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ABSTRACT

Misinformation has become a common part of our digital media
environments and it is compromising the ability of our societies to
form informed opinions. It generates misperceptions, which have
a�ected the decision making processes in many domains, includ-
ing economy, health, environment, and elections, among others.
Misinformation and its generation, propagation, impact, and man-
agement is being studied through a variety of lenses (computer
science, social science, journalism, psychology, etc.) since it widely
a�ects multiple aspects of society. In this paper we analyse the phe-
nomenon of misinformation from a technological point of view. We
study the current socio-technical advancements towards address-
ing the problem, identify some of the key limitations of current
technologies, and propose some ideas to target such limitations.
The goal of this position paper is to re�ect on the current state
of the art and to stimulate discussions on the future design and
development of algorithms, methodologies, and applications.
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1 INTRODUCTION

Misinformation generates misperceptions, which have a�ected
many domains, including economy [4], health [24], climate change
[44], foreign policy [37], etc. It has become a common part of our
digital media environments [26], and it is compromising the ability
of our societies to form informed opinions [22][35][11]. In 2016,
post-truth was chosen by the Oxford Dictionary as the word of
the year, after achieving a 2000% increase “in the context of the EU
referendum in the United Kingdom and the presidential election in
the United States”.

Today, around half the world’s population have access to the
Internet, where they can create, propagate, and consume informa-
tion instantly and globally. Although misinformation is a common
problem in all media, it is exacerbated in digital social media due to
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the speed and ease in which posts are spread, and the di�culty of
providing countervailing corrective information.1 The social web
enables people to spread information rapidly without con�rmation
of truth, and to paraphrase this information to �t their intentions
and preset beliefs [47]. An example is this public message on Face-
book that went viral in Dec 2015: This is Dearborn Michigan after

the radical Islamic attack in California! These are Isis �ags and Isis

supporters folks but the media has not reported because of politi-

cal correctness, the demonstration, however, was anti-Isis.2 Recent
news data analysis also showed that fake news spread far more
virally than real news.3

Several social media platforms have recently gone under heavy
criticism for becoming a ripe environment for the spread of misin-
formation, including fake news, mistruths, and hoaxes. It is being
accused of clouding people’s opinions and judgement with widely
shared misinformation during major events, such the US presi-
dential elections, and the UK’s Brexit referendum.4 In reaction,
Facebook and Google announced plans for combating the spread
of fake news on their platforms.5 However, while some of these
plans are materialising, they are deemed to o�er partial solutions
to an increasingly complex socio-technical problem. People and
current technologies are yet to adapt to the age of misinforma-
tion, where incorrect or misleading information is intentionally or
unintentionally spread [2].

In this paper we provide a state of the art review on the exist-
ing socio-technological solutions to combat misinformation; its
detection, propagation, validation and management. We analyse
the key strengths and limitations of the identi�ed technological ad-
vancements and propose some future research directions as result
of the identi�ed limitations. The goal of this position paper is to
re�ect on the current state of the art and to stimulate discussions on
the future design and development of algorithms, methodologies,
and applications that can help to successfully address the online
misinformation problem.

The rest of the paper is structured as follows: Section 2 identi�es
four main focuses of current technological developments including:
(i) the automatic detection of online misinformation (Section 3),
(ii) the investigation of misinformation propagation patterns and
their prediction (Section 4), (iii) the validation and fact-checking
of misinformation (Section 5) and (iv) the study of the di�erent
intervention strategies used to combat misinformation (Section
6). Section 7 summarises the limitations of the studied works and

1https://www.theguardian.com/media/greenslade/2016/nov/23/
heres-the-truth-fake-news-is-not-social-medias-fault
2http://www.factcheck.org/2015/12/dearborns-anti-isis-rally/
3https://hapgood.us/2016/11/13/fake-news-does-better-on-facebook-than-real-news/
4https://www.ipsos-mori.com/researchpublications/researcharchive/3742/
the-perils-of-perception-and-the-eu.aspx
5https://www.facebook.com/zuck/posts/10103269806149061;https://www.facebook.
com/zuck/posts/10104445245963251?pnref=story
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discusses our ideas for future research directions. Discussion and
Conclusions are provided in Section 8 and Section 9 respectively.

2 DIMENSIONS OF COMBATING ONLINE

MISINFORMATION

Aiming to provide a clear picture of the current state of the art
approaches to combat online misinformation, we did an extensive
review of existing relevant technologies and characterised them
according to the following four dimensions:

• Misinformation content detection: Are misinformation
content and sources automatically identi�ed? Are streams of
information automatically monitored? Is relevant corrective
information identi�ed as well?
• Misinformation dynamics: Are patterns of misinforma-
tion �ow identi�ed and predicted? Is demographic and be-
havioural information considered to understand and predict
misinformation dynamics?
• Content Validation: Is misinformation validated and fact-
checked? Are the users involved in the content validation
process?
• Misinformation management: Are citizens’ perceptions
and behaviour with regards to processing and sharing mis-
information studied and monitored? Are intervention strate-
gies put in place to handle the e�ects of misinformation?

Figure 1 presents a general re�ective comparison of eleven of
the most popular platforms developed to aid in the battle against
misinformation. This comparison re�ects our view of how much
attention and focus each platform gives to the four dimensions
above. To generate this �gure two independent assessors have
assigned a score (from 0 to 10) to each the four dimensions for each
tool. The image re�ects the average of the two assessors for each
dimension.

3 MISINFORMATION DETECTION

Large amounts of misinformation have been observed to spread on-
line in viral fashion. Examples include rumours [26], false news [10],
hoaxes [39], and even elaborate conspiracy theories [5]. Several
approaches and tools have emerged in recent years to automatically
or semi-automatically identify misinformation based on the charac-
teristics of the content (text as well as multimedia images/videos),
or the source of the misinformation and the network of that source.
Contextual information, including a compiled list of misleading

sites and microblog-speci�c features, such as hashtags or men-
tions in Twitter, are often used to complement the above.

Works of Castillo and Colleagues [11][12][31] studied informa-
tion credibility on Twitter mainly based on content features, and
created supervised machine learning classi�ers to detect this credi-
bility. Their studies concluded that credible tweets tend to include
more URLs, and are longer than non-credible tweets. Addition-
ally, question and exclamation marks tend to concentrate on non-
credible tweets, frequently using �rst and third-person pronouns.
These studies derived on the creation of the TweetCred system,6

a real-time, web-based system (available as browser extension) to

6https://chrome.google.com/webstore/detail/tweetcred/
fbokljinlogeihdnkikeeneiankdgikg?hl=en

assess credibility of content on Twitter. The system provides a score
of credibility for each tweet, based on the previously generated clas-
si�ers and it validates this score by asking user feedback. Similar
tools developed as browsing extensions include Fake News Alert7

and B.S. Detector,8 which rely on manually compiled lists of mis-
leading websites, such as the one generated by Zimdars [72] and
Dispute Finder [20], which is based on a database of known dis-
puted claims generated by crawling websites that already maintain
a list of disputed claims. Qazvinian and colleagues [55] also studied
content features for misinformation detection. They concluded that
lexical and Part of Speech (POS) patterns are key for correctly iden-
tifying rumours. Hashtags can result in high precision, but lead to
low recall.

In addition to the analysis of content, other works and systems,
focus on the use of network analysis techniques to detect misin-
formation [57][59][31][26]. The studies show that di�erent di�u-
sion patterns exist that characterise misinformation vs. legitimate
memes, with misinformation patterns propagating in a more viral
way [26] and often being generated by bots and not humans [57].
On the other hand credible news tend to originate at a single or
a few users in the network, have many re-posts and propagate
through authors who have previously written a large number of
messages and register more friends [31].

Tools to detect and display the di�usion of misinformation in-
cludeTruthy [57],RumorLens [58] andTwitter trails [46]. These
tools are based on a semi-automatic approach where users can ex-
plore the propagation of a rumour with an interactive dashboard.
However, they do notmonitor the social media stream automatically
to detect misinformation, but require the user to input a speci�c
rumour to investigate. Aiming to address this issue Shao [60] and
colleagues developed Hoaxy [60], a platform that automatically
monitors the social stream, detects, and analyses online misinforma-
tion. Following this trend Facebook has recently released new tools
to help combat the spread of fabricated news stories. As opposed
to Hoaxy, Facebook tools not only use a combination of content
and network analysis but also include user feedback to accurately
identify fake news. This system is under continuous development
and testing.9 However, current e�orts to combat misinformation
have been criticized because they fall short on preventing misuse
of the platform.10 Google’s proposal to tackle misinformation also
includes asking users for feedback11 by providing a link at the
bottom of the snippet box.

As it can be observed, some of the limitations of current systems
for misinformation detection include: (a) providing alerts without
any rationale or explanation of their decisions, and (b) generally
disengaging users by regarding them as passive consumers rather
than active co-creators and detectors of misinformation. Another
element to consider is that, automatic systems for misinformation
detection based on known features can potentially be fooled, and
carefully crafted misinformation may go undetected.

7https://chrome.google.com/webstore/detail/fake-news-alert/
aickfmgnhocegpdbfnpfnedpeionfkbh?hl=en
8http://bsdetector.tech/
9https://www.theverge.com/2017/12/21/16804912/facebook-disputed-�ags%
2Dmisinformation-newsfeed-fake-news
10https://www.engadget.com/2018/01/19/facebooks-fake-war-on-fake-news/
11https://www.engadget.com/2018/01/31/google-tackles-fake-news-in-snippets/
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Figure 1: Comparison of relevant platforms according to the four identi�ed dimensions

4 MISINFORMATION DYNAMICS

Online social networks are characterised by homophily [45], po-
larisation [17], algorithmic ranking/personalisation [53][29]
[3], and social bubbles [49]. These characteristics create informa-
tion environments with low content diversity and strong social
reinforcement, which has an e�ect on the information users are
exposed to and on how information propagates. All of these factors,
coupled with the fast news life cycle [14], in�uence the dynamics
of social news sharing, and particularly the ways misinformation
initiates and propagates.

Ratkiewicz [57] analysed the spread of misinformation in the
context of political campaigns and showed how, in its initial phase,
the propagation of misinformation exhibits pathological di�usion
graphs. These graphs can take many forms, including high numbers
of unique injection points with few or no connected components
or strong star-like topologies. However, once the community has
accepted the misinformation, its propagation cascade will quickly
become indistinguishable, hence early identi�cation of misinfor-
mation is critical. This works also highlights the relevance of bots
initiating the process of misinformation spread. Boshmaf [8] and
Freitas[25] reported that simple automated mechanisms that pro-
duce contents and boost followers yield successful in�ltration strate-
gies of misinformation. However, nobody knows exactly how many
social bots populate social media, or what share of content, and
particularly misinformation, can be attributed to bots [21]. A simi-
lar dangerous phenomenon is crowdtur�ng, where crowdworkers
are hired to support and propagate arguments or claims, simulating
grassroots social movements. [68][40][41].

Del Vicario [18] studied misinformation propagation and re-
ported that users mostly tend to select and share content based on
homogeneity (echo chambers), causing reinforcement and foster-
ing con�rmation bias, segregation, and polarisation [5], an e�ect
exacerbated by the platforms; personalisation and ranking algo-
rithms [53][29][3]. This is also con�rmed by [62], who concluded
that rumor spreaders form strong partisan structures. Del Vicario

also shows that di�erent types of misinformation propagate di�er-
ently. While misinformation around scienti�c news reach a higher
level of di�usion faster, it also decays faster. On the other hand,
conspiracy theories are assimilated more slowly but are propagated
over longer time periods. Friggeri [26] studied the propagation of
rumors within Facebook and concluded that: (i) misinformation
cascades run deeper than non-misinformation cascades within the
network, (ii) even when denied, the rumour cascade continues to
propagate, as there are many more non-denied re-shares than de-
nied ones and, (iii) a rumour can lie dormant for weeks or months,
and then it can become popular again. More recent work by [74][60]
has also found that misinformation spreads faster and more widely
across the network, with fact-checking content typically lagging
that of misinformation by 10-20 hours. These works also suggest
that misinformation-mongering is dominated by few very active
accounts that bear the brunt of the promotion and spreading of
misinformation, whereas the propagation of fact checking is a more
distributed, grass-roots activity.

Understanding users [67] and their motivations [13] are also
key aspects to understand misinformation dynamics. Wagner and
colleagues [67] studied the susceptibility of users to interact with
bots and spammers. This study, conducted over Twitter, concludes
that susceptible users tend to communicate with many di�erent
users, use more social words and show more a�ection than non-
susceptible users. Similarly, [71][13] showed that, personality as-
pects in�uence misinformation dynamics. Extroverts and individ-
uals with high cooperativeness and high reward dependence are
founded more prone to share misinformation, but no signi�cant
di�erences were found in terms of gender. The key motivations
behind misinformation spreading include information seeking and
socialising. Psychology also shows that individuals with higher
anxiety levels are more likely to spread misinformation [34].

The e�ect of �nite memory and attention on the spread of missin-
formation has been studied by Tambuscio [63] and Qiu [56]. These
studies conclude that in social media environments, where users
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are in�uenced by high information load and �nite attention, low
quality information is likely to go viral.

While all these studies provide important insights on how misin-
formation propagates, they do not analyse in depth the topology and
the typology of the social network that is consuming and sharing
misinformation. Similarly, deeper studies are needed to understand
how, not only demographics (age, gender, geographical location),
but also user behaviour in�uences the spread of misinformation.

5 CONTENT VALIDATION

Information validation practices are key to identify misinforma-
tion.12 More than 110 independent fact-checking groups and or-
ganisations emerged online around the world over the past decade,
and half of them were established in European countries [30], (e.g.,
Full Fact in the UK, Snopes and Root Claim in the US, FactCheckNI
in Northern Ireland, and Pagella Politica in Italy, to name just a few).
These groups and organisations aim to provide a frontline service
in dealing with false information online following guidelines, such
as the ones captured by The Veri�cation Handbook.13

However, fact checking is a time-consuming veri�cation prac-
tice that makes it near impossible to compete with the speed of
social media. Computational fact-checker initiatives have also
emerged in the last few years with the aim of enhancing our ability
to evaluate the veracity of dubious information. Among these works
Ciampaglia [15] exploited implicit information from the topology
of the Wikipedia Graph. Their results show that network analyt-
ics methods, in conjunction with large-scale knowledge reposito-
ries, are e�ective towards automatic fact-checking methods. Baoxu
[61] follows a similar approach, but proposes a path mining ap-
proach over large-knowledge graphs (DBpedia14 and SemMedDB15)
to leverage a collection of factual statements for automatic fact-
checking. Besides the analysis of textual sources, works like the one
of Boididou and colleagues [7] focus on the automatic veri�cation
of unreliable media content by building classi�ers from multiple
user and content features.

An additional problem of fact-checking initiatives is that they
are often disconnected from where the crowds read, debate, and
share misinformation with little or no awareness of any invalidation
o�ered by the fact checkers. To address these issues several initia-
tives have emerged that aim to bring the results of fact-checking
initiatives closer to the public. Examples are TruthTeller,16 devel-
oped by the Washington Post, which transcribes political videos
and checks them against a database that draws on PolitiFact17 and
FactCheck.org.18 The program tells viewers which statements are
true or false. Truth Googles19 implements a similar approach in
a brower plug-in, also based on these databases. Hoaxy [60] inte-
grates the e�orts of fact-checking with a continuous monitoring

12http://www.poynter.org/2016/366-links-to-understand-fact-checking-in-2016/
440618/
13http://veri�cationhandbook.com
14http://wiki.dbpedia.org/
15https://skr3.nlm.nih.gov/SemMedDB
16www.washingtonpost.com/news/ask-the-post/wp/2013/09/25/
announcing-truth-teller-beta-a-better-way-to-watch-political-speech/?utm_
term=.b78b7c187228
17http://www.politifact.com/
18http://www.factcheck.org/
19https://www.media.mit.edu/projects/truth-goggles/overview/

of the social stream, making the social media information and the
fact-checking information simultaneously available for the user.
FactWatcher [33] complements previous approaches by consid-
ering di�erent types of facts, including situational facts, one-of-
the-few facts, and prominent streaks. As opposed to previous tools
that are oriented to the general public, FactWatcher20 is focused on
supporting journalist with the creation of news stories. In the same
fashion, ClaimBuster21 [32] provides computational tools to assist
professionals in understanding and verifying claims. Particularly,
it assigns scores to factual claims indicating whether they should
be checked, providing a priority ranking to help fact-checkers.

Crowdsourcing initiatives have also been considered to vali-
date and verify information [73]. One of the most recent initiatives
by Facebook integrates crowdsourcing with fact-checkers (Poynter
and Politifact, among others) to �ght fake news. Users can mark
stories as fake and see warnings that indicate the story has been
disputed by third-party fact-checkers. Systems like TweetCred22

and Trudhy23 use crowdworkers to annotate data and train ma-
chine learning algorithms that can learn from human annotations
when assessing the credibility of tweets.

Although thework of fact checkers and crowdsourcing initiatives
is really valuable in correcting misinformation, they are faced by a
number of complex challenges, which limits their ability to change
existing misperceptions. Not only they are unable to keep with
the high volume of misinformation generated online, or are discon-
nected fromwhere users read, debate and share misinformation, but
simply publishing corrective information by fact checkers is often
regarded as insu�cient for changing misinformed beliefs and opin-
ions [1]. Whether a claim is accepted by an individual is strongly
in�uenced by the individual’s believe system, since it is common to
look for information that con�rm our believes (con�rmation bias)
and don’t scrutinize contrary ideas to avoid or lessen cognitive
dissonance (motivated reasoning) [38] [71]. Moreover, Penny Cook
and colleagues also highlighted in a recent study the problem of
the “Illusory Truth E�ect" when it comes fake news and corrective
information [54]. Their study shows how repetition can increase
the perceived accuracy of plausible but false statements. Garret and
colleagues also show how, compared to post-exposure corrections,
real-time corrections may cause users to be more resistant to fac-
tual information [28]. It is therefore important to consider not only
which corrective information should be provided, but when, how
and to whom should it be provided.

6 MISINFORMATION MANAGEMENT

Combatingmisinformation is a complex task, and there is consensus
in psychology literature that simply presenting people with cor-
rective information is likely to fail in changing their salient beliefs
and opinions, or may, even, reinforce them [23][50][51] [28][54].
People often struggle to change their beliefs even after �nding out
that the information they already accepted is incorrect [16][64].
Nevertheless, some strategies have been found to be e�ective in
correcting misperceptions [43], such as providing an explanation

20http://idir.uta.edu/factwatcher/nba.php
21http://idir-server2.uta.edu/claimbuster/
22http://twitdigest.iiitd.edu.in/TweetCred
23http://truthy.indiana.edu/

 http://www.poynter.org/2016/366-links-to-understand-fact-checking-in-2016/440618/
 http://www.poynter.org/2016/366-links-to-understand-fact-checking-in-2016/440618/
http://verificationhandbook.com
http://wiki.dbpedia.org/
https://skr3.nlm.nih.gov/SemMedDB
www.washingtonpost.com/news/ask-the-post/wp/2013/09/25/announcing-truth-teller-beta-a-better-way-to-watch-political-speech/?utm_term=.b78b7c187228
www.washingtonpost.com/news/ask-the-post/wp/2013/09/25/announcing-truth-teller-beta-a-better-way-to-watch-political-speech/?utm_term=.b78b7c187228
www.washingtonpost.com/news/ask-the-post/wp/2013/09/25/announcing-truth-teller-beta-a-better-way-to-watch-political-speech/?utm_term=.b78b7c187228
http://www.politifact.com/
http://www.factcheck.org/
https://www.media.mit.edu/projects/truth-goggles/overview/
http://idir.uta.edu/factwatcher/nba.php
http://idir-server2.uta.edu/claimbuster/
http://twitdigest.iiitd.edu.in/TweetCred
http://truthy.indiana.edu/


Online Misinformation: Challenges and Future Directions WWW ’18 Companion, April 23–27, 2018, Lyon, France

rather than a simple refute [52], exposing to related but discon-
�rming stories [6], and revealing the demographic similarity of
the opposing group [27]. Recent work by Cambridge University is
also considering the use of “fake news vaccine” to immunise users
against the problem by “pre-emptively exposing” readers to a small
“dose” of the misinformation [65]. An online game24 has been re-
leased as part of this research to let players experience what is like
to create and spread misinformation so that they are more likely
to identify it. An alternative approach for dealing with pervasive
misinformation is to seek more direct behavioral interventions that
encourage people to make certain decisions over others [42].

Works that have attempted to stop the spread of misinformation
in social networks generally use three main strategies: (i) combat-
ing it with facts [9][48][70], (ii) malicious account detection in
early stage [69][19][41] and (iii) the use of ranking and selection

strategies based on corrective information.
Among the works that have attempted to combat the spread of

misinformation with facts Budak et al. [9] introduced the notion
of competing campaigns to counteract the e�ect of misinformation.
With this purpose, they designed the Multi-Campaign Indepen-
dence Cascade Model (MCICM) and studied multiple methods to
choose the optimal subset of users as seeds to propagate the “good”
campaign. Similar e�orts include the works of [48] and [70]. The
�rst work aims to �nd the “Node Protectors”, i.e., the smallest set
of highly in�uential nodes whose “decontamination” with good
information helps to contain the viral spread of misinformation.
The second work aims to identify the most important disseminators
of misinformation to “inject correct information” in the di�usion.
These models of information propagation present however several
limitations. First they are based on the assumption that once a user
is “contaminated” with “good” information she will propagate this
information among her network. However, persuading users to
adopt certain beliefs, and propagate them is not trivial [43]. Sec-
ondly, these works assume that the models of di�usion of “good”
and “bad” information are coincident, when in reality; they may ac-
tually not spread at the same rate. Indeed, several recent works have
found that misinformation spreads wider and faster [74][60]. This
type of misinformation management approach has also being re-
cently used by Twitter. The company noti�ed more than 1.4 million
people about the fact that they interacted during the US elections
with accounts generated by the Russian government-linked organ-
isation Internet Research Agency. While Twitter mentions that a
survey will be send to a small group of people to gain feedback,
little is known so far about the e�ects of this initiative.25

Regarding the methods focused on the early detection ofmali-

cious accounts we can highlight works that aim to identify spam-
mers [69], bots [21], crowdtur�ng [68][40] and malicious accounts
in general [19][41]. These techniques generally focus on the analy-
sis of various user, temporal, geographical and linguistic features in
order to successfully identify these accounts. However, it is unclear
what intervention strategies to use in order to stop the spread of

24https://www.getbadnews.com
25https://blog.twitter.com/o�cial/en_us/topics/company/2018/2016-election-update.
html

misinformation once these accounts have been identi�ed. Twit-
ter, for example, is currently suspending accounts associated with
duplicative or suspicious activity.26

A third type of misinformation management approach, currently
used by organisations like Google and Facebook, is the collection
of feedback from users regarding misinformation content, and the
use of this feedback as a factor to enhance information selection

and ranking mechanisms. By doing so, these platforms aim to
avoid and/or limit displaying and recommending content that has
been previously tagged as ’missinformation’ by other users.

7 RESEARCH DIRECTIONS

In this section we summarise the main limitations we identi�ed,
according to the four dimensions we studied, and propose some
ideas to target such limitations.

• Misinformation Identi�cation: Current misinformation
identi�cation approaches tend to focus on (a) alerting users
without rationale or explanation of their decisions, and
(b) disengaging users by regarding them as passive con-
sumers rather than active co-creators and detectors of mis-
information.
• Misinformation Dynamics: Most current studies on mis-
information dynamics (a) do not analyse the in�uence of the
topology and the typology of the social network on the
consumption and sharing of misinformation, and (b) do not
take into account how the misinformation-handling be-

haviour of users in�uences the spread of misinformation.
• ContentValidation:Current fact checkers and crowdsourc-
ing initiatives for content validation (a) are not able to cope
with the high volume of misinformation generated online,
and (b) are often disconnected from where the users tend
to read, debate and share misinformation.
• Misinformation Management: Common misinformation
management strategies (a) do not go beyond the generation
of facts and the early detection of malicious accounts, and
(b) tend to focus on the technical and not on the human

aspects of the problem (i.e., the motivations and behaviours
of the users when generating and spreading misinformation).

As we can observe from the above summary, the limitations of
current technologies are numerous and diverse, which highlight
various directions for further discussions and research. Tackling
the new societal challenge of misinformation requires closely in-
volving the users and strengthening their resilience to misinfor-
mation. Future technology should therefore help promoting: (1)
Empowerment, by raising individual and collective awareness of
current misinformation content and sources, (2) Engagement, by
fostering networking and cross-communication between users, (3)
Education, by informing users of advanced misinformation analy-
sis results and predictions, and (4) Encouragement of all users to
play a role in detecting, in/validating, and combating misinforma-
tion.27 More speci�cally, further advancements are required in the
following dimensions.

26https://blog.twitter.com/o�cial/en_us/topics/company/2017/
Our-Approach-Bots-Misinformation.html
27https://www.demos.co.uk/�les/Resilient_Nation_-_web-1.pdf
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7.0.1 User Involvement. While digital literacy and media liter-
acy initiatives have emerged in the last few years to help users
identify misinformation, 28 most of the technologies we surveyed
do not appear to closely involve the users to battle misinformation,
hence considering users as passive consumers rather than active
co-creators and detectors of misinformation. Only a few systems,
such as TweetCred, involves users, but mainly to validate the re-
sults of their misinformation detection algorithms. Our hypothesis
is that, to advance the state of the art, we need to closely involve
users in the process of misinformation detection and management.

Many insights have been provided from social science research
with regards to what works and what does not, to correct or to limit
the spread of misinformation. However, translating such insights
and successful approaches into delivery tools would require the par-
ticipation of all stakeholders, including end users, social scientists,
computer scientists, educators, etc., in the co-design of their func-
tions, user interfaces, and delivery methods. This would increase
the acceptance of such tools, and thus their impact of combating
misinformation.

7.0.2 MisinformationDynamics. With regards to the exploration
of misinformation dynamics, we believe that the topology and ty-
pology of the network could play an important role in how misin-
formation spreads. Works should therefore study similarities and
di�erences of misinformation spread, across di�erent platforms,
and how platform-speci�c and network-speci�c features in�uence
the dynamics of misinformation.

Understanding these dynamics, and the user, topological, and
typological factors that in�uence them, can be used to develop mod-
els that predict how, where, and by whom certain misinformation
are likely to spread.

7.0.3 User Behaviour. User-behaviour may be a key factor in
how misinformation is spread. Investigating the behavioural pat-
terns that are commonly associated with the propagation of misin-
formation could help to better predict and control the cascade of
misinformation.

With technology, we would be able to study the impact of var-
ious misinformation interventions and correction techniques at
large scale, to better understand their impact on user behaviour
towards misinformation. Many such studies have already been re-
ported in social science literature. However, executing them on
very large numbers of users (e.g., hundreds of thousands), and mon-
itoring their results over longer periods of time (e.g., several weeks,
months, and years) would required a high degree of automation.
Such large-scale and longer-term experiments could yield new or
more representative insights that are very di�cult to obtain manu-
ally.

7.0.4 Content Validation. Validating content is a complex part
of the misinformation control cycle. Corroborating and refuting
facts is not a trivial task, particularly considering the volume and
the velocity at which online information is often generated. We can
however aim to embed fact checkers into the environments where
users tend to read, debate, and share misinformation. For example,

28https://webliteracy.pressbooks.com/;https://fakenews.publicdatalab.org/;https:
//thetrustproject.org/

this can be achieved by developing browser and social-media plat-
form plug-ins that are able to assess existing discussions and shared
articles, and highlight related factual or corrective information that
is available from any of the known fact-check sites.

In spite of recent research and technological developments, and
the rise of fact-checking sites, there is still a clear lack of tools to
support users who would like to validate any piece of information.
Such validation could, for example, include searching various fact-
checking sites for related articles, and assessing the legitimacy of
the information source (e.g., whether it is from a known fakenews
site). Many lay-users might be unaware of such validation actions
and possibilities, or lack the basic skill to perform them e�ectively.

7.0.5 Misinformation Management. Regarding the generation
of e�ective misinformation management strategies, we believe that
understanding how citizens behave towards misinformation, what
opinions they form about it, and how these opinions evolve over
time, are key to successfully manage the impact of misinformation.

Technology can be used to test the e�ectiveness of various mis-
information management policies and techniques, as well as to
deploy them at scale.

8 DISCUSSION

In this work we have provided an overview of the current technol-
ogy developments towards battling the problem of online misin-
formation. Due to the relevance of this problem, new works are
constantly emerging from a variety of disciplines (social science,
computer science, communication, political science, etc.). We are
therefore aware that a high number of works are not captured in
this paper. However, we hope that the current compilation pro-
vides a simple and clear overview of the multiple dimensions of the
problem, the existing technological solutions, and their limitations.

We have also proposed multiple research directions as result of
the conducted analysis. All of these directions are based on a strong
user-focus. It is our view that the solution to the new societal chal-
lenge of misinformation is not for social media platforms to become
the arbiters of truth, which raises various ethical and philosophical
dilemmas, but to closely involve the users as part of the solution.

As mention earlier, misinformation is a complex problem involv-
ing human, societal and technological factors. We can therefore not
look at the problem with a unique lens. Multidisciplinary research
is needed to design and develop methodologies, practices, policies
and technologies able to e�ectively combat misinformation.

9 CONCLUSIONS

In this position paper we have investigated the existing technologi-
cal developments towards combating the problem of online misin-
formation. We have analysed these works following four key dimen-
sions: (i) misinformation detection, (ii) misinformation dynamics,
(iii) content validation and, (iv) misinformation management. We
have investigated the limitations of these works and identi�ed the
lack of user involvement and consideration as a key limitation in
all four dimensions. We have subsequently proposed various re-
search directions focused on involving users as participants and
co-creators of misinformation technology. We hope that this paper
stimulates discussions across disciplines on how to enhance the

https://webliteracy.pressbooks.com/; https://fakenews.publicdatalab.org/ ; https://thetrustproject.org/
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current landscape of technology development to e�ectively target
the problem of online misinformation.
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