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Abstract—Benefiting from global rank constraints, the low-
rank representation (LRR) method has been shown to be an
effective solution to subspace learning. However, the global
mechanism also means that the LRR model is not suitable for
handling large-scale data or dynamic data. For large-scale data,
the LRR method suffers from high time complexity, and for
dynamic data, it has to recompute a complex rank minimization
for the entire data set whenever new samples are dynamically
added, making it prohibitively expensive. Existing attempts to
online LRR either take a stochastic approach or build the
representation purely based on a small sample set and treat
new input as out-of-sample data. The former often requires
multiple runs for good performance and thus takes longer time
to run, and the latter formulates online LRR as an out-of-
sample classification problem and is less robust to noise. In
this paper, a novel online low-rank representation subspace
learning method is proposed for both large-scale and dynamic
data. The proposed algorithm is composed of two stages: static
learning and dynamic updating. In the first stage, the subspace
structure is learned from a small number of data samples. In
the second stage, the intrinsic principal components of the entire
data set are computed incrementally by utilizing the learned
subspace structure, and the low-rank representation matrix can
also be incrementally solved by an efficient online singular value
decomposition (SVD) algorithm. The time complexity is reduced
dramatically for large-scale data, and repeated computation is
avoided for dynamic problems. We further perform theoretical
analysis comparing the proposed online algorithm with the batch
LRR method. Finally, experimental results on typical tasks
of subspace recovery and subspace clustering show that the
proposed algorithm performs comparably or better than batch
methods including the batch LRR, and significantly outperforms
state-of-the-art online methods.

Index Terms—Low-rank representation, subspace learning,
large-scale data, dynamic data, online learning.

I. INTRODUCTION

Multi-subspace recovery and clustering are two basic tasks

in machine learning. Generally, it is assumed that the data

points are drawn from multiple low-dimensional manifold
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subspaces. The basic task of subspace recovery is to ex-

tract the underlying low-dimensional subspaces, and sub-

space clustering is to segment the data into the correspond-

ing subspaces correctly. Benefiting from the global mech-

anism, representation-based subspace learning has attracted

considerable attention in recent years. Low-rank representation

(LRR) [1] is one of the popular self-expressive subspace

learning methods, which aims at jointly finding the lowest rank

of the whole data space. LRR has shown good performance

in numerous research problems in computer vision, such as

salient object detection [2], segmentation and grouping [3],

[4], background subtraction [5], tracking [6] and 3D visual

recovery [7], etc.

Benefiting from the global self-expressiveness framework,

LRR can effectively extract the intrinsic manifold structure of

the global space and is robust to noise and outliers. However,

the self-expressiveness framework aims at finding the repre-

sentation relationships of the whole data space jointly, which

leads to the limitation that most of the existing LRR subspace

learning algorithms are batch methods processing whole data

simultaneously and designed for static data, i.e., the dataset is

fixed during processing. However, batch methods have signifi-

cant drawbacks: 1) The computational complexity can be high

with a large number of sample points. 2) Learning methods

designed for static data cannot handle dynamic problems effec-

tively where new sample points are incrementally generated,

and the learned subspaces need to be updated accordingly.

Dynamic data is becoming increasingly popular with sensor

data such as surveillance videos, traffic control sensor data, as

well as Internet data dynamically uploaded by users. In such

scenarios, learning subspace structures from dynamic data is

essential. Static learning methods attempt to extract subspace

structures by utilizing the full data, which is not applicable

for dynamic data. Furthermore, whenever the data is updated,

the static learning process has to be repeatedly reapplied to

the entire data set, which is prohibitively expensive.

The most relevant work to this paper is [8]. In [8], the

large-scale LRR problem is formulated as an out-of-sample

classification problem under the assumption that the subspace

structure of the whole data space can be learned from a small

portion of it. Firstly, a small number of data points are chosen

as the in-sample data to learn the structure of the whole space,

and then each out-of-sample data is assigned to the nearest

subspace spanned by in-sample data according to the minimal

residual of original data. While being efficient, the method

does not really compute the original low-rank representation of

the out-of-sample data, and is less robust to noise for subspace

clustering.
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Another related online LRR method is [9], in which LRR

is solved based on stochastic optimization of an equivalent

reformulation of the batch LRR. Although it is designed

for unsupervised clustering, it can be easily generalized for

semi-supervised subspace learning. The algorithm processes

one sample per time instance and hence its memory cost

is independent of the total number of samples, significantly

enhancing the computation and storage efficiency. However,

due to the mechanism of stochastic optimization, the learning

performance is poor at the beginning, and improves after a

sufficient number of stochastic iterations. In order to improve

the performance, multiple runs over the dataset are applied [9],

thus it can be time-consuming for large-scale data and may not

always be suitable for dynamic data. Moreover, the stochastic

optimization process also means that the method can be misled

in early iterations by data samples corrupted with noise,

resulting in a performance drop even with multiple runs, as

we later show in the experimental results.

In this paper, we focus on the study of a novel online

LRR learning method for joint multi-subspace recovery and

clustering. We assume that the static training data covers

all the subspaces, so the initial subspace structure of the

whole data space can be learned from the partial data, similar

to [8]. However, fundamental differences exist: for our method,

the intrinsic low-rank representation of the entire data set is

incrementally learned, while for [8], only the in-sample data

is used to learn the clustering structure, and the out-of-sample

data is not used for learning but simply classified to the nearest

subspace spanned by in-sample data. Although the Frobenius-

norm-based learning method used in [8] has been proved to

be a good approximation to the nuclear-norm learning [10], it

still suffers from noise as the out-of-sample data is learned in

the original data space rather than the intrinsic space used in

the proposed method.

The flowchart of the proposed method is shown in Fig. 1.

The algorithm consists of two stages: static learning and dy-

namic online updating. Firstly, the intrinsic subspace structure

is learned from a subset of the whole data. In the second

stage, the principal components of the remaining data will be

incrementally pursued, and the global representation matrix on

the whole data will be updated incrementally and efficiently.

The main contributions of this method include:

• Compared to batch LRR, our online LRR learning

method reduces the computational complexity for large-

scale data dramatically while producing subspace learn-

ing results of comparable quality..

• Our online LRR avoids repeatedly recomputing the com-

plex low-rank optimization when new data points are

introduced, and thus can handle online data efficiently;

such data is prohibitively expensive to process with batch

LRR methods.

• Our method does not suffer from limitations of existing

online LRR methods. In particular, our method achieves

significantly improved learning accuracy over existing

online LRR methods while being much faster. In addition,

our method is much more robust to noise.

The rest of this paper is organized as follows. Section II

gives a brief review on related work. The preliminaries about

low-rank based subspace learning is introduced in Section III.

In Section IV, we propose the framework of our online

LRR subspace learning method, and further present theoretical

studies which show that under certain conditions the subspaces

learned using our online method are identical to those learned

by the batch method. Experimental results are shown in Sec-

tion V. In order to evaluate the performance of the proposed

method, we compare it with related state-of-the-art methods

(both batch and online). Finally, we draw conclusions and

discuss future work in Section VI.

II. RELATED WORK

A key component in subspace learning is to construct a good

affinity graph of the data space. In general, based on the ways

affinity graphs are constructed, such methods can be classified

into local distance based and global linear representation-

based.

Traditional local methods adopt Euclidean distances be-

tween pairwise data points to build similarity graphs. These

methods include Laplacian Eigenmaps [11], K-nearest neigh-

bors (K-NN) [12], Locally Linear Embedding (LLE) [13] etc.

Local methods can capture the local structure of the data space,

and the produced affinity graph is sparse and discriminative.

However, they ignore the global characteristics of the entire

data set, so are sensitive to noise and outliers. Compared

with local distance based methods, global representation-based

methods assume that each data point can be linearly repre-

sented by the basis formed by an over-complete dictionary.

Regularizations are needed on the representation space to

ensure unique solutions, and various methods are developed

based on different regularizations, including sparse subspace

clustering (SSC) [14], low-rank representation (LRR) [1], etc.

Sparse subspace clustering assumes that a data point lying

in the union of multiple subspaces admits a sparse repre-

sentation with respect to the dictionary formed by all the

other data points. It has also shown that under the assumption

that the subspaces are independent, the data points will be

segmented into the underlying subspaces according to the

sparse representation coefficients. SSC has achieved state-of-

the-art performance in several applications, such as face recog-

nition [15], image stylization [16], image enhancement [17],

etc. Compared with sparse representation models, low-rank

representation methods based on the rank constraints on the

whole data are more suitable to pursue intrinsic structure of

the data space. For instance, Robust Principal Component

Analysis (RPCA) [18] proposed by Candés et al. shows that

under some mild conditions the data points sampled from

a single subspace can be exactly recovered by the rank

minimization model. The work by Liu et al. [1] extends the

recovery of corrupted data from a single subspace to multiple

subspaces, and finds that the structure of multiple subspaces

can be robustly revealed by the lowest rank representation

coefficients of a given dictionary. In [1] rigorous theoretical

studies are also provided to show that the representation matrix

has block diagonal structure under some mild conditions,

which is crucial to the subspace clustering problem.

However, both SSC and LRR are under the self-

expressiveness framework, i.e., each sample is represented by



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 3

P
ro

p
o
sed

 m
eth

o
d
 

Training data 

XW 

Dynamic data 

DS 

Eq.(3) 

DW 

Online update of DW (Algorithm 1) 

Static learning 

U 

VT 

Online update of V (Algorithm 2) 

Z 

!Z
S

Z = VVT 

XS 

Fig. 1. Illustration of the proposed online subspace learning algorithm.

a linear combination of the remaining samples. They are not

suitable for large-scale or dynamic data clustering. Firstly, the

time complexities of SSC and LRR are proportional to the

number of samples in the whole dataset to the third power,

which are expensive for large-scale clustering problems. Even

with fast implementation, the time complexity is still high

for large-scale data. Secondly, they cannot practically handle

dynamic data because they have to recompute the complex

learning process for the whole data repeatedly when new

samples are added, which is prohibitively time consuming. In

this paper, we focus on the study of an LRR subspace learning

method for large-scale and dynamic data.

Online methods that process data incrementally provide

a feasible way to solve large-scale and dynamic problems.

However, since rank minimization tightly depends on the

whole data matrix and the constraints are coupled, it is

challenging to extend existing LRR algorithms to provide

an online solution of the low-rank based clustering problem.

From this perspective, two recent works for online LRR are

most relevant. Shen et al. [9] extend the online algorithm of

RPCA to LRR by using stochastic optimization. Although the

time complexity is dramatically reduced, it suffers from the

following limitations: Due to the stochastic nature, the learning

performance is poor at the beginning with few samples, and

gradually improves after a sufficient number of stochastic

iterations. In order to improve the performance of the initial

samples, the paper uses a strategy where samples are fed into

the algorithm in multiple iterations. While effective in improv-

ing the learning performance, the computational complexity

can be high for large-scale dynamic data. Different from [9],

Peng et al. [8] do not focus on solving the original LRR

problem. Their method is designed for subspace clustering via

a classification process. The algorithm is composed of four

steps, namely sampling, clustering, coding and classification.

Firstly, the large-scale data set is split into two parts: in-

sample data and out-of-sample data. In the first two steps,

a small number of data points are chosen as the in-sample

data and the cluster membership between them is computed.

Then in the third and fourth steps each out-of-sample data

point is assigned to the nearest subspace spanned by in-

sample data according to the minimal residual criterion. The

method is efficient compared with batch LRR. However, as the

classification is based on the representation learned from the

original data rather than the learned intrinsic features for the

entire data set, this method is sensitive to noise. In this paper,

we propose a novel online LRR method which does not require

multiple iterations of processing sample data, and efficiently

and effectively learn subspace structure suitable for both online

subspace classification and recovery. As we will show later,

the learning accuracy of our approach is comparable to that of

the batch methods, and significantly better than existing online

methods, especially for noisy data sets. Our method is also at

least several times faster than existing online methods [8], [9]

for larger data sets.

Due to the powerful representation learning ability of deep

learning, subspace learning frameworks based on deep learn-

ing [19] have recently been proposed. Deep learning methods

are good at learning high-level features, and benefit much

from the powerful computing capability of GPU for massively

parallel computation. For the work [19], a sparse constraint on

the whole dataset has to be computed in advance which is pro-

hibitively expensive for large-scale problems and unsuitable

for dynamic problems. However, under the similar assumption

as proposed in our paper, i.e., the true subspace structure

can be recovered by partial training data, the method [19]

can potentially be extended to handle large-scale and dynamic

problems.

III. PRELIMINARIES: LOW-RANK BASED SUBSPACE

LEARNING

Given sufficient samples from c independent subspaces, the

task of subspace learning is to extract the underlying low-

dimensional subspaces where high-dimensional data samples

lie in. Let d be the dimension of the data samples. By arranging

the ni samples from the i-th class as columns of a matrix

Xi = [xi,1, xi,2, ..., xi,ni
] ∈ R

d×ni , we obtain the data matrix

X = [X1 X2 ... Xc] ∈ R
d×n, where n =

∑c
i=1 ni is the total

number of samples.
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A. Robust Principal Component Analysis (RPCA)

RPCA aims at recovering a low-rank data matrix D from

corrupted observations X = D + E, where E is the error

matrix. The corrupted entries in E are unknown and the errors

can be arbitrarily large, but they are assumed to be sparse.

Under the above assumption, RPCA can be solved by solving

the following regularized rank minimization problem:

min
D,E

rank(D) + λ∥E∥0, s.t. X = D+E

where λ is the balance parameter. However, the rank function

is not convex and difficult to optimize. Under some mild

conditions, the optimization is equivalent to the following

convex problem:

min
D,E
∥D∥∗ + λ∥E∥1, s.t. X = D+E

where ∥ ·∥∗ means the nuclear norm, which is the best convex

envelope of the rank. The nuclear norm of a matrix is equal

to the sum of the singular values of the matrix. The work [20]

shows that under fairly general conditions, the problem can

be solved even if the rank of D grows almost linearly w.r.t.

the dimension of the matrix, and the errors in E are up to a

constant fraction of all entries.

RPCA has been successfully applied to many machine

learning and computer vision problems, such as automatic

image alignment [21], [22], face modeling [23] and visual

tracking [24].

B. Low-Rank Representation (LRR)

LRR is a typical representation-based subspace learning

method, assuming a data vector can be represented as a linear

combination of the remaining vectors. Given a set of data

vectors drawn from a union of multiple subspaces, LRR aims

at simultaneously finding the lowest rank representation of the

whole data. Compared with sparse subspace clustering (SSC),

LRR better captures the global subspace structure due to the

use of global rank constraints.

For the noise-free case, LRR takes the data X itself as

a dictionary and seeks the representation matrix Z with the

lowest rank:

min
Z

rank(Z), s.t. X = XZ.

Similar to RPCA, the above problem is NP-hard, and can be

relaxed to the following convex optimization:

min
Z

∥Z∥∗, s.t. X = XZ.

When the data is noisy, an additional error matrix E is

introduced, which is assumed to be sparse, leading to an ℓ2,1-

norm term added to the objective function:

min
Z

∥Z∥∗ + λ∥E∥2,1, s.t. X = XZ+E. (1)

Although LRR has achieved state-of-the-art performance

for certain applications, the computation complexity of the

LRR model is as high as O(n3), where n is the number of

data samples. Therefore LRR cannot efficiently handle large-

scale data. In [25], Lin et al. proposed a linearized alternating

direction method to solve the LRR model. Although it is accel-

erated by linearizing the quadratic term in the subproblem, the

complexity is still O(n2). Liu et al. [1] proposed an accelerated

solver for the LRR model with a pre-calculated orthogonal

matrix, which has the complexity of O(d2n + d3) for each

iteration, where d ≪ n. However, this algorithm usually

suffers from low convergence rate, and many iterations are

often needed. In [10], the connections between nuclear-norm

and Frobenius-norm-based representations were studied. It is

theoretically proved that both nuclear-norm and Frobenius-

norm-based learning methods can be unified into a common

framework, i.e., they are in the form of VP(Σ)VT , where

UΣVT is the singular value decomposition (SVD) of a given

data matrix and P(·) denotes the shrinkage-thresholding op-

erator. However, the computational complexity of Frobenius-

norm-based methods is still high, especially for large scale

data, as they have to compute the complex SVD operation.

C. Robust Shape Interaction (RSI)

Since corrupted data is used as the dictionary, the LRR

model (1) can only work when the noise is sample-specific,

i.e., some data points are corrupted and the remainder are

clean. When the noise level is high or the proportion of outliers

is relatively large, it cannot extract the intrinsic subspace

structure correctly.

In [26], an improved version of LRR called Robust Shape

Interaction (RSI) is proposed:

min
D,E

rank(D) + λ∥E∥2,1, s.t. X = D+E (2)

min
Z

rank(Z), s.t. D = DZ.

Intuitively, this model removes most of the noise, and adopts

cleaner data as the dictionary, so it is more robust than the

standard LRR, in particular when the data is heavily corrupted.

IV. PROPOSED METHOD

For large-scale data, the computation complexity is a major

challenge for existing LRR methods. For dynamic data where

new samples are incrementally added, it is impossible to load

the whole dataset for learning, and repeated computation when

each time a new sample is added is prohibitively expensive,

even for mid-scale problems. In this section, an efficient online

LRR subspace learning algorithm is proposed for both large-

scale data and dynamic data, addressing these fundamental

limitations.

The proposed online LRR method is based on the following

general assumptions: (1) data points are drawn from inde-

pendent subspaces; (2) the static training data covers all the

subspaces, which implies that one can use a small portion of

data to learn the subspace structure of the whole data space.

Similar assumptions are also made in [8]. However, unlike [8],

we do not make the assumption that the subspace structure

learned from the subset of data is sufficiently accurate, and use

the remaining data to incrementally refine the learned subspace

structure.

The proposed algorithm consists of the following two

stages: static learning and dynamic updating. In the first stage,



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 5

a subset of data points are chosen as training data to learn the

intrinsic subspace structure based on the batch LRR model.

Then in the second dynamic updating stage, the low-rank

components for the remaining data or dynamically added data

will be updated using sparse reconstruction based on the sub-

space basis previously learned in the static training stage, and

finally the global low-rank affinity matrix will be efficiently

solved by utilizing the training data and dynamic data with the

Sequential Karhunen-Loeve (SKL) [27] algorithm. As only a

small portion of data points are involved in the complex low-

rank optimization, the computational complexity is reduced

dramatically for large-scale data. For dynamic data, there is no

need to solve the rank minimization problem repeatedly when

new samples are dynamically added, and the global affinity

matrix can be updated incrementally based on the existing

results efficiently.

A. Static Learning

The goal of the static learning stage is to learn the intrinsic

low-dimensional structure of high-dimensional data samples

using partial data from the whole data space. As initialization,

a small number of samples which can cover all of the c sub-

spaces are randomly chosen as the training data (see Fig. 2 (b)

for an example). Let mi be the number of samples from the i-
th subspace. Xi

S = [xi,1, xi,2, ..., xi,mi
] ∈ R

d×mi is the matrix

containing all the samples from the i-th subspace. They form

the sampled training data matrix XS = [X1
S X2

S ... Xc
S ] ∈

R
d×m, where m =

∑c
i=1 mi is the total number of the training

samples. With the partial data XS , the low-rank component

matrix DS and the intrinsic representation matrix ZS can be

recovered by the following minimization problem :

min
DS ,ES

rank(DS) + λ∥ES∥2,1, s.t. XS = DS +ES , (3)

min
ZS

rank(ZS), s.t. DS = DSZS . (4)

Instead of using the original LRR model (Eqn. 1), we choose

the improved LRR method (Eqn. 2). The formulae (3) and

(4) provide many insights for the improved LRR method.

Firstly, we can see that the subproblem (Eqn. 3) is actually

an RPCA with columnwise-sparse noise [28]. It implies that

the proposed model firstly reduces the noise and outliers and

adopts a cleaner dictionary DS , so it is more robust than

traditional low-rank based methods. Secondly, this also helps

improve robustness: In the early work [18], [29], Candés et al.

showed that the performance of low rank pursuit degrades with

increasing coherence of dictionary entries. In order to avoid

this problem, recent work by Liu et al. [30] has shown that

when the dictionary itself is low-rank, the LRR will be immune

to dictionary coherence. So, the subproblem (Eqn. 3) not only

reduces noise, but also eliminates coherence influence.

In the following, we will analyze the learning power of the

LRR method with only partial data observed. This is consistent

with the static learning stage of our method, since the dynamic

data is yet to be seen.

In order to study the influence of the unobserved data, we

split the data into two parts: X = [XS XW ], where XS

represents the (static) training data, i.e., the partial observed

data, while XW is the unobserved, hidden data. In the follow-

ing, we will prove that under some mild conditions, the true

subspace membership can be revealed by using LRR with only

the partial training data XS .

Theorem 1: Given data X = X0 + E = [XS XW ] + E,

where X0 ∈ R
d×n is of rank r and has incoherence pa-

rameter µ, where intuitively, incoherence indicates that each

data point contains sufficient information of the subspace,

E contains outliers, and X has RWD (Relatively Well-

Definedness) parameter η [31]1. When the size of training data

m ≥ 49(11+4η)2µr
324η2+49(11+4η)2µrn, the true subspace membership can

be revealed by using LRR with only the partial training data

XS .

Proof: As only partial training data is observed, we

consider the following LRR problem for noise-free data

min
Z,E
∥Z∥∗, s.t. XS = [XS XW ]Z (5)

where Z = [ZS|W ; ZW |S ] with ZS|W and ZW |S corre-

sponding to XS and XW respectively. We can see that the

representation dictionary A = [XS XW ] is always sufficient.

According to Theorem 3.1 in [32], the minimization of this

problem has a unique solution: Z∗
S|W = VSV

T
S and Z∗

W |S =

VWVT
S , where [XS XW ] = UΣVT and V = [VS VW ].

Furthermore, the relationship between the observed training

data XS and the unobserved data XW can be further investi-

gated. From [32] we obtain

XS = [XS XW ]Z∗ = XSZ
∗
S|W +XWZ∗

W |S

= XSZ
∗
S|W +XWVWVT

S

= XSZ
∗
S|W +UΣVT

WVWΣ−1UTXS

= XSZ
∗
S|W + L∗

W |SXS

where L∗
W |S = UΣVT

WVWΣ−1UT . As we assume that

both the training data XS and the unobserved data XW are

sampled from the same subspaces with rank r, we can get

rank(Z∗
S|W ) ≤ r and rank(L∗

W |S) ≤ r, which implies that

both Z∗
S|W and L∗

W |S should be of low-rank. Therefore, the

subspace membership can be revealed by minimizing

minZS|W ,LW |S
∥ZS|W ∥∗ + ∥LW |S∥∗,

s.t. XS = XSZS|W + LW |SXS (6)

Following [32], suppose (Z∗
S|W , L∗

W |S) are the minimizer

of (6), then Z∗
S|W is an approximate recovery to ZS|W in

(5). Therefore, the true subspace membership ZS|W can be

revealed by using only the partial training data XS .

For corrupted data with outliers, the subspace membership

ZS|W can be solved by minimizing the following convex

optimization problem

min
ZS|W ,LW |S ,E

= ∥ZS|W ∥∗ + ∥LW |S∥∗ + λ∥E∥2,1,

s.t. XS = XSZS|W + LW |SXS +E

1The RWD parameter η should not be extremely small so as to guarantee
the success of LRR, as detailed in [31].
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From the theoretical analysis in [31] and [28], for the

corrupted data with outliers X = [XS XW ] +E, under some

mild conditions, when the size of the training data m satisfies

m ≥
49(11 + 4η)2µr

324η2 + 49(11 + 4η)2µr
n

the LRR model can reveal the subspace structure exactly,

where η is the RWD parameter of X, µ is the incoherence

parameter and r is the rank of data [XS XW ].
In short, if the sample complexity m satisfies the above

condition, the true subspace membership can be revealed by

using LRR with only the partial training data XS .

The theorem above states that the subspace structure can be

learned with partial data using LRR under certain conditions.

In practice, static learning is only used as initialization in

our online LRR framework, and our method provides an

online solution that approximates the traditional LRR. Even

for challenging real-world problems where the assumptions

are not fully satisfied, our method can still work well. As we

will demonstrate with extensive experiments in Section V, our

online LRR achieves performance similar to and sometimes

better than the batch LRR method, and significantly better

than SLRR [8] where the subspace structure is extracted purely

based on the partial training data. The influence of varying the

size of the training data and the proportion of corrupted data

points will also be discussed in Section V.

The subproblem (3) is a small-scale RPCA problem and can

be solved efficiently by the augmented Lagrange multiplier

method (ALM) proposed by Lin [33]. The subproblem (4)

has a closed form solution, known as the shape interaction

matrix [26]. Once the optimal DS in Eqn. (3) is obtained,

the optimal solution of problem (4) can be solved by

ZS = VSV
T
S , where [US ,ΣS ,VS ] is the skinny singular

value decomposition (SVD) of DS , which is readily available

when solving Eqn. (3). Therefore, the computation complexity

of subproblem (4) is only a matrix multiplication.

Based on basic assumptions at the beginning of this sec-

tion, the low-rank component matrix DS recovered by the

training data XS should cover the entire subspace, i.e., the

intrinsic low-rank component of each data sample in the entire

data space can be approximately linearly represented by the

columns of DS .

B. Dynamic Updating

For most of the existing LRR methods, when l new data

samples XW ∈ R
d×l are added, they have to recompute the

problem (3) for the entire data set [XS XW ] ∈ R
d×(m+l). This

is computationally very expensive and conceptually unneces-

sary: The LRR result of previous data is thrown away, and

for each dynamically added sample, the model (3) has to be

computed repeatedly, which includes a time-consuming SVD

computation. In this paper, we develop an online updating

algorithm for dynamic data, which also works effectively

for large-scale data, where a small subset of data is used

in the static training stage, and the remaining samples can

be seen as dynamically added data. The proposed dynamic

updating method can extract the low-rank component matrix

DW incrementally for dynamically added data XW based

on the learning results on the training data XS . Further-

more, the low-rank representation matrix Z on the whole

data [XS XW ] can also be updated incrementally without

the need of repeatedly solving the complex SVD problem.

The proposed method successfully avoids repeatedly solving

complex rank minimization for incrementally added samples;

the time-consuming rank optimization (Eqn. 3) only needs to

be solved once in the static training step.

The online updating algorithm can be divided into the

following two steps: updating of DW and updating of Z.

1) Updating of DW : Based on the assumptions in this

paper and analysis from the static learning, the intrinsic low-

rank component of each sample in the entire data space can be

linearly represented by the column vectors of DS , apart from

sparse noise. Therefore, for the dynamically added data sam-

ples XW , the low-rank component matrix DW corresponding

to subproblem (3) should be linearly represented using the

basis from the column space of DS . Furthermore, based on the

assumption that the data samples are drawn from independent

subspaces, each data sample should only be represented by the

basis vectors from the same subspace, which implies that each

sample should be sparsely represented. Based on the analysis

above, the low-rank component matrix DW can be solved by

sparse reconstruction as shown in the following Theorem 2.

Theorem 2: Let [US ,ΣS ,VS ] be the skinny SVD of DS .

For the dynamically added data XW , its low rank components

DW corresponding to subproblem (3) can be solved by

min
P,EW

∥EW ∥1, s.t. XW = DW +EW

and DW = USP, (7)

where P contains combination weights to recover D using

the basis US . This means [DS DW ] contains the low-rank

components of the whole dataset [XS XW ].

Proof: Based on the assumption above that the low-rank

components DW of new samples XW can be represented as

linear combinations of column vectors of DS as the basis, it

is obvious that the rank of [DS DW ] = [USΣSVS USP]
should not be larger than the rank of DS . On the other hand,

since DS is the optimal low-rank solution to the problem (3)

with the training samples XS (a subproblem of [DS DW ]), it

is not possible to find solutions with lower rank than [DS DW ]
for problem (3) with data [XS XW ]. Combining formulae (3)

and (7), we can reach the conclusion that D = [DS DW ]
and E = [ES EW ] form an optimal solution to the following

problem:

min
D,E
∥D∥∗ + λ∥E∥2,1, s.t. [XS XW ] = D+E. (8)

As the optimization problem (8) is convex, [DS DW ] should

also be the unique solution. Therefore, under the hypothesis

that the training data is sufficient to cover the subspace,

[DS DW ] corresponds to the low-rank components of the

whole data [XS XW ] with new samples added.

The problem (7) can be efficiently solved by Alternating

Direction Method (ADM) [33], by minimizing the following
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Original data 

(a) 

Partial training data 

(b) 

Updated data online 

(c) 

LRR(Acc = 0.9520) 

(d) 

OLRR(Acc = 0.9528) 

(e) 

Fig. 2. Illustration of steps and results of the proposed online LRR learning algorithm, compared with the traditional batch LRR.

augmented Lagrangian function w.r.t. EW and P with other

variables fixed:

∥EW ∥1+ ⟨v,XW −USP−EW ⟩+
β

2
∥XW −USP−EW ∥

2,

(9)

where β is the penalty parameter. The implementation of the

ADM algorithm is shown in Algorithm 1, which is similar

to [34].

Algorithm 1 Solving the optimization model (9) using Alter-

nating Direction Method (ADM).

Input:

Dynamically added data XW , subspace bases US .

Initialize: E0
W = 0,P0 = 0, v0 = 0, β̄ ≫ β0 > 0, ρ >

1, i = 0. β̄, β0, and ρ are chosen constants2.

1: repeat

2: Ei+1
W = Sβ

−1

i

(XW − USP + vi/βi), where Sβ
−1

i

is

the soft-thresholding operator defined as Sβ
−1

i

(a) =

sign(a)max(0, |a| − β−1
i );

3: Pi+1 = UT
S (XW −Ei+1

W + vi/βi);
4: vi+1 = vi + βi(XW −USP

i+1 −Ei+1
W );

5: βi+1 = min(ρβi, β̄);
6: i← i+ 1.

7: until convergence

Output: Return the optimal solution {P∗,E∗}

For dynamic clustering, or when large-scale data is pro-

cessed, it is prohibitively slow to recompute the model (3)

each time when new samples are given. Note that in real-

world scenarios when more and more new data samples are

incrementally added, traditional LRR methods will need to

solve increasingly large problems, whereas for our approach

the time complexity is proportional to the newly added sam-

ples, not any samples previously added.

2) Updating of Z: According to the formula (4), the low-

rank representation matrix Z can be obtained explicitly by

firstly solving the SVD of [DS DW ] = UΣV, and then work-

ing out Z = VVT , which is also known as the Shape Interac-

tion Matrix (SIM) of [DS DW ]. However, the computational

complexity of the SVD of [DS DW ] is extremely high for

large-scale data. Instead of recomputing the SVD of [DS DW ],
we adopt the online Sequential Karhunen-Loeve (SKL) [27]

2In most of the experiments of this paper, the parameters are chosen as
β0 = 2/mean(|XW |), ρ = 1.05.

algorithm, which incrementally updates the eigenbasis with

dynamically added data. Given US and ΣS from SVD of

DS , which is already available when solving (Eqn. (3) in the

previous step, SVD of [DS DW ] can be computed efficiently

using the SKL algorithm (see Algorithm 2).

Algorithm 2 SKL Algorithm for Online SVD of [DS DW ].

Input: SVD of matrix DS : [US ,ΣS ,VS ] = SV D(DS),
and the learned low-rank matrix DW

1: Obtain Q and R by taking the QR decomposition of

[USΣS DW ] : QR = QR([USΣS DW ]). Note that the

matrix USΣS is already column orthogonal, so the QR

decomposition can be performed on the columns of DW

only.

2: Compute the SVD of R: ŨΣ̃ṼT = SV D(R). Only the

singular values bigger than 0 are kept.

3: The SVD of [DS DW ] can be obtained as U = QŨ,

Σ = Σ̃, VT = Σ−1UT [DS DW ].
Output: Output the SVD of [DS DW ]: [U,Σ,V].

Finally, the low-rank representation matrix Z for the whole

data [XS XW ] can be obtained explicitly using the shape

interaction matrix

Z = VVT . (10)

The LRR matrix Z obtained using our algorithm has nice

properties, as described in Theorem 3 below.

Theorem 3: The global low-rank representation matrix Z

obtained by the proposed online LRR subspace learning algo-

rithm is guaranteed to be symmetric and have block-diagonal

structure.

This can be proved in a similar way as [26].

3) Computational complexity analysis: Following Algo-

rithm 1, the computational complexity of each iteration of

problem (9) is O(drl), where d is the dimension of data,

l is the number of incrementally updated samples in XW

and r (r ≪ l) is the rank of the column space. In contrast,

traditional LRR methods need to recompute the model (3) for

the entire data [XS XW ] and the computational complexity

for each iteration is O(dr(m+l)2). From Algorithm 2, we can

see that by using the SKL algorithm, the complexity is reduced

dramatically from O((m+ l)2) to O(m+ l), i.e. proportional

to the number of sample points.

The online LRR subspace learning algorithm proposed in

this paper can be summarized in Algorithm 3.
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Algorithm 3 Online Low-Rank Representation Classification

Algorithm for Dynamic Clustering.

Input: Initial static learning data set XS =
[X1

S X2
S ... Xc

S ] ∈ R
d×m, dynamically added samples

XW ∈ R
d×l

1: Stage 1: Static learning. Solve the subproblem (3) to

obtain the low rank component DS of training set XS .

2: Stage 2: Dynamic updating.

• Updating of DW : Given the newly added sample

XW , find its approximation DW in the column space

by solving problem (9) (Algorithm 1).

• Updating of Z : The final low rank representation

matrix Z for [XS XW ] can be solved using shape

interaction matrix with the SKL algorithm for online

SVD (Algorithm 2).

Output: The global low-rank representation matrix Z.

V. EXPERIMENTS

In this section, we evaluate the performance of the online

low-rank representation subspace learning algorithm proposed

in this paper using extensive experiments on both synthetic

data and public databases. We compare our method with state-

of-the-art methods on several evaluation metrics.

Algorithms. For the experiment on synthetic data, we

compare the proposed algorithm only with the original LRR

model [1] because the purpose of this experiment is to demon-

strate the correctness of the online learning method. For the

task of subspace recovery, we compare our algorithm with

three typical representation-based subspace learning meth-

ods, LRR [1], RSI [26] and OLRSC (Online Low-Rank

Subspace Clustering) [9]. The first two are batch methods,

whereas OLRSC is a state-of-the-art online LRR method.

For the task of subspace clustering, in addition to LRR,

RSI, OLRSC, we also compare with other online learning

frameworks for representation-based subspace clustering, in-

cluding SLRR (Scalable Low-rank Representation) [8] and

SSSC (Scalable Sparse Subspace Clustering) [8].

Evaluation Metrics. For the task of subspace recovery,

we evaluate the fitness of the recovered subspaces (with

each column being normalized) and the ground truth by the

Expressed Variance (EV) [35] which is widely used in the

literature:

EV (D,L) = Tr(DDTLLT )/Tr(LLT )

where D and L are the recovered subspace and the ground

truth subspace respectively, and Tr(·) is the trace of the

matrix. The value of EV ranges between 0 and 1, and a higher

value means better recovery. For the task of subspace cluster-

ing, standard normalized mutual information (NMI) [36] and

clustering accuracy [37] are used as metrics for evaluation.

The following describes the experiments and results.

A. Synthetic data

The experiment on synthetic data is designed for two

purposes. Firstly, it is useful to evaluate the correctness of the

proposed method, i.e., the low-rank components and the global

Fig. 3. The accuracy and NMI according to different values of parameter λ.

TABLE I
ACCURACY AND RUNNING TIME ON SYNTHETIC DATA

Accuracy NMI running time(s)

LRR [1] 0.9520 0.6775 1.7154

Ours 0.9528 0.7324 0.1706 (0.0745 + 0.0961)

affinity graph learned incrementally should be as accurate as

those obtained by batch LRR methods while the computational

complexity is reduced dramatically. Secondly, the experiment

on synthetic data will give valuable insights for choosing

suitable parameters. Synthetic data is noise free and the data

generation process can be fully controlled.

In this experiment, we generate two 3-dimensional indepen-

dent subspaces, i.e., two planes perpendicular to each other,

and 500 points are sampled from each subspace (plane) to

form the synthetic data X = [X1 X2] ∈ R
3×1000, as shown

in Fig. 2 (a). As the main purpose of the experiment on

synthetic data is to evaluate the correctness of the proposed

online method, we just compare our proposed algorithm with

the original batch LRR method [1], which is solved by an

accelerated augmented Lagrange multiplier (ALM) method.

We compare these two methods using the following three

metrics: running time, clustering accuracy and normalized

mutual information (NMI).

LRR [1] is performed on the whole dataset X, while for

the proposed online LRR method, half of data points from

each subspace are randomly chosen as the static training

data (Fig. 2(b)), and the rest are treated as dynamic samples

added later on. The parameter λ in both LRR model and our

model (3) is set to 100. The experimental results are shown in

Fig. 2. The reconstructed data points obtained using our online

algorithm are shown in (c). (d) and (e) show corresponding

low-rank data and the learned affinity matrices obtained using

LRR [1] and our proposed method (OLRR), respectively. The

running times, clustering accuracy and NMI are shown in

Table I. For our method, we also show the breakdown of the

running time into static learning and online update stages.

The experimental results are in line with our expectation.

From the visualization of the recovered subspace, it can be

seen that our proposed method can learn the subspace as

well as the batch method [1], with even better clustering

performance, while reducing the running time dramatically
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Fig. 4. The accuracy and running times with different numbers of training data.

(over 10 times faster than [1]). Note that our method has

further benefit of being able to process online data. Our

method can efficiently handle cases where data samples are

incrementally added, in which case batch methods would be

prohibitively expensive.

Influence of Parameter Settings. Another purpose of the

experiment on synthetic data is to guide the parameter settings.

There are 2 major parameters for our proposed algorithm, λ in

formula (3) and the number of training data m in Section IV-A.

The choice of parameter λ depends on the data distribution.

We experimented with λ from 0.0001 to 1000, and computed

the corresponding clustering accuracy and NMI, which are

shown in Fig. 3. We can see that for the synthetic data, when

λ > 20 the performance is consistently good. Intuitively, as the

synthetic data is generated based on an accurate distribution,

the representation error should be as small as zero, and

therefore a bigger λ is needed to penalize sparse errors.

Another significant parameter is the number of training

data m. The choice of parameter m determines whether the

intrinsic subspace structure can be learned accurately, which

is key to the performance of the proposed method. In order to

understand the influence of parameter m, we choose m from

50 to 500, and m samples are randomly chosen with equal

chance from each subspace to compose the training data.

Each experiment is conducted 10 folds and the average

accuracy and run times are reported in Fig. 4. We can see that

our method performs consistently well, and when m > 200,

the performance of the proposed method is more stable. As

discussed in Section IV-A, according to the general learning

theory of RPCA, when the sampling rate is sufficiently high,

the low-rank component can be exactly extracted. From Fig. 4

we can see that 200 data points are sufficient for this problem.

The running times of static learning step and dynamic updating

process are shown in Fig. 4 (right). With increasing m, the

running time of static learning increases whereas that of the

dynamic update reduces.

B. Subspace recovery

In this section, we evaluate the performance of the proposed

online LRR learning method for subspace recovery, which

Fig. 5. The EV curves of different algorithms with varying levels of
corruption.

aims at recovering original data from the learned subspace

structure. For intuitive visualization and more convincing

evaluation of real-world performance, we adopt a standard

handwritten digit benchmark USPS. The USPS handwritten

digit database3 is shown to roughly reside in a low-dimensional

subspace. The USPS database contains 9298 digit images of

“0” through “9”, each of which is of size 16 × 16 pixels,

with 256 gray levels per pixel. In the experiment, each image

is represented by a 256-dimensional vector. Fig. 6 (top row)

shows some original sample images from the database.

In this experiment, we compare the performance of the

proposed online LRR learning method against LRR, RSI and

OLRSC from the aspects of recovery performance and running

time. In order to evaluate the robustness of the proposed

algorithm, different levels of sample-specific corruption are

added,

X̃ = X+E

where X is the ground truth USPS data, and E is the sample-

specified errors whose ρ fraction of entries are non-zero and

follow an i.i.d. uniform distribution over [−1, 1]. In this paper,

3http://www.gaussianprocess.org/gpml/data/
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Fig. 6. Ground truth images from the USPS database and reconstructed
images by different methods.

TABLE II
THE AVERAGE RUNNING TIME OF DIFFERENT METHODS ON USPS DATA.

Method LRR
[1]

RSI
[26]

OLRSC
[9]

OLRSC-D
[9]

OLRSC2
[9]

OURS

Time(s) 258.89 45.36 15.02 21.06 33.55 4.76

we set ρ as 0, 0.01 and from 0.05 to 0.5 with step size 0.05.

In this experiment, unless specified otherwise, 1/3 samples of

each subspace are chosen for static training.

OLRSC [9] is based on a stochastic optimization process

which can work without a static learning stage. However, due

to the stochastic nature, the performance at the beginning when

only a small number of samples are processed is poor. In

order to improve the performance, following [9] the stochastic

optimization has to be performed more than once on the whole

data, resulting in high computational complexity, which is not

suitable for the dynamic clustering problem. In addition, as

OLRSC [9] is designed for unsupervised learning, for fairness,

we propose an improved strategy of applying OLRSC [9]

for dynamic problems (hereafter referred to as OLRSC-D)

by which the proper basis is first learned by the stochastic

optimization on a small set of the whole dataset, of the

same size as our static training set, and then the remaining

data can be learned online based on the learned basis. We

compare original one-pass OLRSC, OLRSC-D and the 2-fold

OLRSC (referred to as OLRSC2) in the experiments.

Each algorithm is conducted 10 folds, the average EV values

are shown in Fig. 5 and the average running times are reported

in Table II. From Fig. 5, we can see that the basic LRR

model can always obtain the exact recovery. RSI can also

achieve robust performance with the average EV values larger

than 0.999. For clean data, the proposed method achieves

similar performance as OLRSC and its variants. However, with

an increasing level of corruption, the EV values of OLRSC

methods drop rapidly while our method can maintain robust

performance.

In order to intuitively illustrate the recovery results, we

present the reconstructed images for the noise-free case (i.e.,

ρ = 0) and the ground truth images in Fig. 6. We can see

Fig. 7. The EV curves of different algorithms against varying levels of
Laplacian noise.

that the results by OLRSC are generally poor for the first

1000 samples. Along with the increasing number of training

samples, the dictionary learned by the stochastic optimization

adopted in OLRSC is becoming more and more accurate,

leading to better reconstructed results. For OLRSC-D, the

basis dictionary is firstly learned on the training dataset, which

improves the performance at the early stage of stochastic op-

timization. By using a repeated learning process, the recovery

results of OLRSC2 are robust. However, from Table II, it is

clear that the running time of the repeated OLRSC on the

whole data is 2 times more than that of OLRSC, and over 6

times more than our method. Note that our method is an online

method that produces recovery results with incrementally

added samples, which is a significant advantage compared with

batch methods (SSC and LRR). Since the average performance

of OLRSC-D is similar to OLRSC and between OLRSC and

OLRSC2, only the 1-fold OLRSC and the 2-fold OLRSC2 are

performed in the rest of this paper.

In Fig. 7, Laplacian noise of different levels is added and

the average EV curves are reported. It is noted that the ℓ1
norm is adopted in all algorithms for the Laplacian noise

regularization. It can be seen that the batch methods LRR and

RSI achieve best performance. The performance of OLRSC

and its variants drops rapidly while our method can also

maintain robust performance against Laplacian noise.

C. Subspace Clustering

In this section, we evaluate the performance of the proposed

method on the task of subspace clustering, which aims to

split the data samples into disjoint clusters based on subspace

structure. 5 real-world databases varying from small scale to

large scale are chosen as shown in Table III. For computational

efficiency, the data dimensions of extended YaleB and MNIST

are first reduced by Principal Component Analysis (PCA) to

retain 98% energy. For MNIST, 20,000 samples are randomly

selected to form the MNIST20K dataset since the spectral

clustering is time and memory consuming for the entire

database.

In addition to SSC, LRR, RSI, OLRSC and OLRSC2, we

also compare our method with other related online frameworks
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TABLE III
DATABASES FOR SUBSPACE CLUSTERING

Database ♯ samples Dim. of features ♯ classes

extended YaleB 2414 114 38

Satimg 6435 36 6

USPS 9298 256 10

Pendigits 10992 16 10

MNIST20K 20000 200 10

TABLE IV
SETTINGS OF λ FOR DIFFERENT ALGORITHMS

Database SSC
[14]

LRR
[1]

RSI
[26]

OLRSC
[9]

SSSC
[8]

SLRR
[8]

Ours

YaleB 0.5 0.5 0.5 λ2 = 2.75e-4 0.5 3.1 0.45

Satimg – 1e-6 1e-6 λ2 = 5e-7 5e-6 1e-6 5e-6

USPS 0.5 0.5 0.5 λ2 = 0.0104 0.5 3.1 0.2

Pendigits – – – λ2 = 0.02 0.5 3.1 1000

MNIST20K – – – λ2 = 5e-5 0.05 0.01 0.001

designed for subspace clustering, including scalable sparse

subspace clustering (SSSC) and scalable low-rank represen-

tation (SLRR). Note that SSSC and SLRR do not solve the

original subspace clustering problem exactly, but instead only

cluster in-sample data and “clustering” of out-of-sample data

is solved by a classification process. For the remaining SSC,

LRR, OLRSC and the proposed method, the spectral clustering

method [38] is used based on the global representation matrix

learned by each algorithm. The global representation matrix Z

computed by RSI and the proposed method is guaranteed to

be symmetric, so it can be directly used for spectral clustering.

For SSC, LRR and OLRSC, Ẑ = |Z| + |Z′| is used to

symmetrize the matrix.

Parameter Settings. There is a common parameter λ in all

of the compared algorithms, which is used to balance the data

fidelity term and the regularization term. Different databases

may require different choices of λ to work most effectively.

For fair comparison, λ is tuned for all the methods such

that the best performance is obtained. The settings used are

reported in Table IV4. For online methods including SLRR,

SSSC and the proposed algorithm, there is another important

parameter m which refers to the number of static training

samples. In the following experiment, m is set as 1/3 of

the whole data points. Extra experiments were performed on

Pendigits database to evaluate the influence of parameter m.

Performance Comparison. We report the clustering accu-

racy, NMI and the running times of these methods in Table V.

Due to the high computational complexity of batch methods

on large-scale data, we are unable to obtain results of the

SSC and LRR methods for Pendigits and MNIST databases

within reasonable amount of time. It can be seen that in

most cases our method outperforms the other methods in

terms of clustering accuracy and/or running times. For USPS

and Pendigits, our method achieves the best performance

among online methods, and obtains the highest NMI score

on the extended YaleB database. Although SSSC achieves

higher accuracy on MNIST20K, its running time is 87 times

more than our method, thus not practical for large-scale data.

4For OLRSC, λ2 is tuned as shown in the table, and other parameters are
fixed, λ1 = 1, λ3 = 1/

√
n, where n is the number of data points.

Our method reduces the running times dramatically compared

with batch methods. For example, on the USPS database, the

traditional LRR takes 258.89s while our method just needs

4.76s. The running time of our method also outperforms the

other online methods in majority of cases. Although OLRSC

is faster than our method on YaleB and Satimg, its clustering

accuracy is poor. In order to improve the performance, a

repeated process has to be conducted (referred to OLRSC2

in the table), which is significantly slower.

The influence of parameter m. The proposed method

shares the similar assumption as SLRR [8], i.e., the subspace

structure of the whole data space can be learned from partial

training data. Therefore, the parameter m which refers to

the number of training data plays an important role for the

learning performance. In this experiment, the same m is set

for the proposed method and SLRR [8], and the clustering

accuracy and NMI score of both methods on the Pendigits

database are reported in Fig. 8. The parameter m is set as

(1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000), which im-

plies that for each object m/10 samples are chosen as the

training data. For each value the experiments are conducted 10

folds and the average accuracy and NMI scores are reported.

We can see that the accuracies of both methods are in the

range of (0.7, 0.85), which is in line with the basic assumption

that under some mild conditions the subspace structure of the

whole data space can be learned from partial training data.

However, since SLRR [8] only uses in-sample data to learn the

subspace, whereas our method updates the subspace structure

incrementally with online data, the proposed method is much

more robust and achieves significantly better performance

when the size of the static training data is smaller.

Robustness to Noise. Finally, we evaluate the robustness of

different methods to noise. We randomly add different levels

of noise to the original data. With half of the data contaminated

by 5%, 10% and 15% Gaussian noise, the clustering results

are shown in Table VI. The performances of OLRSC and

SLRR suffer a sharp decline when the noise is heavy (e.g.

15%). For OLRSC, as the basis of the subspace is learned

by stochastic optimization, when the data is contaminated, the

misleading dictionary basis will be pursued, resulting in poor

performance. Furthermore, if the learning process is conducted

repeatedly, the error will be propagated and accumulated,

leading to even worse performance (OLRSC2 vs. OLRSC).

For SLRR, since the clustering results are obtained by clas-

sification of out-of-sample based on the learned subspace

structure from the in-sample data, the clustering performance

is sensitive to noise. In contrast, our proposed method can

learn reliable subspace structure, which is robust to noise.

Furthermore, the proposed method incorporates an RPCA-type

preprocessing (3), which leads to a better performance.

VI. CONCLUSION

In this paper, an online LRR subspace learning method for

large-scale and dynamic data is proposed. Compared with the

traditional LRR model, the proposed algorithm only needs to

compute the complex rank minimization once, and for each

dynamically added sample, the global low-rank representation



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 12

TABLE V
RUNNING TIME AND CLUSTERING ACCURACY OF DIFFERENT ALGORITHMS.

Database

YaleB

Satimg

USPS

Pendigits

MNIST20K

SSC [14]

Accuracy NMI time

0.5898 0.6625 64.68

0.6977 0.7015 136.51

0.7084 0.7266 2231.6

– – –

– – –

SSSC [8]

Accuracy NMI time

0.5676 0.6059 128.23

0.6524 0.5786 5.03

0.6900 0.6536 70.06

0.8131 0.7141 17.23

0.6259 0.6205 2074.11

LRR [1]

Accuracy NMI time

0.7365 0.7756 51.2212

0.7906 0.7364 26.5171

0.6342 0.5314 258.89

– – –

– – –

SLRR [8]

Accuracy NMI time

0.6920 0.7460 32.21

0.6476 0.3936 28.19

0.6890 0.7406 26.80

0.8021 0.7131 19.2541

0.5694 0.5546 3718.04

OLRSC [9]

Accuracy NMI time

0.6332 0.5848 5.05

0.6016 0.5121 8.3626

0.6395 0.5989 15.02

0.5612 0.5435 12.89

0.5114 0.4871 81.93

OLRSC2 [9]

Accuracy NMI time

0.7052 0.7043 9.0924

0.6542 0.5301 13.5313

0.7327 0.7041 33.55

0.7136 0.6264 19.83

0.5774 0.5543 128.33

RSI [26]

Accuracy NMI time

0.7411 0.7831 9.7870

0.7863 0.7412 10.3971

0.6985 0.6772 45.36

– – –

– – –

Ours

Accuracy NMI time

0.7125 0.7845 7.8341

0.6737 0.5710 8.9194

0.7497 0.7105 4.76

0.8195 0.7307 2.6197

0.6225 0.5851 23.75

Fig. 8. The accuracy and NMI curves for the proposed method and SLRR [8] with varying parameter m.

TABLE VI
THE CLUSTERING ACCURACY OF DIFFERENT ALGORITHMS ON PENDIGITS WITH DIFFERENT NOISE LEVELS.

Noise

5%

10%

15%

OLRSC [9]

Accuracy NMI

0.5609 0.5193

0.5293 0.5022

0.4760 0.3744

OLRSC2 [9]

Accuracy NMI

0.6108 0.5634

0.5744 0.5265

0.3515 0.2783

SSSC [8]

Accuracy NMI

0.6994 0.6949

0.6207 0.6585

0.4940 0.5083

SLRR [8]

Accuracy NMI

0.6904 0.6720

0.6689 0.6038

0.5238 0.4234

Ours

Accuracy NMI

0.7927 0.7025

0.7748 0.6866

0.7545 0.6797

matrix can be computed incrementally based on the existing

learned results efficiently. Extensive experiments on both syn-

thetic and real-world benchmark data for both subspace recov-

ery and clustering tasks verify that the proposed online LRR

algorithm can exploit the intrinsic subspace structure as ac-

curately as traditional LRR while reducing the computational

complexity dramatically. Our method is naturally a two-stage

algorithm. In the future, we would like to exploit an end-to-

end approach to further improve the solution. Handling large-

scale, dynamic data is particularly demanded when processing

temporal data streams and Internet data, and we would like to

investigate further applications of the proposed technique.
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