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ABSTRACT The long distance high frequency (HF) communication suffers from time varying multi-

path fading. Multiple-Input Multiple-Output (MIMO) and Single-Carrier Frequency Domain Equalization

(SC-FDE) have been introduced to HF communication system to combat fading. Because accurate channel

estimation is essential for system operation, an architecture of signal flow chart has been designed for the

HF MIMO SC-FDE system. In the architecture, an online Long Short-Term Memory (LSTM) estimator is

proposed. Different from the channel responses time series created by the LSTM training and prediction

loop, a corrected channel responses that are obtained through the received data symbols and the restored

transmitting data symbols make up the channel responses time series. In order to evaluate the performance

of channel estimators, a simulation system has been built. The uncorrelated and correlated channels are

simulated referring to International Telecommunication Union (ITU)-R F.1487 standard and Kronecker

model. The simulation results demonstrate that the online LSTM estimator outperforms Least Square (LS)

and Recursive Least Square (RLS) estimators in terms of Bits Error Rate (BER) and Mean Square Error

(MSE). The online LSTM estimator is capable of tracking the time varying HF MIMO channels. It has

potentiality in actual long distance HF communication.

INDEX TERMS HF MIMO SC-FDE, online LSTM, channel estimator.

I. INTRODUCTION

High frequency (HF) communication which range of radio

frequency is between 3 and 30 MHz has been widely utilized

in long-distance military and civil communications. Besides

its low cost and simple operation, the main advantage of

HF communication is that it is not easy to be destroyed

by wars and disasters owing to its propagation through the

ionosphere. However, the HF channel not only presents a

limited bandwidth and moderate data transfer rate, but also

exhibits time-varying nature that is made by the fluctuation of

ionosphere. The HF channel can provide a narrow bandwidth

allocation and exhibits multipath effect and time-varying

nature. The barriers to applying HF communication are its

low communication rate and poor reliability.

Multiple-Input Multiple-Output (MIMO) technology has

been introduced into HF communication systems to suppress
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the effect of multipath and increase the data rate. Compared

with the single input single output (SISO), MIMO achieves

higher data rate, better Bit Error Rate (BER) and wider cov-

erage. The combination of MIMO and HF has become the

development trend of the next generation HF communication

system [1]. Based on polarization diversity and radiation

pattern diversity, a heterogeneous array technology has been

proposed to implement a HF MIMO system in [2], [3].

Their results showed that MIMO technology can effectively

improve the channel capacity of HF communication. The

reliability of HF MIMO was investigated in [4], [5] [6]. The

experiment results demonstrated that the MIMO technology

could improve the BER performance of HF communication.

In the process of implementing HF MIMO, Single-Carrier

Frequency Domain Equalization (SC-FDE) and Orthogonal

Frequency Division Multiplexing (OFDM) are the two tech-

niques to mitigate the multipath interference of HF channel.

The conclusion that SC-FDE has the similar performance

and complexity as OFDM was proved in [7], [8]. Besides,
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SC-FDE has lower Peak-to-Average Power Ratio (PAPR)

and it is less sensitive to frequency offset [7]. SC-FDE is

considered more suitable for HF communication. It has been

successfully applied to HF MIMO system [6], [9], [10].

We combined MIMO with SC-FDE for HF communication.

Accurate channel state information (CSI) is of crucial

importance for precoding the spatial stream at transmitters

and detecting and decoding data at receivers. Channel esti-

mation is a crucial activity in the HFMIMO SC-FDE system.

When the transmitted signals arrive at the receiver antennas,

the equalization method to mitigate the effect of multipath

fading depends on the accurate estimation of CSI. The decod-

ing error of space-time block codes (STBC) will occur if

the accuracy of channel estimation is too low. If the CSI

is fed back to transmitter, adaptive transmission control and

pre-equalization can be implemented to further improve the

communication. Therefore, the study of HF MIMO channel

estimation is of great significance.

The MIMO channel estimation methods can be divided

into two categories, traditional methods andmachine learning

methods. Least Square (LS) [2], [10], Minimal Mean Square

Error (MMSE) [11], time domain correlation estimation [12]

and adaptive filtering [13] belong to traditional methods.

Except adaptive filtering, the other methods are presented

under the assumption that the channel is static or quasi-

static. LS estimator has low complexity and is easy to realize.

But LS estimator is poor at low signal-to-noise ratio (SNR).

MMSE estimator can provide better estimation performance

at low SNR. However, the numerical instability and high

computational complexity restrict its application. A time-

domain estimation method based on circular orthogonal pilot

sequence was proposed in [12]. The method can eliminate

the interference from other antennas by circular orthog-

onal sequence and improve SNR by extending sequence

length. LS, MMSE and time domain correlation estimation

all decline in time-varying channels. Adaptive filtering is

well-known approach that was proposed for time-varying

channels. The convergence speed and computational com-

plexity impede the estimation accuracy promotion and its

application. Because the HF channels are multipath and time

varying channels, the promotion abilities of traditional chan-

nel estimation methods are limited.

Machine learning techniques have been introduced to the

MIMO communication systems with the aim of making the

communication smarter. Intelligence will be one of the char-

acteristics of future HF communication [14]. Three modes

for applying neural network in wireless communication have

been proposed. First, the responses of pilot channels are

obtained by traditional channel estimation methods, then the

estimated results can be optimized by neural network [15],

[16] [17], [18]. In [18], the initial channel response was esti-

mated by LS, then the other channel responses were interpo-

lated and the noise was suppressed by image super-resolution

(SR) and image restoration (IR) algorithms. Second, the neu-

ral network was used to map the relationship between

the receiving symbol and transmitting symbol. The trained

network can be utilized to decode the received signal

directly [19], [20]. The channel estimation was implicit,

and the real channel response could not be obtained. Third,

the neural network was used to get the value of channel

response directly [21], [22]. All of the results show that

the neural network methods can improve the accuracy of

channel estimation and the communication quality. However,

when the neural network based methods were applied to

real communication, their performance declined. Because the

neural networks are trained mainly on channel model, they

are optimal for channel model rather than real channel [23].

Most time, the channel model does not match with the real

channel. So the pre-trained network can not work well.

Online training network based on real channel can over-

come the weakness of the pre-trained network [24]. Online

learning does not depend on the entire training data set.

It can adapt dynamically to new patterns in the data. In the

initial phase, network is trained by small dataset from real

channel. Then the network model is retrained and optimized

continuously by the constantly arriving data slices. The net-

work model can be continuously optimized [25]. Online

long short-term memory (LSTM) has been demonstrated that

it can accurately predict the energy consumption of smart

grid [25]. Online LSTM also succeeded in exchange rate

prediction and stock price prediction [26], [27]. The examples

show that significant improvements can be obtained by online

LSTM on one-dimensional time series prediction, such as

channel response estimation.

We designed a HF MIMO SC-FDE communication sys-

tem. The channel estimation is essential to restore the trans-

mitted data symbols at the receivers. Our contributions

involve two parts.

1) An online LSTM estimator is proposed to estimate

the channel responses of the received data symbols.

Different from the channel responses time series that

are created by the LSTM training and prediction loop,

the channel responses series of the online LSTM esti-

mator are composed of the corrected channel responses

that are obtained through the received data symbols.

The transmitting data symbols are restored in terms

of the communication procedure of the HF MIMO

SC-FDE system. The online LSTM estimator sup-

presses the accumulation error that is generated by

the training and prediction loop of the LSTM estima-

tion method. It can track the time varying HF MIMO

channels.

2) We designed the architecture of theHFMIMOSC-FDE

communication system and the signal flow chart.

The uncorrelated channels are simulated according to

the International Telecommunication Union (ITU)-R

F.1487 standard. The correlated channels are simulated

with regard to both ITU-R F.1487 standard and Kro-

necker model. The Zadoff-chu sequence [28] is used to

create orthogonal pilots between a pair of transmitters.

The channel estimation method based on the circular

orthogonal sequence is applied to the architecture to

131006 VOLUME 8, 2020



Z. Wang et al.: Online LSTM-Based Channel Estimation for HF MIMO SC-FDE System

FIGURE 1. Architecture of HF MIMO SC-FDE System.

obtain the channel responses of the pilots for the online

LSTM estimator training.

We built a simulation system. The online LSTM estimator

has been compared with LS and RLS estimators. Simulation

results show that the online LSTM estimator outperforms LS

and RLS estimator in terms of BER and MSE. The remains

of the paper are organized as follows. Section 2 depicts

the MIMO SC-FDE system model and HF MIMO channel

model. Section 3 designs the online LSTM channel estimator.

Section 4 presents the experimental results and performance

analysis. Finally, section 5 summaries the paper.

II. HF MIMO SC-FDE SYSTEM

We built a HF MIMO SC-FDE simulation system. The

space-time block code has been applied to encode the signals

sent by the transmitting antenna. The channels of HF MIMO

SC-FDE system are modeled according to ITU-RF1487.

A. HF MIMO SC-FDE SYSTEM

We designed HF MIMO SC-FDE system shown in Fig. 1.

At transmitter, the information bits are mapped into complex

signals by baseband modulation. Data blocks are produced

through serial-to-parallel conversion of the complex signals.

K symbols make up a modulated data block. The data blocks

of MIMO transmission are generated through coding the

symbols of each modulated data block in terms of Alam-

outi STBC. A cyclic prefix (CP) with P length is inserted into

the front of each data block to combat the multipath fading

and suppress the inter-block interference (IBI). So, a data

block is composed of Alamouti coding data and CP. As shown

in Fig. 2, a number of data blocks form a data group. A pilot

group that is composed of several pilot blocks is inserted in

front of a data group. The pilot blocks are created in terms

FIGURE 2. Frame Structure for HF MIMO System.

of Zadoff-chu sequence. The pilot group is configured with

regard to the number of transmitter antennas. The pilot group

is used for online channel estimator and channel track. The

configured frame as shown in Fig. 2 is converted from parallel

to serial. The serial signals undergo filtering, up-sampling,

converting from digital to analogue (D/A), then, are sent

out from the transmitting antennas. When the transmitted

signals arrive at receiver antennas, they undergo analogue-

to-digital conversion, down-sampling, filtering and serial-to-

parallel conversion to obtain the receiver data frame that

matches the transmitter frame. The channel responses are

firstly estimated through the pilot group. The CP in each

receiver data block is removed. The channel responses of data

blocks are estimated through online LSTM. The estimated

channel responses, and data blocks are inputted to FFT (Fast

Fourier Transform) module. Then, the channel equalization

and Alamouti STBC decoding are implemented in frequency

domain. After that, the decoded data are processed by IFFT

(inverse fast Fourier transform), parallel-to-serial conversion,
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and baseband demodulation to recover the original informa-

tion bits.

The construction of data blocks are shown in Fig. 3 [29].

Each data block consists of two parts, the encoded data

and CP. Denote the k-th symbols of the m-th transmitted

data block from antenna i by s
(m)
i (k). According to Alamouti

STBC, pairs of data between two consecutive blocks are gen-

erated by formula (1), where m = 0, 2, 4, · · · . ()∗ represents

complex conjugation and ()K denotes module-K operation.

sm+1
1 (k) = −s∗(m)2 ((−k)K )
sm+1
2 (k) = s

∗(m)
1 ((−k)K ) (1)

FIGURE 3. Data block format for SC-FDE STBC.

Assume that the received signals are well synchronized. After

the CP is removed, the two consecutive data blocks at time

n = m,m+ 1 are represented as

yn = H_m
(n)
1 s

(n)
1 +H_m

(n)
2 s

(n)
2 + v(n), n = m,m+ 1 (2)

where v is additive white Gaussian noise(AWGN) samples

vector, H_m
(n)
1 is the circulant channel matrix between the

antenna 1 and the receiver antenna, and H_m
(n)
2 is the cir-

culant channel matrices between antenna 2 and the receiver

antenna. The circulant channel matrices H_m
(n)
i are cre-

ated in terms of the estimated channel impulse response

h
(n)
i = [h

(n)
i (0) h

(n)
i (1) · · · h

(n)
i (L)], where L is channel

response length. The circular convolution of two blocks is

converted to matrix and vector multiplication by H_m
(n)
i .

H_m
(n)
i can be written as




h
(n)
i (0) 0 · · · h

(n)
i (L) · · · h

(n)
i (1)

...
. . .

. . .
. . .

. . .
...

h
(n)
i (L−1) · · · h

(n)
i (0) 0 · · · h

(n)
i (L)

h
(n)
i (L) h

(n)
i (L−1) · · · h

(n)
i (0) 0 · · ·

...
. . .

. . .
. . .

. . .
...

0 · · · h
(n)
i (L) h

(n)
i (L−1) · · · h

(n)
i (0)




(3)

Then the relationship between the received data y(n) and the

estimated circulant channel matrix are mapped in frequency

domain by FFT.

Y (n) = Wy(n) = D
(n)
1 S

(n)
1 + D

(n)
2 S

(n)
2 + V (n) (4)

where S
(n)
i = Ws

(n)
i and V (n) = Wv(n).W is discrete Fourier

transform matrix and its elements are described by

W (i, j) = 1√
K
e

−j2π ij
K (5)

D
(n)
1 and D

(n)
2 are diagonal matrices, which are calculated

as D
(n)
i = WH_m

(n)
i W∗. According to properties of digital

Fourier Transform (DFT) and formula (1), we have

S
(m+1)
1 (k) = −S∗(m)

2 (k)

S
(m+1)
2 (k) = S

∗(m)
1 (k) (6)

where k = 0, 1, · · · ,K − 1 and m = 0, 2, 4, · · · . Combining

formula (4) and (6), we have

Y =
(
Y (m)

Ȳ
(m+1)

)

=
(
D1 D2

D∗
2 −D∗

1

)(
S
(m)
1

S
(m)
2

)
+
(
V (m)

V̄
(m+1)

)

= DS+ V (7)

where D =
(
D1 D2

D∗
2 −D∗

1

)
, S =

(
S
(m)
1

S
(m)
2

)
and V =

(
V (m)

V∗(m+1)

)
.

And (̄) denotes complex conjugation. Then we can get S
(m)
1

and S
(m)
2 from the received data by solving the following

linear equations

Ỹ = D∗Y =
(
D◦

0

0 D◦

)(
S
(m)
1

S
(m)
2

)
+ Ṽ (8)

whereD◦ = |D1(i, i)|2+|D2(i, i)|2 and Ṽ = D∗∗V .We apply

MMSE criterion to implement frequency equalizations as

formula (9)

Ŝ = (D∗D+ σ 2
v

σ 2
s

I2K )
−1D∗Y (9)

where I2K is a 2K ∗ 2K unit matrix, σ 2
v and σ 2

s are the noise

power and signal power respectively. At last, Ŝ is transformed

to its time domain counterpart by IFFT. The original informa-

tion bits can be obtained through baseband demodulation.

B. HF MIMO CHANNEL MODEL

We modeled the HF propagation that is reflected by iono-

sphere over long distance. Because the ionosphere is a

layered, heterogeneous, anisotropic, dispersive and random

time-varying medium, the HF channel experiences time vary-

ing multipath and Doppler frequency shift. The HF MIMO

channels vary in both time domain and frequency domain.

Watterson [30] model and Institute for Telecommunication

Sciences (ITS)model [31] are the twoHF channelmodels that

are widely used. The Watterson channel model consists of a

tap delay line, where each tap corresponds to an analytic prop-

agation path. Each tap has a double Gaussian Doppler spec-

trum that consists of two Gaussian functions in the frequency

domain. The Watterson model is suitable for narrowband
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FIGURE 4. Online LSTM Channel Estimation Structure.

(< 12KHz) and short times (<10min) channels. The American

Institute of Telecommunications Science proposed a broad-

band HF channel simulator that is known as the ITS model

in 1997. However, the ITS model is not recommended by

the ITU (International Telecommunication Union), because

there exist issues that have not been resolved. A series of

simplified channel models were specified by Recommenda-

tion ITU-R F.1487 for quantitative testing of high-frequency

modems [32]. There are two independent fading paths with

the same power in these models. The fading process has

Rayleigh-distributed envelope. The recommendedmodels are

widely used in the research of HF simulation. We adopt

the recommended models, ITU-R F.1487, in our HF MIMO

channels simulation.

In the modeling of HF MIMO channels, the correlation

among antennas is considered in the Kronecker model [11].

If a linear array antenna with interval 75 meters, correlation

among antennas can be ignored [5]. The channel between a

pair of transmitter and receiver can be modeled by the recom-

mended Watterson model. If the correlation among antennas

exists, the HF MIMO channel model should multiply the

correlation matrix.

We generate the uncorrelated HFMIMO channels in terms

of ITU-R F.1487. The HF MIMO channels with correlation

among antennas are generated by both ITU-R F.1487 model

and Kronecker model. The channels with correlation is mod-

eled as follow

HMIMO = 2

1

2

Rx
H ITU2

1

2

Tx
(10)

where HMIMO represents MIMO channel and H ITU repre-

sents independent identically distributed ITU channel model.

2Rx and 2Tx denote spatial correlation matrices at the

receiver and transmitter, respectively. The spatial correlation

matrices are modeled as formula (11), (12) and (13).

2Rx =




ρ1,1 · · · ρ1,Nr
...

. . .
...

ρNr,1 · · · ρNr,Nr


 (11)

2Tx =




ρ1,1 · · · ρ1,Nt
...

. . .
...

ρNt,1 · · · ρNt,Nt


 (12)

ρi,j = J0(αdi,j) (13)

where ρ is spatial correlation matrix elements, J0 represents

the zero-order Bessel function, α is wave number and di,j is

the normalized distance between transmit(receive) antenna i

and transmit(receiver) antenna j [33].

III. CHANNEL ESTIMATION BASED ON ONLINE LSTM

The framework of online LSTM estimator is introduced

in Fig. 4. The online LSTM estimator is composed of two

stages, online training and online prediction. During the

online training, the channel response between one pair of

transceiver antennas is estimated through the circular orthog-

onal sequences based channel estimation [12] in terms of

the pilot block that is set for the corresponding transmitter

antenna. The LSTM network is trained by the pilot blocks

and the estimated channel response. During the online pre-

diction, the channel responses of data block are estimated by

LSTM framework based on the trained LSTM network and

the feedback from previously estimated channel responses.

A. CIRCULAR ORTHOGONAL SEQUENCES

The circular orthogonal sequences based channel estima-

tion [12] instead of LS estimator has been utilized for the

channel responses estimation of pilot block of each antenna.

The circular orthogonal sequences based channel estimation

performs better than LS estimator. The configuration of pilots

for HF MIMO is shown in Fig. 2. The pilot group of each

transmitter is composed of pilot blocks. The number of pilot

blocks corresponds to the convergence rate of online LSTM

network training. The rule for the pilot sequence construc-

tion of all transmitters is the same. The pilots of one trans-

mitter should be orthogonal to that of another transmitter.

Although the configuration of pilot sequences increases the

system overhead, it enhances the estimation accuracy of
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channel responses from different antennas through correla-

tion operations.

Assume Nt transmitters. The pilot blocks, such as

C1 and C2, are constructed according to Zadoff-chu

sequence. The Zadoff-chu sequence has cross-correlation

and auto-correlation properties that are required by the

circular orthogonal sequences based channel estimation.

The Zadoff-chu sequence with length Q is generated as

formula (14)

c(q) =
{
ejπrq

2/Q, for evenQ

ejπrq(q+1)/Q, for oddQ,
gcd(Q, r) = 1 (14)

where q denotes the q-th symbol of the sequence, r is an

integer coprime of Q. And the Zadoff-chu sequence of i-th

transmit antenna can be generated through circular shifting

as follow

ci = c(q+ (i− 1)ǫ)Q i = 1, 2, · · · ,Nt (15)

where ǫ is the shift step. Then the pilot block is constructed

by insert cyclic prefix and cyclic postfix. The configuration

of the pilot block is shown in Fig. 5. The last P symbols of

the Zadoff-chu sequence are duplicated and inserted in the

front of the Zadoff-chu sequence as cyclic prefix. The first P

ymbols are duplicated and added as cyclic postfix. In order to

suppress inter symbol interference (ISI), the length of cyclic

prefix P must be more than maximum delay spread L of

channel. And the shift step of formula (15) must meet ǫ ≥ P,

so that the sequences between different pilot blocks keep

orthogonality. The length of Zadoff-chu sequence must meet

Q ≥ NtP, where Nt is the number of transmitting antennas.

FIGURE 5. Circular Orthogonal Pilot Sequence Structure.

At receiver, yj represents the signal of j-th receiver antenna

after removing the cyclic prefix, and the channel response

from transmit antenna i to receive antenna j can be estimated

by formula (17)

ĥij(l) = (
1

Q
)

Q−1∑

q=0

ci(q)yj(q+ l), l = 1, 2, · · · ,L (16)

B. ONLINE LSTM CHANNEL ESTIMATION

1) NETWORK STRUCTURE

The LSTM network structure of online training and predic-

tion is shown in Fig. 6. It involves three parts: input layer,

hidden layer and output layer. The input layer accepts the

input data. The hidden layer is composed of the LSTM cells.

The output layer provides the prediction results. Each LSTM

cell contains input gate, forget gate and output gate [34]. The

input gate it controls whether the new information can be

stored in the cell state and prevents unwanted information

from entering the memory unit. The forget gate f i decides

whether discards previous step information from the cell

status C i−1. The forget gate and the input gate work together

to update the state of the memory cell C i. The output gate ot
decides what information will be outputted. The data flow of

LSTM network follows the following formulas

f i = σ (W f [ht−1, xt ] + bf )

it = σ (W i[ht−1, xt ] + bi)

C̃ t = tanh(WC [ht−1, xt ] + bC )

C t = f t ∗ C t−1 + it ∗ C̃ t

ot = σ (Wo[ht−1, xt ] + bo)

ht = ot ∗ tanh(C t ) (17)

FIGURE 6. Online LSTM Network Structure.

where C t and ht denote the cell state and cell output respec-

tively at current time.C t−1 is the cell state and ht−1 is the cell

output at previous time. W i,W f ,Wo and WC are the weight

matrix of input gate, forget gate, output gate and cell vectors

respectively. bi,bf ,bo and bC are the bias vector of input gate,

forget gate, output gate and cell vectors respectively.

2) LSTM BASED CHANNEL ESTIMATION

After getting channel responses through circular orthog-

onal pilots, we use them to train the LSTM network.

The LSTM based channel estimation process is shown

in Fig. 8(a). Assume the time series channel responses are(
h(1) h(2) · · · h(n− 1) h(n)

)
, where the vector h(n) repre-

sents the channel responses at different time. h(n) is predicted

in terms of
(
h(1) h(2) · · · h(n− 1)

)
. The procedure of the
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time series sliding for the LSTM network training is shown

in Fig. 7. Input sequences of Fig. 7 mean the set of channel

responses that are inputted to the LSTM network, and the

output data denote the output label. Assume the slide win-

dows length is t . The training starts on the vector window that

is composed of the first t vectors of the time series channel

responses. The first t − 1 vectors are LSTM network input,

and the last vector is output label. Then, the vector window is

moved one time step forward when a new channel response

comes. The LSTM network is trained again by the vectors of

the shifted forward window. The process is repeated until the

LSTM network converges.

FIGURE 7. The Transforming Method from Time Series to Supervised
Learning.

After the LSTM network is trained by the pilot block, it is

applied to predict the channel responses of each symbol in the

data block. Like the iterative training process, the predicted

channel responses are re-inputted to the training process to

update the LSTM network. The updated LSTM network

is used to predict the next symbol channel responses. The

training-prediction loop is iterated until the communication

of all the symbols of the data blocks finishes. The main risk

of this LSTM based channel estimation is that the prediction

error may be accumulated in the iterative loop [35]. The

deviation between the estimated channel responses of the

symbols at the end of the data sequence and the real channel

responses may be large.

3) PROPOSED ONLINE LSTM CHANNEL ESTIMATOR

To suppress the accumulation error of the online training-

prediction loop, we adapt the online LSTMchannel estimator.

As shown in Fig. 8(b), online LSTM estimator uses the pre-

dicted channel response vector ĥ(n) to reconstruct the label

and online learning. Lastly, the regenerated channel response

vector h̃(n) eliminates the accumulation error.

FIGURE 8. Comparison of LSTM Estimator and Online LSTM Estimator.

We utilize two transmitters and one receiver to illustrate

the revised process in Fig. 9. Assume the channel response

length between each pair of transmitter and receiver pairs is

L. ĥ11(n) =
[
ĥ111(n) ĥ

2
11(n) · · · ĥL11(n)

]
denotes the estimated

channel responses vector from the transmitter 1 to the receiver

at time n corresponding to data block n (for n = 0, 2, 4, · · · ),
and ĥ21(n) =

[
ĥ121(n) ĥ

2
21(n) · · · ĥL21(n)

]
are the channel

responses vector from the transmitter 2 to the receiver. The

two estimated channel responses by LSTM are used for chan-

nel equalization and the transmitted data recovery. The corre-

sponding frequency domain channel responses, Ĥ11 and Ĥ21

are obtained by FFT. Ĥ11 and Ĥ21 are rewritten as diagonal

matrix D11 = diag(Ĥ11) and D21 = diag(Ĥ21). Alamouti

decoding and channel equalization in SC-FDE system are

computed as formula (18)
(
D̃ 0

0 D̃

)(
S̃1(n)

S̃2(n)

)
=
(
D11 D21

D∗
21 −D∗

11

)(
Y (n)

Ȳ (n+ 1)

)

D̃ = |D11|2 + |D21|2 (18)

where Y (n) and Y (n+1) are the received data blocks at time n

and n + 1, (̄) denotes complex conjugation and ()∗ denotes

complex conjugation transposition. The output frequency

domain vector S̃ is converted to its time domain counterpart s̃

by IFFT. s̃ is the vector of the restored transmitted symbols.

The restored transmitted bits data, and the received blocks

Y (n) and Y (n+1) are re-computed according to the transmis-

sion process of HF MIMO SC-FDE with the aim of revising

the estimated channel responses. Bit data are re-modulated

and encoded by Alamouti STBC. The encoded symbols are

transformed to frequency domain by FFT.Tx1 andTx2 denote

the results of FFT. And they make up diagonal matrices X1

and X2. The new frequency domain channel responses at

time n are computed as formula (19). The new time domain

channel response h̃11(n) and h̃21(n) are obtained by IFFT.
(
X̃ 0

0 X̃

)(
H̃11(n)

H̃21(n)

)
=
(
X∗
1 −X2

X∗
2 X1

)(
Y (n)

Y (n+ 1)

)

X̃ = |X1|2 + |X2|2

X1 = diag(Tx1)

X2 = diag(Tx2) (19)

It is found that the new channel response h̃ij(n) is different

from the estimated channel response ĥij(n). h̃ij(n) is consid-

ered closer to the real channel response than ĥij(n), because it

is computed through the received symbols and the transmitted

symbols that is restored based on ĥij(n). h̃ij(n) instead of

ĥij(n) is sent to the online training process as output label to

suppress the accumulation error. It is also added to the chan-

nel response sequence. Then, because the Alamouti STBC

requires that the channels are fixed over two consecutive

blocks, i.e. h̃ij(n) = h̃ij(n+ 1), the channel response window

advances by one step for next channel response estimation

at time n + 2. Through the revised process shown in Fig. 9,

the accumulation error caused by the typical online LSTM

training-prediction process can be reduced. The channels of

HF MIMO SC-FDE can be well tracked.
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FIGURE 9. Proposed LSTM estimator algorithm diagram.

IV. EXPERIMENT RESULTS

We tested our methods on simulated system. Two kinds of

RF MIMO channel models, uncorrelated and correlated, are

tested in the simulation system. We also tested LS and RLS

channel estimator as typical traditional methods to demon-

strate the performance of our method.

A. SIMULATION EXPERIMENTS ON NON-CORRELATION

CHANNELS

1) PAREMETERS SETTING

The 2 × 2 HF MIMO SC-FDE system parameters are listed

in TABLE 1. The 2 × 2 HF MIMO uncorrelated channels

are simulated referring to the medium latitudes channel of

ITU-R F.1487 standard. This channel model simulates two

multipaths with varying time delays and Gaussian Doppler

power spectrum. The parameters of system frame struc-

ture are shown in Fig. 10. The bandwidth of the system is

3000Hz, which is less than the recommended bandwidth of

ITU-R F.1487, 12KHz. The symbols are delivered at a rate

of 4000 bauds. As shown in Fig. 10, a data block consists

of 128 symbols with QPSK modulation. The CP length is

set as 16. The duration of the CP is 16/2000 = 8ms, which

is more than time delay 2ms. So, the multipath interference

between two consecutive data blocks can be ignored.

In order to implement online LSTM estimator, we need

to transmit a group of pilot blocks for pre-training network.

We constructed the pilot sequence according to section III.A.

A pilot block is Zadoff-chu sequence with length of 32, and

the length of both cycle prefix and postfix is the same as data

block. The shift step length ǫ is equal to 16. Two circular

orthogonal pilot sequences are repeated 200 times. The pilot

blocks are used for channel estimation at the receiver, and

the estimated channel responses are used to trains the LSTM

TABLE 1. HF SC-FDE system parameter setting.

network. Pilot blocks are followed by data blocks and the

number of data blocks is set as 10000. The data blocks will

be decoded using the channel response estimated by online

LSTM network at the receiver.

The LSTM network has one input layer, two hidden layers,

one output layer. The LSTM network is trained with the aim

of minimizing the mean square error (MSE) between the

predicted response and the labeled response. The adaptive

moment estimator (Adam) optimizer is employed for LSTM

network training. Learning rate and batch size are set as

0.1 and 1, respectively. The parameters set for LSTM are

listed in TABLE 2. The 200 pilot blocks are used as the

training set, and the subsequent 10,000 data blocks are used

as the test set. In the online learning process, we adopt the
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FIGURE 10. Frame Parameter of Online LSTM Estimator.

TABLE 2. online LSTM parameter setting.

mean-square error loss function shown in formula (20)

LossMSE (θ ) = 1

F

(
F∑

n=1

(
f (ĥ(n), θ ) − h(n)

)2
)

(20)

where F denotes the total number of samples. f () is the trans-

formation formula and θ is all parameters of LSTM network.

f (ĥ(n), θ ) is output of network and h(n) is actual channel

response at time n. The optimal network parameters θ are

calculated with regard to the online gradient descent (OGD)

[36] on the loss function. The model parameters are updated

by formula (21)

θn+1 = θn − η∂LossMSE (θn) (21)

where η is learning rate. The LSTM network is trained on an

Intel (R) Core (TM) i7-7700HQ @ 2.80GHz CPU computer

using PYTORCH. After training 200 pilot blocks, the LSTM

network converges.

2) EXPERIMENT METHODS FOR COMPARISON

To demonstrate the performance of the proposed online

LSTM estimator, LS and RLS channel estimator are also

tested in our simulation environment. BER and MSE are the

two parameters to evaluate the performance of the compared

experimental methods.

• Ideal channel estimator

Assume the channel responses are known at receiver. Then,

the transmitted 9000 data blocks are recovered directly.

The ideal channel estimator is set as a criterion for

evaluating other methods.

• LS channel estimator

LS channel estimator was tested. The channel responses

of pilot blocks are estimated by LS method, and the

channel responses of a data blocks are obtained through

spline interpolation. The number of pilot blocks corre-

sponds to the number of transmitter antennas. As an

example, we assume there are two transmitters. The

frame structure of LS method is shown in Fig. 11.

In order to distinguish channel response of different

channel, the pilot group includes two pilot blocks. And

the first pilot block is Zadoff-chu sequence and the sec-

ond pilot block is set to zero in transmitter TX1. The

rule of pilot sequence construction for transmitter TX2 is

opposite to that of the transmitter TX1. In our experi-

ment, 9000 data blocks are transmitted. The pilot blocks

were inserted every 40 data blocks. The total number of

pilot blocks exceed that of the online LSTM estimator.

FIGURE 11. Frame Structure of LS-Interpolation.

• RLS channel estimator

An improved Recursive Least Squares (RLS) algorithm

in [37] was tested in our simulation. The traditional RLS

algorithm is combinedwith the STBC structure. The per-

formance of the improvedRLS is the same as RLS,while

the complexity is close to Least Mean Squares(LMS).

The method is divided into two parts, training mode

and data mode. The training mode uses pilot blocks to

train the estimator until convergence. After convergence,

the estimator becomes a data mode, which can decode

the received data and track channel changes.

The value of the forgetting factor λ affects the per-

formance of RLS estimator. RLS estimator has better

performance for stationary channels when λ is close

to 1. However, λ is set smaller than 1 for non-stationary

channels [37]. We set the forgetting factor as 0.99 when

channels are assumed as stationary channels. Consid-

ering the non-stationary channels that are composed of

HF-MM channel, HF-MQ channel or HF-MD channel,
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we set the forgetting factor value range of [0.6, 0.99]

with the increase step length of 0.01. The corresponding

relationship between the data frames and the channel

models is shown in Fig. 19 and we set SNR = 20dB.

We computed the influence of different forgetting factor

on BER through experiments. The experimental results

are shown in the Fig. 12. When the forgetting factor

is 0.72, the RLS estimator obtains the lowest BER.

In the non-stationary channel experiments, λ is 0.72.

In addition, we also considered using an RLS estimator

with adaptive forgetting factor in non-stationary channel

experiments. The algorithm proposed in [38] is used

to implement an RLS filter with adaptive forgetting

factor. The adaptive forgetting factor is computed as

formula(22),(23) and (24)

λmin = 0.72 (22)

λ (n) = λmin + (1 − λmin) ∗ 2L(n) (23)

L(n) = −round(e2(n)) (24)

FIGURE 12. BER and forgetting factor in non-stationary channel.

where e(n) is error signal and round(e2(n)) represents

the smallest positive integer which close to the e2(n).

In non-stationary channels, when e(n) is tending to infin-

ity, λ(n) is tending to λmin. In stationary channel, when

e(n) is tending to 0, λ(n) is tending to 1 [38].

Convergence is another factor that represents RLS esti-

mator performance. Before application RLS for HF

SC-FDE channel estimation, 90 blocks of training data

were used to detect the appropriate length of training in

transceiving process of HF SC-FDE system. The rela-

tionship between training blocks and MSE performance

was computed and shown in the Fig. 13. After 6 itera-

tions, the RLS estimator converged. Therefore, we used

6 blocks to train the RLS estimator in the transceiving

process of HF SC-FDE system. Each training block con-

tains 128(FFT points) QPSK symbols. We retrained the

RLS estimator by adding 6 training blocks every 34 data

blocks as described in [37] to prevent the divergence of

the estimator.

FIGURE 13. RLS Covergence.

3) SIMULATION RESULT

• Comparison of Online LSTM and LSTM

First, we compared the performance of the online LSTM

estimator and LSTM channel estimator. We simulated a

HF MIMO SC-FDE system with two transmitters and

two receivers. There are four channels in the system.

We used medium latitudes moderate condition channel

of ITU-R F.1487 standard channel model to simulate

the four channels. Each channel has two multipath. The

results of LSTM estimator are shown in the Fig. 14.

The blue curves are the real channel response amplitude

of the four channels. The red curves are the estimated

results. It can be seen from Fig. 14 that the first 50 chan-

nel responses estimated by the LSTM estimator are

close to the real channel responses. However, the error

increases with time and the performance of LSTM esti-

mator also decrease with time.

FIGURE 14. Comparison Channel Amplitude of LSTM Estimator.

Fig. 15 shows the all channel response results of the

proposed online LSTM channel estimator. It can be seen

that the estimated response of online LSTM estimator is

close to the true channel response in more range. The

presented online LSTM estimator is better than LSTM

estimator.
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FIGURE 15. Comparison Channel Amplitude of Online LSTM Estimator.

• Comparison of Online LSTM to LS and RLS estimators

The online LSTM estimator is compared with LS and

RLS estimators in terms of BER andMSE. All the exper-

iments were established on the 2*2 HF MIMO channels

of ITU-R F.1487 standard. Fig. 16 shows the results

on medium latitudes moderate condition channels, and

Fig. 17 exhibits the results of the medium latitudes

disturbed conditions channels. The channel conditions

of the latter are worse because of the larger multipath

delay and doppler shift. It can be seen that the BER of

the online LSTM estimator is close to the BER of the

ideal channel estimator. When BER is on the 10−6 order

of magnitude, online LSTM estimator needs SNR =
16dB at receivers, while LS-Spline and RLS estimators

need SNR = 22dB and SNR = 24dB respectively.

The MSE of the online LSTM estimator is similar to

the LS-Interpolation and RLS when the SNR is less

than 2dB. The reason is that the reconstructed label of

the online estimator is interfered by noise. The MSE of

the online LSTM estimator decreases rapidly as the SNR

increases. The MSE of the online LSTM estimator is the

lowest.

FIGURE 16. BER and MSE Comparison of Different Estimator for HF-MM.

The time varying channel tracking by different channel

estimators was tested. The 2*2 channels are also sim-

ulated referring to ITU-R F.1487 standard. The trans-

mitted symbols are modulated by QPSK. The SNR at

FIGURE 17. BER and MSE Comparison of Different Estimator for HF-MD.

receivers are set as 10dB. The amplitude of channel

responses from the first 1000 points are drawn in Fig. 18,

where ha − b represent bth multipath of ath channel.

The MSE values are shown in table 4.3. According to

the TABLE 3, online LSTM estimator is better than LS

estimator and RLS estimator. The curve of the online

LSTM estimator in Fig. 18 is closer to that of the real

channel responses. According to the MSE performance,

online LSTM estimator is better than LS estimator and

RLS estimator.

TABLE 3. MSE comparison.

• Evaluation generalization capability

In order to show the generalization capability of online

LSTM estimator, we implemented experiments on

non-stationary channels. As shown in Fig. 19, we gen-

erated six channels for six consecutive data frames as

shown in Fig. 19. Each of channels was selected ran-

domly from the HF-MQ channel, HF-MM channel or

HF-MD channel. Each time varying channel was sim-

ulated with one alternative set of channel parameters

that involve different multipath delay and Doppler shift.
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FIGURE 18. Channel Tracking of Different Estimators on QPSK data.

Each channel corresponds to a frame of data. Under

the condition, we compared the performance of online

LSTM with LSTM, LS and RLS estimators.

Firstly, we compared the performance of LSTM and

online LSTM estimator at the same SNR. Each data

frame contains only 200 data blocks. The result of

LSTM estimator is shown in the Fig. 20. The LSTM

estimator can only track channel changes over part of

the time. Due to accumulated errors, LSTM prediction

FIGURE 19. Data Frame for Non-Stationary Channel.

FIGURE 20. Channel Amplitude of LSTM Estimator.

results will gradually deviate from the actual channel.

Lack of online learning makes LSTM difficult to deal

with the changes of channel parameters in time. The

BER of the LSTM estimator remained 0 at the first

33 data blocks, but then BER performance deterio-

rated, and it reached BER = 0.37 when the transmis-

sion of 200 blocks was finished. LSTM estimator can

not keep good tracking performance in non-stationary

channels.

Fig. 21 shows the channel track result of online LSTM

estimator. Even under non-stationary channel condi-

tions, online LSTM estimator can well track the channel

change. The BER kept 0 during the transmission of the

200 data blocks.

FIGURE 21. Channel Amplitude of online LSTM Estimator.

Then we compared the BER performance of online

LSTM, LS and RLS estimator. Fig. 22 shows that
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FIGURE 22. BER Comparison of Different Estimators for Non-stationary
Channels.

the online LSTM estimator has best performance on

non-stationary channels. The BER curve of LS estimator

appears flat since the SNR is 16dB, and the improvement

is limited as the SNR increases. Both RLS estimator and

RLS estimator with adaptive forgetting factor have been

tested. Their BER curves are similar when the SNR is

no more than 22dB. When the SNR is more than 22,

the BER curve of RLS estimator remains flat, while the

BER of adaptive RLS estimator reach 0. When BER is

on the 10−6 order of magnitude, online LSTM estimator

needs SNR = 18dB, while RLS estimators with adaptive

forgetting factor need SNR = 24dB. The experiment

results on changed channel models also demonstrate

that the online LSTM estimator has generalization

capability.

• Transmission rate comparison

We compared the efficient transmission rate of different

channel estimator. The transmission rate can be calcu-

lated as

v_tr = Baud ∗ order ∗ Nd

Nd + Np
(25)

where v_tr , Badu, Nd and Np represent transmis-

sion rate, baud rate, number of data and number of

pilot, respectively. According the formula(25) and frame

structure, we can calculate the transmission rate as

shown in TABLE 4. All channel estimator have the

same Baud rate, but online LSTM estimator adopts the

circular orthogonal sequences as pilot. It does not need

extra pilot blocks to distinguish channel response of

different path compared with LS estimator. Although

pilot blocks are inserted into frame header by the online

LSTM estimator, it does not need to insert pilot blocks

repeatedly such as LS estimator, because this estimator

can predict next time channel response. On the whole,

online LSTM estimator can improve the BER and MSE

performance ofHFMIMOSC-FDE system.Meanwhile,

it can improve the transmission efficiency when trans-

mitting mass data.

TABLE 4. transmission rate comparison.

• Complexity Comparison

Complexity is one of the important indicators to mea-

sure the performance of channel estimators. We selected

time and space consumption to compare the complexity

among online LSTM, LS andRLS estimators. For the LS

estimator, we needK times of complex division to obtain

the channel frequency domain responses of the pilot

position. Then the channel frequency domain responses

of the NB data blocks are obtained by interpolation.

So the time and space complexity of the LS estimator

depends on the product of the number of FFT points

K and the number of transmitted data blocks NB. For

the RLS estimator, diagonal matrix is introduced into

recursion formula, and complex matrix inversion is not

needed due to the combination of RLS and STBC coding

properties [37]. The time consumption of RLS estimator

mainly depends on the product of the number of FFT

points K and the number of transmitted data blocks NB.

Unlike LS, RLS estimator also needs to calculate weight

coefficient vectors, error vectors, gain vectors, etc. So its

time complexity is higher than LS estimator. But for

space complexity, the RLS estimator depends only on

the number of FFT points K because RLS is a recursive

algorithm. The results of the last calculation instead of

all the FFT results such as LS estimator should be saved

to deduce the current results. So, when the number of

data blocks NB is large, the advantage of the RLS esti-

mator to the LS estimator on space complexity will be

displayed. For the online LSTM estimator, the circular

orthogonal sequence is required to estimate the channel

response at the pilot position firstly. Because this is the

time-domain channel response, the required time and

space both depend on the channel response length L.

In general, the channel response length is less than the

number of FFT points K . Then the estimated channel

responses will be used to train the LSTM network.

The time and space complexity of training part depends

on the LSTM network size, such as input and output

dimensions, the number of hidden layer neurons and

time step. Finally, during the online prediction stage,

the time complexity of online LSTM estimator depends

on network size and the number of data blocks NB.

Because online LSTM is also a recursive algorithm in

nature, no additional storage space is consumed in this

stage. In summary, the time complexity of online LSTM

estimator depends on network size, channel response

length L and number of data blocks NB, while the space

complexity mainly depends on network size and channel

response length L. The LSTM estimator is similar to
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the online LSTM estimator, but the main difference is

the traditional LSTM does not have the online learning

process at prediction stage. So the time complexity of

LSTM estimator is less than the online LSTM. However,

the time cost of online LSTM estimator is a worthwhile.

Because it improved BER performance and channel

tracking performance dramatically.

In addition, in order to intuitively compare the com-

plexity, we counted the time and space consumed by

the three estimators in the experiment just like in [39].

We use three channel estimators on the same computer to

estimate the channel response of a frame of data. Except

for the estimator, the other conditions remain the same.

The experiment results are shown in Table 5. LS estima-

tor needs 12.465000s and 74.6537M bytes for a frame

data. RLS estimator needs 47.104000s and 0.7025M

bytes for a frame data. For online LSTM estimator,

the time consumption of the three stages was counted

respectively. The time domain estimated consumption

time of 200 pilot blocks was 0.031s, the LSTM network

was trained to consume 1.73s, and the online estimated

consumption of 10000 data blocks was 37.85s. Online

LSTM estimator needs 40.6024s and 0.3544M bytes for

a frame data. In terms of time consumption, LS estimator

consumes the least time. RLS and online LSTM estima-

tor consume the similar time, but they are all 4 times as

much as LS estimator. In terms of space consumption,

online LSTM estimator consumes the least space. How-

ever, LS estimator consumes the most space because it

needs to store the channel frequency domain response of

all data.

TABLE 5. Complexity comparison.

B. EXPERIMENTS ON CORRELATED MIMO CHANNELS

We applied the established 2*2 HF MIMO SC-FDE sys-

tem on the correlated channels. Except the channel model,

the other parameters are the same as that in TABLE 1. The

correlated channels are built with regard to [10]. We used

linear antenna arrays to realize theMIMOas shown in Fig. 23.

The interval between adjacent antennas was set as 3 meters,

5 meters and 7 meters, respectively. The corresponding cor-

relation coefficients were set as 0.82, 0.54, and 0.21 based on

formula (11), (12) and(13).

The BER of the online LSTM estimator on the correlated

channels is shown on Fig. 24. The lower correlation, the lower

BER.We also compared the online estimator with othermeth-

ods on the correlated channels. The correlation coefficient

was set as 0.54, and the data were modulated by QPSK.

Fig. 25 shows that when the SNR is lower than 10dB, the BER

FIGURE 23. Linear Antenna Array of HF MIMO System.

FIGURE 24. BER Comparison of Different correlation for online LSTM
Estimator.

FIGURE 25. BER Comparison of Different Estimator for Correlated MIMO
Channel.

of the online LSTM does not exceed that of the LS and RLS

estimators. When the SNR is higher than 10, the BER of the

online LSTM outperforms that of the LS and RLS estimators,

and it is close to that of the real channel response.

The simulation results demonstrate that our method can be

used in physical HF systems. To establish a HF MIMO-SC-

FDE system, some function modules, such as IQ imbalance

and synchronization, should be added besides the modules

shown in Fig. 1. We will build an experimental system in the

near future.
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Although our research focuses on the HF communication,

the presented method can be used in other bands. To adapt

to other bands, the only change is made on the parameters

of Table 1 and Table 2. If our method is applied to the

lower frequency, the online LSTM estimator may achieve

better performance due to the longer wavelength and more

stationary channel.

V. CONCLUSIONS

Long distance HF communication suffers from time varying

channel. MIMO and SC-FDE have been introduced to HF

communication to combat the multipath, avoid wave distor-

tion at transmitters and improve the data rate.We designed the

architecture of HF MIMO SC-FDE and the signal flow chart.

Channel estimation is essential in the HF MIMO SC-FDE

system. Restoring the transmitted data at the receivers

depends on the accuracy of channel estimation.

We present an online LSTM channel estimator for HF

MIMO SC-FDE system. Different from the training and

prediction loop of the LSTM estimator that is built on the

sliding window of channel response series, the online LSTM

channel estimator uses the received data symbols and the

restored transmitting data symbols to re-compute the chan-

nel responses in terms of the communication process of HF

MIMO SC-FDE. The corrected channel responses are added

to the channel response series for next LSTM network train-

ing and next channel response prediction.

The online LSTM network is firstly trained by the pilots

and their channel responses. The channel responses of pilots

are estimated by the circular orthogonal sequences based

channel estimation. The pilots are constructed referring to

the Zadoff-chu sequence. The configured pilots between dif-

ferent transmitters are orthogonal, making the pilots from

different transmitters can be recognized. After training on

the pilot blocks, the online LSTM estimator is applied to the

channel estimation of data blocks.

We established simulation system. The introduced online

LSTM estimator was compared with LS, RLS and ideal

channel estimation methods. The results of simulation show

that BER and MSE of the online LSTM estimator are lower

than other methods. The online LSTM estimator outperforms

LS and RLS methods. It has potentiality in long distance HF

MIMO communication.
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