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Abstract—In this paper, a model-based strategy for stator-
interturn short-circuit detection on induction motors is presented.
The proposed strategy is based on the generation of a vector of
specific residual using a state observer. The vectorial residual is
generated from a decomposition of the current estimation error.
This allows for a fast detection of incipient faults, independently of
the phase in which the fault occurs. Since the observer includes an
adaptive scheme for rotor-speed estimation, the proposed scheme
can be implemented for online monitoring, by measuring only
stator voltages and currents. It is shown that the proposed strategy
presents very low sensitivity to load variations and power-supply
perturbations. Experimental results are included to show the abil-
ity of the proposed strategy for detecting incipient faults, including
a low number of short-circuited turns and low fault current.

Index Terms—Detection, identification, induction motors (IMs),
model based, observer, short circuit, stator faults.

I. INTRODUCTION

EARLY detection of incipient faults is one of the most
important issues in preventive and predictive maintenance.

In modern industries, the majority of the equipment is driven
by three-phase induction motors (IMs). Thus, condition mon-
itoring of such motors constitutes an essential concern in any
industry.

Different monitoring techniques have been used for fault
detection on IMs and other electric machines [1]. The most
common ones include vibration analysis [2], [3], stray flux [4],
and stator current-signature analysis [5].

Stator windings short circuit is one of the most common
faults in electric machines [6]. The winding-insulation damage
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can be produced by excessive heating, transient overvoltages,
winding movement, or contamination. Such a fault produces
high currents and winding overheating, resulting in severe
phase-to-phase, turn-to-turn, or turn-to-ground faults. All these
may lead to an irreversible damage in the windings or in the
stator core. For such reasons, rapid detection of incipient faults
between turns during motor operation is very important.

There exist several proposals for stator-fault diagnosis in
IMs [6], [7]. For online monitoring, the most interesting strate-
gies are based on current and/or voltage measurement. Such
strategies do not require direct access to the motor, since they
can be measured from the motor switchboard. Among these
techniques, motor current-signature analysis (MCSA) is the
most widely used, due to its simplicity [8]. However, for precise
detection and identification of the fault, a good frequency
resolution and precise knowledge of the motor slip is required
[5], [9], [10]. Moreover, this technique requires the motor
operation at steady state. To overcome this limitation, wavelet-
based analysis has been suggested [11].

Other proposed strategies are based on negative-sequence
current monitoring [12], [13] or the analysis of the current
vector radius [14]. Such strategies are very sensitive to supply-
voltage unbalances; therefore, they can produce false alarms.
Other techniques, which are based on the monitoring of the
components of the sequence impedance matrix [15] or on the
theory of multiple reference frames [16], allow decoupling
the effect of supply-voltage perturbation. They are also robust
to the motor load state. However, all these strategies, the same
as MCSA techniques, are only applicable to machines working
in steady state, i.e., at constant speed and load.

Modern techniques based on artificial intelligence have also
been proposed for correct identification of the motor fault [17].
Artificial neural networks [18] and neuro-fuzzy techniques [19]
are used to automatically diagnose stator faults from current and
voltage measurement, mainly in online condition-monitoring
systems. For online diagnosis, observer-based [20], [21] and
parameter-estimation techniques [22] have also been recently
presented.

Since an early fault detection is the main objective of stator-
fault detection schemes, a model-based strategy for online
stator-fault detection is presented in this paper. This strategy,
previously proposed in [21], uses a state observer to obtain a
vector of specific residuals, which allows for a rapid detec-
tion of incipient stator faults. The use of a vectorial residual
makes the fault detection independent of the phase in which
the fault occurs. To obtain similar results, some previously
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proposed strategies need three state observers, one for each
motor phase [20].

A weak point of model-based techniques is parameter de-
pendence [20]. To overcome this problem, a method to extract
the component produced by the fault from the estimation error
is proposed. Unlike [16], the negative-sequence component of
the estimation error is used in this paper. This component is
obtained through projecting the current estimation error in an
inverse-sequence reference frame. Since common parameter
errors produced by temperature variation or other perturbations
are usually symmetric, they are not reflected in this negative-
sequence component, making the proposed strategy very low
sensitive to such perturbations. This method combined with
the state observer allows the early detection of incipient stator
faults even under varying load or speed. The error decompo-
sition also allows the implementation of a speed-adaptation
scheme, avoiding the use of a speed or position sensor, which
is needed in some previously proposed model-based strategies
[16], [22].

In this paper, the development of the strategy proposed
in [21] is improved and extensively analyzed. A different
severity factor is defined, and its ability to detect and diag-
nose very incipient faults is explored and tested by several
experiments. In the following section, the IM model with
stator faults is first presented. In Section III, the proposed
strategy is developed, including a detailed analysis of the
estimation error and its decomposition. Experimental results
are presented in Section IV, while conclusions are drawn in
Section V.

II. IM MODEL WITH STATOR FAULT

Model-based fault detection is basically founded on the
comparison of the expected performance of the system against
the actual one. The expected behavior is represented by the
“normal-operation model” of the system. In order to design and
evaluate the diagnosis strategies, a motor model that allows the
inclusion of the fault effects is needed. Such a model is known
as “faulty-operation model” [23].

Some models proposed in the literature are based on the
winding-function theory [24]. This approach also allows a
detailed analysis of the effects of interturn short circuits over
the motor currents, but its complexity makes them unusable
for online condition monitoring. A simpler model is proposed
in [12], which includes interturn short circuits in the phase a
winding, as shown in Fig. 1. In [21], a new dynamic IM model
was proposed. Different from the one presented in [12], this
model allows consideration of interturn short circuits in any
motor phase by means of a vectorial fault factor. This model
is used here to develop and analyze the stator-fault detection
and identification strategy.

By defining μqd = [μq μd]T as the vector fault, its modulus
represents the percentage of short-circuited windings, and the
vector direction corresponds to the faulted phase. In most IMs,
coils are insulated from one another in slots, as well as in
the end-winding region. Therefore, the highest probability of
occurrence of interturn short circuit is between turns in the same
coil [24]. Then, if μa, μb, and μc are the percentages of short-

Fig. 1. Scheme of the stator phases with a short circuit between turns of
phase a.

circuited windings in the phases a, b, and c, respectively, vector
μqd is given by

μqd

∣∣
a

= [1 0]Tμa (1)

μqd

∣∣
b

= [−1/2
√

3/2]Tμb (2)

μqd

∣∣
c

= [−1/2 −
√

3/2]Tμc. (3)

The IM model with stator fault can be represented in a
stationary reference frame qd, as follows:⎧⎪⎨

⎪⎩
dλqds

dt = vqds − Rsiqds + 2
3μqdRsif

dλqdr

dt = −Rriqdr + Jωrλqdr
dλcc

dt = −Rsμ
T
qdiqds +

(
‖μqd‖Rs + Rf

)
if

(4)

⎧⎪⎪⎨
⎪⎪⎩

iqds = Lr

∇ λqds − Lm

∇ λqdr + 2
3μqdif

iqdr = Ls

∇ λqdr − Lm

∇ λqds

if =
λcc−μT

qd
λqds

( 2
3 ‖μqd‖−1)‖μqd‖Lls

(5)

where λqds, λqdr, and λcc are the stator, rotor, and short-
circuited windings fluxes, respectively, in the qd frame. vqds,
iqds, iqdr, and if represent the stator voltage and the stator,
rotor, and fault currents, respectively, in the qd frame. Rs, Rr,
and Rf are the stator, rotor, and fault resistances, respectively.
Ls, Lr, and Lm represent the stator, rotor, and magnetizing
inductances, respectively. ωr is the rotor speed,

J =
[

0 −1
1 0

]
,

Lls = Ls − Lm, and ∇ = LrLs − L2
m.

Mechanical dynamics is given by

dωr

dt
=

TE

J
− TL

J
− B

J
ωr (6)

where J is the inertia, B is the viscous friction, TL is the load
torque, and TE is the electromagnetic torque

TE = LmP

(
3
2
iqds × iqdr + ifμqd × iqdr

)
k̂ (7)

where P is the number of pole pairs and k̂ = [0 0 1]T.

III. PROPOSED STRATEGY FOR STATOR-FAULT

DETECTION AND IDENTIFICATION

For correct detection and identification of interturn stator
faults, an appropriate residual must be generated. Such residual
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Fig. 2. Proposed detection and identification strategies.

must be able to rapidly reflect the changes produced by the
fault over the normal operation, in order to obtain an imme-
diate detection. In addition, the residual must allow a correct
identification of the fault (diagnosis), minimizing the effect of
external disturbances [25].

For rapid detection, a state observer based on the dynamic
IM model is proposed in this paper. This observer constitutes
the normal-operation model, which, when compared with the
actual motor condition, allows the residual to be obtained from
a decomposition of the current estimation error. This decompo-
sition allows minimization of the effects of parameter variations
and external disturbances. The selection of a vectorial residual
allows a correct detection of the fault, independently of the
faulted motor phase.

The proposed strategy is shown in Fig. 2. The residual
generator uses the voltage and current measurement to feed
the observer which estimates the stator and rotor fluxes and
the stator currents. The current estimation error is decomposed
(EED block in Fig. 2) into two terms, the first one is used
to generate the vectorial residual, and the second term allows
the improvement of the observer convergence and the rotor-
speed estimation by means of an adaptive scheme. In the next
sections, these blocks are described.

A. State Observer

A state observer, based on a “normal-operation model” [23]
of the IM is used to generate the residual when compared with
the actual motor. By defining

i′qds = iqds −
2
3
μqdif (8)

the following observer is proposed:

{
dλ̂qds

dt = vqds − Rs î′qds

dλ̂qdr

dt = −Rr îqdr + Jω̂rλ̂qdr

(9)

{
î′qds = Lr

∇ λ̂qds − Lm

∇ λ̂qdr

îqdr = Ls

∇ λ̂qdr − Lm

∇ λ̂qds.
(10)

Fault detection and identification are performed through the
processing of the estimation error. When a stator fault occurs,

the estimation error is given by

eiqds
= iqds − î′qds =

2
3
μqdif + e∗iqds

(11)

where e∗iqds
represents the estimation error produced by initial

condition errors or parameter errors. If this term is null, then
the estimation error is a direct indicator of the stator faults.
However, to avoid false alarms produced by parameter errors
or other perturbations that affect the estimation error, it has to
be decomposed to extract the fault information.

A similar approach was presented in [20], where an adaptive
observer was used to estimate the amount of short-circuited
turns. However, since this adaptive observer was designed for
a fault on the motor phase a, if a fault occurs in any of the
other phases, it cannot be detected by such observer. Therefore,
a set of three adaptive observers, one for each motor phase,
is needed to take into account all the possible stator faults. In
addition, parameter errors may produce false alarms in such
strategy.

As shown in the next sections, these problems are overcome
by the strategy proposed in this paper through the use of a
vectorial residual and the error-decomposition scheme.

B. Analysis of Estimation Error

Estimation error can be analyzed in steady state, evaluating
the model given by (4) and (5) under sinusoidal steady-state
excitation. In order to consider the unbalanced operation pro-
duced by the fault or the unbalanced excitation, each variable f
can be expressed as the sum of two complex exponentials [26]

f =
1
2
F̃ ejωet +

1
2
F̃ ∗e−jωet (12)

where F̃ is the peak-value phasor. In addition, the vector fqd

can be expressed in complex vector form

fqd = F̃pe
jωet + F̃ ∗

ne−jωet (13)

where F̃p and F̃n are the positive- and negative-sequence
component phasors, respectively.
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By using (12) and (13), the IM model with stator fault in
steady state results in

Ṽsp = (Rs + jωeLs)
(

Ĩsp − 1
3
μĨf

)
+ jωeLmĨrp (14)

Ṽsn = (Rs + jωeLs)
(

Ĩsn − 1
3
μ∗Ĩf

)
+ jωeLmĨrn (15)

0 =
(

Rr

s
+ jωeLr

)
Ĩrp + jωeLm

(
Ĩsp − 1

3
μĨf

)
(16)

0 =
(

Rr

2−s
+jωeLr

)
Ĩrn+jωeLm

(
Ĩsn−

1
3
μ∗Ĩf

)
(17)

where Ṽsp, Ṽsn, Ĩsp, and Ĩsn are the positive- and negative-
sequence component phasors of the stator voltages and currents.
Ĩrp and Ĩrn are the positive- and negative-sequence components
phasors of the rotor currents. Ĩf is the phasor of the fault
current, ωe is the excitation frequency, and s is the slip. It
must be noted that this steady state model is very similar to
the one presented in [12], with a difference in the definition of
the vector fault μ, which, in this case, is a complex magnitude
that allows taking the faulted phase into account

μ|a =μa (18)

μ|b =

(
−1

2
+ j

√
3

2

)
μb = aμb (19)

μ|c =

(
−1

2
− j

√
3

2

)
μc = a2μc (20)

with a = ej2π/3.
The equation for the short-circuit loop results in

μ∗Ṽsp + μṼsn = (Rs + jωeLls)
(

1 − 2
3
|μ|

)
|μ|Ĩf + Rf Ĩf

(21)

and solving for the fault current

Ĩf =
μ∗

|μ| Ṽsp + μ
|μ| Ṽsn(

(Rs + jωeLls)
(
1 − 2

3 |μ|
)

+ Rf

|μ|

) . (22)

By defining the fault impedance as

Zf = (Rs + jωeLls)
(

1 − 2
3
|μ|

)
+

Rf

|μ| (23)

the fault current results in

Ĩf =
μ∗

|μ|
Ṽsp

Zf
+

μ

|μ|
Ṽsn

Zf
. (24)

From the steady state motor equations (14)–(17) and the fault
current (24), the positive- and negative-sequence stator currents

can be found as a function of the excitation voltage

Ĩsp =
(

1
Zp

+
1

3Zf
|μ|

)
Ṽsp +

1
3Zf

μ∗Ṽsn (25)

Ĩsn =
(

1
Zn

+
1

3Zf
|μ|

)
Ṽsn +

1
3Zf

μṼsp (26)

where

Zp = (Rs + jωeLs) +
ω2

eL2
m(

Rr

s + jωeLr

)
Zn = (Rs + jωeLs) +

ω2
eL2

m(
Rr

2−s + jωeLr

) .

On the other hand, the estimated currents based on the
“normal-operation model” are given by

ˆ̃I
′
sp =

Ṽsp

Ẑp

(27)

ˆ̃I
′
sn =

Ṽsn

Ẑn

(28)

where Ẑp and Ẑn stand for the nominal or estimated values of
the motor parameters. This allows us to consider the influence
of parameter errors due to temperature or load variation.

Then, the estimation error eIs = Ĩs − ˆ̃I
′
s will be given by

eIsp =

(
1
Zp

− 1
Ẑp

)
Ṽsp +

1
3Zf

(
|μ|Ṽsp + μ∗Ṽsn

)
(29)

eIsn =
(

1
Zn

− 1
Ẑn

)
Ṽsn+

1
3Zf

(
|μ|Ṽsn+μṼsp

)
. (30)

As it can be seen in (29) and (30), the first term corresponds to
the error produced by parameter errors [e∗iqds

in (11)], while the
second one is the error introduced by the stator fault.

If it is assumed that the motor parameters are exactly known,
the first terms in (29) and (30) can be neglected. Then, both the
negative- and positive-sequence error could be used for stator-
fault detection [16].

However, parameter errors may occur due to temperature
variation, saturation, or other disturbances. In such a case, it
must be noted that in the positive-sequence error (eIsp), the
parametric error is multiplied by the positive-sequence voltage,
so its influence over the estimation error is very important.
On the other hand, in the negative-sequence error (eIsn), the
error produced by parameter variation is multiplied by the
negative-sequence voltage which, in normal conditions, must
be lower than 5% of the positive-sequence voltage. Therefore,
the negative-sequence estimation error can be used to detect
the stator fault, since it is practically insensitive to parameter
errors or load variation. Even in the case of voltage unbalance,
the negative-sequence impedance is practically independent of
the load and speed variation for open-rotor-slot motors (less
than 8% from no-load to full-load, for the tested motor).
Consequently, its influence on the negative-sequence error can
also be neglected in such a case. For motors with closed-
rotor-slot construction (usually small power motors), where the
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negative-sequence impedance variation could introduce a more
significant error, this effect can be compensated in the negative-
sequence component of the estimation error through a motor
characterization, as proposed in [13].

Thus, neglecting the terms that involve the negative-sequence
voltage, the sequence components of the estimation error results

eIsp =

(
1
Zp

− 1
Ẑp

)
Ṽsp +

1
3Zf

(
|μ|Ṽsp

)
(31)

eIsn =
1

3Zf
(μṼsp) (32)

where it is clear that the information about the faulted phase
(angle of μ) remains in the negative-sequence component of the
error, but there is no such information in the positive-sequence
component. The angle of the faulted phase is needed for a
correct reconstruction of the error produced by parameter and
speed variations, which is used for speed adaptation.

C. Fault Detection and Identification

As stated before, the aim of stator-fault monitoring is to
detect the fault as early as possible, while avoiding false alarms.
In this paper, both objectives are achieved by using the negative-
sequence component of the estimation error. The steady-state
current error can also be obtained as a function of the fault
current, from (14)–(17), and neglecting the negative-sequence
voltage

eIsp =

(
1
Zp

− 1
Ẑp

)
Ṽsp +

1
3
μĨf (33)

eIsn =
1
3
μ∗Ĩf . (34)

As it can be seen, the negative-sequence component is
proportional to the fault current and the number of short-
circuited turns, but it is practically independent of parameter
errors, which makes it a reliable fault detector. By using this
component for fault detection, it is possible to detect incipient
faults, either due to the increase of the fault current or the
number of short-circuited turns. The use of this fault detector
also allows us to avoid false alarms due to parameter errors or
load and speed variations, as shown in the previous section.

For online monitoring, a proper choice of a fault severity
allows us to set some alarm levels, thus allowing the automatic
disconnection of the motor in order to avoid severe damages.
Since the effect of the fault over the motor current is completely
represented by the term μqdif , its normalized modulus is used
in this paper as a severity factor (a similar severity factor was
used in [16])

Severity factor =
|μqdif |√

2Inom

(35)

where Inom is the nameplate rms value of the motor current. It
must be noted that |μqdif |, calculated from the output of the
EED block, includes the peak value of if .

Fig. 3. Estimation-error decomposition.

D. Estimation-Error Decomposition

As shown in the previous section, the component of the
estimation error produced by the fault can be determined from
the negative-sequence component of the estimation error. This
negative-sequence component can be extracted from the estima-
tion error by means of a reference frame rotating with inverse
sequence. As soon as a stator fault occurs, it is detected by this
negative-sequence error component.

From this component, the complete fault signal
((2/3)μqdif ) can also be reconstructed. This signal can be
used to cancel the component of the estimation error produced
by the fault, obtaining the error produced by parameter errors
(e∗iqds

). Such an error can be used for rotor-speed estimation.
Fig. 3 shows a block diagram of the proposed estimation-

error-decomposition scheme. In order to isolate the error pro-
duced by the fault, the error signal is projected to a reference
frame rotating with inverse sequence. In this frame, the
negative-sequence component results in a dc signal, while the
positive-component will be a double-frequency ac signal. Then,
the negative-sequence component can be easily separated by
using a low-pass filter.

Once the negative-sequence component is obtained, the
positive-sequence component of the error produced by the fault
can be reconstructed. It has the same magnitude of the negative-
sequence component, as shown by (31) and (32), but its angle is
different, since it does not include the information of the faulted
phase. This angle (ϕ) is obtained from the negative-sequence
angle, subtracting the angle of the faulted phase.

The information about the faulted phase is obtained from
the negative-sequence component of the estimation error (32).
As it can be seen, its angle is determined by the positive-
sequence voltage component, the fault impedance, and the
angle of μ (φμ). Since the angle of the positive-sequence
voltage component (φVs

) is known and the angle of the fault
impedance (φZf

) is less than or equal to the angle of the stator
impedance [depending on the value of Rf , see (23)], the angle
of the faulted phase can be approximated as

φμ ≈ φeIsn
− (φVs

− φZf
) (36)

where φeIsn
is the angle of eIsn. This angle will be close

to 0, 2π/3, or 4π/3 if the fault occurs in phase a, b, or c,
respectively.

Then, the complete fault signal μqdif is reconstructed and
canceled from the estimation error. The component e∗iqds

is used
into the adaptive scheme to obtain the rotor speed.
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TABLE I
IM DATA

E. Rotor-Speed Estimation

As can be seen in (9) and (10), the proposed observer needs
the information about the rotor speed for a correct estimation of
the stator flux and currents. The rotor speed can be estimated by
using an adaptive scheme, as proposed in [27]. Considering that
the rotor speed varies slowly and using the corrected current
estimation error (e∗iqds

), the estimated rotor speed is given by

ω̂r =K1

(
e∗iqds

×λ̂qdr

)
k̂+K2

∫ (
e∗iqds

×λ̂qdr

)
k̂ dt (37)

where K1 and K2 are constants.
The use of the estimated speed in the proposed observer

avoids the use of a speed sensor, which is needed in some
previously proposed model-based strategies [16], [22]. This
allows the implementation of the proposed technique for online
monitoring using only current and voltage measurements.

IV. EXPERIMENTAL RESULTS

The proposed strategy was validated through experimental
results. An IM with modified stator windings (Table I), which
allows us to short circuit different number of turns of each phase
winding, was used. To avoid a permanent damage of the motor
windings, all the experiments were performed with reduced
supply voltage and for a short time. A small resistance was also
used to limit the short-circuit current.

Since the main objective of online-detection strategies is the
fast detection of incipient faults, two types of incipient faults are
first considered. The first one corresponds to a short circuit of
only three turns (2.08%) of the winding, while the second one
corresponds to a fault with a very low fault current circulating
through the short-circuited turns.

The results obtained for a short circuit of 2.08% of phase a
winding of the unloaded motor are shown in Fig. 4. The fault
current was limited to 63.6 A (peak) through a 27-mΩ resitance
and a 300-V supply voltage. Fig. 4(a) shows the severity factor
estimated by the proposed strategy, where it can be seen that
the fault is rapidly detected and identified through the great
difference between the nonfault and fault states. The norm of
the error between the motor current and the estimated current
is shown in Fig. 4(b). The norm of the current estimation error,
once the error component produced by the fault is canceled,
is shown in Fig. 4(c). It can be clearly seen that the error
component produced by the fault is fully canceled after a short
transient. This corrected error is used for speed estimation
through the adaptive scheme.

Fig. 4. Fault in motor phase a (2.08%, three turns), unloaded motor.
(a) Estimated severity factor. (b) Norm of the current error. (c) Norm of the
corrected current error.

As it was already mentioned, in the proposed strategy, an
incipient fault can be detected independently of the phase in
which the fault occurs. Such an advantage is shown in Fig. 5,
where a similar fault (2.08%, three short-circuited turns) was
produced in the windings of the each motor phase. Fig. 5(a)
shows the results obtained with the short circuit produced in
the motor phase a; Fig. 5(b) shows the results for the fault
in the motor phase b, while Fig. 5(c) corresponds to the fault
in the motor phase c. In each case, the severity factor and the
estimated angle of eIsn(φeIsn

) are presented. As it can be seen,
the fault is properly detected in all the cases, independent of
the phase in which the fault was produced. The angle φeIsn

validates (32) and allows the complete reconstruction of the
fault signal, as shown in Fig. 5(d). In this figure, components
qd of the μ̂if estimated (normalized) vector are presented in the
q–d plane. The angle of this vector (φμ) indicates the faulted
phase.

The robustness of the proposed strategy against parameter
variation is evaluated in Fig. 6, where a sudden variation in
different observer parameters was produced at t = 1 s. An
increase of 25% on the value of Rs is shown in Fig. 6(a). As
it can be seen, this parameter variation introduces a very low
perturbation in the estimated severity factor at t = 1 s. How-
ever, such perturbation is not enough to produce a false alarm.
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Fig. 5. Faults in each motor phase (2.08%, three turns), unloaded motor.
(a) Fault in phase a, (b) phase b, (c) phase c, and (d) normalized μ̂if .

Similar results are obtained for a change in Rr [Fig. 6(b)] and
Lm [Fig. 6(c)], but in these cases, the perturbation is even lower.

Even in case of severe voltage unbalance, the proposed
strategy is able to detect incipient faults. This property is shown
in Fig. 7(a) and (b), where a short circuit of 2.08% of phase a
winding is produced on the unloaded and fully loaded motors,
when the motor is supplied with unbalanced voltages (4.2% and
4.8% Ṽsn/Ṽsp), respectively. As stated before, the influence
of voltage unbalance and load level is practically neglectable,
as shown in Fig. 7(c). As it can be seen, the severity factor
varies less than 1% in the whole range of the allowed voltage
unbalance.

Fig. 6. Fault in motor phase a (2.08%, three turns), unloaded motor. Estimated
severity factor with (a) 25% variation of Rs at t = 1 s, (b) 50% variation of Rr

at t = 1 s, and (c) 25% variation of Lm at t = 1 s.

The sensitivity of the proposed method to nonmodeled motor
or measurement asymmetries is the same as other methods
based on sequence-component errors (e.g., [16]), since such
asymmetries affect the motor currents in the same way as the
stator fault does. However, common motor asymmetries due
to construction defects will only introduce some offset in the
fault detector, which can be taken into account when setting the
alarm levels.

Some strategies proposed in the literature have been proven
to fail for detecting incipient faults, when the fault current is
lower than the load current [28]. The proposed strategy is able
to detect such type of faults, as shown in Fig. 8. In this case,
an incipient fault is emulated by limiting the fault current to
7 A (9.9-A peak), for a short circuit of ten turns (6.94%) on
the phase a winding. Results are shown for the unloaded motor
and for the motor consuming the nominal current (11 A) at the
reduced supply voltage in Fig. 8(a) and (b), respectively. Even
when the estimated severity factor seems noisy for the loaded
motor, the fault is still clearly detected when the fault current
is low. This situation could correspond to a fault that begins
with a high-resistance contact between turns, owing to dust or
moisture.

Next, different situations were tested, and the obtained re-
sults are shown in Figs. 9 and 10. Fig. 9 corresponds to the
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Fig. 7. Fault in motor phase a (2.08%, three turns). Estimated severity factor
with (a) 4.2% supply unbalance, unloaded motor, (b) 4.8% supply unbalance,
fully loaded motor, and (c) different values of supply unbalance.

Fig. 8. Fault in motor phase a (6.94%, ten turns), 7-A (9.9-A peak) fault
current. (a) Unloaded motor. (b) Loaded motor, 11-A load current.

Fig. 9. Fault in motor phase a. (a) Estimated severity factor. (b) Calculated
severity factor.

Fig. 10. Estimated severity factor for different faults in motor phase a.
(a) 60-A (peak) fault current. (b) 10-A (peak) fault current. (c) short circuit
of three turns.
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motor running with reduced supply voltage (125 V) and a
fault-resistance value of 27 mΩ. Several interturn faults were
produced, increasing the number of turns from 0 (no fault) to
26 turns (18.06% of the winding). These tests were performed
for the motor running with load (11-A load current) and without
load. For such conditions, the estimated severity factor is shown
in Fig. 9(a). This severity factor was obtained in the same way
as in the previous experiments; i.e., once a change in the fault
signal was detected. Its value allows the evaluation of the range
in which the fault is detectable. Since the modified motor allows
the measurement of the fault current, the actual severity factor
was calculated for each fault, and the results are shown in
Fig. 9(b). As shown, the estimated severity factor is in good
agreement with the actual one, in the whole range of faults. It
must be noted that, in these tests, the fault current grows as the
number of short-circuited turns is increased.

Two tests were performed for a constant value of the fault
current, while changing the number of short-circuited turns.
The results for high fault current (60-A peak) are shown in
Fig. 10(a), for the motor with and without load. As shown,
for this value of fault current (almost four times the nominal
current), the fault is easily detected even with only three turns
short-circuited. Fig. 10(b) shows the results for a very low
fault current (10-A peak), emulating an incipient fault. In this
situation, the fault can be detected for above 3.5% of the
winding (five turns) in short circuit. Finally, Fig. 10(c) shows
the estimated severity factor when the short circuit occurs in
three adjacent turns (2.08% of the winding) for different values
of the short-circuit current. In this case, the supply voltage
was fixed at 318 V, while the fault resistance was changed
to limit the fault current to the different values (from 4.5- to
63.6-A peak). Fig. 10(c) clearly shows that the stator fault can
be detected beginning from 12.9-A peak.

From Fig. 10, it can be concluded that it is possible to detect
a stator fault involving a few short-circuited turns if the fault
current is high (near to the load current), while a fault with
a lower fault current can be detected if the number of short-
circuited turns is higher.

V. CONCLUSION

A new model-based strategy for stator-fault detection and
identification of IM is presented in this paper. This strategy
uses a state observer which generates a vector of specific
residuals, allowing for the rapid detection of an incipient
fault, independently of the phase in which the fault occurs.
The negative-sequence component of the current estimation
error, obtained through an estimation-error decomposition, is
used as a fault detector. From the analysis, it is shown that
the use of this component allows a correct fault detection
while avoiding false alarms produced by parameter or load
variations.

The error-decomposition scheme also allows a correct iden-
tification of the faulted phase, which is necessary to decouple
the effects of the fault from the estimation error. Thus, a
corrected estimation error is used in an adaptive scheme for
speed estimation, avoiding the use of a speed sensor, which is
required in some previously presented strategies.

The strategy is experimentally evaluated under different fault
and load conditions. Fault conditions include short circuits in
different motor phases, different numbers of shorted turns, and
different values of fault current. The effects of parameter varia-
tion and voltage unbalance were also experimentally evaluated.
It is shown that the proposed technique is able to rapidly detect
very incipient faults, from about 2% of the winding in short
circuit. The ability to detect faults when the fault current is
lower than the load current, representing a fault that begins with
high contact resistance, is also shown.
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