 for details) in the
Caltech101 experiements and 5000 in the Caltech256 experiments to
bound the computation time in the cases where the algorithm was
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performing poorly (while this effectively turns this into the budget
perceptron, this budget is not reached for any “useful” kernels).

� Budget perceptron. We used the random budget perceptron (RBP)
variant, which throws away existing support vectors at random when
the budget is exceeded. This method is seemingly naive but has good
performance bounds and is extremely efficient. We used a maximum
active set size of 200 samples.

� Projectron. We used the implementation from Orabona’s (2009)
DOGMA toolbox. The η (sparseness) parameter was set to its de-
fault value. We found that the algorithm was very insensitive to this
parameter.

� OM2. The OM2 algorithm has a sparsity parameter p, which by de-
fault is p = 1

1− 1
2 log(k)

. In the experiments that follow, this is approxi-

mately 1.25. We also tried the values p = 1.01 and p = 1.99 to approx-
imate the ℓ1 and ℓ2 norms (these will sometimes be referred to as
p = 1 and p = 2 for simplicity).

� OMKL. We implemented algorithm 1 from Jin et al. (2010), which has
a discount (inverse sparsity) parameter 0 < β < 1. We used the set-
tings β = 0.1, 0.5, 0.9, 0.99, 0.999, since small values enforce sparsity
over the kernel weights extremely quickly.

� IVM. We used active set sizes 50, 100, and 500, with a window size
of 20 points (EP updates are performed only when 20 points are
received). The buffer was chosen because if the initial EP did not
include all of the classes, the future EP updates would never give
posterior mass to those classes not included. We set the number of EP
optimization iterations to 5.

� PASS-GP. We set the EP optimzation iterations, initial buffer, and
window size to be the same as the IVM. Following Henao and Winther
(2010), we set the inclusion parameter to 0.1, 0.3, and 0.6 and left the
exclusion parameter at 0.99 after some experimenation.

Of course, we could have used any number of other possible choices of
the various hyperparameters; these should be taken only as a representative
sample rather than a definitive coverage of the various parameter spaces.

4.2 Protein Fold Prediction. The original data set from Ding and
Dubchak (2001), based on SCOP PDB-40D, consists of 313 examples for
training and 385 examples for testing with less than 35% sequence iden-
tity between any two proteins in the train and the test set. Furthermore,
the extensions that Shen and Chou (2006) proposed exclude four proteins
from the original data set (proteins 2SCMC and 2GPS from the training
set, plus 2YHX 1 and 2YHX 2 from the test set), due to a lack of sequence
records. The original data set is available online at http://ranger.uta.edu/
∼chqding/protein/, which also describes the 27 SCOP fold types (classes)
(Dubchak, Muchnik, Holbrook, & Kim, 1995) together with the original
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Table 2: Dimensionality of the Feature Spaces: Protein Fold Data.

Features Dimensions

Composition 20
Hydrophobicity 21
Polarity 21
Polarizability 21
Secondary 21
Volume 21
L1 22
L4 28
L14 48
L30 80
SWblosum62 311
SWpam50 311

Note: Number of classes c = 27.

feature spaces in Ding and Dubchak (2001), the four proposed by Shen
and Chou (2006) that describe pseudo–amino acid compositions (PseAA)
estimated on different intervals of the protein sequence, and the two lo-
cal alignment Smith-Waterman (SW)–based feature spaces, with different
scoring matrices from Damoulas and Girolami (2008). The sizes of feature
spaces are given in Table 2.

In order to calculate the holdout test accuracy, we stop the online algo-
rithms after the first 313 examples have been seen and evaluate the resulting
decision functions on the remaining 385 examples using the online-to-batch
conversion described in section 1.1. To calculate the final cumulative accu-
racy, we run the online algorithms through the whole data set (train and
test) and calculate the number of online errors made during learning. Note
that the two metrics therefore have different training set sizes.

Tables 3 and 4 give holdout test accuracy and final cumulative (online)
accuracy of the KP on all of the feature spaces individually, a KP using an
unweighted sum of kernels, OM2, OMKL, and PASS-GP. In the columns
are three kernel types:

� lin: linear
� poly/lin: second-order polynomial for global characteristics and lin-

ear for local characteristics (SW) following Damoulas and Girolami
(2008)

� RBF: radial basis function kernels with σ = 1√
n

as the width
parameter.9

9This is by no means optimal but serves as a simple heuristic method for choosing the
parameter value.
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The experiments were run using no normalization (lin U, poly/lin U,
and RBF U), normalizing each example to be norm 1 (lin N, poly/lin N,
RBF N), standardizing each example (lin S, poly/lin S, and RBF S), and
online standardization (lin SO, poly/lin SO, and RBF SO). The results are
reasonably consistent for both holdout test accuracy and cumulative accu-
racy. For the KP on individual feature spaces, the RBF kernel performed
best for all feature spaces except for the local characteristics (SW), where
linear kernels performed best. In both cases, standardizing each example
before computing kernels performed better than normalizing or no nor-
malization. For KP on the unweighted sum of kernels, linear kernels on
standardized data performed best under both metrics, and the same is true
for the OM2 algorithm and PASS-GP. For OMKL, linear kernels on stan-
dardized data were best in terms of cumulative accuracy, but RBF kernels
on standardized data performed better in terms of holdout test accuracy.

The best method overall in terms of holdout test accuracy was the OMKL
algorithm using linear kernels and the online standardization method
(60.31%) for all values of the discount parameter β, followed closely by
PASS-GP with the inclusion parameter at 0.6 (60.05%), both of which are
close to the accuracy achived by the the variational Bayes probalistic mul-
tiple kernel learning (VBpMKL) method of Damoulas and Girolami (2008)
(an offline method), which was included for comparison (62.14%). For refer-
ence, the KP and the projectron on the unweighted sum of kernels (KP UWS
and Proj UWS) performed best using linear kernels on standardized data,
and both achieved an accuracy of 57.18%; the OM2 followed behind this at
55.20%, with p = 1.99. The best-performing single kernel was SWblosum62
(linear kernel, standardized) at 54.46%. The IVM performed worse than the
best single kernel.

The best method overall in terms of cumulative test accuracy was again
OMKL (β = 0.999) with 44.31%, followed by OM2 with the least sparse
setting (p = 1.99) with 40.71% (both using linear kernels and the online
standardization method). In terms of cumulative accuracy, KP UWS was
close behind at 40.13%, and PASS-GP was further behind still (38.39%). The
best single kernel was again SWblosum62 (linear kernel, online standard-
ization). The projectron performed poorly according to this metric, as did
the IVM.

For all methods, it is clear that either the example-by-example standard-
ization or the online standardization method is extremely important to
achieve good results. In most cases, the online standardization method led
to the best performance in terms of both holdout test accuracy and final
cumulative accuracy, but there were cases where the example-by-example
standardization performed just as well if not better, such as for the KP UWS
and OM2 algorithms in terms of holdout test accuracy, which possibly in-
dicates that the smaller training set in this setting meant that the online
standardization estimates had not settled down.
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Note also that there is no a priori method for choosing the discount
parameter β in OMKL or the sparsity parameter p in the OM2 algorithm
unless a validation set is available. The same is true for any kernel param-
eters, such as the polynomial degree or σ parameter of the RBF kernel.
In the true online setting, this makes a simple algorithm such as the KP
with an unweighted sum of kernels, combined with example-by-example
standardization, an appealing option.

The results for each of the methods using linear kernels on standardized
data are repeated in Tables 3 and 4 for holdout test accuracy and final
cumulative accuracy respectively.

Figure 1 shows the effect of the different types of normalization on the
performance of the KP using the best-performing feature space (SWblo-
sum62, top left), KP on an unweighted sum of kernels (top right), OM2
(bottom left), and OMKL (bottom right). Notice that for all four algorithms,
the best normalization method is the online standardization method, with
a markable improvement being seen especially for the OMKL algorithm.
However, Figure 2 shows that the online standardization method is at least
an order of magnitude slower than the other methods (in total execution
time) due to the fact that the active set needs to be restandardized each
time it is updated. This could prove to be especially inefficient for algo-
rithms that maintain large (or unbounded) active sets. The fastest method
(significantly) was the (offline) standardization method, which was also the
second best in terms of average error rate.

Figures 3 and 4 show the final cumulative accuracy of the algorithms on
the protein fold prediction data set using linear kernels with (example-by-
example) standardization and online standardization, respectively. For the
standardized data, the KP with an unweighted sum of kernels performs in a
similar manner to the KP using either of the two best kernels (SWblosum62
and SWpam50). The performance of OMKL is also similar. The IVM and
PASS-GP both perform poorly, with error rates significantly worse than
the best kernel or unweighted sum. The OM2 algorithm (with p = 1 or
p = 1.2) is the only algorithm to outperform the other methods. The story
is similar with the online standardization method, except that the OM2
algorithm now performs on a par with the unweighted sum, and the OMKL
algorithm (with β = 0.99 or β = 0.999) is now the only one that outperforms
the other methods. The projectron algorithm performs poorly in this setting.
In general, the online standardization method yields better results, though
it is not clear that these differences are significant.

The holdout test accuracies of the algorithms on the protein fold predic-
tion data set are given in Figures 5 and 6 using linear kernels with (row-
wide) standardization and online standardization, respectively. As dis-
cussed previously, the OMKL algorithm appears to be the best-performing
algorithm in this setting, with accuracies close to that of the VBpMKL algo-
rithm (although, interestingly, with a much smaller variance).
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Figure 2: Protein fold prediction: Execution time of normalization methods. Log
of execution times for KP using the best-performing feature space (SWblosum62,
top left), KP on an unweighted sum of kernels (top right), OM2 (bottom left),
and OMKL (bottom right) for the four normalization types.

The log of the execution time of the algorithms is shown in Figure 7.
Here we can see that the multiple kernel methods (OM2 and OMKL) are an
order of magnitude slower than the KP on a single feature space, but not
signficantly slower than the KP on an unweighted sum of kernels (and in
some cases faster). This shows that for these methods, the main bottleneck is
in the kernel evaluations. Both the IVM and PASS-GP are two to three orders
of magnitude slower than the multiple kernel methods and are using only
an unweighted sum of kernels. Here the bottleneck is in the expectation
propagation (EP) step, which needs to be run each time new examples are
included in the active set. Since the EP step needs to be run for each one-
versus-rest classifier separately, this also scales with the number of classes.
From this, we can conclude that for practical problems with many classes,
IVM and PASS-GP (and indeed any other method that uses EP for parameter
updating) are unsuitable. We will therefore not include these methods in
the evaluation on the larger data sets to follow.

Figure 8 shows the final kernel weights for the OM2 algorithm (top),
the OMKL algorithm (middle), and the VBpMKL algorithm (bottom) on
the protein fold prediction data set using linear kernels on standardized
data. Note that the two kernels found by OM2 and OMKL were the two
best-performing individual kernels in terms of both cumulative accuracy
(see Table 5) and holdout test accuracy (see Table 4), with most weight
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Figure 8: Protein fold prediction: OM2 (p = 2) (top), OMKL (β = 0.999)
(middle), and VBpMKL (bottom) kernel weights. Box plot of final kernel weights
on the protein fold prediction data.



606 T. Diethe and M. Girolami

in both cases being given to the best-performing kernel (SWblosum62).
This seems to validate the kernel selection method in both algorithms.
The VBpMKL algorithm does not enforce sparsity, which results in much
more even weightings, but the two best-performing kernels do tend to get
the greatest mass. It is worth noting that the OM2 algorithm has the least
variation in weights and the VBpMKL algorithm has the most.

4.3 Visual Object Recognition. In this section we provide results of
empirical analysis of the two Caltech data sets, Caltech101 and Caltech256.
These data sets have been used extensively in the online learning and MKL
literature (see Bosch, Zisserman, & Munoz, 2007a, 2007b, 2008; Varma &
Ray, 2007; Gehler & Nowozin, 2009; Orabona et al., 2009). In general, most
studies tend to use a small subselection of the data to train the algorithms
(e.g., 30 examples from each class). Here we report results using the entire
data set but do not examine the holdout test error. Note that the results
stated in Bosch et al. (2007a, 2007b, 2008) and Varma and Ray (2007) were
found not to be reproducible (see Gehler & Nowozin, 2009) as the distance
matrices were found to contain perfect test label information. (See the ap-
pendix, which contains Figures 14–20, placed there for ease of reading of
the text.) The results of Gehler and Nowozin (2009) seem to suggest that
linear programming boosting (LPBoost) Demiriz et al. (2002) outperformed
MKL approaches (using SimpleMKL; Rakotomamonjy et al., 2008) on the
data.

4.3.1 Caltech101. The Caltech101 data set consists of 101 object categories
collected by Fei-Fei, Fergus, and Perona (2004, 2006). Each object category
contains between 40 and 800 images. The size of each image is roughly
300 × 200 pixels. All images are annotated with the following information:
a bounding box of the object, and a carefully traced silhouette of the objects
by a human subject. There are 9146 images in total.

The Caltech101 data set has several advantages over other similar data
sets: almost all the images within each category are uniform in image size
and in the relative position of interest objects, meaning that no cropping and
scaling the images needs to be done before they can be used; there is a low
level of clutter or occlusion; the data set has detailed annotations. However,
there are also several weaknesses to the Caltech101 data set (Pinto, Cox,
& DiCarlo, 2008; Fei-Fei et al., 2004): The Caltech101 data set contains a
limited number of the possible object categories (although this number is
still high compared to many typical multiclass machine learning problems);
certain categories are not represented as well as others, containing as few as
31 images, meaning that number of images used for training must be 30 or
fewer; the images are very uniform in presentation, left and right aligned,
and usually not occluded, meaning that the images are not always represen-
tative of practical inputs that the algorithm being trained might be expected
to see (clutter, occlusion, and variance in relative position and orientation);
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some images have been rotated and scaled from their original orientation
and suffer from some amount of artifacts or aliasing. The Caltech256 data
set attempts to overcome some of these shortcomings.

4.3.2 Caltech256. The Caltech 256 data set consists of 256 object categories
collected by Griffin, Holub, and Perona (2007). Caltech256 was collected in
a similar manner with several improvements: (1) the number of categories
was more than doubled, (2) the minimum number of images in any cat-
egory was increased from 31 to 80, (3) artifacts due to image rotation are
avoided, and (4) a new and larger clutter category is introduced for testing
background rejection. There are 30,607 images in total.

4.3.3 Image Features. We used the set of image features made available
by Peter Gehler and Sebastian Nowozin at http://www.vision.ee.ethz
.ch/∼pgehler/projects/iccv09/#download as described in Gehler and
Nowozin (2009). Several software packages were used for the computation
of image features. The code for the creation of the PHOG features was ob-
tained from http://www.robots.ox.ac.uk/∼vgg/research/caltech/phog/
phog.zip, and SIFT descriptors are computed with http://www.robots.ox
.ac.uk/∼vgg/research/affine/det_eval_files/compute_descriptors.ln.gz.
The v1plus descriptors were obtained using the implementation by Pinto
et al. (2008). The region covariance and local binary pattern descriptors
were implemented by Gehler et al. (2009). The features are described in
more detail below:

� PHOG shape descriptor. Shape information is modeled using the
PHOG descriptor proposed in Bosch et al. (2007a). The descriptor is
a histogram of oriented (Shp360) or unoriented (Shp180) gradients
computed on the output of a Canny edge detector. The oriented his-
togram, Shp360, contains 40 bins and the unoriented Shp180 20 bins,
yielding a total of 2 × 4 kernels.

� Appearance descriptor. Appearance information is modeled using
SIFT descriptors (Lowe, 1999), which are computed on a regular grid
on the image with a spacing of 10 pixels and for the four different
radii, r = 4, 8, 12, 16. The descriptors are subsequently quantized into
a vocabulary of visual words generated by k-means clustering. Here
four variants are used: two codebook sizes (300 and 1000 elements)
and gray image descriptors (128 dims), as well as HSV-SIFT (3 ∗ 128 =
384 dims), with a total of 4 × 4 kernels.

� Region covariance. Covariances of simple per pixel features de-
scribed in Tuzel (2007) are used and tangent space projected. A pyra-
mid representation yields three kernels.

� Local binary patterns. Local binary pattern features (LBP) as de-
scribed by Ojala, Pietikäinen, and Mäenpää (2002) are implemented
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Table 5: Dimensionality of the Feature Spaces: Caltech101 and Caltech256.

Features Dimensions

dense_bow/oneForAll_nr1_K1000/ 1000
dense_bow/oneForAll_nr1_K1000/ 1000
dense_bow/oneForAll_nr1_K1000/ 1000
dense_bow/oneForAll_nr1_K300/ 300
dense_bow/oneForAll_nr1_K300/ 300
dense_bow/oneForAll_nr1_K300/ 300
lbp 777
phog/A180_K20/Level0 20
phog/A180_K20/Level1 80
phog/A180_K20/Level2 320
phog/A180_K20/Level3 1280
phog/A360_K40/Level0 40
phog/A360_K40/Level1 160
phog/A360_K40/Level2 640
phog/A360_K40/Level3 2560
phog/subwindows/A180_K20 2000
phog/subwindows/A360_K40 4000
regcovn 588
v1plus 4000

using histograms of uniform rotation-invariant LBP8 features, result-
ing in three kernels.

� v1plus. In Pinto et al. (2008), a population of locally normalized,
thresholded Gabor functions spanning a range of orientations and
spatial frequencies is derived and advocated as particular simple
features. This generates one kernel.

The sizes of feature spaces are given in Table 5. Note that we downsam-
pled v1plus from 127,165 to 4000 by selecting the last 4000 features in order
to make the dimensionality more manageable.10

We chose to use linear kernels for all feature spaces to avoid the com-
putational burden associated with running the algorithms with multiple
kernel hyperparameter settings. It is possible that the use of nonlinear fea-
ture mappings, such as provided by polynomial, RBF or chi-squared kernels
(the last of which is particularly appropriate for histogram like features),
could improve overall performance. However, in this study, we are not

10This choice of subsampling was done through observation: the last 4000 features on
a random subset of the data were nearly full rank, whereas the first 4000, or a random
subset of features, had much lower rank. Higher-order Gabor filters would therefore
appear to be more meaningful in this setting. Note that we do not claim that this is the
optimum subsampling of these features.
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trying to give definitive best results on the problem; rather, our purpose is
to compare the algorithms in a fair way.

4.3.4 Results. For each of the data sets, we chose to use two baseline
algorithms: a blind algorithm that simply performs random guessing and
the vanilla KP run on each feature space individually using linear kernels.
We also ran KP using an unweighted sum of kernels as before, followed
by OM2 and OMKL. PASS-GP was omitted from the larger experiments
because the performance was no better on the protein fold prediction data
set despite being several orders of magnitude slower.

Table 6 summarizes the final cumulative accuracies (mean and stan-
dard deviations) for the KP on all feature spaces individually, a KP using
an unweighted sum of kernels (KP-UWS), the OM2 using three differ-
ent settings for the sparsity parameter (p = 1, 1.2, 2), and OMKL using
four different settings of the discount parameter (β = 0.1, 0.5, 0.9, 0.99).
Note that the performance of some of the individual kernels individually
is very good, even without normalization (e.g., phog/A360_K20/Level3,
phog/A360_K40/Level3 and phog/subwindows/A360_K40, all of them
variations on the PHOG Shape Descriptor). KP-UWS performs poorly
without normalization but performs well using example-by-example stan-
dardization (although the final accuracy is less than the best individual
kernels). The OM2 algorithm achieves the best overall accuracy (98.34%),
although with a relatively large standard deviation (2.95%) using example-
by-example standardization and with the default sparsity setting (p = 1.2).
The OMKL algorithm achieves the next highest accuracy (97.24%) with a
much smaller standard deviation (0.04%) using the same standardization
and the discount parameter β = 0.99. The OMKL algorithm is quite insen-
sitive to the particular setting of β. However, for the OM2 algorithm, there
seem to be specific cases of catastrophic failure, such as when p = 2 and
example-by-example standardization is used.

Figures 18, 19 and 20 in the appendix show the evolution of the kernel
weights for the OM2 algorithm for the first 1000 iterations on the Caltech101
data set (standardized) with p = 1, p = 1.2 (default), and p = 2, respectively.
Note that in Figure 20, the scale is finer to show subtle variation in the kernel
weights; on a 0 → 1 scale, the weights appear uniform. Note that the single
kernel found by the ℓ1-norm version was the best-performing individual
kernel in Figure 15, and the two kernels that have the largest weight in the
ℓ1.2 and ℓ2 versions were the two best-performing individual kernels. This
seems to further validate the kernel selection method in the OM2 algorithm,
while outlining the effect of the sparsity parameter p.

As above, Figure 9 shows the evolution of the kernel weights for the
OMKL algorithm. The two most prominent kernels are the same as those
chosen by the OM2 algorithm (default sparsity level), the best-performing
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Iterations

OMKL kernel weights, beta=0.99, Caltech101, Standardised

100 200 300 400 500 600 700 800 900 1000

dense_bow/oneForAll_nr1_K1000/

dense_bow/oneForAll_nr1_K1000/

dense_bow/oneForAll_nr1_K1000/

dense_bow/oneForAll_nr1_K300/

dense_bow/oneForAll_nr1_K300/

dense_bow/oneForAll_nr1_K300/

lbp

phog/A180_K20/Level0

phog/A180_K20/Level1

phog/A180_K20/Level2

phog/A180_K20/Level3

phog/A360_K40/Level0

phog/A360_K40/Level1

phog/A360_K40/Level2

phog/A360_K40/Level3

phog/subwindows/A180_K20

phog/subwindows/A360_K40

regcovn

v1plus

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 9: Caltech101: OMKL kernel weights (β = 0.99). Kernel weights over
the first 1000 iterations on the Caltech101 data set using example-by-example
standardization.

individual kernels. This also seems to validate the kernel selection method
in the OMKL algorithm.

Figure 10 shows learning curves over the time for KP with the best indi-
vidual kernel on the unnormalized data (PU-phog/A180_K20/Level3) and
normalized data (PN-phog/A180_K20/Level3) and an unweighted sum
of kernels on the unnormalized (UWS-U) and normalized data (UWS-N).
Note that the best individual kernels differ from those that were found
on the Caltech101 data set. It can be observed from the plot that the nor-
malization has a huge effect on the number of errors committed by KP
using an unweighted sum of kernels (in fact, the unnormalized version
barely performs better than random guessing). Note, however, that for the
normalized version, the error is significantly better than that of the best
individual kernel.

Figure 11 shows learning curves over the time for the random budget
perceptron (RBP) with the best individual kernel on the normalized data
(BPN-phog/A180_K20/Level3) and an unweighted sum of kernels on the
normalized data (UWSB-N), with the respective KP algorithms (PN-phog/
A180_K20/Level3 and UWS-N) for comparison. We can see that on the
best-performing kernel and for the unweighted sum of kernels, the RBP
learning curves are significantly worse than the respective KP learning
curves. Although a direct comparison is somewhat unfair, as the resulting
classifier in this case is five times sparser in the case of the RBP, it shows that
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Figure 10: Caltech256: KP (best and sum). Learning curves for the KP with the
best individual kernel on the unnormalized data (PU-phog/A360_K40/Level3)
and normalized data (PN-phog/A360_K40/Level3) and an unweighted sum of
kernels on the unnormalized (UWS-U) and normalised data (UWS-N).
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Caltech256: Learning curves for Random Budget Perceptron (best and sum)
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Figure 11: Caltech256: RBP (best and sum). Learning curves for the random
budget perceptron (RBP) with the best individual kernel on the normalized
data (BPN-phog/A180_K20/Level3) and an unweighted sum of kernels on
the normalized data (UWSB-N), with the respective KP algorithms (PN-phog/
A180_K20/Level3 and UWS-N) for comparison.
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Caltech256: Learning curves for OM2
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Figure 12: Caltech256: OM2. Learning curves for the OM2 algorithm for three
different sparsity levels (p = 1, p = 1.2, p = 2), plotted along with KP using
the best individual kernel (BPN-phog/A180_K20/Level3) and using an un-
weighted sum of kernels (UWS-N) on the normalized data.

care must be taken when attempting to reduce the solution size of online
algorithms.

Figure 12 shows the learning curves over time for the OM2 algorithm
for three sparsity levels (p = 1, p = 1.2, p = 2), plotted along with the KP
using the best individual kernel (BPN-phog/A180_K20/Level3) and an
unweighted sum of kernels (UWS-N) on the normalized data. It can be seen
that as with the Caltech101 data set, the performance using the sparse selec-
tion of kernels (p = 1) or the default (semisparse) setting (p = 1.2) is much
better than that of the nonsparse selection (p = 2). On this data set, however,
the best single kernel consistently outperforms the OM2 algorithm.

Figure 13 shows the learning curves over time for the OMKL algorithm
for five values of the discount parameter (β = 0.1, β = 0.5, β = 0.9, β = 0.99,
β = 0.999), plotted along with KP using the best individual kernel (BPN-
phog/A180_K20/Level3) and an unweighted sum of kernels (UWS-N) on
the normalized data. As with the Caltech101 data set, the performance using
the sparsest selection of kernels (β = 0.99) was the worst, but again the per-
formance is almost indistinguishable among the three settings (β = 0.1, β =
0.5, β = 0.9) that do not enforce sparsity as much. For these three settings
of the discount parameter, the OMKL algorithm appears to significantly
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Caltech256: Learning curves for OMKL
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Figure 13: Caltech256: OMKL. Learning curves for the OMKL algorithm for
four values of the discount parameter (β = 0.1, β = 0.5, β = 0.9, β = 0.99), plot-
ted along with KP using the best individual kernel (BPN-phog/A180_K20/
Level3) and an unweighted sum of kernels (UWS-N) on the normalized data.

outperform KP using the best individual kernel (which of course could not
be selected a priori).

5 Conclusion

It should be noted that some of the algorithms, such as the kernel perceptron
and its derivatives, are extremely simple to implement and widely avail-
able, whereas the GP-based algorithms (the IVM, PASS-GP) are much more
complicated to implement (requiring, for example, expectation propagation
solvers) and are publicly available only in specific languages. The OM2
algorithm is contained within the DOGMA toolbox for Matlab (Orabona,
2009), as well as other algorithms such as passive-aggressive, ALMA,
NORMA, SILK, projectron, RBP, and banditron. We implemented the
OMKL algorithm (Jin et al., 2010), which was previously unavailable, within
the framework of the DOGMA toolbox.

One of the main issues for all of the online algorithms was that of com-
putational complexity and how the algorithms try to overcome this using
sparsity. For the margin-based algorithms, the computational time cost is
dominated by kernel evaluations, as the update equations are in closed
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form and are cheap to compute, while the memory cost is linear in the size
of the active set.11 Note that in the standard form, the KP has an unbounded
active set size and therefore for noisy problems could prove to be extremely
inefficient. The randomized budget perceptron (RBP) is the simplest way
to control this, but if used indiscriminantly, it can lead to extremely poor
performance. For the GP-based algorithms, the computational time cost is
dominated by the EP updates. This is mitigated against through the use
of mini-batches—performing EP updates only once a set number of data
points has been observed—but this is at the expense of accuracy and there
is no clear way of setting the batch size.

Generally the GP-based algorithms achieve a high degree of accuracy
(even using only an unweighted sum of kernels) and provide additional
information (in terms of posterior variances), but they are not feasible in
the “true” online setting or for massive data sets. In this situation, it would
be much more sensible to choose one of the margin-based methods. Given
mutliple sets of features, and hence multiple kernels, using a KP with an
unweighted sum results in classification performance that is better than
if the best kernel had been known a priori, and would make a sensible
choice because there are effectively no parameters to tune, apart from the
maximum active set size if the RBP variant is being used. There is little
to distinguish in the performance of the two MKL algorithms, OM2, and
OMKL. Both have a parameter to control the computational complexity (p,
which is the regularizer norm for OM2 and the discount parameter β for
OMKL). OMKL seems to be less sensitive to the particular setting of this
parameter than OM2 and had results with lower variance. However, OMKL
is not actually a true MKL algorithm (it is really a classifier combination
scheme) and hence has (slightly) larger memory requirements. Both come
with guarantees in terms of regret bounds.

The OMKL algorithm (Jin et al., 2010) was created by combining the
Hedge algorithm (Freund & Schapire, 1997; Vovk, 1998) with the KP. This
can of course be applied to the the online SVM of Bordes et al. (2005) to
create another online multiple kernel classifier or, for that matter, any other
online classification algorithm. It would also be interesting to see if any
such algorithms resulted in tighter regret bounds.

One promising line of research is the online (or stochastic) expectation
maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Sato, 2000;
Cappé & Moulines, 2009), also known as quasi–Monte Carlo (see Jank, 2006,
for a review), which could, for example be applied to probabilistic multiple
kernel learning algorithms Damoulas and Girolami (2008, 2009). The main
problem with this approach is likely to be poor performance for the initial

11This is assuming that the active set is stored in primal form. The kernel evaluations
can be stored, which trades memory storage for time complexity.
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learning phase, as there are many parameters to estimate from very few
data points, but for large data sets, this may not be an issue.

Another related approach would be to try to create an online version
of multiple gaussian process models (Girolami & Rogers, 2005) using sim-
ilar ideas to that of PASS-GP (Henao & Winther, 2010). For applications
where computational resources are not an issue, this might allow the har-
nessing of the power of the GP framework with the MKL framework
to produce highly accurate online classifiers with associated probabilistic
outputs.

Finally, there seems to be scope to convert the simple nonparametric
kernel learning (Zhuang et al., 2009) approach to the online framework,
although it would require building a graph Laplacian online as well as the
classifier. There is some work on online learning over graphs (Herbster,
Pontil, & Wainer, 2005), but it is generally assumed that the graph is given
rather than constructed online.

Appendix: Additional Figures
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Figure 14: Caltech101 (unnormalized). Learning curves (log-scaled) for the KP
with the best individual kernel (KPU-phog/A360_K40/Level3) and an un-
weighted sum of kernels (UWS-U), the OM2 algorithm for the default sparsity
level, and OMKL with β = 0.1. Note the poor performance in this setting of the
unweighted sum and that the MKL algorithms perform only as well as the best
individual kernel.
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Figure 15: Caltech101 (normalized). Learning curves (log-scaled) for the KP
with the best individual kernel (KPN-phog/A360_K40/Level3), and an un-
weighted sum of kernels (UWS-N), the OM2 algorithm with p = 2, and OMKL
with β = 0.1. This normalization method is not particularly effective, and the
results are therefore similar to Figure 15.
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Figure 16: Caltech101 (standardized). Learning curves (log-scaled) for the KP
with the best individual kernel (KPS-phog/A360_K40/Level3) and an un-
weighted sum of kernels (UWS-S), the OM2 algorithm for the default sparsity
level, and OMKL with β = 0.9.
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Figure 17: Caltech101 (online standardization). Learning curves (log scaled) for
the KP with the best individual kernel (KPSO-phog/A360_K40/Level3) and
an unweighted sum of kernels (UWS-SO), the OM2 algorithm for the default
sparsity level, and OMKL with β = 0.1. For this data set, this standardization
method is again not as effective, leading to results similar to the normalized
setting (see Figure 15).
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Figure 18: Caltech101: OM2 kernel weights (p = 1). Kernel weights over the
first 1000 iterations on the Caltech101 data set using example-by-example
standardization.
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Figure 19: Caltech101: OM2 kernel weights (p = 1.2). Kernel weights over
the first 1000 iterations on the Caltech101 data set using example-by-example
standardization.

Figure 20: Caltech101: OM2 kernel weights (p = 2). Kernel weights over the
first 1000 iterations on the Caltech101 data set using example-by-example stan-
dardization. Note that the scale is much finer than the two previous plots.

Acknowledgments

This work is supported by NCR Financial Solutions Group under the project
title “Developments of Multiple Kernel Learning, Algorithmic Efficiency &



620 T. Diethe and M. Girolami

Adaptation for Produce Recognition.” We are grateful to M. Filippone for
his comments and suggestions.

References

Anlauf, J. K., & Biehl, M. (1989). The adatron: An adaptive perceptron algorithm.

Europhys. Letters, 10, 687–692.

Bach, F. R. (2008). Consistency of the group lasso and multiple kernel learning. J.

Mach. Learn. Res., 9, 1179–1225.

Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I. (2004). Multiple kernel learning,

conic duality, and the SMO algorithm. In ICML ’04: Proceedings of the Twenty-First

International Conference on Machine Learning (p. 6). New York: ACM.

Block, H. D. (1962). The perceptron: A model for brain functionning. Reviews of

Modern Physics, 34, 123–135.

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with

online and active learning. Journal of Machine Learning Research, 6, 1579–1619.

Bosch, A., Zisserman, A., & Munoz, X. (2007a). Image classification using random

forests and ferns. In Proceedings of the IEEE International Conference on Computer

Vision (pp. 1–8). Piscataway, NJ: IEEE.

Bosch, A., Zisserman, A., & Munoz, X. (2007b). Representing shape with a spatial

pyramid kernel. In Proceedings of the 6th ACM International Conference on Image

and Video Retrieval (pp. 401–408). New York: ACM.

Bosch, A., Zisserman, A., & Munoz, X. (2008). Image classification using ROIs and

multiple kernel learning. International Journal of Computer, 4, 1–25.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
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