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Abstract

Matching is a classic problem with a rich history and a significant

impact, both on the theory of algorithms and in practice. Recently there

has been a surge of interest in the online version of matching and its gen-

eralizations, due to the important new application domain of Internet

advertising. The theory of online matching and allocation has played a

critical role in designing algorithms for ad allocation. This monograph

surveys the key problems, models and algorithms from online match-

ings, as well as their implication in the practice of ad allocation. The

goal is to provide a classification of the problems in this area, an intro-

duction into the techniques used, a glimpse into the practical impact,

and to provide direction in terms of open questions. Matching continues

to find core applications in diverse domains, and the advent of massive

online and streaming data emphasizes the future applicability of the

algorithms and techniques surveyed here.
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Introduction

A matching in a graph G(V,E) is a set of edges M ⊆ E such that for

every v ∈ V , there is at most one edge in M incident on v. A maximum

matching is a matching with the largest size. The problem of finding

a maximum matching in a graph is a classic one, rich in history and

central to algorithms and complexity. The elegance and complexity

of the theory of matching is equally complemented by a rich set of

important applications; indeed this problem arises whenever we need

to connect any pairs of entities, for example, applicants to jobs, spouses

to each other, goods to buyers, or organ donors to recipients.

In this monograph we will focus on the online version of the

problem, in bipartite graphs. There has been considerable interest

recently in online bipartite matching and its generalizations, driven

by the important new applications of Ad Allocation in Internet Adver-

tising, corresponding to matching ad impressions to ad slots. We will

describe this motivating application first, before giving a brief overview

of the history and foundations of matching.
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1.1 Ad Allocation

Internet advertising constitutes perhaps the largest matching problem

in the world, both in terms of dollars and number of items. Ads are

sold either by auction or through contracts, and the resulting supply

and demand constraints lead directly to the question of finding an opti-

mal matching between the ad slots and the advertisers. The problem is

inherently online, since we have to show an ad as soon as the request

for an ad slot arrives, and we do not have complete information about

the arriving ad slots in advance. Furthermore, offline optimization tech-

niques are not even feasible due to the size of the problems, especially

given the fact that dealing effectively with the long tail of ad requests

is of critical business importance.

The problem of online matching and allocation has generated a

lot of interest in the algorithms community, with the introduction of

a large number of new problems, models and algorithmic techniques.

This is not only due to the importance of the motivation but also due

to the new and elegant questions and techniques that emerge. The first

objective of this monograph is to provide a systematic survey of this

literature.

This theoretical work has had an influential effect on the algorith-

mic framework used by virtually all of the companies which are in the

Internet advertising space. The major contribution has been the intro-

duction of the technique of bid-scaling. In this technique we scale the

relevant parameter, for example, the bid, by a scaling function, and

then choose that edge to match which has the highest scaled bid. This

is to be compared to the greedy strategy which simply chooses the edge

with the highest bid. The design of optimal algorithms in the online

model has also led to the formulation of bid-scaling heuristics. Section 9

provides a brief survey of applications of these algorithms and heuris-

tics, including the domain specific details. Let us quickly note that in

the practical problem, there are typically three players in the market:

the users of the service, the platform (for example, the search engine),

and the advertisers. Thus there are three objective functions to con-

sider: the quality of the ads shown, the revenue to the platform and the

return on investment to the advertisers. We will consider these in more
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detail later, but for most of the survey we will focus on maximizing

the efficiency (the total size or weight) of the matching, which can be a

good proxy for all relevant objective functions. A second point to note

is that different advertising platforms have their own specific settings,

for example, second-price auctions vs first-price, single slot vs position

auctions, contracts vs auctions, etc. We will abstract these details out

for the most part, and mention how they can be modeled, in Section 9.

1.2 Background on Matching: Applications, History and

Offline Algorithms

The problem of matching is relevant to a wide variety of important

application domains, besides our motivating application of ad alloca-

tion. In Economics, matching is relevant whenever there is a two-sided

market (see, for example, [86]). One important formulation is the prob-

lem of finding a stable matching or a Pareto efficient matching in a

graph [48]. This has found several important applications in the real

world: it is used in matching of residents to hospitals (starting with

[85]), students to high schools [1], and even kidney donors to recipi-

ents (see Kidney Exchanges [84]); Roth and Shapley were awarded the

2012 Nobel Prize in Economics for their influential and impactful work

on this topic. Matching, with its generalizations, pervades Computer

Science as a core algorithmic problem. For example, in Networking, an

important problem is that of finding a good switch scheduling algorithm

in input queued (IQ) switch architectures (see [76], among others). This

reduces to that of finding a maximum matching to match input ports

of a switch to its output ports at every time step. As another exam-

ple, matching is core to resource allocation problems of various types

from the scheduling and Operations Research literature, for example,

allocating jobs to machines in cloud computing. Recently, the online

matching algorithms from this survey have found applications [54] in

crowdsourcing markets.

Besides its high applicability, matching is a central problem in the

development of the field of algorithms, and indeed of Theoretical CS.

We briefly overview this history next; the rest of this section can be

skipped by readers with a strong background in classic matching theory.
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The basic algorithms rely on the definition of augmenting paths:

given a matching M in the graph, an augmenting path is an odd-

length (simple) path with its edges alternating between being in M

and not, and with the two end edges not in M . Berge’s Theorem [17]

states that:

Theorem 1.1 (Berge). A matching M is maximum iff it does not

admit an augmenting path.

If a matching M admits an augmenting path P , then M can be aug-

mented by flipping the membership of the edges of P in and not in M .

This transformsM into a matchingM ′ whose size is one more than that

of M . An algorithm can proceed in this manner, by starting with any

matching, and iteratively finding an augmenting path, and augmenting

the matching.

This approach relies on being able to find augmenting paths effi-

ciently. This is possible in bipartite graphs: one can find augmenting

paths in bipartite graphs in time O(|E|), by constructing breadth-

first search trees (with alternating levels) from unmatched vertices.

On bipartite graphs, the problem also has a close relationship with the

maximum flow problem; one can reduce unweighted bipartite match-

ing to a max-flow problem by adding a source and a sink to the graph

appropriately. The fastest algorithms for this problem [39, 55] run in

O(
√

|V ||E|) time.

The question of finding a maximum matching in general (non-

bipartite) graphs is a lot more difficult. Edmonds [42] presented the

Blossom algorithm to compute a maximum matching in a general graph

in polynomial time. The difficulty in general graphs comes precisely

due to the presence of odd cycles. The algorithm proceeds by identi-

fying structures, called blossoms, with respect to the current match-

ing. A blossom consists of an odd cycle of, say, 2k + 1 edges, of which

exactly k edges belong to the matching, such that there further exists an

even length alternating path, called the stem, starting with a matched

edge at a vertex of the cycle. The algorithm starts with any matching

and searches for an augmenting path, which can immediately augment

the matching. If it finds a blossom instead, it contracts the blossom into
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a single vertex and proceeds recursively. If it finds an augmenting path

with vertices corresponding to contracted blossoms, then it expands

the blossoms (recursively) finding a real augmenting path in the orig-

inal graph. The running time of this algorithm, with appropriate data

structures, is O(|V |2|E|). The fastest algorithm for matching in general

graphs, due to Micali and Vazirani [91], runs in O(
√

|V ||E|) time.

Let us also quickly note a property of maximal matchings, defined

as those which cannot be improved upon by only adding more edges.

Theorem 1.2. If M is a maximal matching, and M∗ a maximum

matching, then |M | ≥ 1
2 |M∗|.

This is fairly easy to see: since M is maximal, none of the edges in M∗

can be added to it while keeping it a matching. Hence, every edge in

M∗ uniquely shares an end-point with an edge in M . Thus the number

of vertices in M is at least the number of edges in M∗, giving the result.

We will generalize this theorem later, to give a bound for greedy online

algorithms for all the generalizations of matching that we will study.

In the problem of edge-weighted matching, the edges of G have

weights, and the goal is to find a matching with the highest sum of

weights of the edges in the matching (in the bipartite case, this is known

as the Assignment Problem). The algorithm for the edge-weighted

bipartite version is more complex than the unweighted problem. It

works by updating the matching solution simultaneously with a set of

weights on the vertices. This is known as the Hungarian Algorithm [68]

(due to Kuhn, based on the work of König and Egerváry), and it

is possibly the first example of a primal–dual update algorithm for

Linear Programming (here the LP is to maximize the total weight

of the matching over the polytope of all fractional matchings, and

the weights on the vertices that the algorithm uses correspond to the

dual variables of the LP). One observation to make is that all these

algorithms are highly offline, that is, not easily adapted to the online

setting, a point we will return to in the next section.

As is well-known, there was no fixed formulation of an efficient

algorithm at the time that the Blossom algorithm was invented. The

Blossom algorithm directly led to the formalization of polynomial time
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as the correct definition. The impact of this definition is obviously

immense to the fields of algorithms, complexity and Computer Science

in general, essentially giving us the definition of the complexity class P .

Furthermore, the definition of the class #P is also closely related to

matching theory, as Valiant [90] proved that finding the number of per-

fect matchings in a graph (equivalently, the Permanent of a matrix)

is NP -hard, and in fact complete for #P . Matching is also a canon-

ical problem for the study of randomized parallel algorithms and the

class RNC; Karp et al. [62], and Mulmuley et al. [82] gave RNC algo-

rithms for finding a maximum matching. The history and algorithms

for offline matching have been excellently documented, for example, in

the book [71] by Lovász and Plummer.

We will also study the online versions of several generalizations

of the basic bipartite matching problem. Most of these are special

cases of the Linear Programming problem, which has a vast literature

of its own (see, for example, [30]). The classification of these prob-

lems and the LP formulations for the offline versions are described in

Section 2.

1.3 Online Input

In this monograph we will focus on the online version of the bipartite

matching problem and its generalizations. The area of online algorithms

and competitive analysis has been very useful in abstracting and study-

ing problems in which the input is not known in advance but is revealed

incrementally, even as the algorithm makes its own decisions (see the

book by Borodin and El-Yaniv [19]). This is precisely the situation in

our motivating applications in which ad slots arrive online, and have to

be allocated ads upon arrival, with zero, partial, or stochastic knowl-

edge of the ad slots yet to arrive. We will model our applications via

different problems and online input models. In the simplest version

of the problem (online bipartite matching), there is a bipartite graph

G(U,V,E), in which U is known to the algorithm, vertices in V are

unknown, but arrive one at a time, revealing the edges incident on

them as they arrive. The algorithm has to match (or forgo) a vertex

as soon as it arrives. Furthermore, all matches made are irrevocable;
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this is to capture the fact that the arriving vertex v corresponds to an

ad-slot on a web page viewed by a user.

Note that all the offline algorithms described in Section 1.2 are

“highly offline”. They typically involve initialization with some arbi-

trary matching and subsequent iterative improvements, via augmenting

paths or guidance from dual variables. Thus they are not applicable to

the online problem where the matches have to be made incrementally

as vertices arrive, and are irrevocable. As we will see, the online algo-

rithms work very differently, and often can provide only an approximate

solution, that is, with a competitive ratio less than 1.

While our motivation for the online problem comes from ad allo-

cation, large matching questions are becoming more prevalent. Often,

the problem is online in nature, for example, the matching of arriving

tasks to workers in crowdsourcing applications. Even in applications

which are not strictly online, we often face problems with massive data,

for example, in a streaming setting. Again, the offline algorithms are

not applicable, and we need fast, simple, possibly approximate solu-

tions, for example, in a streaming setting, rather than complex optimal

algorithms. We expect that the algorithms surveyed here, or further

variants, will be found to be useful in future applications.

Section 2 provides a classification of the different problems and

models. Sections 3–8 treats the different problems in detail, giving the

different algorithmic techniques. Section 9 describes the application set-

ting and the algorithms and heuristics based on the theoretical results.

We will provide open questions throughout the survey, and conclude in

Section 10 with a list of additional open problems and future directions.
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Classification: Problems and Models

This section provides an overview of the various problems and input

models that we will study in this survey. The basic online matching

problem is that of Online Bipartite Matching, which was first studied

by Karp et al. [63]. In this problem, there is a bipartite graph G(U,V,E)

where one side U is known to us in advance and the other V arrives

online, one vertex at a time. When a vertex v ∈ V arrives, its neigh-

bors in U are revealed. The arriving vertex needs to be matched to an

available neighbor (if any). A match once made cannot be revoked. The

objective is to maximize the size of the matching we obtain at the end

of the arrival sequence. The difficulty in this problem arises from its

online nature: the algorithm has to make a choice for the arriving ver-

tex v without knowing the rest of the input graph. Choosing to match

v to u instead of u′ may result in a regret later on, if u turns out to be

the only possible choice for some later vertex v′.

2.1 The Landscape of Problems

In recent years there have been many generalizations of this basic prob-

lem that have been studied. To help get a handle on this increasing

273
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literature, we first provide a classification of the five main problems in

this area. Note that each of these problems has been studied in differ-

ent input models of vertex arrival; we will introduce these in the next

section. There have been a few other problems beyond these main ones;

we will mention them when relevant, and also give a short summary of

these related problems in Section 10.

The first problem is online bipartite matching, as described above.

This is the first problem to be studied, introduced by Karp et al. [63]

in 1990.

(1) Online bipartite matching: There is a graph G(U,V,E).

U is known in advance and V arrives online. The goal is to

maximize the size of the matching.

The simplest generalization of this problem is when the vertices in

U have weights. This was introduced by Aggarwal et al. [5] in 2011,

chronologically the last problem among these to be defined.

(2) Online vertex-weighted bipartite matching: A general-

ization of (1), in which each vertex u ∈ U has a non-negative

weight wu, and the goal is to maximize the sum of weight of

vertices in U which are matched.

Clearly, setting wu = 1, ∀u ∈ U gives us the unweighted version as a

special case. Next, the motivating application of ad allocation was first

captured by Mehta et al. [78] in the following problem, called Adwords.

This was the first generalization of online bipartite matching introduced

in the literature, 15 years after [63].

(3) Adwords: Each vertex u ∈ U has a budget Bu, and edges

(u,v) ∈ E have bids biduv. When we match an arriving vertex

v to a neighbor u, then u depletes biduv amount of its budget.

When a vertex depletes its entire budget, then it becomes

unavailable. The goal is to maximize the total budget spent.

Let us identify an important special case:

• The small bids assumption: For each u,v, biduv
is very small compared to Bu.
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We will not quantify the smallness of the bids in the assumption just

yet, but formalize it later. Online bipartite matching is a special case

of Adwords in which all budgets are 1, and all edges have bids equal

to 1. In fact, online vertex-weighted bipartite matching is a special

case of Adwords in which Bu = wu for every u, and biduv = wu for

each (u,v) ∈ E. However, online vertex-weighted matching and online

bipartite matching are not special cases of Adwords once we make the

small-bids assumption.

Next, we have the edge-weighted version of the matching problem,

which is motivated by the display ads application.

(4) Display Ads: Each vertex u ∈ U has an integral capacity cu,

which is an upper bound on how many vertices v ∈ V can be

matched to u. Each edges (u,v) ∈ E has a weight wuv. The

goal is to maximize the total weight of edges matched. Again,

we can identify an important special case:

• The large capacity assumption: For each u, cu is

a large number.

Again, we will not quantify the largeness of the capacities in the

assumption here, but leave it for later. Also, in some versions, this prob-

lem needs the assumption that edges already matched can be removed

in the favor of better edges, known as free-disposal. This problem and

the notion of free-disposal was introduced by Feldman et al. [46]. Note

that online bipartite matching is the special case of Display Ads in

which all the cu are 1 and all the edges have weight 1. Online vertex-

weighted bipartite matching is a special case of Display Ads, with

cu = 1,∀ u and wuv = wu,∀ (u,v) ∈ E. Adwords and Display Ads are

unrelated problems, since Adwords has a constraint on the budget,

while Display Ads has a constraint on the capacity.

A generalization of all the problems above is the following:

(5) Online Submodular Welfare Maximization: Vertex u ∈
U has a non-negative monotone submodular valuation func-

tion1 fu: 2
V → R+. The goal is to maximize the sum of values

1A set function is called non-negative if f(S) ≥ 0 ∀S ⊆ V . It is called monotone
if f(S) ≤ f(T ), ∀S ⊆ T ⊆ V . It is called submodular if for any two sets X and
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of the allocation. More precisely, the online allocation pro-

duces a partition of V , where Vu is the set of vertices allocated

to u. The goal is to maximize
∑

u fu(Vu).

To see how this problem generalizes all the previous problems, we

restate all of them as online allocation problems, with different valua-

tion functions, as in (5) above: vertices in U are agents, and vertices in

V are items. Each agent u ∈ U has a value function fu: 2
V → R. Items

arrive online; each item has to be allocated to one agent as soon as it

arrives. The goal is to provide an allocation of V to U , that is, a parti-

tion of V , {Vu | u ∈ U} which maximizes the total value
∑

u∈U fu(Vu).

Table 2.1 gives the valuation functions fu(Vu) corresponding to dif-

ferent problems. The valuation function for Display Ads assumes the

free-disposal model mentioned earlier; we will define this in Section 7.

It can be verified that all the functions in the table are submodular,

making this problem a common generalization.

Note that some problem are named without the prefix “Online”;

this is purely due to historical reasons, indeed all problems are in the

online model, and we may drop the prefix if the context is clear.

One important problem which generalizes (1)–(4) and is a special

case of (5) is the following:

Generalized assignment problem (GAP): This problem is a

generalization of all the problems above except submodular welfare

Table 2.1. Utility functions corresponding to the different problems.

Problem Valuation function

Bipartite matching min{1, |Vu|}
Vertex-weighted bipartite wumin{1, |Vu|}
matching

Adwords min{Bu,
∑

v∈Vu

biduv}
Display Ads maxS⊆Vu, |S|≤cu

∑
v∈Swuv

with free-disposal

Submodular welfare Any monotone non-negative
submodular function

Y : f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ). This is also equivalent to the following: ∀ S ⊆
T ⊆ V, x /∈ T : f(S + x) − f(S) ≥ f(T + x) − f(T ).
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Fig. 2.1 Landscape of problems.

maximization. In this problem, vertices u ∈ U have budgets Bu and

edges have costs as well as weights. The goal is to maximize the total

weight of the allocated edges subject to the constraint that the sum of

costs of the edges allocated to every u ∈ U is at most its budget.

Adwords is the special case of GAP in which the cost of an edge is

equal to its weight. Display Ads is the special case in which the cost of

every edge is 1 and the budget is the capacity. We will not study the

GAP problem in as much detail as the others, but highlight the cases

in which algorithms for the special cases generalize to GAP.

The relationships between these problems are shown in Figure 2.1.

2.2 Input Models and Competitive Ratio

The online allocation problems described above have been studied in

different online input models. These differ from each other in how much

information the algorithm has about the arriving vertices in V . We call

the set of vertices in V , ordered by arrival time, the query sequence
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(it is sometimes also called the request sequence). Let us start with the

simplest model:

(1) Adversarial order: In this model we assume no knowledge

of the query sequence, that is, no knowledge of V , E, and

the arrival order of V . The algorithm begins with only the

knowledge of U , and, at any point in time, it knows only

the vertices in V which have already arrived, and the edges

incident on them.

For the adversarial order, we may imagine an adversary, who knows

the code of the algorithm, and can generate the worst possible graph

and input order to make the algorithm perform as badly as possible.

In the case of randomized algorithms, we will deal with a non-adaptive

adversary, that is, the adversary will not have access to the outcomes of

the random choices made by the algorithm (equivalently, of the random

coins of the algorithm), but will have to fix the input graph in advance.

The adversarial order is a good model if the traffic (that is, the

query sequence) is completely unpredictable. It also has the advantage

that the algorithm is robust to any change in traffic from day to day,

precisely because it does not use any estimates. However, in real prob-

lems, one may have some reasonably good estimate of the traffic. To

capture such scenarios, we introduce stochastic input models, which

assume less adversarial input. The objective in defining these models

is to model reality better, while at the same time be able to provide

quantifiable guarantees on the performance. We list these input models

below, in sequence of the progressively stronger assumptions they make

on the information available to the algorithm.

(2) Random order: Here we assume that although the input

G(U,V,E) is adversarial, the query sequence V arrives in

a random order. Thus, the adversary can choose the worst

graph (after seeing the code of the algorithm), but not the

arrival order of V ; vertices of V arrive in a uniform random

permutation.

(3) Unknown IID: In this model we start with the abstraction

of a vertex type, which encodes the set of neighbors in U ,
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and bids or weights on the incident edges (as relevant to the

problem). There is a collection T of types of vertices, and

a distribution D on T . The query sequence is picked in the

following manner: at each time a type t ∈ T is drawn from

D, IID, and a vertex v ∈ V of that type t is instantiated,

and arrives at that time. D is not known to the algorithm

before-hand.

(4) Known IID: This is identical to the Unknown IID model,

except that D is provided to the algorithm in advance.

Note that the input models are ordered in order of how much infor-

mation about the arriving query sequence is available to the algorithm

in advance. We formalize this next, by describing how we quantify the

performance of an online algorithm on each of these models.

2.2.1 Competitive Ratio

We will use the standard notion of competitive ratio to measure the

performance of our online algorithms. For the adversarial model, the

competitive ratio is defined by the ratio of the value of the objective

function attained by the algorithm ALG, to OPT, defined as the max-

imum objective value attained offline, that is, given the entire graph

G(U,V,E), and without any computational constraints. The competi-

tive ratio is at least α if, for every graph G(U,V,E) and every input

order of V , ALG(G)
OPT(G) ≥ α. Formally, (using C.R. for the competitive

ratio):

C.R. = min
G(U,V,E), order of V

ALG(G)

OPT(G)

If the algorithm is randomized, then we take the expected value of the

objective function in the numerator.

C.R. = min
G(U,V,E), order of V

E[ALG(G)]

OPT(G)

where the expectation is over the random coin flips of the algo-

rithm. Note that the standard definition of competitive ratio allows

for the additional loss of an additive constant, so an algorithm is called
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c-competitive if ALG(G) ≥ c OPT(G) − b, for some constant b. This

makes a difference only when OPT itself is a constant, and we do not

include it in our definitions.

For the stochastic models the competitive ratio is computed in

expectation over the randomness in the input. For the Random Order

model, this is a simple change in the definition:

C.R. = min
G(U,V,E)

E[ALG(G)]

OPT(G)

where the expectation of ALG is over the random arrival order of V . If

the algorithm is itself randomized, then the expectation is also taken

over its random coin flips. Note that the denominator does not have

an expectation, since, given G, the value of OPT is independent of the

arrival order.

For the known and unknown IID models, G is itself random (since

V is constructed online by drawing from the distribution on types), so

OPT is itself a random quantity. Then the definition becomes

C.R. = min
D

E [ALG(G)]

E [OPT(G)]

where the minimum is over the input instances, which in this case is

the distribution on types. The expectations are over the instantiations

of G(U,V,E) as V and E are drawn IID from D (and a further expec-

tation in the numerator over the randomness of the algorithm, if it is

randomized). Note how the value of OPT itself depends on the random

process which instantiates the graph.

In the IID models, we may define the competitive ratio a little

differently:

C.R. = min
D

E

[
ALG(G)

OPT(G)

]

which is the expectation over the random graphs of the ratio achieved

by the algorithm and the optimum for that graph. A different, stronger

definition is to achieve a good ratio on almost every instantiation: the

C.R. is at least α if for all distributions D, ALG(G)
OPT(G) ≥ α, with high

probability over the instantiations of G(U,V,E), as drawn from D. We
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will mostly restrict to the definition which uses the ratio of the expected

values, and we will explicitly mention if a stronger definition is used.

We note that as we go down this sequence of models, the informa-

tion available to the algorithm increases, and the task of the algorithm

designer becomes simpler: consider an algorithm which can run in any

input model. If we denote the competitive ratios it achieves in the four

models as C.R.(Adv), etc., then we have:

Theorem 2.1.

C.R.(Adv) ≤ C.R.(RO) ≤ C.R.(K-IID) ≤ C.R.(UnK-IID)

That is, an algorithm that achieves a ratio of α in a stronger model,

achieves a ratio of at least α in a weaker model. The first inequality is

obvious, since the algorithm achieves at least C.R.(Adv) for any input

order of a given graph, hence it does so even in expectation over a

random order. The last inequality is obvious since the algorithm can

ignore the knowledge it has about the distribution in the Known IID

model. The only non-trivial step in the proof of this is the one from the

Random Order to the Unknown IID model: for this, first note that the

events in the probability space of the latter represent the instantiation

of the graph and the arrival order. Due to the IID nature of the process,

each arrival order for a given instantiation G has the same probability.

We can therefore partition this space into regions, each with |V |! events,
where each region corresponds to events with the same graph G and

all possible arrival orders, with conditional distribution over the region

being uniform. An algorithm which gives a ratio of α in the Random

Order model, when run on an input which comes from the Unknown

IID model, will achieve a ratio of α conditional on each region, and

therefore globally.

Table 2.2 gives a preview summary of the main results we will

describe in this survey. We note that despite their apparent differences

there is no known separation result differentiating the Unknown IID

model from the Random Order model. Thus, they share a single col-

umn in Table 2.2. There are a few other input models in the literature,

but we will not study them in detail here. We mention two such models
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Table 2.2. Summary of results for online matching problems in different arrival models.
Rows correspond to problems and columns to arrival models. The entries are the best known
ratios, and the corresponding upper bounds (in parentheses). Question marks correspond
to open questions where no bound is known besides that which follows from some other
input model or problem. Citations are provided in the text. Recall that 1 − 1

e
≃ 0.63.

Adversarial Random Order/
Order unknown IID Known IID

Bipartite matching 1 −

1

e
0.696 0.702

(optimal) (?) (0.823)

Vertex-weighted bipartite 1 −

1

e
1 −

1

e
1 −

1

e

matching (optimal) (?) (?)

Adwords 1 −

1

e
1 − ǫ 1 − ǫ

(small bids) (optimal) (optimal) (optimal)

Adwords 1

2
1 −

1

e
1 −

1

e

(general bids) (?) (?) (?)

Display Ads 1 −

1

e
1 −

1

e
(IID) 1 −

1

e

with free-disposal (?) (?) (?)

(large capacities)

Display Ads 1

2
1 −

1

e
(IID) 1 −

1

e

with free-disposal (?) (?) (?)

(general capacities)

Display Ads 0 1

e
?

no free-disposal (0) (optimal) (?)

(general capacities)

Submodular welfare 1

2
1 −

1

e
(IID) 1 −

1

e

(optimal) (?) (?)

(the non-identical distributions model, and the distribution-of-metrics

model) in Sections 9 and 10.

2.3 Offline Versions

We briefly mention the complexity of the offline versions of the prob-

lems we study here; recall that, in the offline versions, the entire
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Fig. 2.2 IPs for the offline versions.

graph is known in advance. The offline versions of the bipartite match-

ing, vertex-weighted bipartite matching, Adwords and Display Ads

problems can be written as integer programs. Figure 2.2 shows the

IPs for the different problems.

Besides the Adwords problem, the other three problems can be

solved exactly in polynomial time, in fact, via combinatorial algorithms

(see Section 1.2). The Adwords problem with the small bids assump-

tion can be solved with a (1 − 4ǫ) approximation if the bid to budget

ratio is at most ǫ [23].

The offline Adwords problem without the small bids assumption

(also known as the Maximum Budgeted Allocation problem) is NP-

hard to approximate to a factor better than 15/16 [23], and the best

known offline algorithm is 3/4 [23, 89]. A sequence of previous results

for this problem gave increasingly improved approximation factors: the

first known was by Garg et al. [49], which had a factor of 2
1+

√
5
≃ 0.618.

Andelman and Mansour [8] gave an algorithm with an approximation
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factor of 1 − 1
e (and 0.717 when all budgets are equal). Azar et al. [14]

improved this to 2/3, which first showed that the offline version is

strictly easier than the online version (for which 1 − 1
e was known to

be an upper bound even for the special case of bipartite matching [63]).

The Generalized Assignment Problem (GAP) is a generalization of

all these problems, and is captured by the following IP (where wuv is

the weight of the edge (u,v), and cuv is its cost):

GAP

Max
∑

wuvxuv
∑

v

cuvxuv ≤ Bu, ∀u
∑

u

xuv ≤ 1, ∀v

xuv ∈ {0,1}

For GAP, a 1
2 approximation follows from Shmoys and Tardos [88]

(see [27]). This was improved to a 1 − 1
e factor by Fleischer et al. [47],

and by Feige and Vondrak [43] to 1 − 1
e + ǫ for a very small constant

ǫ < 10−5. The best known hardness for GAP is 10
11 due to Chakrabarty

and Goel [23].

The Submodular Welfare Maximization problem is NP-hard to

approximate to better than 1 − 1
e [65]. An optimal algorithm in the

value oracle model was provided by Vondrak in [93] with an approxi-

mation factor of 1 − 1
e . Mirrokni et al. [80] prove that beating 1 − 1

e in

the value oracle model needs exponential communication in the value

oracle model.
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Online Bipartite Matching

Online bipartite matching was introduced by Karp et al. [63]. It is

interesting to note how a problem first studied purely out of academic

interest has led to variants which have found core practical application

a decade and a half later, in a domain which did not exist at the time. In

this problem, there is a bipartite graph G(U,V,E) where one side U is

known to us in advance and the other side V arrives online, one vertex

at a time. When a vertex v ∈ V arrives, its neighbors in U are revealed.

The arriving vertex can be matched to some available neighbor (if any).

A match once made cannot be revoked. The objective is to maximize

the size of the matching.

3.1 Adversarial Order

We first study this question in the adversarial model. This section thus

covers the simplest of the problems in this survey in the classic online

model.

285
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Fig. 3.1 The core difficulty for online bipartite matching.

3.1.1 Two Suboptimal Algorithms

We first describe two schemes which are natural first attempts at

solving this problem. Their performance is not optimal, but provide

us a baseline to improve upon.

Deterministic Algorithms and Greedy. The core difficulty in the

problem is captured by a simple example (see the left side of Figure 3.1).

In this example, U = {u1,u2}, and the first vertex v1 to arrive has

edges to both u1 and u2. At this point, u1 and u2 are indistinguishable.

Suppose we match v1 to u2. This choice turns out to be sub-optimal

since the next vertex to arrive, v2, has only u2 as a neighbor, and we

would end up not being able to match v2. The optimal matching, in

hindsight, is to match v1 to u1 and v2 to u2. In fact this example shows

that no deterministic online algorithm can achieve a ratio better than
1
2 : connect v2 to precisely that vertex to which the algorithm matched

v1. The following algorithm, called Greedy, will appear in different

variants throughout this survey.

Algorithm 1: Greedy

When the next vertex v ∈ V arrives:

Match v to any available neighbor (if any).
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Note that Greedy will never leave an edge with both end points

unmatched. Thus it constructs a maximal matching, and by Theo-

rem 1.2, it achieves a ratio of 1
2 . Thus we have:

Theorem 3.1. No deterministic algorithm can achieve a ratio of better

than 1
2 . Greedy achieves a ratio of 1

2 .

Random, a simple randomized algorithm. One might be

tempted to think that a simple application of randomization will over-

come this obstacle faced by deterministic algorithms. Consider the algo-

rithm Random, which lets each arriving vertex pick one of its available

neighbors uniformly at random.

Algorithm 2: Random

When the next vertex v ∈ V arrives:

Match v to a neighbor picked uniformly at random from the

set of available neighbors (if any).

Random achieves a ratio of 3/4 in the example of Figure 3.1 (left).

Note that it also constructs a maximal matching, in fact, in every out-

come of its coin tosses. Thus its ratio is no worse than 1
2 , and one may

hope for a better ratio in expectation over its randomization. However,

this strategy also does not do any better than 1
2 in general, as the graph

in Figure 3.1 (right) shows. This is a “blown-up” version of the simple

2 × 2 example on the left. Each side of the bipartition has n vertices

divided into two parts of size n/2 each (U = U1 ∪ U2 and V = V1 ∪ V2)

There is a perfect matching between U and V (the ith vertex in U

and V have an edge between them). There is also a bipartite clique

between V1 and U2. It can be shown that Random achieves a ratio of

1/2 + o(1) for this instance, essentially because almost all the vertices

in V1 (which arrive first) match to some vertex in U2 (since most of

their neighbors are in U2), and so when the vertices in V2 arrive later,

do not have any available neighbors.

Theorem 3.2. Random achieves a ratio of 1
2 . This analysis is tight.
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3.1.2 Ranking: An Optimal Algorithm

The tight example for Random is a bit worrying, since it seems to

suggest that, to beat 1
2 , the algorithm has to get the correct neigh-

bor for a constant fraction of the vertices in V1, out of a set of n
2

neighbors. Next we present an algorithm that is able to overcome this

difficulty and significantly improve the competitive ratio, by using cor-

related randomness. This algorithm, called Ranking, was introduced

by Karp et al. [63] and it achieves an optimal ratio of 1 − 1
e ≃ 0.63. In

this algorithm we begin by permuting the vertices on the left side in a

random permutation π. We match each incoming vertex in V to that

available neighbor U which is the highest according to π (that is, with

the smallest value of π(u)). The vertex remains unmatched if none of

its neighbors are available.

Algorithm 3: Ranking (KVV)

Offline: Pick a permutation π of U uniformly at random

When the next vertex v ∈ V arrives:

If v has no available neighbors, continue.

Match v to the neighbor u with the smallest value of π(u).

A different way to describe the algorithm is that we first pick a ran-

dom priority number for each u ∈ U IID (from some distribution, say

uniform on [0,1]), and match the arriving vertex to the available neigh-

bor with the highest priority. Note how the randomness in the algorithm

is correlated; every vertex v ∈ V uses the same permutation (or prior-

ity) over the u ∈ U , as compared to Random, in which each vertex

v ∈ V picks its own random choice, independent of the other v ∈ V .

3.1.2.1 Analysis

We now analyze the performance of this algorithm. The ideas in the

original proof in [63] have been distilled in a series of simplifications

(starting with [51]), and we present here a proof similar (although not

identical) to a proof by Birnbaum and Mathieu [18]. Later, in Section 6,

we will see how Ranking can be analyzed using a very different tech-

nique, in the Primal–Dual framework.
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Theorem 3.3([63]). Ranking achieves a ratio of 1 − 1
e for the online

bipartite matching problem in the adversarial arrival model.

Proof. For simplicity of exposition, we will assume that there is a per-

fect matching in G, so that OPT = n. We will fix one such optimal

perfect matching, and refer to it throughout. Fix a permutation π of U

and a vertex u ∈ U , and let t = π(u). Consider the run of the algorithm

on permutation π. One of the following two cases can occur: either u

is matched to some vertex in V , or it is left unmatched. In the former

case, we will call the event (π,u) a Match event at position t, and in

the latter case we will call it a Miss event at position t. Note that the

gain of the algorithm is the total probability of all Match events. Fur-

ther, since π is chosen uniformly at random, we just need to count the

fraction of events that are Match events.

A warm up: As a warm-up we first prove a simple bound of 1
2 . Con-

sider a Miss event (π,u∗). Then we know that u∗’s partner in the opti-

mal perfect matching (call it v∗) does get matched during the run on

π (since u∗ itself was available to be matched to v∗ when it arrived).

Let u′ be the vertex to which v∗ was matched. Thus, for every Miss

event (π,u∗), there is a Match event (π,u′). That is, there are as many

Match events as there are Miss events, so the competitive ratio is at

least 1
2 . In fact, this is true even for an arbitrary choice of π, rather than

random (which just corresponds to theGreedy algorithm). We already

have a little more information that we did not use so far: π(u′) < π(u∗),
that is, v∗ is matched to a vertex u′ which is placed higher than u∗ in π.

Next, we use this observation and the randomness of the permutation

to amplify the argument.

A map from Misses to Matches: Consider again, the Miss event

(π,u∗), with π(u∗) = t. Let u′ be the vertex to which v∗ is matched.

Now consider the n permutations {π(i), i ∈ [n]} produced by moving u∗

to position i, keeping the relative order of all other vertices fixed (note

that π(t) is the same as π). We claim that v∗ continues to be matched

in each of these permutations, to some vertex u′′ ∈ U with π(u′′) ≤ t.
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To see this, note that when u∗ moves lower in the permutation

(i > t), then the run on π(i) is unchanged from the run on π until the

time v∗ arrives. So v∗ continues to be matched to u′. Now consider a case

in which u∗ moves up in the permutation (i < t). Intuitively, things only

improve for v∗, in that it will have a larger set of available neighbors

when it arrives. One can formalize this intuition by following an alter-

nating path argument starting at the match of u∗ in π(i), if any, proving

the claim that v∗ is still matched to a vertex with position at most t.

This observation gives a 1-to-n map from a Miss event (π,u∗) to

n Match events (π(i),ui), (for some ui ∈ U), such that ui is matched

to v∗, and π(i)(ui) ≤ t.

No double-counting: Now we fix t ∈ [n] and restrict attention to

Miss events (π,u) with π(u) = t. We claim that every Match event is

mapped to at most once in this restricted map. To see this, suppose

both the Miss events (π1,u1) and (π2,u2) (with π1(u1) = π2(u2) = t)

map to a Match event (π̂, û). Let v∗ be the vertex to which û is matched

in (π̂, û). Now, since our map is defined via the optimal partner of

v∗ (call it u∗), we know that u1 = u2 = u∗. And since the map only

changes the position of u1 in π1 and u2 in π2 (from t to 1, . . . ,n),

leaving the order of the rest of the vertices unchanged, we infer that

π1 = π2, thus proving the claim that each Match event is mapped to at

most once in the restricted map. Thus we proved that for every Miss

event at position t there are n unique Match events at some position

less than or equal to t. This yields the following set of equations:

∀ t ∈ [n]: n · Pr[Miss event at position t]

≤
∑

s≤t

Pr[Match event at position s]

Thus, by leveraging the randomness of the permutation, we have

managed to amplify the map from Miss events to Match events,

thereby limiting the total probability of Miss events.

Setting xt = Pr[Match event at position t], we get the following set

of inequalities:

∀t: 1 − xt ≤ 1

n

∑

s≤t

xs
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These inequalities define a polytope in the space of the xt, such that

no matter what the input graph and input order is, the vector of xts

lies in the polytope. Minimizing the objective function
∑

txt over this

polytope, we get a lower bound on the performance of the algorithm on

the worst possible input for the algorithm; this technique is known as

a Factor-Revealing LP technique (introduced in [52, 57, 75]): ALG =∑
txt ≥

(
1 − 1

e

)
n. Since OPT = n, this proves the required ratio.

In Section 4, we will provide a generalization and a different inter-

pretation of this algorithm, based on random perturbations. In Sec-

tion 6.3, we will provide a different proof for the same algorithm, based

on the online Primal–Dual scheme.

A tight example. In [63] the authors also gave an example to show

that their bound is essentially tight. They considered the graph shown

in Figure 3.2 (the left side shows the adjacency matrix, and the right

depicts the graph itself) and showed that if the vertices arrive from right

to left in the adjacency matrix as shown, then no online algorithm can

hope to achieve a ratio better than 1 − 1
e for this problem. Intuitively,

the first few vertices to arrive have lots of alternatives and most of them

do not end up matching their partner in the optimal solution (which

is the diagonal of the adjacency matrix). This ends up exhausting the

options of a large fraction of the vertices arriving towards the end which

are left unmatched.

Optimality. Ranking is optimal among all online algorithms. In

[63] the authors gave a construction based on the tight example above

Fig. 3.2 Tight example for Ranking.
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which showed, using Yao’s lemma, that no randomized algorithm can

achieve a ratio better than 1 − 1
e . This upper bound therefore holds for

all the generalizations of the Online Bipartite Matching problem that

we will study in the following chapters.

3.2 Random Order

Recall that in this model we assume that the graph G(U,V,E) is adver-

sarial, but we are given the guarantee that the vertices in V arrive

online in a random order, that is, there is a uniformly random per-

mutation π of V , and the vertex π(t) arrives at time t. The model

was introduced in this context by Goel and Mehta [51], who showed

that the Greedy algorithm, which matches each incoming vertex to an

arbitrary neighbor (breaking ties consistently across different input per-

mutations), achieves a ratio of 1 − 1
e . In fact this result follows directly

from the analysis of Ranking in the adversarial model, since it can be

seen that Greedy with random order input simulates Ranking with

adversarial input, with the roles of the two sides switched. In [51], the

authors also provided upper bounds for algorithms in this model.

Theorem 3.4 ([51, 63]). Greedy achieves a ratio of 1 − 1
e in the

Random Order model. No deterministic algorithm can achieve a ratio

better than 3/4 in this model, and no randomized algorithm better

than 5/6.

Thus 1 − 1
e is the baseline to beat in this model. Recall that this was in

fact the upper bound in the adversarial model. An intriguing open ques-

tion in [51] was whether it was possible to beat this bound in the Ran-

dom Order model (and hence in the IID model) by a more intelligent

algorithm, for example, Ranking. Interestingly, simulations showed

that Ranking itself achieves a ratio very close to 1 for the tight exam-

ple in the adversarial model (Figure 3.2). This question was answered

in the affirmative by Karande et al. [61] and by Mahdian and Yan [73]

where they showed that Ranking achieves a ratio strictly greater than

1 − 1
e in the Random Order model. These results are summarized in

the following theorem.
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Theorem 3.5 ([61, 73]). Ranking achieves a ratio of at least 0.696

[73] (0.656 [61]) for the online bipartite matching problem in the Ran-

dom Order model. If G(U,V,E) has k disjoint perfect matchings then

Ranking achieves a ratio of at least 1 − 1/
√
k [61].

The proof in [73] uses a computer aided technique to solve a family of

strongly factor revealing LPs, a technique that was introduced in [73],

and shown to be useful for other problems also. This LP is an aug-

mented version of the one in the proof of Theorem 3.3. The technique

in [61] is more combinatorial and builds on the proof of Theorem 3.3.

Recall that that proof proceeded by finding a map from a Miss in some

permutation π to Matches in related permutations π(1), . . . ,π(n), fur-

ther limiting the total probability of possible Misses. The proof in [61]

uses the random order of the input to further amplify this effect, by

finding additional maps from Misses to Matches, and from a certain

type of Matches to a different type of Matches. This further reduces

the fraction of Misses that can exist for any input.

Intuitively, the last statement of the result states that if the given

graph is internally robust with respect to perfect matchings (that is,

removing a perfect matching still keeps OPT unchanged) then it is easy

to find a large matching online. This explains the empirical observation

that the performance of Ranking goes to 1 for the tight example for

the Adversarial model shown in Figure 3.2 — note that this graph has

a large number of nearly perfect matchings.

Open Question 1. Close the gap between upper and lower bounds

in this model.

Open Question 2. Find examples of other problems in which mak-

ing a robustness assumption on OPT gives significantly better perfor-

mance.

In terms of tight examples for Ranking in this model, Karande

et al. [61] provided two examples for which the algorithm achieves a
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Fig. 3.3 Difficult examples for Ranking in the Random Order model. Ranking achieves
0.75 for the example on the left, and 0.726 for the example on the right.

ratio of 0.75 and 0.726 respectively. These graphs are shown in Fig-

ure 3.3. For an upper bound, a result by Manshadi et al. [74] (described

in Section 3.3) shows that no online algorithm can achieve a compet-

itive ratio better than 0.83 even in the known IID model. Since the

known distribution model is strictly easier than the Random Order

model, the upper bound carries over to this setting.

3.3 Known IID

This model was first introduced by Feldman et al. [46], to model the fact

that often the algorithm knows the distribution of queries to arrive. In

this model we assume that the algorithm knows U as well as a distribu-

tion on possible types of vertices in V , where a type encodes which are

the neighbors in U . The arriving vertices in V are drawn independently

from the distribution on types and have to be matched irrevocably upon

arrival. More formally, we are given a base graph Ĝ(U,V̂ , Ê) in advance

(where V̂ is the set of types), and also a distribution D on V̂ . We have

|U | = n and |V̂ | = m, which is assumed to be polynomial in n. The out-

come graph, G(U,V,E), is obtained via the following process: at each

time i = 1, . . . ,n, we pick the next type v̂i ∈ V̂ according to D, indepen-

dently of the previous draws. The arriving vertex vi ∈ V is taken to be

a copy of v̂i, that is, with the same neighbors in U .

Intuitively, this model seems much easier for designing an algorithm

than the adversarial or Random Order models, since we know the entire

base graph in advance, and the arriving graph is a sample of it. In other

words, we have an estimate of the graph beforehand. Let us begin by
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considering a simple algorithm for this problem that is based on the

idea of using the offline estimate to guide the online decisions. We will

assume for simplicity that m = n, that there is a perfect matching in Ĝ

and thatD is the uniform distribution on V̂ . The algorithm Suggested

Matching was introduced in [46]:

Algorithm 4: Suggested Matching (SM)

Offline Step: Find an optimal matching M in the base graph Ĝ

When the next vertex v ∈ V arrives:

Let v̂ be the type of v.

If u = M(v̂) is available, then match v to u.

Else continue.

The algorithm uses the perfect matching of the types to guide the

online matching. An arriving vertex is given exactly one predetermined

choice of neighbor to try to match to, namely, the perfect match of its

type in the base graph. Thus this algorithm tries to build a matching

as close as possible to the perfect matching in the base graph. This

is also precisely the limitation of this algorithm: a type can repeat

across different samples drawn from the distribution, that is, we may

get several draws v1,v2, . . . ,vk ∈ V for the same base type v̂ ∈ V̂ . Since

the algorithm tries to match each such vi to the same vertex in U

(namely, M(v̂)), this will result in all but the first arriving vertex, v1,

remaining unmatched. In fact using a standard balls-in-bins argument

we can show that this algorithm achieves a ratio of 1 − 1
e , when D

is the uniform distribution: consider the process in which there are n

bins, corresponding to the types, and n balls, corresponding to the ver-

tices in V . The process of generating G corresponds to throwing each

ball into a random bin. We know that w.h.p. 1 − 1
e bins get at least

one ball at the end of this process. For each of these filled bins, Sug-

gested Matching gets exactly one match, thus giving the following

theorem.

Theorem 3.6 ([46]). Suggested Matching achieves a ratio of 1 −
1
e in the known IID model, and this analysis is tight.
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So, in this model again, the ratio of 1 − 1
e is the baseline to beat.

We will now discuss an algorithm that does better than 1 − 1
e in this

model. The algorithm, which we call the Two Suggested Match-

ings (TSM) algorithm (introduced in [46]), is based on the idea of the

power of two choices. Instead of focusing on one suggested matching in

the base graph to guide in decision making, it uses two matchings for

this purpose. Suppose we have two large disjoint matchings (say M1

and M2) in the base graph Ĝ. Let the next arriving vertex v be of type

v̂. The TSM algorithm tries to match v to M1(v̂); if it fails (because

M1(v̂) was already matched) then it attempts to match to M2(v̂). If

both these attempts fail then v remains unmatched.

Algorithm 5: Two Suggested Matchings (TSM)

Offline Step: Find two “large” matchings M1 and M2 in the

base graph Ĝ.

When the next vertex v ∈ V arrives:

Let v̂ be the type of v.

If u1 =M1(v̂) is available, then match v to u1.

Else If u2 =M2(v̂) is available, then match v to u2.

Else continue.

Thus each arriving vertex now has two attempts at finding a match,

which could, in principle, lead to a better ratio than that of Suggested

Matching. However, the new difficulty introduced is that two vertices

of different types v̂1, v̂2 now interact, since M1(v̂1) and M2(v̂2) may

be the same vertex.

In fact, a weaker variant of this algorithm was defined in [46]: The

first arrival of a vertex type will try only the neighbor in M1 (and drop

out if that neighbor is already matched), and the second arrival will

try the neighbor in M2. Thus the algorithm in [46] is non-adaptive and

creates some loss as compared to the form defined above, since the first

arrival of a vertex drops out even if the neighbor in M2 is available.

However, this makes the algorithm easier to analyze (and the analysis

holds for the adaptive version as well).



3.3 Known IID 297

Algorithm 6: TSM (non-adaptive)

Offline Step: Find two “large” matchings M1 and M2 in the

base graph Ĝ.

When the next vertex v ∈ V arrives:

Let v̂ be the type of v.

If v is the first arrival of type v̂ and u1 = M1(v̂) is available,

then match v to u1.

If v is the second arrival of type v̂ and u2 = M2(v̂) is

available, then match v to u2.

Else continue.

We have not yet stated how the two matchings M1 and M2 are

obtained. Depending on how this is done, we get several variants. The

first variant was introduced in [46]: We first find a maximum flow in a

derived flow graph derived from Ĝ as follows. Connect a source to all

vertices in U with capacity 2 on the edges, and connect a sink from all

vertices in V̂ , again with capacity 2. Direct all edges in Ê from U to V̂

with capacity 1. Now decompose the maximum flow into paths and

cycles. The two matchings are constructed by taking alternate edges of

each path and cycle. The larger one is taken as M1, and the smaller as

M2. The following is proved in [46], which we present without proof.

Theorem 3.7 ([46]). Two Suggested Matchings (non-adaptive)

achieves a ratio of
1− 2

e2

4

3
− 2

3e

≃ 0.67 with high probability for the online

bipartite matching problem in the Known IID model. This ratio is

tight for the algorithm. No algorithm can do better than 0.98.

The above theorem holds for the case of integral rates only, that is,

when the distribution D is such that the expected number of arrivals

of each type is integral. These results were later improved by Bahmani

and Kapralov [15] to a 0.699 ratio algorithm (by a clever modification

in the construction of the two matchings from the max flow), and an

upper bound was improved to 0.902. Subsequently, Manshadi et al. [74]

studied the problem in some more detail. They first provided a different



298 Online Bipartite Matching

algorithm, based on TSM, but through a better method of finding the

two matchings in Ĝ: The algorithm first finds a fractional matching f

in Ĝ, where each edge has the same weight as its probability of being

in the optimal matching of the outcome graph G. It then constructs

a distribution µ on matchings so that every edge has the same prob-

ability of being in a matching as its value in the fractional matching,

so
∑

M,e∈M µM = fe, ∀e ∈ Ê. The algorithm now picks M1 and M2

independently from µ, and runs Two Suggested Matchings (non-

adaptive). This method of choosing the two matchings makes the anal-

ysis much simpler since it is easier to bound OPT. The authors prove

that this algorithm achieves a ratio of 0.684, slightly more that in [46],

although lower than in [15].

They then note that all three variants above are non-adaptive, that

is, the two matchings are fixed, and the first arrival of a vertex type

only tries the neighbor from the first matching. They prove that these

algorithms crucially use the fact that the arrival rates of the types are

integral by showing a family of examples in which the rates are arbitrar-

ily small (o(1)), such that no non-adaptive algorithm can achieve a fac-

tor better than 1 − 1
e . They modify the algorithm to make it adaptive:

(a) first, the two choices for each vertex are picked non-independently,

in order to minimize the probability of the two choices being equal.

(b) Second, the first arrival of a vertex type is allowed to match to

the neighbor according to the second matching, if the first is already

matched (as in Algorithm 5). They show that this algorithm achieves a

ratio of 0.702 (even for the case when the rates are not integral). They

also improved the upper bound for the Known IID model to 0.83.

Theorem 3.8 ([74]). Two Suggested Matchings (in its adap-

tive form, with non-independent sampling) achieves a ratio of 0.702

in expectation for the online bipartite matching problem in the Known

IID model, even with non-integral rates. No algorithm can do better

than 0.823. No non-adaptive algorithm can do better than 1 − 1
e when

the rates are non-integral.

One may try to improve the competitive ratio by using more than

two offline matchings. However, using three matchings already leads to
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difficulty in the analysis. In [53], Haeupler et al. describe an algorithm

which uses two new ideas: using a “discounted” version of the offline

LP, and using a third “pseudo-matching” to guide the online choices

(see details in [53]). This algorithm obtains an incrementally improved

ratio of 0.703, although only with integral arrival rates.

The best ratios are provided by Jaillet and Lu in [56], where they

provide an algorithm related to, but somewhat more general than, the

algorithms above (see the paper for details).

Theorem 3.9. With integral arrival rates, the algorithm in [56]

achieves a ratio of 1 − 2
e2

≃ 0.729. Without integral rates, the algo-

rithm achieves a ratio of 0.706.

Open Question 3. Find a better algorithm or analysis that can cap-

ture the power of more than two matchings. In general, close the gap

between the upper and lower bounds. In some sense, the ratio of 1 − 2
e2

achieved in [56] for the integral case, is a nice “round” number, and

one may suspect that it is the correct answer.
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Online Vertex-Weighted Bipartite Matching

The online vertex-weighted bipartite matching problem was introduced

by Aggarwal et al. [5]. It is a strict generalization of the online bipartite

matching problem: We have a graph G(U,V,E) where U is known in

advance and vertices in V arrive online and reveal their neighbors in U ,

as before. Each vertex u ∈ U has a non-negative weight wu, which is

also known in advance. The goal is to maximize the sum of weights

of vertices in U that get matched. In Section 4.1, we will study this

problem in the Adversarial Model. We will describe the results in the

Known IID model in Section 4.2. The problem is still open in the Ran-

dom Order model.

4.1 Adversarial Order

4.1.1 Intuition

We have seen two algorithmic strategies for online matching:

Greedy and Ranking. For the vertex-weighted bipartite matching

problem, Greedy means match the arriving vertex v to that available

neighbor u ∈ U with the highest weight. By Ranking we mean ignore

the weights and do Ranking on the unweighted graph.

300
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Fig. 4.1 Two extreme examples for vertex-weighted bipartite matching (M ≫ 1).
Greedy achieves 1

2
for the left instance and 1 on the right. Ranking achieves 3/4 on

the left instance and close to 1

2
on the right. These examples can be generalized to make

Greedy achieve 1

2
and 1, and Ranking achieve 1 − 1

e
and 0 respectively.

We first see that neither of these two techniques performs well. First,

consider the graph shown on the left in Figure 4.1. Here the two vertices

in U have the same weight. For this instance Ranking achieves a ratio

of 3
4 . From the results in Section 3.1, we know that it achieves 1 − 1

e for

any instance in which the weights are all equal. However, Greedy only

achieves a ratio of 1
2 for such instances.

On the other hand, consider the graph on the right in Figure 4.1.

Here the weight of one vertex is much greater than that of the other

(M ≫ 1). For this graph, Greedy is almost optimal, since it obtains the

large reward at the first opportunity. However, Ranking achieves a

ratio of only 1
2 since it ignores the weights (one can construct larger

examples in which the ratio of Ranking goes to 0).

To summarize, while Ranking works optimally for uniformly or

near-uniformly weighted graphs, it can fail badly when the vertex

weights are highly skewed. On the other hand Greedy does well for

highly skewed weights but achieves only 1
2 when the weights are equal.

These examples reveal the fact that this problem has two different

aspects to it, which need two very different approaches. This suggests

that the correct method may be to find a hybrid of the two strategies.

There are two candidate strategies one may explore:

(1) Ranking with non-uniform permutations: Instead of

using a random permutation for Ranking, we can draw a

permutation from a distribution that depends on the weights

on the vertices (with vertices of high weight more probable

to be in higher positions).
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(2) A perturbed version of Greedy:RunGreedy with some

kind of a randomized “soft-max” which allows weights to

change order with some probability.

4.1.2 A Generalization of Ranking

In [5], the authors presented the following algorithm, which simultane-

ously implements both the hybridization strategies described above. To

be precise, the algorithm is defined as Greedy on perturbed weights,

and is also a strict generalization of Ranking.

Define

ψ(x) = 1 − ex−1

This function is graphed in Figure 4.2. Let U [0,1] denote the uniform

distribution on [0,1].

Fig. 4.2 The trade-off function ψ.
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Algorithm 7: Perturbed Greedy/

Generalized Ranking (AGKM11)

Offline:

For every u ∈ U :

Pick ru IID from U [0,1].
Define its perturbed weight as w̃u := wuψ(ru).

When the next vertex v ∈ V arrives:

If v has no available neighbors, continue.

Else match v to that available neighbor u which has the

maximum value of w̃u.

The algorithm has two interpretations:

Perturbed Greedy: This is how we have explicitly defined the algo-

rithm. Instead of picking the highest weighted neighbor as in Greedy,

the algorithm first perturbs each weight randomly according to a spe-

cific distribution (i.i.d.), and then picks the neighbor with the highest

perturbed weight. Note that when the weights are highly skewed (say,

if we have exponentially increasing weights) then the algorithms per-

forms very similarly to Greedy w.h.p., since the perturbations will not

change the order between very different weights, w.h.p.

Generalized Ranking: Note that if all the weights were equal, then

the algorithm is precisely Ranking: the process of picking the ru from

U [0,1] and choosing the vertex with the highest ψ(ru) is identical to

the process of choosing a uniformly random permutation and picking

the highest vertex according to it. In the case of general weights, one

can interpret the algorithm as running Ranking on a non-uniform dis-

tribution on permutations, in which permutations which have vertices

with higher weights in higher positions are given a higher probability

of being chosen. This distribution on permutations cannot be concisely

written down, but is implicit in the formulation.

In [5] the authors proved the following theorem, which we present

here without proof.
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Theorem 4.1 ([5]). Perturbed Greedy/Generalized Rank-

ing achieves a ratio of 1 − 1
e for the vertex-weighted bipartite matching

problem, for any set of vertex weights. This is optimal (follows from

the unweighted case).

Remark. One important question which we did not address is:

where did the form of the function ψ come from? We will later describe

(in Section 5.2.2) how the proof for this theorem follows the structure of

the proof for a very different algorithm (for the Adwords problem with

small bids). That algorithm also uses the same function to scale bids,

and we will briefly mention the origin of the function when studying

that problem.

Remark. The motivation for studying this problem comes from a

more general problem, that of Adwords (with general bids), which is

still an open problem. Vertex-weighted bipartite matching is equivalent

to the special case of Adwords with equal bids, that is, all bids placed

by a bidder are equal (see Section 5.4 for the simple reduction).

4.2 Known IID

Two papers have considered the vertex-weighted bipartite matching

problem in the Known IID input model: Haeupler et al. [53] provide

an algorithm for an even more general problem, the weighted matching

problem, in which the weights we are on the edges (we will study this

problem in detail in Section 7). Their algorithm uses the framework of

the algorithm Two Suggested Matchings, which was introduced in

Section 3.3 for bipartite matching in the Known IID model, achieves

a competitive ratio of 0.667. In the second paper, Jaillet and Lu [56]

study online matching problems in the Known IID setting, and provide

a general algorithm template related to the algorithms in [46, 74]. For

online vertex-weighted matching, their algorithm provides a ratio of

0.725. Both these results assume integral arrival rates, as defined in

Section 3.3 — that the expected number of arrivals of any type of

vertex is integral.
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Theorem 4.2([53, 56]). There exist algorithms for the online vertex-

weighted matching problem in the Known IID model with integral

arrival rates, which achieve competitive ratios of 0.667 ([53]) and 0.725

([56]).

Open Question 4. Improve upon the 1 − 1
e ratio in the Random

Order or Unknown IID setting. Improve upon 0.725 ratio in the Known

IID setting, and find a good competitive ratio when the arrival rates

are not integral. In particular, can we achieve 1 − 2
e2

≃ 0.729 (which

is the ratio achieved in [56] for the unweighted problem with integral

arrivals)?
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Adwords

The Adwords problem is the following generalization of online bipartite

matching: Vertices in U have budgets Bu, and edges (u,v) ∈ E have

bids biduv. When a vertex v ∈ V arrives, we have to match it to some

neighbor u ∈ U who has not yet spent all its budget. Once we match

v to u, then u depletes biduv amount of budget. If a vertex u finishes

its entire budget, it becomes unavailable. The goal is to maximize the

total money spent.

The motivation for the Adwords problem comes directly from online

advertising. The ad platform — which is the search engine in the case

of sponsored search — is in contract with a set of advertisers U (also

called bidders). Each bidder puts in a set of bid values for different

keywords they would like to show their ad against. Each bidder can

also put in a daily budget value Bu representing the maximum they

can pay in a day. The search engine knows these bids in advance. It gets

a sequence of online ad-requests v ∈ V (also called queries and ad-slots)

as users search during the day. When a request v arrives, then for each

bidder u ∈ U , the search engine sees a bid of biduv as entered by u. Each

ad slot v can be allocated to one advertiser and the winning advertiser
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is charged its bid for v.1 Once an advertiser’s budget is exhausted, it

cannot be allocated any more ad slots. The objective is to maximize

the total efficiency of the matching, which, in this model, is equivalent

to maximizing the total amount of money spent by the advertisers.

5.1 The Small-Bids Assumption

We will identify a special case of the Adwords problem by making the

following assumption.

The small-bids assumption: For every edge (u,v) ∈ E, biduv is very

small compared to the corresponding Bu.

This means that each advertiser puts in bids that are small com-

pared to their budget, which is a very realistic assumption in this

setting, since advertisers typically want a large number of ad clicks

per day. We will postpone the precise definition of bids being small

compared to the budgets; for the present purposes we may take this

to mean infinitesimally small. When relevant, we will present the exact

dependence on the bid to budget ratio parameter. For the rest of this

Section we will make the small-bids assumption throughout, unless we

explicitly state otherwise.

The Adwords problem and the small-bids assumption were intro-

duced by Mehta et al. in [78]. Besides the classic results in [58, 63], this

is chronologically the first among the results surveyed here.

5.2 Adversarial Order

In this section, we will study the Adwords problem with the small bids

assumption in the adversarial model.

Intuition: In order to build some intuition towards what kind of

algorithm would work for the problem, we first look at two simpler

algorithms — Greedy and Balance, defined below.

1This is a simplifying assumption — in search engine ad pages there are multiple slots on a
page, and the pricing scheme is second price, pay-per-click. Some of these features can be
modeled theoretically, and others heuristically. We will return back to these assumptions
in Sections 9 and 10.



308 Adwords

Algorithm 8: Greedy For Adwords

When the next vertex v ∈ V arrives:

If all neighbors of v are unavailable (that is, have spent their

budgets), continue.

Else match v to that available neighbor u which has the

maximum value of biduv.

Greedy attempts to get the maximum gain at every step by assign-

ing each slot to its highest available bidder. One technical point to

note is that all the algorithms presented here need to cap each bid

by the remaining budget. So, if a vertex u has a budget of Bu and

has spent Su ≤ Bu amount of its budget, then we take the modi-

fied bid b̂iduv = min{biduv,Bu − Su}. With the small bids assumption,

however, one can ignore this bid-capping and take the bid to be the

original bid itself. In doing this, a vertex u may spend an amount

Su > Bu (by overspending for the last allocated vertex) but, in that

case, Su − Bu < maxv biduv, which is a small quantity by assumption.

This makes the algorithms and analysis simpler to describe.

For Greedy, we can prove the following:

Theorem 5.1. Greedy achieves a ratio of 1
2 for the Adwords problem

(even without the small bids assumption).

Proof. For u ∈ U , let Bu be its budget and let Su be its spend in the

algorithm. For v ∈ V , suppose the optimal allocation OPT allocated

v to u, obtaining a value of optv (optv could be less than biduv if u

exhausted its budget in OPT). Let algv be the value obtained by the

algorithm in allocating v. Let V ′ ⊆ V be the set of vertices v for which

algv < optv. Then the loss of the algorithm is Loss =
∑

v∈V ′(optv −
algv). We partition this loss according to the vertex u ∈ U to which v

was allocated in OPT. Let V ′
u be the set of vertices in V ′ which were

allocated to u in OPT. Then, Loss =
∑

u∈U Lossu, where

Lossu :=
∑

v∈V ′
u

(optv − algv) ≤ Bu −
∑

v∈V ′
u

algv (5.1)
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Now, if V ′
u �= ∅, then consider a v ∈ V ′

u. When v arrived, it was allocated

to some vertex u′ yielding a value algv < optv. This means that, at that

time, u had at most algv budget unspent. Therefore,

Su ≥ Bu − algv, ∀ v ∈ V ′
u

Plugging this into Equation (5.1), we get

Lossu ≤ Su + algv∗ −
∑

v∈V ′
u

algv, ∀ v∗ ∈ V ′
u

Therefore Lossu ≤ Su for all u (if V ′
u = ∅ then Lossu = 0). Now, OPT −

ALG =
∑

uLossu ≤∑
uSu = ALG, proving a ratio of 1

2 .

On the other hand, Balance tries to keep the spend of all the

bidders as equal as it can, irrespective of bid, so as to keep all bidders

available for as long as possible:

Algorithm 9: Balance

When the next vertex v ∈ V arrives:

If all neighbors of v are unavailable (that is, have spent their

budgets), continue.

Else match v to that available neighbor u which has spent the

least fraction of its budget so far.

We will now see that each technique works well on some set of inputs,

and fails on other types of inputs. Consider the example in Figure 5.1.

There are two bidders in U , A and B, each with a budget of $100, and

Fig. 5.1 Two extreme examples for the Adwords problem.



310 Adwords

two types of vertices in V , 1 and 2. First a 100 copies of the type 1

vertex arrive, and then a 100 copies of type 2. The examples on the

left and right differ in the bid values on the edges. In both examples,

though, the optimal offline allocation is to allocate vertices of type 1

to A and type 2 to B, giving OPT = 200.

Let us first look at the example on the left. Greedy will assign the

100 copies of 1 to B, which would then exhaust its budget. So the 100

copies of type 2 would remain unsold, since A does not bid for them.

On the other hand, Balance would achieve a ratio of 3/4 on the left

example by equally distributing the 100 copies of type 1. Indeed, let us

distinguish a special case of the Adwords problem:

Online b-Matching: This is the special case of the Adwords prob-

lem when all budgets are equal to b (a positive integer), and all non-zero

bids are equal to 1.

For this special case, it was shown by Kalyanasundaram and

Pruhs [58] that Balance is an optimal algorithm (we will prove this

theorem later in this section, as a special case of the result for the

Adwords problem):

Theorem 5.2 ([58]). Balance achieves a ratio of 1 − 1
(1+ 1

b
)b

for the

Online b-Matching problem, which goes to 1 − 1
e as b → ∞. This is

optimal.

Thus, for examples like the one on the left of Figure 5.1, in which

all bids are equal (or close to equal), Balance performs well, while

Greedy could perform as bad as 1
2 . We note that a different proof

of this theorem was also provided by Azar and Litichevskey [13] (by

relating b-matching to the problem of fractional bipartite matching in

which a vertex can be fractionally allocated).

Now let us look at the example on the right of Figure 5.1, where

the bids by A and B for the vertices of type 1 are very different. It can

be seen that Greedy does optimally achieving a ratio of 1, whereas

Balance gets a ratio of 1
2 since it ignores the bids.

The main intuition in solving the general problem is to find a hybrid

algorithm that combines these two algorithmic ideas and performs well
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on all instances. Such an algorithm was provided in [78]. The algorithm

scales the bid of an advertiser as a function of the fraction of its budget

spent, and then runs Greedy on the scaled bids.

At any point during the run of the algorithm, let xu be the fraction

of advertiser u’s budget that has been spent up to this point. Let v be

the next query to arrive. Define the scaled bid of u for v as the original

bid biduv scaled down by a multiplicative factor

ψ(xu) = 1 − exu−1

The algorithm allocates v to the advertiser with the highest scaled bid.

Note that the winning advertiser still pays its original bid; the scaling is

used only for winner determination. The algorithm is defined formally

below:

Algorithm 10: MSVV

When the next vertex v ∈ V arrives:

Allocate v to the bidder u which maximizes biduvψ(xu)

(where xu is the fraction of u’s budget spent by this time).

Remark. Note that when the bids on the edges are are all equal (thus

reducing to the b-matching problem) then the algorithm becomes pre-

cisely Balance, since the function ψ is a monotonically decreasing

function. If the bids for a query are very well separated, then the

algorithm, in most cases, would not flip the order of the bids, and

go with the higher bidder like Greedy (unless the higher bidder has

spent a very large fraction of its budget, as compared to the lower bid-

der). When the budgets are all infinity, then the algorithm becomes

Greedy (which is optimal in this case) since all the bid scaling num-

bers remain ψ(0) = 1 − 1
e throughout.

Remark. Note the similarity with the algorithm for vertex-weighted

bipartite matching. We use the same function ψ to modify the input

bids and then run the Greedy algorithm. However the bid-scaling

function used here is deterministic and dynamic, that is, changes over

time as the fraction of budget spent changes. In fact, there is more than

a cosmetic similarity between these two algorithms; we will describe the

connections in some more depth in Sections 5.2.2 and 6.
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Fig. 5.2 Slabs and types in the final state of the algorithm.

In [78], the authors showed that this algorithm achieves a ratio of

1 − 1
e and it is optimal, even among randomized algorithms. We provide

a proof sketch here.

Theorem 5.3 ([78]). MSVV achieves a ratio of 1 − 1
e for the

Adwords problem. This is optimal even among randomized algorithms.

Proof. For simplicity, we will assume that all bidders in U have a budget

of 1. We choose a large discretization constant k, and assume that every

bid is much smaller than 1
k2
, say. Figure 5.2 shows the state of the

bidders in U at the end of the algorithm. In this figure, the bidders in

U are placed along the x-axis. The y-axis represents the money spent by

each (capped at 1, which is the budget), and they are ordered according

to their money spent. The spend is discretized in steps of 1/k.

For i ∈ [1,k], let αi be the number of bidders who spent between i−1
k

and i
k of their budget at the end of the algorithm (so,

∑k
i=1αi = n).

These are known as bidders of type i. Let slab i be the (set of the)

money spent by bidders from the [ i−1
k , ik ) portion of their budgets, and

let βi be the amount of money in slab i. The first observation is a

relation between the two sets of variables α and β, which can be seen

directly from the geometry of the picture:

∀i : βi =
n − ∑

j<iαj

k
(5.2)
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For simplicity, we will assume that the instance is such that OPT

spends the entire budget of all bidders in U , so OPT = n. To build

intuition, we will first warm-up with the analysis for Balance in the

special case of b-matching, and then show the analysis for MSVV in

the general case.

Special Case: Balance for b-matching

Recall that we have scaled the numbers, so that every budget is 1, and

every non-zero bid is 1
b , and note that we have assume that b is very

large (say, 1
b ≤ 1

k2
). Fix an i < k. At the end of the algorithm, we know

which bidders have type at most i. Consider all the vertices in V which

OPT allocated to these bidders — call this set V≤i. Let u(v) be the

bidder to which OPT allocates a v ∈ V≤i. The total spend by OPT on

V≤i is
∑

j≤iαj (since we assumed that OPT spends all the budget of

all bidders, and all the budgets are 1).

Now, let us look at the run of the algorithm. When a query v ∈ V≤i

arrives, Balance will surely allocate it, since u(v) itself has not spent

all its budget even at the end of the algorithm (since i < k). In fact, let

s be the spend of u(v) at the time v arrives. Then we know: (a) s ≤ i
k ,

and (b) By the rule of the algorithm, v is allocated to some bidder

whose is at most s. That is, the algorithm gets the spend for v from

slabs 1 through i. Now we use the fact that all non-zero bids are equal,

so both OPT and the algorithm get the same spend (equal to 1
b ) for

each vertex in V≤i. This gives the following set of inequalities:

∀i < k:
∑

j≤i

αj ≤
∑

j≤i

βj (5.3)

Here the left-hand side is OPT’s spend on queries in V≤i, and the right-

hand side is an upper bound on ALG’s spend on the same queries. Note

that at this point there is no explicit reference to OPT anymore; this

is simply a set of constraints on the final state of Balance, on any

input. We can use Equations (5.2) to write the βi in terms of the αi,

to get:

∀i < k:
∑

j≤i

αj

(
1 +

i − j

k

)
≤ i

k
n (5.4)
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Also note that the spend of the algorithm is

ALG =
∑

i≤k

i

k
αi (5.5)

We now use the technique of Factor-revealing LPs (introduced in [52,

57, 75]): Our constraints show that the final state cannot have any

arbitrary set of values for the αi. Our goal is to show that the spend of

the algorithm is not too low. To do this, we minimize the total spend of

the algorithm (5.5) under the constraints (5.4). This is a lower bound

on the performance of the algorithm on worst possible input. If our

constraints capture enough of the structure of the algorithm, then this

lower bound would be useful. Indeed, we can write the dual of this LP

(which turns out to be identical in form) and analytically solve the

primal–dual pair to get the following optimal values of the variables:

α∗
i =

n

k

(
1 − 1

k

)i−1

, (i = 1, . . . ,k − 1)

which gives that the optimal objective function of the LP is
(
1 − 1

e

)
n

(as k → ∞). This proves that the ratio of Balance is 1 − 1
e for

b-matching.

General case: MSVV for Adwords with Small Bids — For the

general small bids problem, Equation (5.2) still holds, but the argument

for Balance fails for the following reason. The algorithm will still allo-

cate vertices v ∈ V≤i, but (a), it may get a much smaller spend for v

than OPT does, since the bids are no longer all the same, and (b), there

is no longer a guarantee to get the spend from the lowest possible slab,

since we have lost the form of Balance. So Equation (5.3) no longer

holds. Indeed, we seem to have lost all the structure we had in Bal-

ance, which is a worrying fact. However, it turns out that we can now

make a different argument based on the tradeoff that MSVV makes

between bid and spend, which we describe next.

When a query v ∈ V arrives, consider its OPT bidder u(v) (we will

call it u∗ henceforth for brevity). Suppose that u∗ is of type i and that

it has spent î
k fraction of its budget when v arrives (̂i ≤ i). Suppose

MSVV allocates v to u′, who has spent j
k fraction of its budget at the
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time v arrives (j could be any number in [0,k]). Then we know from

the form of the algorithm (since it allocated v to u′ and not to u∗):

bidu∗v · ψ
(

î

k

)
≤ bidu′v · ψ

(
j

k

)
(5.6)

Since î ≤ i, and using the fact that ψ is monotonically decreasing, we

also know that ψ(i) ≤ ψ(̂i), which gives, from (5.6):

bidu∗v · ψ
(
i

k

)
≤ bidu′v · ψ

(
j

k

)
(5.7)

Recall that bidu∗v is the spend of OPT on v, and bidu′v is the spend

of ALG on v. We can write this inequality for every v ∈ V and add

them all up. If we collect the terms for ψ( i
k ) on the left, then the sum

of the coefficients bidu∗v becomes the total spend of OPT from bidders

of type i, which is αi. Similarly, collecting the terms for ψ( jk ) on the

right, we get the total spend of the algorithm from slab j, that is, βj .

So we get:

k∑

i=1

ψ

(
i

k

)
αi ≤

k∑

i=1

ψ

(
i

k

)
βi (5.8)

Note that, unlike the case for Balance, we get a single constraint,

and not a set of constraints. But this single constraint captures all

the structure of the algorithm. Now we can use (5.2) in (5.8) to write

the βis in terms of the αis, to get a constraint purely in the latter.

Finally, using the explicit form of the tradeoff function ψ(x) = 1 − ex−1,

we get:

k∑

i=1

i

k
αi ≥ n

(
1 − 1

e

)
, (as k → ∞)

But the left-hand side is precisely ALG, thus proving the theorem.

5.2.1 Where did the Tradeoff Function ψ Come From?

In the proof above, we crucially used the form of the function ψ(x) =

1 − ex−1. The obvious question is how did we come up with this func-

tion in the first place. In [78] the authors provided a combinatorial
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approach to find this tradeoff function, as well as the ratio of the algo-

rithm. They start with the factor revealing LP for Balance for b-

matching:

Minimize (5.5), subject to (5.4)

As we have seen, this LP does not hold in the general case. However,

they showed how the LP can be modified to capture the general case by

a vector of new variables, representing the deviation from Balance.

From this modification, they obtained the function ψ as a prefix-sum

of the optimal dual variables of the original LP for Balance. These

dual variables can be explicitly written down (for a fixed k), and their

prefix sum yields precisely the function 1 − ex−1. They called their

technique a tradeoff-revealing LP, since the LP reveals not only the

ratio of the algorithm (as in the technique of factor-revealing LPs),

but also the form of the algorithm itself, in terms of the optimum

tradeoff to use between bid and spend fraction. In Section 6 we will see

a different approach for this problem which yields the same function.

This approach, called the Online Primal–Dual technique, is based on a

different LP, the allocation LP for the problem.

5.2.2 Relationship between MSVV and Perturbed Greedy

The algorithms Perturbed Greedy (for vertex-weighted bipartite

matching) and MSVV (for Adwords with small bids) are very similar

in form. The former uses a static randomized scaling function to scale

the weights, while the latter uses a dynamic deterministic scaling func-

tion to scale the bids, but both use the same tradeoff function ψ(x).

We have not provided the proof for Perturbed Greedy in this sur-

vey, but there is, in fact, a close relationship between the two proof

techniques as well. The slabs in the proof for MSVV correspond to

the random seeds ru of the vertices in U for Perturbed Greedy.

As lower slabs get filled earlier during a run of MSVV, so also, ver-

tices with higher random seeds get matched with higher probability in

Perturbed Greedy. Eventually the two proofs end up with the same

structure and inequalities, although for very different reasons. This sug-

gests that a unified algorithm may be found for common generalizations
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of these two problems. In Section 6 we will describe the online primal–

dual approach to both these problems, which also yields very similar

algorithms and proof structure for these two problems. Thus we have

a very strong indication that there is a common generalization of these

two algorithms to one which works for a common generalized problem.

Open Question 5. Find a common generalization of MSVV and

Perturbed Greedy, for some problem which generalizes both

Adwords with small bids and vertex-weighted bipartite matching.

5.3 Random Order and IID

We now shift our focus to the stochastic input models. In [51], Goel

and Mehta showed that Greedy achieves a ratio of 1 − 1
e for Adwords

with small bids in the random order model, and hence in the Unknown

IID model as well. The question remained open as to how well does

MSVV itself perform in the IID model. For the special case of the

b-matching problem (with equal budgets, and large b),Motwani et al. [81]

proved thatBalance is near-optimal (1 − o(1)). Thiswas generalized to

an algorithm called Water Level by Charles et al. [26] for the unequal

budgets case. This is a non-trivial generalization of Balance, in which

the next bin chosen is the one which minimizes the failure probability of

the rest of the algorithm (see [26, 36, 34]). In [79], Mirrokni et al. proved

that for the Adwords with small bids problem,MSVV provides a ratio of

0.76 (better than 1 − 1
e ≃ 0.63) in the Unknown IIDmodel.

Thus, Balance and MSVV provide a good simultaneous approx-

imation in the worst case and IID models. If the input sequence is

IID, then the guarantees are much better than the ones provided in

Theorems 5.2 and 5.3 for the adversarial order. Note that the algo-

rithms were designed for the worst case, and do not actually use the

distribution as an input parameter — the distribution is unknown

in advance. In fact, it is interesting that the algorithms do not even

adapt themselves as they learn the distribution over time. This kind

of dynamic adaptation does not seem necessary for the b-matching

problem, since Balance and Water Level are optimal. However,

MSVV still has a ratio of 0.76, which could be suboptimal in this
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model. It turns out that for Adwords (with small bids), one does need

to be dynamic, and adapt the bid-scaling factors to the incoming dis-

tribution. An algorithm due to Devanur and Hayes [35] achieves a 1 − ǫ

ratio for this problem in the Random Order model, where ǫ is very small

under the small bids assumption. The algorithm uses the initial pre-

fix of the input sequence to compute optimal bid-scaling numbers (as

compared to MSVV, which uses a fixed bid-scaling function designed

for the worst case). The algorithm and its analysis is based on the

online Primal–Dual framework, and we will describe it in Section 6

(Theorem 6.3). These results are summarized in the following theorem.

Theorem 5.4 ([26, 35, 51, 79, 81]). Greedy achieves a ratio of

1 − 1
e for the Adwords problem with small bids in the Random Order

Model. Balance achieves a 1 − o(1) ratio in the Unknown IID model

for the b-matching problem (and Water Level for unequal budgets),

with large budgets. MSVV achieves a ratio of 0.76 for the Adwords

problem with small bids in the Unknown IID model. The algorithm

in [35] achieves a 1 − ǫ ratio in the Random Order Model, where ǫ

depends on the bid to budget ratio.

See Devanur [34] for details on some of these algorithms in the

stochastic input models. A related result along these lines is due

to Mahdian et al. [72], who provided a hybrid algorithm based on

MSVV (which performs well in the adversarial case), and the offline

LP (which performs optimally if the queries are known). The hybrid

performs well when the estimates of the queries are accurate, as well

as when they are completely incorrect. Note that this algorithm works

in the Known IID model (to be precise, in a slightly different, stronger

model), since it needs to know the distribution in advance, so as to

construct the offline LP.

5.4 General Bids

The Adwords problem without the assumption of small bids remains

an interesting open question at this time. Firstly, we know from The-

orem 5.1 that Greedy achieves a ratio of 1
2 in the adversarial model.
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Besides, this, for the adversarial model, the only other result known is

for a special case of the problem, called the Equal Bids case.

Equal Bids Case: For each u ∈ U,v ∈ V , biduv = bidu, for some values

bidu. That is, each bidder u makes the same bid across its incident

edges; different bidders can make different bids for the same query.

One can reduce this problem to the vertex-weighted bipartite

matching problem by splitting each vertex u into ⌊Bu/bidu⌋ vertices,

each with a weight of bidu. Thus we have a 1 − 1
e ratio algorithm for

this case.

In the Unknown IID model, a result due to Devanur et al. [36], gives

an improved competitive ratio for the general problem:

Theorem 5.5 ([36]). Greedy achieves a ratio of 1 − 1
e for the

Adwords problem (without any restriction on bids) in the IID arrival

model.

As we shall see in Section 8, this result can be extended all the way

to the submodular welfare problem.

In the same paper, the authors also proved that if the bid to budget

ratio is at most ǫ2

logn , then there is an algorithm achieving a ratio of

1 − O(ǫ). Subsequently, Devanur et al. [37] considered the intermedi-

ate case between small bids and general bids, and improved the result

in [36]. They parameterize the problem by a parameter k, s.t. every

bid is at most 1
k of the corresponding budget. They also reduce the bid

to budget ratio bound required to achieve 1 − O(ǫ), and also prove a

parameterized impossibility result.

Theorem 5.6([36]). There exists an algorithm which achieves a ratio

of 1 − 1√
2πk

for the Adwords problem in the Unknown IID arrival model

(with knowledge of the optimal budget utilization), when the bid to

budget ratios are at most 1
k . If the bid to budget ratios are at most ǫ2,

then the algorithm achieves a competitive ratio of 1 − O(ǫ). No algo-

rithm can achieve a competitive ratio better than 1 − o(1/
√
k) when

the bid to budget ratios are as large as 1
k .
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This algorithm does need a little more information, which is the

budget utilization in the optimal solution on the distributional instance

(see the paper for details). The algorithm works even in the case when

the input distribution changes over time.

Open Question 6. Find an algorithm which beats the ratio of 1
2 in

the adversarial model.

We can imagine two possible candidate algorithms, which, along

with some variants, seem to be promising approaches.

The first is a common generalization of MSVV and Perturbed

Greedy (as asked in Open Question 5). Pick a random seed ru from

U [0,1], for every u ∈ U IID. Let xu be the spend of u at the time v ∈ V

arrives. Allocate v to that neighbor u who maximizes ψ(xu + rubid
′
uv),

where bid′uv = min{biduv,u’s remaining budget}.
The second idea ignores the fraction of budget spent as a parameter:

Pick ru from U [0,1], for every u ∈ U IID, and allocate the arriving v

to the u which maximizes ψ(ru)bid
′
uv, where again, bid

′
uv is the capped

bid. This is basically Perturbed Greedy itself, and the first step

would be to prove that it provides a good ratio for Adwords with the

small bids assumption, in expectation.

For the IID model, while the results in [37] show that we can achieve

a ratio strictly better than 1 − 1
e when the bid to budget ratio is at

most 1
2 (with additional optimal budget utilization information), the

general case is still open.

Open Question 7. Can we obtain a ratio better than 1 − 1
e in either

IID model, for general bids?
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The Online Primal–Dual View

The algorithms that we saw in the earlier sections — Ranking for

the online bipartite matching problem, Perturbed Greedy for the

vertex-weighted version, and MSVV for the Adwords problem with

small bids — were all combinatorial in nature, as was their analy-

sis. In a parallel line of work, the same problems have been solved

using the Online Primal–Dual framework (introduced by Buchbinder

and Naor [22]). In this section we will show how this approach yields

the same algorithms and proofs.

6.1 Adwords with Adversarial Order

Buchbinder et al. [21] studied the Adwords problem with the small

bids assumption using the Primal–Dual approach. They begin with the

Primal–Dual pair of LPs for the (fractional) allocation problem, given

in Figure 6.1.

If the problem were offline, we would know the entire LP in advance

and therefore could solve the primal LP to get the optimal allocation

xuv, as we saw in Section 2. (This would be a fractional solution, but we

can show that rounding a basic feasible solution would lose very little

in objective value.) In the online problem, since we do not know V , we

321
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Fig. 6.1 The Primal–Dual pair of LPs for the fractional version of the allocation problem
in Adwords.

know very little of the LP in advance. As vertices v ∈ V arrive, we get

to see new columns of the LP matrix, and more terms in the objective

function. Let us investigate the structure of the offline solution more

closely, via the complementary slackness conditions:

xuv > 0⇒ biduv(1 − αu) = βv (6.1)

αu > 0 ⇒
∑

v

xuvbiduv = Bu (6.2)

βv > 0⇒
∑

u

xuv = 1 (6.3)

The interpretation is that a feasible pair of primal and dual

solutions {xuv,αu,βv} are optimal if (a) v is allocated to the bidder

who maximizes the scaled bid biduv(1 − αu) (6.1). (b) The dual

variable αu is positive (that is, the scaling factor is less than 1) only for

bidders u who have finished their budget (6.2). Note that (a) implies

that given only the optimal dual variables αu, one can reconstruct the

optimal primal solution by allocating each vertex v to the bidder u

who maximizes biduv(1 − αu).

In the online problem, the entire LP is not known before time, so we

do not have access to the optimal dual variables. The idea in the online

Primal–Dual approach is that one can maintain a best estimate for

the optimal dual variables αu, and continue to use (6.1) as a guide

in making the allocation and get an allocation with good competitive

ratio. As a warm-up, let us analyze Greedy and prove that it has
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ratio 1
2 . We will do this only with the small-bids assumption (although

we know from Theorem 5.1 that the ratio is the same even without it).

A Primal–Dual proof for Greedy:

Theorem 6.1. Greedy achieves a ratio of 1
2 for the Adwords problem

with the small-bids assumption.

Proof. We will construct a primal and a dual solution online, as we

run the algorithm. The primal solution will give exactly the value of

the solution obtained by the algorithm, while the dual will give us a

lower bound on the competitive ratio. We will prove that at the end of

the algorithm: (1) the solutions are feasible for both primal and dual,

and that (2) the primal objective is at least 1
2 of the dual objective.

This will suffice to prove the theorem, as the following sequence of

inequalities shows:

ALG = Primal ≥ 1

2
Dual ≥ 1

2
Dual∗ ≥ 1

2
OPT (6.4)

where Primal and Dual are the values of the solutions we constructed,

Dual∗ is the value of the optimal dual solution, and OPT is the value

of the optimal integral primal solution. The first inequality is the con-

dition (2) above, the second is true because the dual solution we con-

structed is feasible (condition (1)), and the third is true since OPT is

no greater than the fractional optimal primal solution (which is equal

to Dual∗, by strong duality). This proves that Greedy has a ratio of 1
2 .

It remains to describe how we set the primal and dual variables

during the run of Greedy, and to prove that (1) and (2) hold.

We will use the following setting of the dual variables. We begin

with all variables, xuv,αu,βv initialized to 0. At any time, if a bidder

u finishes its budget, then we will update its variable αu = 1. Thus,

αu =

{
0, if u has not yet finished its budget

1, if u has finished its budget

When a vertex v ∈ V arrives, we allocate it to that available neighbor u

with the maximum value of biduv. Note that since every available vertex
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u has αu = 0, this is the same as allocating to the bidder with the high-

est value of biduv(1 − αu) (we will use this form in later algorithms). If

we allocate v to u, then we will update βv = bidu′v ≥ biduv, and xuv = 1.

We can now show that the two conditions hold:

(1) Feasibility. The primal solution is feasible, since we do not

allocate to a bidder once its budget is finished. For every pair u,v,

consider the corresponding dual constraint once the algorithm ends. If

u has finished its budget, then αu = 1, so the constraint holds. If u has

not finished its budget, then αu = 0, so feasibility reduces to proving

βv ≥ biduv. Consider the time that v was allocated. We know that u

was available at that time, and that we allocated v to that available

bidder u′ with the highest bid, and updated βv to that bidu′v. Therefore

βv ≥ biduv.

(2) Primal-Dual ratio. Every time we allocate a vertex v to a bidder

u, the primal objective function increases by biduv. The dual solution

also increases by βv = biduv. In addition, the dual objective increases

by Bu whenever a bidder u becomes full (and αu is increased from 0

to 1). For every full bidder u, Bu is simply the sum of the bids biduv
for vertices v which were allocated to it, and hence already counted in

the primal objective. Thus, the dual objective value is at most twice

the primal objective value at the end of the algorithm.

This concludes the proof that the competitive ratio is at least 1
2 .

Note that we have crucially used the small-bids assumption in this

proof: When we allocated v to u we counted a gain of biduv even if the

remaining budget of u was less than that. We would therefore have to

subtract a value of
∑

umaxv biduv to account for this over-counting.

With the small-bids assumption, this value is very small and does not

reduce the ratio.

Just like we interpreted Greedy as setting the duals αu to 0 or 1,

we can interpret MSVV as finding the best online dual variables αu as

a function of the fraction of budget spent. In [21], the authors provide

an algorithm based on this idea; the algorithm looks different in form,

but turns out to be identical to MSVV.
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For simplicity, we will take all budgets Bu = 1, ∀ u. We make the

following definitions:

ρ :=
1

1 − 1
e

For x ∈ [0,1]:

a(x) :=
ex − 1

e − 1

Note that

a′(x) :=
da(x)

dx
= ρ ex−1

Define

∆uv(x) := a′(x)biduv = ρex−1biduv

At any point of time, let xu be the fraction of budget of u which has

been spent so far.

Algorithm 11: Primal–Dual Adwords (BJN07)

Initialize: αu = 0 ∀ u,βv = 0 ∀ v.

When the next vertex v ∈ V arrives:

If v has no available neighbors, continue.

Match v to that available neighbor u

which maximizes ρ biduv − ∆uv(xu)

Update: αu = αu + ∆uv(xu)

βv = ρ biduv − ∆uv(xu)

Remark. While the allocation rule above looks very different from

anything seen in the earlier sections, we note that this algorithm is, in

fact, identical to MSVV, since

ρ biduv − ∆uv(xu) = ρ biduv(1 − exu−1)

Theorem 6.2 ([21]). Primal–Dual Adwords (BJN07) achieves ratio

1 − 1
e for the Adwords problem with the small bids assumption.
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Proof. We initialize with a feasible primal and an infeasible dual solu-

tion. As in the proof of Theorem 6.1, we will prove that at the end

of the algorithm (1) the solution we build online is feasible for both

primal and dual, and that (2) the primal objective is at least ρ times

the dual objective. This will prove:

ALG = Primal ≥ 1

ρ
Dual ≥ 1

ρ
Dual∗ ≥ 1

ρ
OPT

proving a competitive ratio of 1/ρ = 1 − 1
e .

(1) Feasibility. The primal solution is feasible since we do not allo-

cate to any bidder who has finished its budget. To prove dual feasi-

bility, let us first prove an identity for the value of the dual variable

αu as it evolves during the algorithm. At any time, αu is equal to

the sum of the cumulative increments it got during the algorithm,

whenever a query was allocated to u. Suppose v1, . . . ,vk were allo-

cated to u so far (in that order), and let x1 = 0, . . . ,xk be the spends

of u at the times when v1, . . . ,vk arrive. Then αu at the time vk
has been allocated is

∑k
i=1∆uvi(xi). But xi =

∑i−1
j=1biduvj . So αu =∑k

i=1∆uvi(
∑i−1

j=1biduvj ). Since we assume that every biduv is infinites-

imally small, we can replace this by an integral:

αu =

∫ xu

x=0
ρex−1dx = ρ(exu−1 − e−1) =

exu − 1

e − 1
= a(xu) (6.5)

Thus, at any point in time, αu = a(xu), ∀u ∈ U . To prove dual feasi-

bility, we need to prove that, for every (u,v), βv ≥ biduv(1 − αu), where

these are the values of the variables at the end of the algorithm. Sup-

pose we allocated v to the bidder u′. When v arrives, let x̂u′ and x̂u be

the fraction of budgets spent by u′ and u respectively. Let xu be the

fraction of budget spent by u at the end of the algorithm (x̂u ≤ xu).

We have the following sequence of inequalities.

βv = ρ bidu′v − ∆u′v(x̂u′) ≥ ρ biduv − ∆uv(x̂u)

= biduv(1 − a(x̂u)) ≥ biduv(1 − a(xu))

= biduv(1 − αu)
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The first equality is from the way the algorithm updates the β vari-

ables. The first inequality is because v was allocated to u′ so it had the

maximum value of the expression. The second equality is simply from

the definition of ∆(·) and a(·). The last inequality is because a(·) is an
increasing function, and the last equality is from (6.5).

(2) Primal–Dual ratio. Suppose we allocate v to u. Then the

primal objective goes up by biduv. The dual objective goes up by

∆uv(xu) + βv = ρ biduv. That is, for every v ∈ V , we split ρ times the

increase in the primal objective function between the two dual vari-

ables. Therefore at the end of the algorithm, Primal ≥ 1
ρDual.

6.2 Adwords with Random Order

In [78], the authors asked whether MSVV could be adapted to work

optimally for Adwords with small bids in the IID model. They proposed

“a concrete algorithm that works as follows: each bidder is assigned a

weight, and his effective bid for a keyword is defined to be the product

of the actual bid and his weight. The main question then is whether

for any fixed distribution on queries there is always a set of weights

such that the algorithm achieves 1 − o(1) expected competitive ratio.”

In [35], Devanur and Hayes answered this open question by showing

that there always exists such a set of weights, in the random order

model. They presented a 1 − ǫ competitive algorithm that is also based

on the Primal–Dual method (where the ǫ depends on the quantifying

the small bids assumption).

The main idea behind the algorithm is to solve the allocation LP

from Figure 6.1 on a sample of the queries. Note that we cannot expect

to get a representative sample of all types of vertices from a small

sample, that is, we cannot expect to estimate the distribution of bids.

The insight provided in [35] is to use only the dual variables αu and

βv from the sampled LP, which suffice to guide the allocation problem

for the rest of the query stream (using the complementary slackness

conditions). The authors draw an analogy to PAC learning, in that the

initial query stream is used to learn from a small hypothesis class: not

the distribution of bids, but only the set of dual variables of the bidders.
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More formally, let D̂ be the sampled version of the dual program D

of Figure 6.1, in the following sense: pick an ǫ > 0. Let V̂ ⊆ V be the

first ǫ fraction of the query stream (we assume that we know the length

of the stream). Allocate v ∈ V̂ arbitrarily. For all u, replace Bu by ǫBu.

Include only the dual variables for u ∈ U and v ∈ V̂ , the constraints for

(u,v) with u ∈ U , and v ∈ V̂ .

Let α̂∗
u, for u ∈ U (and β̂∗

v for v ∈ V̂ ) be the optimal solution to D̂.

Now for the rest of the query stream v ∈ V \V̂ , allocate according the

complementary slackness condition (6.1), using the α̂∗.

Algorithm 12: Random Order Adwords (DH09)

Let V̂ be the first ǫ queries in V . Solve D̂.

When the next vertex v ∈ V \V̂ arrives:

Match v to that available neighbor u which maximizes

biduv(1 − α̂∗
u)

Theorem 6.3([35]). Algorithm 12 (DH09) is 1 − ǫ competitive in the

case that

OPT

bidmax
≥ Ω

(
n2 logλ/ǫ

ǫ3

)

where bidmax is the maximum bid over all edges, and λ is the ratio of

the maximum to the minimum non-zero bid over all edges.

This technique of sampling the dual program according to the Ran-

dom Order can be used in the practical setting by getting estimates

from the data from the past. This technique was later generalized to

general packing-covering LPs in [6, 44, 92].

6.3 Bipartite Matching via Randomized Primal–Dual

In Section 6.1 we saw how the MSVV algorithm can be obtained via

the Primal–Dual framework, and how that gives a completely differ-

ent proof. The question arises whether there is a similar technique
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Fig. 6.2 The Primal–Dual pair of LPs for the fractional version of the allocation problem
in vertex-weighted bipartite matching.

to re-interpret Ranking for bipartite matching, and (its generaliza-

tion) Perturbed Greedy for vertex-weighted bipartite matching?

One may try to use Algorithm 11 directly, but the obstacle is that the

updates to the variables would not be “smooth”, since the fraction of

budget spent in these problems is either 0 or 1 (for example, recall

that we crucially used the small bids assumption to convert the cumu-

lative sum into an integral in Equation (6.5)). Indeed, a more basic

question is how to introduce randomization (as required by Rank-

ing) in Primal–Dual update algorithms such as Algorithm 11. In [33],

the authors provide a very elegant idea to side-step the smoothness

problem and introduce randomization by interpreting Ranking and

Perturbed Greedy as randomized dual update algorithms.

The Primal–Dual LP formulation for vertex-weighted bipartite

matching is the same as in Figure 6.1, with the following setting of

the constants: ∀ u,v : Bu = wu, ∀ (u,v) ∈ E : biduv = wu. We repeat

the formulation in Figure 6.2.

The algorithm starts by picking, for each u ∈ U , a random number

ru IID from the uniform distribution on [0,1].

Now, the only structural difference from Algorithm 11 is the defini-

tion of ∆uv, which we define here as:

∆u(ru) = wuρe
ru−1

Note that, unlike in Algorithm 11, ∆u depends on the random variable

ru, rather than the spend parameter x, and it is not defined with respect
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to any particular v. With this difference, the algorithm can be defined

identically to Algorithm 11. We repeat it below:

Algorithm 13: Primal–Dual Vertex-Weighted Bipartite

Matching (DJK11)

For each u ∈ U , pick a random number ru IID from the uniform

distribution on [0,1]. Define ∆u(ru) = wuρe
ru−1.

Initialize: αu = 0 ∀ u,βv = 0 ∀ v

When the next vertex v ∈ V arrives:

If v has no available neighbors, continue.

Match v to that available neighbor u

which maximizes ρ wu − ∆u(ru)

Update: αu = ∆u(ru)

βv = ρ wu − ∆u(ru)

Remark. Note that this algorithm is identical to Perturbed

Greedy (and to Ranking for equal weights), since the vertex is

matched to the available neighbor u maximizing ρwu − ∆u(ru) =

ρwu(1 − eru−1) ∝ wuψ(ru).

As before, to prove that this algorithm achieves 1 − 1
e , we need to

prove the competitive ratio and feasibility.

Primal-Dual ratio. This remains easy, since the primal increment

on allocating v to u is wu, while the dual increment is αu + βv =

∆u(ru) + (ρwu − ∆u(ru)) = ρwu. Again, ρ times the primal increase is

split between the two dual variables, this time according to a random

split.

Feasibility. The primal solution is feasible by construction. For dual

feasibility, we need to prove, for every (u,v) ∈ E, that αu + βv ≥ wu.

Fix a choice of the ru. Recall that the algorithm matches an arriving

vertex v to the available neighbor u∗ which maximizes the value of

ρwu − ∆u(ru). It then sets βv to ρwu∗ − ∆u∗(ru∗) and αu∗ to ∆u∗(ru∗).

Note that the constraint for (u∗,v) is automatically satisfied. However,

a moment’s thought shows that the constraint may not be satisfied

for other (u,v) ∈ E. For example, consider a u �= u∗ s.t. (u,v) ∈ E and

suppose that u was available when v arrived. We know that βv ≥ ρwu −
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∆u(ru). This was sufficient for the proof of Algorithm 11, but it does

not suffice here. For instance, u may never be matched during the

algorithm, so αu = 0 even at the end, and αu + βv could be as small

as 0 + ρwu − ∆u(ru) = ρwu(1 − eru−1). The latter is strictly less than

wu for all ru > 0. On the other hand, if u does get matched later, then

αu = ∆u(ru), and the constraint would be satisfied.

This problem arises precisely because the lower bound on βv of

ρwu − ∆u(ru) is useful only in the case when u does get matched

later and we get a corresponding increment in αu. This problem did

not occur for the Adwords problem (Algorithm 11) because in that

algorithm, αu changes very little in every step, so even if the bidder u

were not to be allocated ever again after v’s arrival, the current value

of αu is good enough to make the constraint satisfied together with

the lower bound on βv .

Thus the dual feasibility constraints may not actually hold for every

choice of the ru. In [33], the authors prove (using proof techniques from

the original proof for Ranking [63]) that they hold in expectation over

the choices of ru. There are two cases to consider.

The first case is the one we considered above, in which v was

matched to u∗ although u was still available at that time. Let τ

be the highest value of ru such that v still prefers to match to u∗

instead of u. One can prove (using an alternating patch argument, sim-

ilar to the proof of Theorem 3.3), that for any value of ru, v is still

matched, so

βv ≥ ρwu − ∆u(τ)

So the expected value of βv is also at least this value. Furthermore, we

can prove that for all ru < τ , u is matched, and therefore αu = ∆(ru).

Thus, in expectation,

αu ≥
∫ τ

ru=0
∆(ru)dru = ∆u(τ) − ∆u(0)

Thus

E[βv + αu] ≥ ρwu + ∆u(0) = ρwu(1 − e−1) = wu

which proves that the constraint holds in expectation.
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The second case is when u is always matched, for all ru. In this case

we simply see that

E[αu] =

∫ 1

ru=0
∆u(ru)dru

which is precisely wu.

Thus we have the Primal–Dual ratio of ρ in each run and feasibility

in expectation. This suffices to prove the competitive ratio of 1 − 1
e in

expectation.

Open Question 8. We noted that Algorithms 11 and 13 are identi-

cal in their structure. Find a hybrid of the two algorithms and their

proofs which provides a non-trivial competitive ratio for a more general

problem. For example, prove a ratio greater than 1
2 for the Adwords

problem with general bids.
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Display Ads

The Display Ads problem is the edge-weighted and capacitated gener-

alization of online bipartite matching. In this problem, the edges of the

graph have weights wuv, and the vertices u ∈ U have capacities cu. As

before, when a vertex in V arrives, it has to be matched to a neighbor

in U , such that each u ∈ U is matched at most cu times. The goal is to

maximize the total weight of the matched edges. This is clearly a gen-

eralization of online bipartite matching and vertex-weighted bipartite

matching, but is not comparable to the Adwords problem.

The first observation for this model is that even for a simple star

graph (that is, when U = {u}, (u,v) ∈ E,∀ v ∈ V , and cu = 1), it is not

possible to obtain any non-trivial competitive ratio. This is because the

problem is identical to picking the maximum from a stream of numbers

which arrive online. Consider any deterministic algorithm: as soon as

the algorithm chooses a number, the adversary can create the arrival of

a much bigger number. A similar argument can be made for randomized

algorithms as well (see [5] for one proof).
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To sidestep this impossibility we have to look beyond the adversarial

order. There are two ways to do this, first in the Random Order input

model, and second in a new input model called the free disposal model.

7.1 Random Order and Secretary Algorithms

In this section, we study the Display Ads problem in the Random Order

model, for the case of matching, that is, ∀ u,cu = 1. When |U | = 1, this

is the classic Secretary Problem [41], for which the optimal algorithm is

as follows (recall that the Random Order model assumes that we know

|V |, the number of vertices to arrive).

Algorithm 14: Classic Secretary

Phase 1: Reject the first |V |/e of the sequence. Let m be the

maximum of these numbers.

Phase 2: Pick the first number which arrives which is larger

than m. (If no such number arrives then declare failure).

Theorem 7.1 ([70, 41]). Algorithm Classic Secretary picks the

highest number with probability at least 1
e , that is, its competitive ratio

is 1
e .

Proof. (intuition) We present the intuition for why this strategy works.

First, note that the algorithm succeeds in picking the highest number

if the following event occurs: the second highest number occurs in the

first phase, and the highest occurs in the second phase. The probabil-

ity of this event is 1
e

(
1 − 1

e

)
= e−1

e2 ≃ 0.23. This already proves a non-

trivial and constant ratio. Note that there are other events in which

the algorithm succeeds, for example, when the third highest number is

in Phase 1, the first and second highest are in Phase 2, but the first

highest arrives before the second highest. These events increase the

probability of success to 1
e .

alet
Comment on Text
Note to typesetter: please use normal roman font (see Algorithm 14 title above)
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In [67], Korula and Pal study the matching problem, and ana-

lyze a natural generalization of Algorithm 14. This algorithm was first

introduced by Dimitrov and Plaxton [38] for the secretary problem on

transversal matroids, for which they proved a ratio of 16 (this is a

special case of our problem, in which, for every v ∈ V , all the edges

incident on v have the same weight). The generalization of the Classic

Secretary algorithm to matching is as follows:

Algorithm 15: Secretary Matching (DP08, KP09)

Phase 1:

– Do not match any vertex in the first half of the vertex

sequence (call this set V1).

– Compute a greedy maximal weight matching M1 on the graph

formed between U and V1.

– ∀ u ∈ U : Let tu be the value of the edge in M1 incident on u

(0 if there is no such edge).

Phase 2: For each subsequent v, match it to that neighbor u

which has the highest weight among those with wuv ≥ tu (if any).

Theorem 7.2([67]). Algorithm 15 (Secretary Matching KP09) has a

competitive ratio of at least 1
8 .

Intuitively, one can think of the algorithm losing a ratio of 1
2 three times:

first in discarding half the arrival sequence, second in using a greedy

matching for the estimates of the threshold weights tu, and finally, due

to the online nature of the second half of the sequence.

Recently Kesselheim et al. [64] significantly improved this result, by

providing a different algorithmwhich achieves the optimal ratio of 1
e , thus

extending the classic secretary result to thematching setting. Their algo-

rithm does not explicitly compute thresholds for the vertices in U , but

updates the solution using locally optimal matchings at each step.
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Algorithm 16: Secretary Matching (KRTV13)

– Do not match the first 1
e fraction of the arriving vertices.

Call this set V ′

– Set the solution M = ∅.
– For each subsequent v ∈ V \V ′:

– Set V ′ = V ′ ∪ v

– Find the optimal matching M ′ on the currently revealed

graph G(U,V ′,E′)
– If v was matched to u in M ′, and if u is available in M ,

then add (u,v) to M .

Theorem 7.3 ([64]). Algorithm 16 (Secretary Matching KRTV13)

has a competitive ratio of 1
e (and this is optimal).

7.2 Adversarial Order and the Free-Disposal Model

In [45], Feldman et al. introduced the free-disposal model which pro-

vided a new approach for overcoming the impossibility of a non-trivial

competitive ratio in the adversarial model. In this model, a vertex u ∈ U

is allowed to be matched more times than its capacity cu, but the algo-

rithm makes a gain only for the cu highest weight edges matched to u.

More precisely, if the algorithm allocates the set of vertices Vu ⊆ V to

u, then, the contribution of a vertex u to the objective function is

fu(Vu) = max
S⊆Vu, |S|≤cu

∑

v∈S
wuv

and the gain of the algorithm, as usual, is
∑

u∈U fu(Vu).

It can be verified that this objective function is submodular. One

can immediately see how this model overcomes the example of the

star graph for the adversarial order described in the beginning of this

section. An algorithm can now pick an edge whose weight is higher than

that of the previously chosen best edge. This would achieve a ratio of 1

(indeed an algorithm can pick all the edges in the star graph example).
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The motivation for this model comes from the Display Ads setting:

in the contract between advertisers and the publisher, the publisher

guarantees a certain number of ad impressions to each advertiser for

a negotiated price; however, the advertiser would not be unhappy if it

gets more impressions, as long as it does not pay extra. The advertiser’s

utility can be taken to be the best set of ads within capacity. In [45], the

authors provided an algorithm for this problem, stated below; in fact,

it is a family of algorithms, based on a choice of a bid-scaling rule βu.

Algorithm 17: Free Disposal (FKMMP09)

When the next vertex v ∈ V arrives:

For each u ∈ U , let βu be the value of the bid-scaling rule.

Allocate v to that u which maximizes wuv − βu.

Note how this algorithm involves additive bid-scaling, as opposed to

the multiplicative bid-scaling that we have seen in the previous sections

(βu is typically independent of wuv).

At any time during the algorithm, let Vu be the set of vertices

already allocated to u. Let nu = |Vu|. Order Vu in decreasing order,

and define wj as the weight of the jth edge in this order. The following

setting of βu corresponds to the Greedy algorithm, which maximizes

the marginal gain in the current step.

βu =

{
0, if nu < cu
wcu, if nu ≥ cu

In the case of matching (cu = 1, ∀u ∈ U), βu is simply the weight of

the edge previously matched to u, which we can then dispose of if we

match the new vertex to u. In [45], the authors noted that since the

utility function of free-disposal model is submodular,Greedy achieves

a ratio of 1
2 (Theorem 8.1).

In [45], the authors described an exponential weighing scheme for β,

which achieves a ratio better than 1
2 for large capacities cu. This uses

the following bid-scaling function β.

βu :=
1

nu

((
1 + 1

nu

)nu − 1
)

nu∑

j=1

wj

(
1 +

1

nu

)j−1
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Theorem 7.4 ([45]). Algorithm 17 (Free Disposal FKMMP09) with

the exponential weighting rule achieves a ratio of 1 − 1
e as cu →

∞, ∀ u ∈ U .

The proof of this theorem is a generalization of the Primal–Dual

technique shown in Section 6.1 for the Adwords problem. In [45], the

result was generalized to the bigger class of problems known as Gener-

alized Assignment Problems (GAP); see Section 2 for the definition.

Open Question 9. Find an algorithm which achieves a ratio better

than 1
2 for the Display Ads problem in the free-disposal model with

small capacities (for example, when all capacities are equal to 1), or

prove an upper bound of 1
2 .
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Online Submodular Welfare Maximization

As mentioned in Section 1, all the matching and allocation problems

studied in this survey can be restated as online welfare maximization

problems. In this setting, there is a universe of elements V , and a set U

of n players. Player u has a valuation function fu : 2V → R+. Elements

in V arrive online, and have to be allocated (irrevocably) to a player

in U as they arrive. At the end of the input stream, the algorithm

would have allocated a set Vu ⊆ V to u. The goal of the algorithm is

to maximize
∑

u∈U fu(Vu).

A function f :2V → R+ is called monotone if ∀ S ⊆ T ⊆ V, f(S) ≤
f(T ). The function f is called submodular if for any two sets X and Y :

f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ). This is also equivalent to the

following: ∀ S ⊆ T ⊆ V, x /∈ T : f(S + x) − f(S) ≥ f(T + x) − f(T ).

A generalization of all the problems we have studied is the online

submodular welfare maximization problem in which the fu are all

monotone submodular functions (in Section 2, we defined the valuation

functions corresponding to the other problems, which shows that they

are submodular). The simplest algorithm for this problem is Greedy,

which allocates the next item v ∈ V to that u ∈ U for which the

marginal gain is the highest:
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Algorithm 18: Greedy for Submodular (LLN06)

When the next vertex v ∈ V arrives:

For each u ∈ U , let Vu denote the set of vertices in V already

allocated to u.

Allocate v to that u which maximizes fu(Vu ∪ {v}) − fu(Vu).

Lehmann et al. [69] proved the following theorem (which generalizes all

the results for the greedy algorithms in the previous sections).

Theorem 8.1 ([69]). Greedy achieves a ratio of 1
2 for the online

submodular welfare maximization problem in the adversarial model.

The proof of this theorem is a generalization of the proof that

Greedy achieves a ratio of 1
2 for the Adwords problem, even with

large bids (Theorem 5.1). We omit the proof here.

The obvious question is: can we do better than 1
2 , as we managed

for the special cases in the earlier sections? Given that there exist bid-

scaling algorithms for these special cases, one may expect a generaliza-

tion to the submodular case using some sort of a randomized bid-scaling

algorithm. Indeed the algorithms in [78] and [5] follow the same intu-

ition of creating a hybrid between two extreme algorithms, by scaling

the bids. Similarly, the Primal–Dual proofs in [21] and [33] also follow

an identical schema. One may expect to design a hybrid of the two

bid-scaling algorithms — randomized scaling for the vertex-weighted

bipartite matching problem, and deterministic scaling for the Adwords

problem with small bids — which can achieve a ratio better than 1
2 for

this problem.

However, in a recent paper [59], Kapralov et al. show that such an

algorithm does not exist (under reasonable complexity assumptions).

In particular they show the following:

Theorem 8.2 ([59]). There is no (randomized) algorithm which can

achieve a competitive ratio of better than 1
2 for the online submodular

welfare maximization problem, unless NP = RP.
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Open Question 10. This result eliminates the possibility of general-

izing the techniques in [5, 78] (or in [21, 33]) to submodular functions.

However, the possibility of having such a generalization still remains an

interesting open question for the Adwords problem without the small

bids assumption, for the Display Ads problem with general (small)

capacities in the free-disposal model, or for other special submodular

functions.

Open Question 11. Find an upper bound for the online submodular

welfare maximization problem without making a complexity assump-

tion.

In [59], the authors further study the online submodular welfare

maximization problem in the Unknown IID model. For this model, one

has to allow vertices in U to be allocated multiple copies of vertices in V .

Thus, we need to first generalize submodular functions to multisets. In

[59], the notion of valuations with diminishing returns is introduced,

which is a natural generalization of submodular functions to multisets:

adding a new item to a multiset S provides at least as much marginal

gain as adding the item to a super-multiset. They prove the following

generalization of Theorem 5.5.

Theorem 8.3([59]). Greedy achieves a ratio of 1 − 1
e for the online

welfare maximization for valuations with diminishing returns in the

Unknown IID model. Unless NP = RP, no algorithm can do better,

even for coverage valuations.
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Applications

In the previous sections, we have seen the richness of the problem land-

scape and of the theoretical techniques in online matching. In this sec-

tion we will see a glimpse of how these algorithmic ideas can be applied

in practice. We will start, in Section 9.1, by taking a unified, high-level

view of all the algorithms we have studied so far, as bid-scaling algo-

rithms, and note some properties of these algorithms that are useful

in practice. In Section 9.2, we will note that, in practice, one needs

to consider several different objective functions, corresponding to the

various participants in the ad ecosystem. We will define some useful

metrics to capture these objective functions. In Section 9.3, we will

give an overview of results published from the Industry, all of which

use some variant of the bid-scaling algorithms. In Section 9.4, we will

briefly describe a feedback-loop based heuristic, inspired by the bid-

scaling algorithms, to capture situations in which the distribution of

the request sequence changes over time. Finally, in Section 9.5, we will

describe throttling-based algorithms for ad allocations. This is an algo-

rithmic framework related to, but different from bid-scaling.
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9.1 A Unified View: Bid-Scaling Algorithms

At a high level, all the algorithms that we have seen so far (except

for the secretary algorithms from Section 7.1) can be considered to be

members of a larger class of Bid-Scaling Algorithms: In this class of

algorithms, instead of making a greedy choice by picking the highest

weight edge, the algorithm first scales down the weights by some scal-

ing factor and then picks the highest. The form of the scaling function

depends on the particular problem setting: the scaling can be deter-

ministic (MSVV, BJN07, DH09 and variants) or randomized (Rank-

ing and Perturbed Greedy); it can be a function of the current

utilization of the budget (MSVV and BJN07) or the utilization of the

capacity (FKMMP09), or a function of a carefully chosen random vari-

able (Perturbed Greedy); it can be multiplicative (MSVV, BJN07,

DH09) or additive (FKMMP09).

It is important to note that the optimal online algorithms take a

very simple form, not too different from Greedy itself. This makes

this class of algorithms useful in practice. While Greedy needs

zero state in memory, bid-scaling algorithms also need very little

state to be carried around, at the most one number per bidder.

Oftentimes in practice, the parameters of the bid-scaling function,

for example, the budget utilization, are already available at run-time.

The algorithms are very lightweight at run time, with small memory

footprint (essentially one extra number per advertiser) and CPU time

(one arithmetic operation to scale the bids). They also do not require

much communication between servers, only updates of the bid-scaling

numbers (or equivalently, information such as the budget utilization),

which can be updated at regular intervals, and are typically already

available in existing systems.

Bid-scaling has become a well-understood scheme for ad allocation,

and has been applied successfully in ad systems in major Internet

Search, Display and Mobile ad companies, as evidenced by the pub-

lished literature (surveyed in Section 9.3). We can classify bid-scaling

algorithms in two categories:

(a) based on the adversarial order assumption,

(b) based on some assumption on the distribution of the query

sequence.
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The latter are based on the sampled LP technique described in

Section 6.2 in which we compute the dual variable values for the sam-

pled LP, and thereby obtain a near optimal solution for the entire

problem, provided that the distribution of queries does not change over

time. Clearly, the adversarial algorithms have two advantages: (1) they

are much easier to implement, since they do not require solving any

LPs, and (2) they guarantee a certain performance even if the query

sequence does not follow the estimated distribution. Furthermore, some

of these algorithms perform much better than their worst-case guaran-

tees if the queries do come from a static distribution. On the other

hand, the sampling based techniques provide much better guarantees

if we have a good estimate of the distribution of the queries.

9.2 Objective Functions Used in Practice

In the theoretical analysis in the previous sections, our objective has

always been the efficiency of the allocation, that is, we wish to max-

imize the total weight of matched edges. Efficiency captures the total

value to advertisers and the platform (since the efficiency is shared

between the two via payments, as determined by the pricing mecha-

nism). In practice, we need to look at more detailed objective functions,

corresponding to the three different participants in the ecosystem: the

quality of ads shown to the users, the Return on Investment (ROI) to

advertisers and the short-term revenue to the ad platform. Depend-

ing on the information available, we can formulate different proxies for

these abstract objective functions:

• Quality. If we have access to a quality score qi of an ad

impression i, then an obvious metric is the average quality of

ads shown,
∑

i∈I qi/|I|, where I is the set of ad impressions

shown. One may try to formulate different ways of defining

the quality scores qi. A simple method if to use the click-

through rate of the impression (CTRi) as a proxy for the

quality score. CTRi is the probability that the user will click

on the ad impression i (when shown for a given query at a

given position on the page), as predicted by the platform’s

machine learning algorithms.
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• Return on Investment (ROI). If we have an estimate

of the conversion-rate (CVRi) which is the probability with

which a user “converts”, that is, makes a purchase after click-

ing on the ad impression i, and if we have an estimate of the

value Vi of the purchase to the advertiser, then ROI can be

defined as
∑

i∈I CTRiCVRiVi∑
i∈I CTRiCPCi

. Here I is the set of impressions

shown for this advertiser, and CPCi is the cost per click

for this impression. The numerator is the expected value

to the advertiser from the shown ad impressions and the

denominator is the expected spend. Thus, this is the value

to the advertiser per dollar spent. One may make simpli-

fying assumptions on CVR or value in the absence of that

data. Another proxy for ROI can be profit per dollar spent,∑
i∈I CTRiCVRi(Vi−CPCi)∑

i∈I CTRiCPCi
.

• Revenue. The short-term revenue is simply∑
i∈ICTRiCPCi.

There are other objective functions, such as fairness to different

advertisers, which are also important. In the remainder of this sec-

tion, we describe some of the work published from the industry which

describes the use of the algorithms from this survey, or their variants.

Some of these papers work with high level objective functions, such

as the efficiency, while some look at the detailed objective functions

mentioned above.

Open Question 12. Formulate an online matching problem using

these detailed objective functions, perhaps in a multi-objective setting

(see Open Question 18), and find optimal algorithms.

9.3 Published Results from the Industry

Here, we survey some of the published results which apply bid-scaling

algorithms in practice. Much of the published work is for the domain of

Display Ads. In this setting, advertisers and publishers sign contracts

of the following form: The publisher guarantees to deliver X ad impres-

sions for the advertiser based on the advertiser’s targeting criteria
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(website targeting, demographic targeting, geographic targeting, etc.).

The advertiser promises to pay the publisher Y dollars in exchange.

The risk in this case, is borne by the publisher, that is, if it fails to

deliver the promised number of impressions, then there would typically

be some re-compensation. Clearly, this is a matching problem as in

the Display Ads problem of Section 7, although with lower bound

constraints on capacity.

In a paper from Google [44], the authors describe how the bid-

scaling algorithms from Section 7, as well as those based on the

sampled-LP technique (introduced in [35], and generalized in [6, 36, 44])

can be applied in the Display Ads system to achieve gains over the

simple greedy allocation. In particular, they simulate these algorithms

over real data, where the edge weights are taken to be the “quality-

scores” of an advertiser for an ad-slot. The experimental results show

that the bid-scaling algorithms from Section 7 improve the efficiency

of the allocation over Greedy by 10 or more percentage points, and

the LP sampling based algorithms improve even further. The upper

bound for comparison is provided by the offline optimum which is the

solution to the corresponding allocation LP. This paper also introduces

the notion of fairness of an allocation as another objective function.

Intuitively, the idea is that maximizing the sum of utilities may end

up giving a certain advertiser a very bad set of impressions. They

capture this notion via a fairness metric, and provide experimental

evaluation of the adversarial and sampled LP bid-scaling algorithms

for the fairness metric. Refer to [44] for the detailed experimental

results.

In a paper from Microsoft [26], the authors describe an algorithm to

satisfy the capacity constraints for advertisers in a Display Ads setting.

As opposed to the problem described in Section 7, here the capacity

constraints are lower bounds, representing the demand of an advertiser.

In [26], the authors define the WaterLevel algorithm (which, as we

saw in Section 6.2, generalizes Balance to the case of unequal bids)

and describe how it can be used for this problem (see [26, 36, 34] for the

technical details). In a different paper from Microsoft [29], the authors

show how the Primal–Dual based algorithm for Adwords (Sections 6.1

and 6.2) can be adapted for performance-based display advertising.
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They also show a control-loop based heuristic based on the algorithm,

and provide experimental evaluation, which show significant gains for

these algorithms.

In a paper from Yahoo! [92], the authors describe an algorithmic

framework for the Display Ads problem. The main idea is along the

lines of the Primal–Dual algorithms of Section 6.2, although there are

some differences. The main components of this system include: (a) a

convex programming formulation for the allocation problem with a

general convex objective function, (b) showing how KKT conditions

provide a way to use the dual solution to obtain the optimal primal

solution, and (c) a method to sample the input in a biased manner

so that small advertisers are not forgotten in the optimization. (a)

and (b) generalize the techniques of the previous sections to convex

programs (see also [32] for another convex program setting). They name

their solution a Compact Allocation Plan, since (as with all bid-scaling

algorithms) it only needs to store one dual variable per advertiser.

9.4 Adaptive Bid-scaling Heuristics

As we noted in Section 9.1, the two types of bid-scaling algorithms

that we have seen, adversarial and distribution based, make different

assumptions on the statistics of the query sequence. The former make

no assumptions and provide worst case guarantees. The latter assume

that the distribution is static, so an initial sample of the sequence

(or a sample from previous days’ logs) is representative of the entire

sequence. However, the query stream over a day may not be uniform,

that is, the distribution may change over time. For example, there may

be bursty, unpredictable traffic, due to unforeseeable events. More rou-

tinely, there are a large number of time based effects, namely time-

of-day, day-of-week, seasonality, holidays, etc. Each of these can be

captured in theory, but it is difficult to capture them all.

One approach is to use the distribution based techniques, but resam-

ple regularly and recompute the sampled LP’s dual variables. Another

approach would be to simply use the algorithms designed for the adver-

sarial model (recall that these often provide hybrid guarantees, in the

worst and IID case [26, 79]), or hybrid algorithms which use sampled
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variables as well as the worst-case bid-scaling formulae (for example,

[72]). A third approach may be to introduce a time-varying distribu-

tional input model (see [7, 37] for some approaches along this direction).

From a practical viewpoint we may ask if there are any simple

heuristics that we can extract from the intuition of the algorithms which

could work well in dynamically changing environments. In fact, there

is a simple and practical control scheme which updates the bid-scaling

numbers via a feedback loop, which was introduced in the paper on

Adwords [78], which we quote below. The authors first ask if the guar-

antee of the MSVV algorithm can be improved upon if there is a static

distribution of queries:

“. . .suppose the queries are chosen from an arbitrary but fixed prob-

ability distribution. Is there a variant of the basic algorithm given in

this paper that achieves a 1 − o(1) expected competitive ratio in this

setting, while still providing the 1 − 1
e worst case guarantee? Such an

algorithm would be very desirable, since it is not unreasonable to expect

the queries to be drawn from a fixed distribution for some time window,

and for this distribution to either drift over time or to make sudden

jumps (triggered by external events/time of day). We propose a con-

crete algorithm that works as follows: each bidder is assigned a weight,

and his effective bid for a keyword is defined to be the product of the

actual bid and his weight. The main question then is whether for any

fixed distribution on queries there is always a set of weights such that

the algorithm achieves 1 − o(1) expected competitive ratio.” Note that

for a fixed distribution, the algorithm of [35] (and the generalizations

in [6, 44]) provides precisely such a guarantee.

Continuing further, the authors consider the case when the distri-

bution is not static, and provide a simple feedback loop based control

scheme to update the weights as the distributions change: “The fol-

lowing online heuristic might provide a quick way of computing such

weights: consider the allocation of queries for some window of time

under the current weights. Adjust the weight of a bidder upwards if that

bidder spends less than his fair share of his budget during this time win-

dow, and downwards if he spends more than his fair share of the budget.

Repeat this process after each such window of time.” This is a simple

heuristic that captures the intuition behind the MSVV and related
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algorithms, and adapts naturally to changing distributions. Note that

a control algorithm along these lines has been reported in the experi-

mental literature in [29], which was described in Section 9.3.

9.5 Throttling

Throttling is a scheme orthogonal to bid-scaling, described in two

papers, out of Google [60] and Microsoft [25]. We will first follow the

former setup, before describing the results from the latter.

In the throttling setting, as usual, there is a bipartite graph

G(U,V,E), with advertisers U , advertiser budgets Bu for u ∈ U , and a

query sequence of the vertices V . The allocation problem is to deter-

mine, for each v ∈ V , the advertisers whose ads are to be shown for v.

In the previous sections, we determined this by scaling the bids and

then choosing the ads with the highest scaled bids — that is, the ads

participate in the auction for v with their scaled bids. In the throttling

setting, we do not modify the bids, but explicitly allow or disallow par-

ticipation in the auction1 for v. Thus for each v, throttling determines,

for each u ∈ U , whether it can participate in the auction for v or not

(in which case it is said to be throttled).

Throttling was first introduced as a simple engineering scheme to

ensure two goals: (1) each advertiser spends at most its budget, and

(2) it spends its budget in a smooth manner. This was achieved by

throttling each advertiser u perfectly randomly: for each v, throttle u

independently with probability pu, which is carefully chosen so that u

spends exactly its budget at the end of the day. In [60], the authors

introduce the notion of optimized throttling, which throttles advertis-

ers in a non-uniform manner so as to maximize a chosen objective

function.

A new input model: In [60], the authors introduce a new stochas-

tic input model for the Adwords problem. Instead of assuming that

queries are picked IID from a distribution, this model makes the follow-

ing weaker assumption. Choose an auction-time per-advertiser metric

µu(v) (different choices of µ will result in the optimization of different

1This is equivalent to allowing bid-scaling by 0 or 1 only.
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Fig. 9.1 The estimated distribution of spend according to the metric µ. τ is the threshold
for the algorithm.

objectives; for concreteness, take this to be the click-through rate for

an impression of u’s ad on the query v). The stochastic assumption is

that, for each u ∈ U , the algorithm knows the distribution of µu. More

precisely, for x ∈ R, let Su(x) be the expected spend of advertiser u

on queries v ∈ V , s.t. µu(v) ≥ x. The assumption is that the algorithm

knows Su. For example, taking µ to be the CTR, this says the algo-

rithm knows the expected spend of u on queries in which its CTR is at

least x. In other words, it has an estimate of u’s spend sliced by CTR.

Figure 9.1 depicts the estimated distribution.

The allocation problem is to determine the subset Vu ⊆ V of queries

for which we allow the advertiser’s ad to participate in the auction

(that is, not throttle), so as to (1) satisfy the budget constraints and

(2) optimize the chosen objective function.2

Online Knapsack Problem with estimates: The main observation

is that with the above distributional assumption, we can formulate

optimize throttling for an advertiser as an Online Knapsack Problem

in which we have an estimate on the value and size of each item. To

see this, let us fix an objective function: maximize the value that u gets

2By taking a hybrid of such an optimized throttling scheme with the random throttling
scheme (for example, by randomly choosing, for each query, which throttling scheme to
follow), we can achieve an improvement in the objective function while spending the
budgets at a reasonably smooth rate as well.
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(that is, its ROI). This becomes the following knapsack problem:

max
Vu⊆V

∑

v∈Vu

νuCTR(u,v)

s.t.
∑

v∈Vu

CTR(u,v)CPC(u,v) ≤ Bu

Here, νu is u’s value-per-click,3 CTR(u,v) is the click-through rate, and

CPC(u,v) is the cost-per-click for u’s ad on v.

The offline greedy approximate solution for the knapsack problem is

to allow u to participate for those v which maximize the ratio of value to

size, that is, νu/CPC(u,v) which is proportional to 1/CPC(u,v) (since

the value-per-conversion νu is assumed to be fixed for a given advertiser

u). This is equivalent to picking a threshold τ and throttle u whenever

CPC(u,v) > τ ; the threshold τ should be chosen so that this scheme

would spend the entire budget Bu.

Now note that, with our distributional assumption, this offline algo-

rithm can be implemented online as follows:

Algorithm 19: Optimized Throttling for advertiser value

Offline Step:

– Take µu(v) = CPC(u,v).

– Estimate the spend distribution of u according to µ.

– Estimate the threshold τ from the distribution.

When the next vertex v ∈ V arrives:

– If CPC(u,v) ≤ τ , allow u to participate in the auction for v.

Else throttle u.

Figure 9.1 shows how we choose τ . Note that the objective function

of maximizing clicks for u led us to use µ = CPC; another objective

function, for example, maximizing the quality of ads shown to the users

will naturally lead to other metrics.

Optimizing for all advertisers simultaneously: We saw how a

single advertiser’s budget throttling problem is a knapsack problem.

3The advertiser really gets a value on a sale. This can be incorporated into the knapsack
problem by estimating the conversion-rate of the ad, CVR(u,v) (that is, probability of a
sale given a click)
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However, when we try to apply this to optimize for all advertisers

together, then a new problem gets introduced. Because advertisers par-

ticipate in the same auctions, their distributions are not really indepen-

dent. In fact, any throttling decisions made for one advertiser u will

necessarily affect the distribution of another advertiser u′ who targets

the same auctions. This is due to two different types of interactions: if

we show an impression for u, then this can push an ad for u′ further
down the page, thus reducing its CTR; secondly, in a second-price auc-

tion, an ad for u can set the CPC of the ad for u′. In [60], the authors

suggest a heuristic to incorporate these interactions in the decision:

the idea is to iterate over the advertisers in each auction, making the

decision whether to throttle an ad or not based on the decisions for

the other advertisers. The same heuristic is used when estimating the

distributions. Another issue, when optimizing for multiple objectives is

fairness among the advertisers, which is described below.

In [60], the authors compare different optimized throttling schemes

to a global optimum obtained by solving a large configuration LP, as

described in [2]. They simulate these schemes on experimental data,

and show how throttling can be used to maximize ROI for advertisers

as well as the average quality of ads.

In [25], the authors also study optimized throttling for the ROI

objective. They simulate an optimized throttling scheme and demon-

strate significant gains in the objective function. The main theoret-

ical result in the paper is on fairness while optimizing for multiple

advertisers.

Best-effort/regret-free throttling: One effect which arises when

optimizing for multiple advertisers is that a global optimum (say, to

maximize the total number of clicks) may not be fair, in the sense that

it may maximize the total number of clicks by increasing the clicks

for one set of advertisers at the expense of another. Both [60] and

[25] introduce a game-theoretic notion of fairness, called best-effort

optimization in [60] and regret-free optimization in [25]. A throttling

based allocation is called best-effort or regret-free, if, for each u ∈ U ,

given the throttling decisions for all u′ �= u, the allocation makes u
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participate in the best subset Vu, while keeping the spend of u at most

Bu. Such an allocation would essentially be an equilibrium in that we

optimize for each advertiser, given the choices we made for the others.

In [25], the authors prove that a regret-free randomized throttling-based

allocation exists.
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Related Models and Future Directions

In the final section, we briefly describe some related models, without

going into the details. The aim is to provide a sense of the richness of the

problem domain even outside the landscape described in the previous

sections. We end with a (necessarily partial) list of open problems of

interest.

10.1 Related Models

10.1.1 Matching with Stochastic Rewards

In many applications, including Internet Advertising and Crowdsourc-

ing, our goal is not just to maximize the number of matched edges, but

to maximize the number of matched edges which eventually become

successful (that is, get a click, finish the task, etc.). We typically have

an estimate of the probability of a matched edge becoming success-

ful. This was formalized by Mehta and Panigrahi [77] in the following

model: when a vertex in V arrives, we see its incident edges; each edge e

now has a (known) probability pe of becoming successful if matched.

The algorithm has to decide which neighbor u to match v to. After the

decision, a coin is flipped with probability puv and we get a reward if

the edge is successful. If not, then v is lost without a successful match,

354
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while u can be tried again (each vertex can be matched at most once).

The goal is to maximize the number of successful matches.

This now becomes a stochastic optimization problem: the algorithm

gets a gain only after the edge is chosen, based on its probability of

success. This model captures the notion of pay-per-click (the advertiser

only pays upon a click) and the fact that the system knows the click-

through rate of an ad on a ad-slot. In the crowdsourcing application, the

probabilities represent the successful handling of a task by a worker.

In [77], the authors proved that this online, stochastic problem

is strictly harder than the (non-stochastic) online bipartite matching

problem from Section 3 (in which pe = 1 ∀e ∈ E). They prove that no

algorithm can do better than 0.62 (recall that 1 − 1
e ≃ 0.63). Greedy,

which allocates the vertex v to that available neighbor u with the high-

est value of puv, still achieves 1
2 , but no better. They provided two

algorithms, Stochastic Balance and Ranking, which achieve 0.56

and 0.53 when the probabilities on the edges are all equal and very

small (and a curve of competitive ratios as the probabilities range from

0 to 1). An interesting technical observation made in this paper was to

show the equivalence of the stochastic rewards matching problem to the

Adwords problem in which the budgets are picked from an exponential

distribution, and remain unknown until exhausted.

Open Question 13. Solve the problem in the general case when the

pe can be different. An algorithm for this is proposed in [77], but the

analysis has technical difficulties. Either analyze this algorithm, or find

a different algorithm.

Open Question 14. Consider the variant of this problem in which

each edge has a weight as well as a probability of success; this is inter-

esting in the free-disposal model or in the random arrival model, as it

would generalize the problems in Section 7 (Note that in variants of

problems such as Adwords or Display Ads with assumptions such as

small bids or large capacities, Chernoff bounds can show that maxi-

mizing achieved value reduces to maximizing expected value).
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10.1.2 Matching on General Graphs

All the problems in this survey are on bipartite graphs. This fits the

motivating applications, where there are always two sides to the market

with well-defined demand and supply, and only one side entering online.

However, in other applications, most notably the kidney exchange mar-

kets (see [87] for details), there is only one type of an agent. This results

in a matching problem on general graphs. The online version of match-

ing on general graphs is a bit tricky to define: an arriving vertex can

either be matched to a previously arrived neighbor, or kept alive for

later (in other words, edges can only be matched when their second

end-point arrives). It can be easily seen that no deterministic algo-

rithm can do better than 1
2 in the online setting (which is achieved by

Greedy): for example, the second arriving vertex has an edge to the

first, and if the algorithm matches that edge, then two more vertices

will arrive with an edge to the first two respectively; if the algorithm

does not match it, then the sequence ends. We can modify this example

to prove that no randomized algorithm can do better than 2
3 .

The online version on general graphs may not be very well moti-

vated, but there is still value in finding a fast simple offline approx-

imation algorithm as opposed to the optimum algorithm, especially

when the data is very big. This question was first asked by Dyer and

Frieze [40], and the first non-trivial result was due to Aronson et al. [9]

who showed that the algorithm which picks a random unmatched ver-

tex and matches it to a random unmatched neighbor achieves a factor,

incrementally greater than 1
2 , of 0.50000025.

Open Question 15. Improve the analysis, or find a better algorithm.

In particular, can we analyze the following algorithm motivated by

Ranking: Process the vertices in a Random Order, matching the next

vertex to the highest available neighbor in the same order (which would

necessarily be lower in the order than itself). A second variant (moti-

vated by the analysis of Ranking in the Random Order model) would

be to process vertices in one Random Order, and choose the neighbor

according to another Random Order.
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10.1.3 Matching with Concave Utilities

In [32], Devanur and Jain generalize the Adwords problem with small

bids by introducing the problem of online matching with concave

returns. Here the budget Bu of bidder u is replaced by a concave func-

tion Mu: if u is allocated an amount of x, then it receives a return

of Mu(x). Note that the Adwords problem uses the concave func-

tion Mu(x) = x if x ≤ Bu and M(x) = Bu if x > Bu. The motivation

for studying the concave returns problem comes from various settings

where the utility is not simply additive with a budget bound, for exam-

ple, to model the cost of under-delivery in Display Ads or to provide

proportional fairness. Using the Primal–Dual paradigm and convex pro-

gramming duality, the authors prove that for any given concave func-

tion M , there is a number F (M) ≤ 1, so that (a) there exists an algo-

rithm which attains a factor of minuF (Mu), and (b) in the case that

all Mu =M , no algorithm can do better than F (M). Additionally, the

authors prove an interesting tight connection between the analysis of

the competitive ratio and the upper bound example for the algorithm,

for any given concave function.

10.1.4 AdX: Ad Exchange Allocation and
Selective Call-Outs

In an Ad Exchange (AdX) setting (see [83] for a survey article), there

is an exchange which auctions online ad requests from many publish-

ers to many Ad Networks (a network is an agent for a collection of

advertisers). In [24], Chakraborty et al. present an ad allocation model

in this setting. The new feature of the exchange setting is that the

exchange does not know the bids of the advertisers for the arriving

query (these are known only by the corresponding network). Thus,

when a ad request arrives, the exchange has to call-out to each network

to solicit bids for the impression. Each network that is called out to

will respond with a bid for this impression (from the set of bids of the

advertisers it represents). Now, if the exchange could call-out to all the

networks for all arriving requests, then then problem would reduce to

a problem of the style we have seen in earlier sections. However, the

networks are also rate-limited in that they can only handle some limited
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number of call-outs per time period (consider that the exchange has a

very large traffic of arriving requests, but many small networks can be

infrastructure-limited).

In [24], the authors model the setting in the following manner: (i)

the request arrival is in the Unknown IID model, (ii) each network Ni

has a rate limit ρi which is the query-per-second (QPS) of call-outs it

can handle (iii) for each query and for each network Ni, the exchange

knows the distribution of the bids of Ni’s advertisers. When a query

arrives, the exchange has to determine a subset of the networks to call-

out to, and then choose the maximum among the returned bids. The

objective is to maximize the total value of the allocation, while keeping

all call-out constraints satisfied. The trade-off is between calling out to

a network with a good bid-distribution for the immediate query and

keeping space in its call-out constraint for future call-outs.

Under these assumptions, the authors give an algorithm which

achieves a 1 − 1
e ratio. Similar to the algorithm in Section 6.2, the algo-

rithm first obtains a random sample of the query sequence from the ini-

tial queries, solves an LP on the sample, and uses parameters from the

sampled LP to solve the rest of the problem online. The authors prove

a theorem of the following form (here m is the length of the sequence,

n is the number of networks, and L is the maximum bid value):

Theorem 10.1 ([24]). For any ǫ,δ > 0, if the offline optimum is

at least δm, then given a sample of size Õ
(
n2L
δǫ

)
, the algorithm

achieves a ratio of 1 − 1
e − ǫ. The algorithm has a preprocessing time

of poly
(
n2L
δǫ

)
, and takes O(n logn) time per request.

10.1.5 Stochastic Matching in the Edge-probe Model

Another variant of matching that has been studied is that of stochastic

matching in the edge-probing model, introduced in [28]: in this problem,

motivated by online dating as well as kidney exchanges, we know the

vertices V of a (general, non-bipartite) graph, but we do not know the

edges, only the probability p(u,v) that the edge (u,v) exists. We can

probe a pair of vertices u,v to see if it materializes (that is, (u,v) ∈ E),
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and if it does then we are committed to choosing that edge in the

matching. There is a further constraint that each vertex v can only

be probed a limited number tv of times, called its patience parameter.

Note that, if all the patience parameters are infinite, and the graph

is bipartite then we can use Ranking to achieve a factor of 1 − 1
e ;

for general graphs, Costello et al. [31] provide an algorithm achieving

a ratio of 0.573. For the problem with general patience values, Chen

et al. [28] gave a greedy algorithm with a factor of 1
4 , the analysis of

which was improved to 1
2 by Adamczyk [3]. Bansal et al. [16] study

the problem on weighted graphs and provide an LP-rounding based

algorithm with factor of 1
4 , and factor 1

3 for weighted bipartite graphs.

They also study an online version of the problem (which turns out

to be a generalization of online matching in the Known IID model as

studied in Section 3.3) providing a ratio of 1
7.92 . Note that, with general

patience parameters, the comparison is necessarily to the best adaptive

algorithm, rather than the optimal in hindsight.

10.1.6 Other Variants Studied in the Literature

The literature on online matching and allocations has grown substan-

tially in the last several years, with several new models and problems.

We mention only a few additional ones here, without details. Goel and

Mehta [50] introduced the model of decreasing bids, in which the bid

of a bidder for a query is dynamic: the bid reduces along a curve, as it

gets more clicks for ads on that query. This captures the notion that

the advertiser has an inventory capacity, and the early clicks are worth

more to it than the later ones. This was also studied by Buchbinder

et al. [20] in the specific practical setting of frequency capping. Azar

et al. [12] formalize and study the Adwords and online bipartite match-

ing problems in the second-price setting (in the second-price matching

problem one gets a gain from allocating a vertex only if there exists

one more available neighbor at that time). They show that the prob-

lem becomes more difficult, in both the online and offline settings. In

particular, they prove that the offline problem is APX-hard and pro-

vide a 1
2 -approximation algorithm. For the online problem, they show

an upper bound of 1
2 , and an algorithm generalizing Ranking which

achieves a ratio close to 1
5 .
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Alaei et al. [7] introduced the AdCell problem, motivated by mobile

advertising, which is a generalization of the Adwords problem in the

following sense: each query v belongs to a cell-phone user, and each

user has a capacity on the number of ads that can be shown to it, so as

to not give a bad experience. This introduces a capacity on subsets of

the query side of the graph as well. This becomes a generalization also

of the classic secretary problem (Section 7.1), thus they study it in a

stochastic model, introducing the model of non-identical distributions

to this literature.

10.2 Open Problems

We have already listed some open questions as they came up through

the previous sections. Here is a list of some more open questions related

to future directions rather than to specific problems that we saw before.

Progress on these would be of considerable interest.

Open Question 16. Find a new problem in the landscape of problems

(Figure 2.1) which is theoretically elegant and practically compelling.

Likewise, introduce new input models which capture more aspects of

the practical setting, and are still amenable to theoretical analysis.

Open Question 17. Online matching with edge arrivals: Edges

of the graph arrive online, and an arriving edge can be selected in

the matching when it arrives. Clearly, a Greedy algorithm achieves 1
2

since it constructs a maximal matching. Also, it can be easily shown

that no deterministic algorithm can achieve better than 1
2 . Find optimal

randomized algorithms for this problem. Consider the same problem in

the random arrival model, in which edges arrive online. Analyze the

performance of Greedy in this model. Find optimal algorithms.

Open Question 18. Online Matching with multi-objective

optimization: As we noted in Section 9, there are multiple objec-

tive functions, corresponding to the multiple parties involved in the

ecosystem. The problem formulations in this survey have focused on
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maximizing the efficiency of the matches in an abstract sense. An open

direction would be to formulate a multi-objective optimization ques-

tion based on the different objective functions, and provide algorithms

for the same. (Work in this direction has been reported in currently

unpublished results [4, 66]).

Open Question 19. Online Matching with arrivals and depar-

tures: Suppose vertices on both sides can arrive as well as depart.

Two adjacent vertices can be matched only while both are present.

Note that the classic problem from Section 3 is a special case, with

vertices in U arriving at time 0 and departing at infinity, while the ith

vertex in V arriving and departing at time i. A Greedy algorithm

again gives a ratio of 1
2 . The question is what arrival–departure pat-

terns allow for algorithms that beat 1
2 (can we beat 1

2 irrespective of

the arrival–departure pattern?).

Open Question 20. Budget Oblivious Algorithms: The algo-

rithms in [21, 78] for Adwords with small bids need to know the bud-

get value for each bidder. Consider instead the budget-oblivious model:

The budget of a vertex u ∈ U is unknown until precisely the time that

it gets exhausted. Note that Greedy works in the budget-oblivious

model, and gives a ratio of 1
2 . Find an algorithm which beats 1

2 in this

model, or prove that one cannot beat 1
2 in this model. Practically, one

can imagine that an algorithm that works with lesser information may

be more robust. But the motivation for this problem is mainly theoret-

ical and comes from the problem of matching with stochastic rewards

(Section 10.1.1): In [77], the authors reduced this problem to an allo-

cation problem in which the algorithm does not know the budgets, but

knows that the budgets are picked from a certain distribution. This

open problem asks if the distributional assumption can be dropped.

Open Question 21. Find applications of Perturbed Greedy or Bid-

Scaling algorithms, possibly outside the domain of online matching.
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Open Question 22. Find more applications of the randomized

Primal–Dual method, possibly outside the domain of online match-

ing, and even possibly for offline problems. Reformulations of known

algorithms in this framework would also be interesting.

Open Question 23. Note that the algorithms in the Primal–Dual

framework use multiplicative updates to update the dual variables.

The algorithms for Adwords and vertex-weighted matching use a trade-

off function similar to the use of potential functions, and also utilize

a “soft-max” choice function. Find stronger connections of bid-scaling

algorithms with the multiplicative-weights update algorithms and prob-

lems (see the survey [10]). Find connections of bid-scaling algorithms

to potential function based algorithms (for example, those used for

makespan minimization in scheduling [11]).

Open Question 24. Find a natural restriction on graphs (for exam-

ple, on the degree distribution, or on the distribution of the input query

stream) which allows for simple online algorithms to perform close to

optimally (one such example, from Section 3.2, is that Ranking has a

ratio close to 1 in the Random Order model when the graph has many

perfect matchings).
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[88] D. B. Shmoys and É. Tardos, “An approximation algorithm for the generalized
assignment problem,” Math. Program, vol. 62, pp. 461–474, 1993.

[89] A. Srinivasan, “Budgeted allocations in the full-information setting,” in
APPROX-RANDOM, pp. 247–253, 2008.

[90] L. G. Valiant, “The complexity of computing the permanent,” Theoretical Com-
puter Science, vol. 8, no. 2, pp. 189–201, 1979.

[91] V. V. Vazirani, “A theory of alternating paths and blossoms for proving cor-
rectness of the general graph maximum matching algorithm,” Combinatorica,
vol. 14, no. 1, pp. 71–109, 1994.

[92] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram, “Optimal online assignment
with forecasts,” in ACM Conference on Electronic Commerce, pp. 109–118,
2010.
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