
Online Model Learning Algorithms

for Actor-Critic Control

Ivo Grondman

Online Model Learning Algorithms

for Actor-Critic Control

Ivo Grondman

Cover: Saturated policy for the pendulum swing-up problem as learned by the model
learning actor-critic algorithm, approximated using a network of radial basis functions.

Online Model Learning Algorithms

for Actor-Critic Control

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op

woensdag 4 maart 2015 om 12:30 uur

door

Ivo GRONDMAN

Master of Science, Imperial College London, Verenigd Koninkrijk,
geboren te Losser.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. R. Babuška

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. R. Babuška Technische Universiteit Delft, promotor

Onafhankelijke leden:

Prof. dr. ir. B. De Schutter Technische Universiteit Delft
Prof. dr. ir. P.P. Jonker Technische Universiteit Delft
Prof. dr. A. Nowé Vrije Universiteit Brussel
Prof. dr. S. Jagannathan Missouri University of Science & Technology
Prof. dr. D. Ernst Université de Liège
Dr. I.L. Buşoniu Universitatea Tehnicā din Cluj-Napoca

Dr. I.L. Buşoniu (Universitatea Tehnicā din Cluj-Napoca) heeft als begeleider
in belangrijke mate aan de totstandkoming van het proefschrift bijgedragen.

This thesis has been completed in partial fulfilment of the requirements of the
Dutch Institute for Systems and Control (DISC) for graduate studies.

Published and distributed by: Ivo Grondman
E-mail: ivo@grondman.net
Web: http://www.grondman.net/

ISBN 978-94-6186-432-1

Copyright c© 2015 by Ivo Grondman

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilised in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without written permission of the author.

Printed in the Netherlands

Acknowledgements

During the past years there were quite a few moments where I thought quitting
my PhD project was perhaps the best solution to all the problems and stress it
was causing. Now that the thesis is finally finished, there are a lot of people I
want to thank for their help, support and encouragement, which kept me from
actually quitting. With the risk of forgetting someone who I definitely should
have mentioned, here goes. . .

First, I would like to thank my promotor and supervisor, prof. dr. Robert
Babuška, for giving me the opportunity to embark on a PhD and for his
efforts to keep me going even after leaving the university. Getting a chance
to give several lectures on various control systems courses to both BSc and
MSc students was also a great experience. Robert, díky za všechno!

Despite the large distance between my workplace and his, my daily
supervisor dr. Lucian Buşoniu has been of tremendous help. Whenever I
got stuck he was always available for a discussion to get me back on track.
His suggestions on and corrections to drafts of papers, which were always in
abundance, were also greatly appreciated even though I might not have always
shown it while working my way through those stacks of paper covered with red
ink.

At the start of 2013, I had a very good time at the Missouri University of
Science & Technology in Rolla, Missouri, for which I am grateful to prof. dr.
Sarangapani Jagannathan and dr. Hao Xu.

Within the Delft Center for Systems and Control, I thank (former) col-
leagues Mernout, Edwin, Pieter, Gijs, Jan-Willem, Gabriel, Noortje, Kim,
Jacopo, Andrea, Marco, Stefan, Subramanya, Sachin, Ilhan and Jan-Maarten

v

for their enjoyable company. Jeroen and Melody did a great job during their
MSc projects and, although he left DCSC before I arrived, Maarten gave me an
excellent starting point for my research.

Outside the academic environment, I want to thank my current colleagues,
especially Rachel and Jo, for giving me the final push I needed to finish my
PhD.

One of the best ways to relieve stress (and lose weight) during the past
years turned out to be running, which I probably never would have discovered
without my sisters Evelien and Judith.

A less healthy, but nevertheless very agreeable, way to get my mind off of
things was provided in bars and clubs or during weekend outings with Herman,
Edwin, Bram, Marinus, Wouter T., Wouter W., Achiel, Max, Bertjan, Joris,
Chiel, Jochem and Jeroen.

Finally, I would like to thank my parents for their understanding and
support during those many, many years I spent in university.

Ivo Grondman
Den Haag, February 2015

vi

Contents

1 Introduction 1

1.1 Model-Based Control Design . 1

1.2 Actor-Critic Reinforcement Learning 2

1.3 Focus and Contributions . 3

1.3.1 Online Model Learning for RL 4

1.3.2 Using Reward Function Knowledge 6

1.4 Thesis Outline . 6

2 Actor-Critic Reinforcement Learning 9

2.1 Introduction . 9

2.2 Markov Decision Processes . 12

2.2.1 Discounted Reward . 13

2.2.2 Average Reward . 14

2.3 Actor-Critic in the Context of RL . 16

2.3.1 Critic-Only Methods . 16

2.3.2 Actor-Only Methods and the Policy Gradient 17
2.3.3 Actor-Critic Algorithms . 19

2.3.4 Policy Gradient Theorem . 23

2.4 Standard Gradient Actor-Critic Algorithms 28

2.4.1 Discounted Return Setting 29

2.4.2 Average Reward Setting . 32

2.5 Natural Gradient Actor-Critic Algorithms 35

2.5.1 Natural Gradient in Optimisation 36

2.5.2 Natural Policy Gradient . 40

2.5.3 Natural Actor-Critic Algorithms 42

2.6 Applications . 46

2.7 Discussion . 48

vii

Contents

3 Efficient Model Learning Actor-Critic Methods 51

3.1 Introduction and Related Work . 52

3.2 Standard Actor-Critic . 53
3.3 Model Learning Actor-Critic . 53

3.3.1 The Process Model . 54

3.3.2 Model-Based Policy Gradient 55
3.4 Reference Model Actor-Critic . 57

3.5 Function Approximators . 61
3.5.1 Radial Basis Functions . 63

3.5.2 Local Linear Regression . 64
3.5.3 Tile Coding . 71

3.6 Example: Pendulum Swing-Up . 72

3.6.1 Standard Actor-Critic . 73

3.6.2 Model Learning Actor-Critic 80

3.6.3 Reference Model Actor-Critic 84
3.7 Discussion . 88

4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL 93

4.1 Introduction . 93

4.2 Markov Decision Processes for the Finite Horizon Cost Setting . 95

4.3 Actor-Critic RL for Finite Horizon MDPs 97
4.3.1 Parameterising a Time-Varying Actor and Critic 97

4.3.2 Standard Actor-Critic . 99

4.3.3 Model Learning Actor-Critic 100

4.3.4 Reference Model Actor-Critic 102
4.4 Simulation Results . 103

4.4.1 Finite Horizon Standard Actor-Critic 105

4.4.2 Finite Horizon Model Learning Actor-Critic 106

4.4.3 Finite Horizon Reference Model Actor-Critic 110

4.5 Discussion . 111

5 Simulations with a Two-Link Manipulator 113

5.1 Simulation Setup . 114
5.2 Consequences for Model Learning Methods 114

5.3 Case I: Learn to Inject Proper Damping 115

5.3.1 Standard Actor-Critic . 117
5.3.2 Model Learning Actor-Critic 121

5.4 Case II: Learn to Find a Nontrivial Equilibrium 122
5.4.1 Standard Actor-Critic . 123

viii

Contents

5.4.2 Model Learning Actor-Critic 126
5.5 Discussion . 128

6 Learning Rate Free RL Using a Value-Gradient Based Policy 131
6.1 Introduction . 131
6.2 SARSA . 133
6.3 Value-Gradient Based Policy Algorithm 134

6.3.1 Process Model Parametrisation 135
6.3.2 Critic Parametrisation . 136

6.4 Simulation and Experimental Results 137
6.4.1 Underactuated Pendulum Swing-Up 138
6.4.2 Robotic Manipulator . 142

6.5 Discussion . 147

7 Conclusions and Recommendations 151
7.1 Conclusions . 152
7.2 Directions for Future Research . 155

7.2.1 Reinforcement Learning . 155
7.2.2 Model Learning . 156
7.2.3 Function Approximation . 156

A Experimental Setups 159
A.1 Inverted Pendulum . 159
A.2 Two-Link Manipulator . 160

References 163

Glossary 175

Publications by the Author 179

Summary 181

Samenvatting 185

Curriculum Vitae 189

ix

Introduction

Chapter

1

This chapter shortly introduces actor-critic reinforcement learning, which is
the main concept on which this thesis is built. Subsequently, a more detailed
description of the specific focus and contributions of this thesis is provided, as
well as a textual and visual outline of the thesis.

1.1 Model-Based Control Design

The most common approach for finding a controller for a system consists
of several steps. First, a model has to be constructed. The model usually
consists of a set of equations that can, for example, be derived from first
principles. Once the model is available and its parameters have been estimated
through system identification, more often than not it will have to be linearised
(possibly at more than one operating point) before a control strategy can be
applied, as designing control laws straight from a non-linear model remains a
tough subject. With the linearised model, one can choose from a number of
control methods, e.g. a PID controller, a linear-quadratic (Gaussian) controller
(LQR/LQG), an H∞ controller, etc. (Franklin et al., 2002; Skogestad and
Postlethwaite, 2008). All of these steps come with problems of their own.
A perfect model of a system may well consist of a large number of equations,
which means that one is bound to apply model reduction in order to bring
the number of equations down to keep the model manageable at the cost of

1

Chapter 1 Introduction

some accuracy. Linearisation obviously introduces even more modelling errors
around the operating points. Finally, practically all control methods require
proper tuning in order to get the controller to satisfy certain constraints. For
example, the gains for a PID controller and the weighting matrices/functions
for LQR/LQG and H∞ need to be carefully chosen.

As an alternative approach, there is the possibility of having the system
learn a controller by itself while it is in operation (online) or offline. The
advantages are that it is no longer necessary to construct a complex model for
the system and it is possible to learn a non-linear control law. Unfortunately,
the problem of proper tuning is still present.

1.2 Actor-Critic Reinforcement Learning

This thesis deals with reinforcement learning controllers (Sutton and Barto,
1998), a subject within the field of artificial intelligence and machine learning.
The concept behind reinforcement learning is that a controller (the learning
agent) can learn to behave in an optimal way in its environment by receiving
rewards or punishments for its behaviour and processing these, quite similar
to the way how children or pets learn certain tasks: behaviour that resulted in
a punishment will unlikely be repeated, whereas behaviour that got rewarded
will, i.e. that behaviour is reinforced. In order to achieve this type of learning,
the learning agent needs some sort of memory, which stores the relation
between behaviour and rewards. In reinforcement learning, this memory is
called a value function. At every discrete time step, the fully measurable state
of the environment is used as input to the policy, which governs the behaviour
of the learning agent and tells it which action to perform. After executing
this action, the environment changes state and a scalar reward is sent to the
learning agent to indicate how good or bad the chosen action and the transition
of the environment’s state was. The learning agent can then process this
reward and adjust its value function accordingly, to make a better decision
the next time it encounters the same (or a comparable) state.

Reinforcement learning (RL) does not require a model of the system.
Instead, the value function and policy only prescribe what action the learning
agent should perform when the system is in a certain state. As such, model
information is only implicitly stored in the value function. This means RL
lessens the burden of having to model a system explicitly before designing a

2

1.3 Focus and Contributions

controller for it. By interacting with the system, RL based controllers do not
have to be derived offline and can keep up with small changes to the system.
Moreover, optimal nonlinear and stochastic control laws may be learned.

Many RL algorithms embody the value function and the policy into
one single function. One specific type of RL algorithms, called actor-critic
algorithms (Barto et al., 1983; Konda and Tsitsiklis, 2003; Witten, 1977), split
the two entities into two separate functions. This thesis is centred around the
actor-critic class of RL algorithms, as these proved useful for control systems
which have continuous state and input variables and in real-life applications,
such as robotics, this is usually the case. Any RL algorithm used in practice
will have to make use of function approximators for both value function
and/or policy in order to cover the full continuous range of states and actions.
Actor-critic algorithms facilitate the use of continuous state and action spaces
in an easy way, as both the actor and the critic are usually parameterised
functions and can therefore take a continuous domain as input using only a
finite amount of parameters. Moreover, as the policy (the actor) and value
function (the critic) are stored separately, generating a control action does
not—in contrast to critic-only methods—require an expensive (continuous)
optimisation procedure over the value function. Instead, control actions can
be calculated directly from the learned policy. A more elaborate, technical
description of actor-critic reinforcement learning is given in the next chapter.

1.3 Focus and Contributions

Although RL is in principle meant to be completely model-free, the absence
of a model implies that learning will take a considerably long time as a lot of
system states will have to be visited repeatedly to gather enough knowledge
about the system such that an optimal policy may be found. A main challenge
in RL is therefore to use the information gathered during the interaction with
the system as efficiently as possible, such that an optimal policy may be reached
in a short amount of time. The majority of RL algorithms measure the state,
choose an action corresponding to this state, measure the transition to the next
state and update a value function (and possible a separate policy). As such, the
only source of information used for learning is the transition sample at each
time step.

This thesis aims at increasing the learning speed by constructing algorithms

3

Chapter 1 Introduction

that search for a relation between the collected transition samples and use this
relation to predict the system’s behaviour from this by interpolation and/or
extrapolation. This relation is in fact an approximation of the system’s model
and as such this particular feature is referred to as “model learning” in this
thesis. Furthermore, if (partial) prior knowledge about the system or desired
closed-loop behaviour is available, RL algorithms should be able to use this
information to their advantage. The final approach to speed up learning
addressed in this thesis is to make explicit use of the reward function, instead
of only gathering function evaluations of it, that come as part of a transition
sample.

1.3.1 Online Model Learning for RL

Two new model learning actor-critic learning algorithms are introduced in this
thesis: model learning actor-critic (MLAC) and reference model actor-critic
(RMAC). Both have in common that they learn a full-state model of the system
to be controlled, which is then used to make one-step predictions about the
states a system will end up in if a certain input is applied. The function
approximator used for the process model and the reference model in case of
RMAC can be pre-trained with prior knowledge about the system, although
this is not explored further in this thesis.

Model Learning Actor-Critic

Many standard reinforcement learning algorithms are inefficient in their use of
measured data. Once a transition sample—containing the previous state, the
action taken, the subsequent state and the instantaneous reward—has been
used to update the actor and critic, it is thrown away and never reused in future
updates. To overcome this problem, several techniques have been proposed to
remember and reuse measured data, such as experience replay (Adam et al.,
2011; Lin, 1992; Wawrzyński, 2009) and prioritised sweeping (Moore and
Atkeson, 1993). A drawback of these methods is that they require storage of
all the samples gathered, making them memory intensive and computationally
heavy. Dyna architectures (Sutton, 1990) combine reinforcement learning with
the concept of planning, by learning a model of the process or environment
online and using this model to generate experiences from which the critic (and
thus the policy) can be updated. This results in more frequent updates and
hence quicker learning.

4

1.3 Focus and Contributions

In Model Learning Actor-Critic (MLAC), the learned process model is not
used to generate experiences. Instead, the process model is used directly in the
calculation of the policy gradient, aiming to get faster convergence of learning
without increasing the number of updates for the actor and/or critic.

Having a learned process model available simplifies the update of the actor,
as it allows to predict what the next state of the system will be, given some
applied input. The value function then provides information on the value of
that next state. Hence, calculating the optimal input to the system reduces to
an optimisation problem, in which the objective function is the value function
over the space of possible next states and the decision variable is the applied
input or action. It is the gradient of this objective function with respect to the
input that will then dictate how the actor should be updated.

Reference Model Actor-Critic

Reference Model Actor-Critic (RMAC) is different from the typical actor-critic
methods in the sense that it does not learn an explicit mapping from state
to action. Instead of an explicit actor/policy, RMAC learns a reference model
that represents a desired behaviour of the system, based on the value function.
Similar to MLAC, this algorithm learns a process model to facilitate one-step
predictions about the system. The difference with respect to MLAC is that the
explicit actor is now replaced by a composition of the learned reference model
with the inverse of the learned process model to calculate an action.

Using a reference model provides a means for the storage of demonstration
data. Some learning algorithms benefit from having the desired behaviour
or task demonstrated to them. This can be done, for example, by a human
manually moving a robot arm in such a way that a target task is performed.
The demonstrated trajectory is then stored as a sequence of (sampled) states
and it is exactly this type of information that can be stored in a reference model.

The applicability of the model learning actor-critic algorithms has been
verified with simulation experiments on an inverted pendulum and a two-link
manipulator. For the inverted pendulum, experiments have been carried out in
both an infinite and finite horizon setting.

5

Chapter 1 Introduction

1.3.2 Using Reward Function Knowledge

Another way of making learning more efficient, is to make the reward function
directly accessible to the learning agent. Classic reinforcement learning theory
assumes that the reward function is part of the agent’s environment and
therefore unknown (Sutton and Barto, 1998). The learning agent only gathers
rewards on a per-sample basis. For quite a lot of problems and especially
the problems addressed in this thesis, though, the reward function is usually
designed by an engineer. Hence, an explicit expression representing the reward
function is available and as such can directly be used by the learning agent.

The final algorithm presented in this thesis is based on a Value-Gradient
Based Policy (VGBP) by Doya (2000) and makes use of the explicit knowledge
of the reward function and also learns a process model online. This enables
the algorithm to select control actions by optimising over the right-hand side
of the Bellman equation. Simulations and experiments with the underactuated
pendulum swing-up task are carried out and additionally, experimental results
for the more complex two-link robotic manipulator task are presented.

1.4 Thesis Outline

The remaining chapters of this paper are organised as follows. Chapter 2
provides the necessary background material to understand what reinforcement
learning is and, more specifically, how actor-critic reinforcement learning
algorithms work. It also discusses the difference between a regular/vanilla
gradient and the natural gradient and ends with a short survey of existing
actor-critic methods and their applications. Chapter 3 introduces the intuition
behind and the implementation of the model learning algorithms MLAC and
RMAC, together with a standard actor-critic (SAC) algorithm that is used
as a benchmark in the simulation experiments. Furthermore, commonly
used function approximators are explained and the chapter ends with a set
of simulation results to demonstrate the effectiveness of the model learning
algorithms. Chapter 4 extends the model learning algorithms, such that they
may be used in a finite horizon cost setting and also evaluates them with a set
of simulations. Without introducing any new theory, Chapter 5 evaluates the
model learning algorithms in a tougher multi-input, multi-output setting. A
novel algorithm based on using explicit knowledge of the reward function, in
addition to learning a model, is introduced and evaluated in Chapter 6. Except

6

1.4 Thesis Outline

for Chapter 5, all of these chapters are based on published journal papers
and/or conference papers, listed on page 179 of this thesis1. Chapter 7 is the
final chapter of this thesis and summarises the conclusions drawn throughout
the thesis and offers recommendations for future research. There is one
appendix to this thesis, Appendix A, which describes the setups used for the
simulation experiments in the thesis.

Figure 1.1 shows a graphical roadmap of the thesis, indicating with arrows
the orders in which the separate chapters may be read.

1The converse is not true: some papers listed there are not embodied in this thesis.

7

Chapter 1 Introduction

Chapter 1
Introduction

Chapter 2
Actor-Critic

Reinforcement
Learning

Chapter 3
Efficient Model

Learning
Actor-Critic Methods

Chapter 5
Simulations with a

Two-Link Manipulator

Chapter 4
Solutions to Finite

Horizon Cost Problems
Using Actor-Critic RL

Chapter 6
Learning Rate Free RL
Using a Value-Gradient

Based Policy

Chapter 7
Conclusions and

Recommendations

Figure 1.1 Roadmap of this thesis. Arrows indicate possible orders in which
the separate chapters may be read.

8

Actor-Critic Reinforcement

Learning: Standard and Natural

Policy Gradients

Chapter

2

Policy gradient based actor-critic algorithms are amongst the most popular
algorithms in the reinforcement learning framework. Their advantage of being
able to search for optimal policies using low-variance gradient estimates has
made them useful in several real-life applications, such as robotics, power
control and finance. Since actor-critic algorithms are a central topic in this
thesis, a thorough background on this type of algorithms should be given.
This chapter therefore describes the state of the art of actor-critic algorithms,
with a focus on methods that can work in an online setting and use function
approximation in order to deal with continuous state and action spaces. After
a discussion on the concepts of reinforcement learning and the origins of actor-
critic algorithms, this chapter describes the workings of the natural gradient,
which has made its way into many actor-critic algorithms in the past few years.
A review of several standard and natural actor-critic algorithms follows and the
chapter concludes with an overview of application areas and a discussion on
open issues.

2.1 Introduction

Reinforcement learning is a framework inspired by animal learning in which
an agent (or controller) optimises its behaviour by interacting with its envir-
onment in a trial-and-error fashion (Lewis and Vrabie, 2009). After taking an

9

Chapter 2 Actor-Critic Reinforcement Learning

action in some state, the agent receives a scalar reward from the environment,
which gives the agent an indication of the quality of that action. The function
that indicates the action to take in a certain state is called the policy. The
main goal of the agent is to find a policy that maximises the total accumulated
reward, also called the return. By following a given policy and processing the
rewards, the agent can build estimates of the return. The function representing
this estimated return is known as the value function. This value function allows
the agent to make indirect use of past experiences to decide on future actions
to take in or around a certain state.

Over the course of time, several types of RL algorithms have been
introduced and they can be divided into into three groups (Konda and Tsitsiklis,
2003): actor-only, critic-only and actor-critic methods, where the words
actor and critic are synonyms for the policy and value function, respectively.
Actor-only methods typically work with a parameterised family of policies
over which optimisation procedures can be used directly. The benefit of a
parameterised policy is that a spectrum of continuous actions can be generated,
but the optimisation methods used (typically called policy gradient methods)
suffer from high variance in the estimates of the gradient, leading to slow
learning (Baxter and Bartlett, 2001; Berenji and Vengerov, 2003; Boyan, 2002;
Konda and Tsitsiklis, 2003; Richter et al., 2007).

Critic-only methods that use temporal difference learning have a lower
variance in the estimates of expected returns (Berenji and Vengerov, 2003;
Boyan, 2002; Sutton, 1988). A straightforward way of deriving a policy in
critic-only methods is by selecting greedy actions (Sutton and Barto, 1998):
actions for which the value function indicates that the expected return is
the highest. However, to do this, one needs to resort to an optimisation
procedure in every state encountered to find the action leading to an optimal
value. This can be computationally intensive, especially if the action space is
continuous. Therefore, critic-only methods usually discretise the continuous
action space, after which the optimisation over the action space becomes a
matter of enumeration. Obviously, this approach undermines the ability of
using continuous actions and thus of finding the true optimal policy.

Actor-critic methods combine the advantages of actor-only and critic-only
methods. While the parameterised actor brings the advantage of computing
continuous actions without the need for optimisation procedures on a value
function, the critic’s merit is that it supplies the actor with low-variance
knowledge of the performance. More specifically, the critic’s estimate of the

10

2.1 Introduction

expected return allows for the actor to update with gradients that have lower
variance, speeding up the learning process. The lower variance is traded for
a larger bias at the start of learning when the critic’s estimates are far from
accurate (Berenji and Vengerov, 2003). Actor-critic methods usually have
good convergence properties, in contrast to critic-only methods (Konda and
Tsitsiklis, 2003).

These nice properties of actor-critic methods have made them a preferred
reinforcement learning algorithm, also in real-life application domains. Gen-
eral surveys on reinforcement learning already exist (Gosavi, 2009; Kaelbling
et al., 1996; Szepesvári, 2010), but despite the growing popularity and recent
developments in the field of actor-critic algorithms, no survey is specifically
dedicated to them. The goal of this chapter is to give an overview of the
work on (online) actor-critic algorithms, giving technical details of some
representative algorithms, and also to provide references to a number of
application papers. This provides a background for the remainder of the thesis.
Additionally, the algorithms are presented in one unified notation, which
allows for a better technical comparison of the variants and implementations.
These templates will be used throughout the thesis. Because the discrete-time
variant has been developed to a reasonable level of maturity, this thesis solely
discusses algorithms in the discrete-time setting. Continuous-time variants of
actor-critic algorithms (Hanselmann et al., 2007; Vamvoudakis and Lewis,
2010) and multi-agent actor-critic schemes (Li et al., 2008; Pennesi and
Paschalidis, 2010) are not considered here.

The focus is put on actor-critic algorithms based on policy gradients,
which constitute the largest part of actor-critic algorithms. A distinction is
made between algorithms that use a standard (sometimes also called vanilla)
gradient and the natural gradient that became more popular in the course of
the last decade. The remaining part of actor-critic algorithms consists mainly of
algorithms that choose to update their policy by moving it towards the greedy
policy underlying an approximate state-action value function (Szepesvári,
2010). In this thesis, these algorithms are regarded as critic-only algorithms
as the policy is implemented implicitly by the critic. Algorithms are only
categorised as actor-critic here if they implement two separately parameterised
representations for the actor and the critic. Furthermore, all algorithms make
use of function approximation, which in real-life applications such as robotics
is necessary in order to deal with continuous state and action spaces.

The remainder of this chapter is organised as follows. Section 2.2 intro-

11

Chapter 2 Actor-Critic Reinforcement Learning

duces the basic concepts of a Markov decision process, which is the cornerstone
of reinforcement learning. Section 2.3 describes critic-only, actor-only and
actor-critic RL algorithms and the important policy gradient theorem, after
which Section 2.4 surveys actor-critic algorithms that use a standard gradient.
Section 2.5 describes the natural gradient and its application to actor-critic
methods, and also surveys several natural actor-critic algorithms. Section 2.6
briefly reviews the application areas of these methods. A concluding discussion
is provided in Section 2.7.

2.2 Markov Decision Processes

This section introduces the concepts of discrete-time reinforcement learning,
as laid out by Sutton and Barto (1998), but extended to the use of continuous
state and action spaces and also assuming a stochastic setting, as covered more
extensively by Peters and Schaal (2008a) and Buşoniu et al. (2010).

A reinforcement learning algorithm can be used to solve problems modelled
as Markov decision processes (MDPs). An MDP is a tuple 〈X , U , f ,ρ〉, where X

denotes the state space, U the action space, f : X × U × X → [0,∞) the state
transition probability density function and ρ : X × U × X → R the reward
function. In this thesis, only stationary MDPs are considered, which means
that the elements of the tuple 〈X , U , f ,ρ〉 do not change over time.

The stochastic process to be controlled is described by the state transition
probability density function f . It is important to note that since the state space
is continuous, it is only possible to define a probability of reaching a certain
state region, since the probability of reaching a particular state is zero. The
probability of reaching a state xk+1 in the region Xk+1 ⊆ X from state xk after
applying action uk is

P(xk+1 ∈ Xk+1|xk,uk) =

∫

Xk+1

f (xk,uk, x ′)dx ′.

After each transition to a state xk+1, the controller receives an immediate
reward

rk+1 = ρ(xk,uk, xk+1),

which depends on the previous state, the current state and the action taken.
The reward function ρ is assumed to be bounded. The action uk taken in a
state xk is drawn from a stochastic policy π : X × U → [0,∞).

12

2.2 Markov Decision Processes

The goal of the reinforcement learning agent is to find the policy π which
maximises the expected value of a certain function g of the immediate rewards
received while following the policy π. This expected value is the cost-to-go
function

J(π) = E
�

g(r1, r2, . . .)|π
	

.

In most cases1, the function g is either the discounted sum of rewards or the
average reward received, as explained next.

2.2.1 Discounted Reward

In the discounted reward setting (Bertsekas, 2007), the cost function J is equal
to the expected value of the discounted sum of rewards when starting from
an initial state x0 ∈ X drawn from an initial state distribution x0 ∼ d0(·), also
called the discounted return

J(π) = E

(
∞∑

k=0

γk rk+1

����� d0,π

)

=

∫

X

dπγ (x)

∫

U

π(x ,u)

∫

X

f (x ,u, x ′)ρ(x ,u, x ′)dx ′dudx , (2.1)

where dπγ (x) =
∑∞

k=0
γk p(xk = x |d0,π) is the discounted state distribution

under the policy π (Peters and Schaal, 2008a; Sutton et al., 2000) and
γ ∈ [0,1) denotes the reward discount factor. Note that p(xk = x) is a
probability density function here.

During learning, the agent will have to estimate the cost-to-go function J

for a given policy π. This procedure is called policy evaluation. The resulting
estimate of J is called the value function and two definitions exist for it. The
state value function

Vπ(x) = E

(
∞∑

k=0

γk rk+1

����� x0 = x ,π

)
(2.2)

1Other cost functionals do exist and can be used for actor-critic algorithms, such as the risk-
sensitive cost (Borkar, 2001).

13

Chapter 2 Actor-Critic Reinforcement Learning

only depends on the state x and assumes that the policy π is followed starting
from this state. The state-action value function

Qπ(x ,u) = E

(
∞∑

k=0

γk rk+1

����� x0 = x ,u0 = u,π

)
(2.3)

also depends on the state x , but makes the action u chosen in this state a free
variable instead of having it generated by the policy π. Once the first transition
onto a next state has been made, π governs the rest of the action selection. The
relationship between these two definitions for the value function is given by

Vπ(x) = E {Qπ(x ,u)|u∼ π(x , ·)} .

With some manipulation, Equations (2.2) and (2.3) can be put into a
recursive form (Bertsekas, 2007). For the state value function this is

Vπ(x) = E
�
ρ(x ,u, x ′) + γVπ(x ′)

	
, (2.4)

with u drawn from the probability distribution function π(x , ·) and x ′ drawn
from f (x ,u, ·). For the state-action value function the recursive form is

Qπ(x ,u) = E
�
ρ(x ,u, x ′) + γQπ(x ′,u′)

	
, (2.5)

with x ′ drawn from the probability distribution function f (x ,u, ·) and u′ drawn
from the distribution π(x ′, ·). These recursive relationships are called Bellman
equations (Sutton and Barto, 1998).

Optimality for both the state value function Vπ and the state-action value
function Qπ is governed by the Bellman optimality equation. Denoting the
optimal state value function with V ∗(x) and the optimal state-action value with
Q∗(x ,u), the corresponding Bellman optimality equations for the discounted
reward setting are

V ∗(x) =max
u

E
�
ρ(x ,u, x ′) + γV ∗(x ′)

	
(2.6a)

Q∗(x ,u) = E

§
ρ(x ,u, x ′) + γmax

u′
Q∗(x ′,u′)

ª
. (2.6b)

2.2.2 Average Reward

As an alternative to the discounted reward setting, there is also the approach
of using the average return (Bertsekas, 2007). In this setting a starting state

14

2.2 Markov Decision Processes

x0 does not need to be chosen, under the assumption that the process is
ergodic (Sutton and Barto, 1998) and thus that J does not depend on the
starting state. Instead, the value functions for a policy π are defined relative
to the average expected reward per time step under the policy, turning the
cost-to-go function into

J(π) = lim
n→∞

1

n
E

(
n−1∑

k=0

rk+1

�����π
)

=

∫

X

dπ(x)

∫

U

π(x ,u)

∫

X

f (x ,u, x ′)ρ(x ,u, x ′)dx ′dudx . (2.7)

Equation (2.7) is very similar to Equation (2.1), except that the definition
for the state distribution changed to dπ(x) = limk→∞ p(xk = x |π). For a
given policy π, the state value function Vπ(x) and state-action value function
Qπ(x ,u) are then defined as

Vπ(x) = E

(
∞∑

k=0

�
rk+1 − J(π)

�
����� x0 = x ,π

)

Qπ(x ,u) = E

(
∞∑

k=0

�
rk+1 − J(π)

�
����� x0 = x ,u0 = u,π

)
.

The Bellman equations for the average reward—in this case also called the
Poisson equations (Bhatnagar et al., 2009)—are

Vπ(x) + J(π) = E
�
ρ(x ,u, x ′) + Vπ(x ′)

	
, (2.8)

with u and x ′ drawn from the appropriate distributions as before and

Qπ(x ,u) + J(π) = E
�
ρ(x ,u, x ′) +Qπ(x ′,u′)

	
, (2.9)

again with x ′ and u′ drawn from the appropriate distributions. Note that
Equations (2.8) and (2.9) both require the value J(π), which is unknown and
hence needs to be estimated in some way. This will be addressed in a later
section. Bellman optimality equations, describing an optimum for the average
reward case, are

V ∗(x) + J∗ =max
u

E
�
ρ(x ,u, x ′) + V ∗(x ′)

	
(2.10a)

Q∗(x ,u) + J∗ = E

§
ρ(x ,u, x ′) +max

u′
Q∗(x ′,u′)

ª
, (2.10b)

15

Chapter 2 Actor-Critic Reinforcement Learning

where J∗ is the optimal average reward as defined by (2.7) when an optimal
policy π∗ is used.

2.3 Actor-Critic in the Context of RL

As discussed in the introduction, the vast majority of reinforcement learning
methods can be divided into three groups (Konda and Tsitsiklis, 2003): critic-
only, actor-only and actor-critic methods. This section will give an explanation
on all three groups, starting with critic-only methods. Section 2.3.2 introduces
the concept of a policy gradient, which provides the basis for actor-critic
algorithms. The final subsection explains the policy gradient theorem, an
important result that is now widely used in many implementations of actor-
critic algorithms.

In real-life applications, such as robotics, processes usually have continuous
or very large discrete state and action spaces, making it impossible to store
exact value functions or policies for each separate state or state-action pair. Any
RL algorithm used in practice will have to make use of function approximators
for the value function and/or the policy in order to cover the full range of
states and actions. Therefore, this section assumes the use of such function
approximators.

2.3.1 Critic-Only Methods

Critic-only methods, such as Q-learning (Bradtke et al., 1994; Watkins and
Dayan, 1992; Watkins, 1989) and SARSA (Rummery and Niranjan, 1994),
use a state-action value function and no explicit function for the policy. For
continuous state and action spaces, this will be an approximate state-action
value function. These methods learn the optimal value function by finding
an approximate solution to the Bellman equation (2.6b) or (2.10b) online.
A deterministic policy, denoted by π : X → U is calculated by using an
optimisation procedure over the value function

π(x) = argmax
u

Q(x ,u). (2.11)

There is no reliable guarantee on the near-optimality of the resulting policy
for just any approximated value function when learning in an online setting.
For example, Q-learning and SARSA with specific function approximators have

16

2.3 Actor-Critic in the Context of RL

been shown not to converge even for simple MDPs (Baird, 1995; Gordon, 1995;
Tsitsiklis and Van Roy, 1996). However, the counterexamples used to show
divergence were further analysed in Tsitsiklis and Van Roy (1997) (with an
extension to the stochastic setting in Melo et al. (2008)) and it was shown that
convergence can be assured for linear-in-parameters function approximators if
trajectories are sampled according to their on-policy distribution. Tsitsiklis and
Van Roy (1997) also provide a bound on the approximation error between
the true value function and the approximation learned by online temporal
difference learning. An analysis of more approximate policy evaluation meth-
ods is provided by Schoknecht (2003), mentioning conditions for convergence
and bounds on the approximation error for each method. Nevertheless, for
most choices of basis functions an approximated value function learned by
temporal difference learning will be biased. This is reflected by the state-
of-the-art bounds on the least-squares temporal difference (LSTD) solution
quality (Lazaric et al., 2010), which always include a term depending on
the distance between the true value function and its projection on the
approximation space. For a particularly bad choice of basis functions, this bias
can grow very large.

The problem of off-policy methods not converging when function approx-
imation is used has later been addressed by Sutton et al. (2009) in their
gradient temporal difference (GTD) and linear TD with gradient correction
(TDC) algorithms and by Maei et al. (2010) in their Greedy-GQ algorithm.

2.3.2 Actor-Only Methods and the Policy Gradient

Policy gradient methods, such as the stochastic real-valued (SRV) algorithm
(Gullapalli, 1990) and REINFORCE (Williams, 1992) algorithms, are princip-
ally actor-only and do not use any form of a stored value function. Instead, the
majority of actor-only algorithms work with a parameterised family of policies
and optimise the cost defined by (2.1) or (2.7) directly over the parameter
space of the policy. Although not explicitly considered in this chapter, work
on non-parametric policy gradients does exist, see e.g. the work by Bagnell
and Schneider (2003b); Kersting and Driessens (2008). A major advantage
of actor-only methods over critic-only methods is that they allow the policy to
generate actions in the complete continuous action space.

A policy gradient method is generally obtained by parameterising the policy
π by the parameter vector ϑ ∈ Rp, with p the number of features used in

17

Chapter 2 Actor-Critic Reinforcement Learning

the approximator. Considering that both (2.1) and (2.7) are functions of the
parameterised policy πϑ, they are in fact functions of ϑ. Assuming that the cost-
to-go J is differentiable with respect to the policy and the parameterisation of
the policy is differentiable with respect to ϑ, the gradient of the cost function
with respect to ϑ is described by

∇ϑJ =
∂ J

∂ πϑ

∂ πϑ

∂ ϑ
. (2.12)

Then, by using standard optimisation techniques, a locally optimal solution of
the cost J can be found. The gradient ∇ϑJ is estimated per time step and the
parameters are then updated in the direction of this gradient. For example, a
simple gradient ascent method would yield the policy gradient update equation

ϑk+1 = ϑk +αa,k∇ϑJk, (2.13)

where αa,k > 0 is a small enough learning rate for the actor, by which it is
obtained that2 J(ϑk+1)≥ J(ϑk).

Several methods exist to estimate the gradient, e.g. by using infinitesimal
perturbation analysis (IPA) or likelihood-ratio methods (Aleksandrov et al.,
1968; Glynn, 1987). Baxter and Bartlett (2001); Peters and Schaal (2008b)
provide a broader discussion on these methods. Approaches to model-based
gradient methods are given by Dyer and McReynolds (1970); Hasdorff (1976);
Jacobson and Mayne (1970) and in the more recent work of Deisenroth and
Rasmussen (2011).

The main advantage of actor-only methods is their convergence property,
which is naturally inherited from gradient descent methods. Convergence is
obtained if the estimated gradients are unbiased and the learning rates αa,k

satisfy (Peters and Schaal, 2008b; Sutton and Barto, 1998)

∞∑

k=0

αa,k =∞

∞∑

k=0

α2
a,k
<∞.

A drawback of the actor-only approach is that the estimated gradient may
have a large variance (Riedmiller et al., 2007; Sutton et al., 2000). Also, every
gradient is calculated without using any knowledge of past estimates (Konda
and Tsitsiklis, 2003; Peters et al., 2010).

2One could also define the cost J such that it should be minimised. In that case, the plus sign
in Equation (2.13) is replaced with a minus sign, resulting in J(ϑk+1)≤ J(ϑk).

18

2.3 Actor-Critic in the Context of RL

2.3.3 Actor-Critic Algorithms

Actor-critic methods (Barto et al., 1983; Konda and Tsitsiklis, 2003; Witten,
1977) aim to combine the advantages of actor-only and critic-only methods.
Like actor-only methods, actor-critic methods are capable of producing con-
tinuous actions, while the large variance in the policy gradients of actor-only
methods is countered by adding a critic. The role of the critic is to evaluate the
current policy prescribed by the actor. In principle, this evaluation can be done
by any policy evaluation method commonly used, such as TD(λ) (Bertsekas,
2007; Sutton, 1988), LSTD (Bertsekas, 2007; Boyan, 2002; Bradtke and Barto,
1996) or residual gradients (Baird, 1995). The critic approximates and updates
the value function using samples. The value function is then used to update
the actor’s policy parameters in the direction of performance improvement.
These methods usually preserve the desirable convergence properties of policy
gradient methods, in contrast to critic-only methods. In actor-critic methods,
the policy is not directly inferred from the value function by using (2.11).
Instead, the policy is updated in the policy gradient direction using only a
small step size αa, meaning that a change in the value function will only result
in a small change in the policy, leading to less or no oscillatory behaviour in
the policy as described by Baird and Moore (1999).

Figure 2.1 shows the schematic structure of an actor-critic algorithm. The
learning agent has been split into two separate entities: the actor (policy)
and the critic (value function). The actor is only responsible for generating
a control input u, given the current state x . The critic is responsible for
processing the rewards it receives, i.e. evaluating the quality of the current
policy by adapting the value function estimate. After a number of policy
evaluation steps by the critic, the actor is updated by using information from
the critic.

A unified notation for the actor-critic algorithms described in this thesis
allows for an easier comparison between them. Also, most algorithms can be
fitted to a general template of standard update rules. Therefore, two actor-critic
algorithm templates are introduced: one for the discounted reward setting
and one for the average reward setting. Once these templates are established,
specific actor-critic algorithms can be discussed by only looking at how they fit
into the general template or in what way they differ from it.

For both reward settings, the value function is parameterised by the para-
meter vector θ ∈ Rq, with q the number of features used in the approximator.

19

Chapter 2 Actor-Critic Reinforcement Learning

Actor

Critic

Process

Reward
r

xx u

Figure 2.1 Schematic overview of an actor-critic algorithm. The dashed line
indicates that the critic is responsible for updating the actor and itself.

This will be denoted with Vθ (x) or Qθ (x ,u). If the parameterisation is linear,
the features (basis functions) will be denoted with φ, i.e.

Vθ (x) = θ
⊤φ(x) Qθ (x ,u) = θ⊤φ(x ,u). (2.14)

The stochastic policy π is parameterised by ϑ ∈ Rp and will be denoted with
πϑ(x ,u). If the policy is denoted with πϑ(x), it is deterministic and no longer
represents a probability density function, but the direct mapping from states to
actions u= πϑ(x).

The goal in actor-critic algorithms—or any other RL algorithm for that
matter—is to find the best policy possible, given some stationary MDP. A
prerequisite for this is that the critic is able to accurately evaluate a given
policy. In other words, the goal of the critic is to find an approximate solution
to the Bellman equation for that policy. The difference between the right-
hand and left-hand side of the Bellman equation, whether it is the one for the
discounted reward setting (2.4) or the average reward setting (2.8), is called
the temporal difference (TD) error and is used to update the critic. Using the
function approximation for the critic and a transition sample (xk,uk, rk+1, xk+1),
the TD error is estimated as

δk = rk+1 + γVθk
(xk+1)− Vθk

(xk). (2.15)

Perhaps the most standard way of updating the critic, is to exploit this TD error
for use in a gradient descent update (Sutton and Barto, 1998)

θk+1 = θk +αc,kδk∇θVθk
(xk), (2.16)

20

2.3 Actor-Critic in the Context of RL

where αc,k > 0 is the learning rate of the critic. For the linearly parameterised
function approximator (2.14), this reduces to

θk+1 = θk +αc,kδkφ(xk). (2.17)

This temporal difference method is also known as TD(0) learning, as no
eligibility traces are used. The extension to the use of eligibility traces,
resulting in TD(λ) methods, is straightforward and is explained next.

Using (2.16) to update the critic results in a one-step backup, whereas the
reward received is often the result of a series of steps. Eligibility traces offer a
better way of assigning credit to states or state-action pairs visited several steps
earlier. The eligibility trace vector for all q features at time instant k is denoted
with zk ∈ R

q and its update equation is (Konda and Tsitsiklis, 2003; Sutton and
Barto, 1998)

zk = λγzk−1 +∇θVθk
(xk).

It decays with time by a factor λγ, with λ ∈ [0,1) the trace decay rate and also
takes into account the discount factor γ of the return. This makes the recently
used features more eligible for receiving credit. The use of eligibility traces
speeds up the learning considerably. Using the eligibility trace vector zk, the
update (2.16) of the critic becomes

θk+1 = θk +αc,kδkzk. (2.18)

With the use of eligibility traces, the actor-critic template for the discounted
return setting becomes

Actor-Critic Template 2.1 (Discounted Return).

δk = rk+1 + γVθk
(xk+1)− Vθk

(xk) (2.19a)

zk = λγzk−1 +∇θVθk
(xk) (2.19b)

θk+1 = θk +αc,kδkzk (2.19c)

ϑk+1 = ϑk +αa,k∇ϑJk. (2.19d)

21

Chapter 2 Actor-Critic Reinforcement Learning

Although not commonly seen, eligibility traces may be introduced for
the actor as well (Barto et al., 1983). As with actor-only methods (see
Section 2.3.2), several ways exist to estimate ∇ϑJk.

For the average reward case, the critic can be updated using the average-
cost TD method (Tsitsiklis and Van Roy, 1999). Then, the Bellman equa-
tion (2.8) is considered, turning the TD error into

δk = rk+1 − Ĵk + Vθk
(xk+1)− Vθk

(xk),

with Ĵk an estimate of the average cost at time k. Obviously, this requires
an update equation for the estimate Ĵ as well, which usually is (Konda and
Tsitsiklis, 2003)

Ĵk = Ĵk−1 +αJ ,k(rk+1 − Ĵk−1),

where αJ ,k ∈ (0,1] is another learning rate. The critic still updates with
Equation (2.18). The update of the eligibility trace also needs to be adjusted,
as the discount rate γ is no longer present. The template for actor-critic
algorithms in the average return setting then is

Actor-Critic Template 2.2 (Average Return).

Ĵk = Ĵk−1 +αJ ,k(rk+1 − Ĵk−1) (2.20a)

δk = rk+1 − Ĵk + Vθk
(xk+1)− Vθk

(xk) (2.20b)

zk = λzk−1 +∇θVθk
(xk) (2.20c)

θk+1 = θk +αc,kδkzk (2.20d)

ϑk+1 = ϑk +αa,k∇ϑJk. (2.20e)

For the actor-critic algorithm to converge, it is necessary that the critic’s
estimate is at least asymptotically accurate. This is the case if the step sizes
αa,k and αc,k are deterministic, non-increasing and satisfy (Konda and Tsitsiklis,

22

2.3 Actor-Critic in the Context of RL

2003)
∑

k

αa,k =∞
∑

k

αc,k =∞ (2.21)

∑

k

α2
a,k
<∞

∑

k

α2
c,k
<∞

∑

k

�
αa,k

αc,k

�d

<∞ (2.22)

for some d ≥ 0. The learning rate αJ ,k is usually set equal to αc,k. Note that
such assumptions on learning rates are typical for all RL algorithms. They
ensure that learning will slow down, but never stops and also that the update
of the actor operates on a slower time-scale than the critic, to allow the critic
enough time to, at least partially, evaluate the current policy.

Although TD(λ) learning is used quite commonly, other ways of de-
termining the critic parameter θ do exist and some are even known to be
superior in terms of convergence rate in both discounted and average reward
settings (Paschalidis et al., 2009), such as least-squares temporal difference
learning (LSTD) (Boyan, 2002; Bradtke and Barto, 1996). LSTD uses samples
collected along a trajectory generated by a policy π to set up a system of
temporal difference equations derived from or similar to (2.19a) or (2.20b).
As LSTD requires an approximation of the value function which is linear in its
parameters, i.e. Vθ (x) = θ

⊤φ(x), this system is linear and can easily be solved
for θ by a least-squares method. Regardless of how the critic approximates
the value function, the actor update is always centred around Equation (2.13),
using some way to estimate ∇ϑJk.

For actor-critic algorithms, the question arises how the critic influences the
gradient update of the actor. This is explained in the next subsection about the
policy gradient theorem.

2.3.4 Policy Gradient Theorem

Many actor-critic algorithms now rely on the policy gradient theorem, a
result obtained simultaneously by Konda and Tsitsiklis (2003) and Sutton
et al. (2000), proving that an unbiased estimate of the gradient (2.12) can
be obtained from experience using an approximate value function satisfying
certain properties. The basic idea, given by Konda and Tsitsiklis (2003), is
that since the number of parameters that the actor has to update is relatively
small compared to the (usually infinite) number of states, it is not useful to

23

Chapter 2 Actor-Critic Reinforcement Learning

have the critic attempting to compute the exact value function, which is also a
high-dimensional object. Instead, it should compute a projection of the value
function onto a low-dimensional subspace spanned by a set of basis functions,
which are completely determined by the parameterisation of the actor.

In the case of an approximated stochastic policy, but exact state-action value
function Qπ, the policy gradient theorem is as follows.

Theorem 2.1 (Policy Gradient). For any MDP, in either the average reward

or discounted reward setting, the policy gradient is given by

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x ,u)Qπ(x ,u)dudx ,

with dπ(x) defined for the appropriate reward setting.

Proof: See Sutton et al. (2000)

This clearly shows the relationship between the policy gradient ∇ϑJ and
the critic function Qπ(x ,u) and ties together the update equations of the actor
and critic in the Templates 2.1 and 2.2.

For most applications, the state-action space is continuous and thus infinite,
which means that it is necessary to approximate the state(-action) value
function. The result in Konda and Tsitsiklis (2003); Sutton et al. (2000) shows
that Qπ(x ,u) can be approximated with3 hw : X × U → R, parameterised by w,
without affecting the unbiasedness of the policy gradient estimate.

In order to find the closest approximation of Qπ by hw, one can try to find
the w that minimises the quadratic error

Eπ
w
(x ,u) =

1

2

�
Qπ(x ,u)− hw(x ,u)

�2
.

The gradient of this quadratic error with respect to w is

∇wE
π
w
(x ,u) =

�
Qπ(x ,u)− hw(x ,u)

�
∇whw(x ,u) (2.23)

3This approximation of Qπ(x , u) is not denoted with an accented Q as it is not actually the
value function Q that it is approximating, as shown later in this section.

24

2.3 Actor-Critic in the Context of RL

and this can be used in a gradient descent algorithm to find the optimal w. If
the estimator of Qπ(x ,u) is unbiased, the expected value of Equation (2.23) is
zero for the optimal w, i.e.

∫

X

dπ(x)

∫

U

π(x ,u)∇wE
π
w
(x ,u)dudx = 0. (2.24)

The policy gradient theorem with function approximation is based on the
equality in (2.24).

Theorem 2.2 (Policy Gradient with Function Approximation). If hw

satisfies Equation (2.24) and

∇whw(x ,u) =∇ϑlnπϑ(x ,u), (2.25)

where πϑ(x ,u) denotes the stochastic policy, parameterised by ϑ, then

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x ,u)hw(x ,u)dudx . (2.26)

Proof: See Sutton et al. (2000).

An extra assumption in Konda and Tsitsiklis (2003) is that in (2.25), h actu-
ally needs to be an approximator that is linear with respect to some parameter
w and features ψ, i.e. hw = w⊤ψ(x ,u), transforming condition (2.25) into

ψ(x ,u) =∇ϑlnπϑ(x ,u). (2.27)

Features ψ that satisfy Equation (2.27) are also known as compatible features
(Kakade, 2001; Konda and Tsitsiklis, 2003; Sutton et al., 2000). In the
remainder of the thesis, these will always be denoted by ψ and their
corresponding parameters with w.

A technicality, discussed in detail by Peters and Schaal (2008a) and Sutton
et al. (2000), is that using the compatible function approximation hw =

25

Chapter 2 Actor-Critic Reinforcement Learning

u

x

−5 0 5
−5

0

5

(a) Value function Q∗(x , u)

u

x

−5 0 5
−5

0

5

(b) Advantage function A∗(x , u)

Figure 2.2 The optimal value and advantage function for an example
MDP (Peters and Schaal, 2008a). The system is xk+1 = xk + uk, using the
optimal policy π∗(x) = −K x with K the state feedback solution based on the
reward function rk = −x2

k
− 0.1u2

k
. The advantage function nicely shows the

zero contour line of the optimal action u= −K x .

w⊤∇ϑlnπϑ(x ,u) gives

∫

U

π(x ,u)hw(x ,u)du= w⊤∇ϑ

∫

U

πϑ(x ,u)du

︸ ︷︷ ︸
=1

= 0.

This shows that the expected value of hw(x ,u) under the policy πϑ is zero for
each state, from which can be concluded that hw is generally better thought
of as the advantage function Aπ(x ,u) = Qπ(x ,u) − Vπ(x). In essence, this
means that using only compatible features for the value function results in an
approximator that can only represent the relative value of an action u in some
state x correctly, but not the absolute value Q(x ,u). An example showing how
different the value function Q(x ,u) and the corresponding advantage function
A(x ,u) can look is shown in Figure 2.2. Because of this difference, the policy
gradient estimate produced by just the compatible approximation will still have
a high variance. To lower the variance, extra features have to be added on top
of the compatible features, which take the role of modelling the difference
between the advantage function Aπ(x ,u) and the state-action value function
Qπ(x ,u), which is in fact the value function Vπ(x). These extra features are
therefore only state-dependent, as dependence on the action would introduce
a bias into the gradient estimate. The state-dependent offset that is created

26

2.3 Actor-Critic in the Context of RL

by these additional features is often referred to as a (reinforcement) baseline.
The policy gradient theorem actually generalises to the case where a state-
dependent baseline function is taken into account. Equation (2.26) would
then read

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x ,u)
�

hw(x ,u) + b(x)
�

dudx , (2.28)

where b(x) is the baseline function that can be chosen arbitrarily. Adding
a baseline will not affect the unbiasedness of the gradient estimate, but
can improve the accuracy of the critic’s approximation and prevent an ill-
conditioned projection of the value function on the compatible features
ψ (Konda and Tsitsiklis, 2003). In that respect, this chapter treats w as part of
the vector θ , and ψ as a subset of the features φ, meaning that the algorithm
templates presented earlier are also suitable in the compatible feature setting.
In practice, the optimal baseline, i.e. the baseline that minimises the variance in
the gradient estimate for the policy π, is the value function Vπ(x) (Bhatnagar
et al., 2009; Sutton et al., 2000). Peters et al. (2003) note that, in light of the
policy gradient theorem that was only published many years later, the earlier
idea of Gullapalli (1990) to use the temporal difference δ in the gradient used
to update the policy weights can be shown to yield the true policy gradient
∇ϑJ(ϑ), and hence corresponds to the policy gradient theorem with respect to
Equation (2.28).

Theorem 2.2 yields a major benefit. Once a good parameterisation for a
policy has been found, a parameterisation for the value function automatically
follows and also guarantees convergence. Further on in this chapter, many
actor-critic algorithms make use of this theorem.

Part of this chapter is dedicated to giving some examples of relevant actor-
critic algorithms in both the standard gradient and natural gradient setting.
As it is not possible to describe all existing actor-critic algorithms in detail,
the algorithms addressed in this chapter are chosen based on their originality:
either they were the first to use a certain technique, extended an existing
method significantly or the containing paper provided an essential analysis. In
Section 2.2 a distinction between the discounted and average reward setting
was already made. The reward setting is the first major axis along which the
algorithms in this chapter are organised. The second major axis is the gradient
type, which will be either the standard gradient or the natural gradient. This
results in a total of four categories to which the algorithms can (uniquely)

27

Chapter 2 Actor-Critic Reinforcement Learning

belong, see Table 2.1. References in bold are discussed from an algorithmic
perspective. Section 2.4 describes actor-critic algorithms that use a standard
gradient. Section 2.5 first introduces the concept of a natural gradient, after
which natural actor-critic algorithms are discussed. References in italic are
discussed in the Section 2.6 on applications.

Table 2.1 Actor-critic methods, categorised along two axes: gradient type
and reward setting.

Standard gradient Natural gradient

D
is

co
u

n
te

d
re

tu
rn

Barto et al. (1983),
FACRLN (Cheng et al., 2004;
Wang et al., 2007),
CACM (Niedzwiedz et al.,
2008), Bhatnagar (2010), Li

et al. (2009), Kimura et al.

(2001), Raju et al. Raju et al.

(2003)

(e)NAC (Peters and Schaal,

2008a; Peters et al., 2003),
Park et al. (2005), Girgin and
Preux (2008), Kimura
(2008),Richter et al. (2007),

Kim et al. (2010), Nakamura

et al. (2007), El-Fakdi et al.

(2010)

A
v
e
ra

g
e

re
tu

rn

Konda and Tsitsiklis (2003),
Paschalidis et al. (2009),
ACFRL (Berenji and Vengerov,
2003; Vengerov et al., 2005),
Algorithm I (Bhatnagar et al.,
2009), ACSMDP (Usaha and

Barria, 2007)

Algorithms II–IV (Bhatnagar
et al., 2009), gNAC (Morimura
et al., 2009)

2.4 Standard Gradient Actor-Critic Algorithms

Many papers refer to Barto et al. (1983) as the starting point of actor-critic
algorithms, although there the actor and critic were called the associative
search element and adaptive critic element, respectively. That paper itself
mentions that the implemented strategy is closely related to the work by
Samuel (1959) and Witten (1977). Either way, it is true that Barto et al. (1983)

28

2.4 Standard Gradient Actor-Critic Algorithms

defined the actor-critic structure that resembles the recently proposed actor-
critic algorithms the most. Therefore, the discussion on standard actor-critic
algorithms starts with this work, after which other algorithms in the discounted
return setting follow. As many algorithms based on the average return also
exist, they are dealt with in a separate section.

2.4.1 Discounted Return Setting

Barto et al. (1983) use simple parameterisations

Vθ (x) = θ
⊤φ(x) πϑ(x) = ϑ

⊤φ(x),

with the same features φ(x) for the actor and critic. They chose binary
features, i.e. for some state x only one feature φi(x) has a non-zero value,
in this case φi(x) = 1. For ease of notation, the state x was taken to be a vector
of zeros with only one element equal to 1, indicating the activated feature.
This allowed the parameterisation to be written as

Vθ (x) = θ
⊤x πϑ(x) = ϑ

⊤x .

Then, they were able to learn a solution to the well-known cart-pole problem
using the update equations

δk = rk+1 + γVθk
(xk+1)− Vθk

(xk) (2.29a)

zc,k = λczc,k−1 + (1−λc)xk (2.29b)

za,k = λaza,k−1 + (1−λa)uk xk (2.29c)

θk+1 = θk +αcδkzc,k (2.29d)

ϑk+1 = ϑk +αaδkza,k, (2.29e)

with
uk = τ

�
πϑk
(xk) + nk

�
,

where τ is a threshold, sigmoid or identity function, nk is noise which
accounts for exploration and zc, za are eligibility traces for the critic and
actor, respectively. Note that these update equations are similar to the ones in
Template 2.1, considering the representation in binary features. The product
δkza,k in Equation (2.29e) can then be interpreted as the gradient of the
performance with respect to the policy parameter.

Although no use was made of advanced function approximation techniques,
good results were obtained. A mere division of the state space into boxes

29

Chapter 2 Actor-Critic Reinforcement Learning

meant that there was no generalisation among the states, indicating that
learning speeds could definitely be improved upon. Nevertheless, the actor-
critic structure itself remained and later work largely focused on better
representations for the actor and the calculation of the critic.

Based on earlier work by Cheng et al. (2004), Wang et al. (2007)
introduced the Fuzzy Actor-Critic Reinforcement Learning Network (FACRLN),
which uses only one fuzzy neural network based on radial basis functions for
both the actor and the critic. That is, they both use the same input and hidden
layers, but differ in their output by using different weights. This is based on
the idea that both actor and critic have the same input and also depend on
the same system dynamics. Apart from the regular updates to the actor and
critic based on the temporal difference error, the algorithm not only updates
the parameters of the radial basis functions in the neural network, but also
adaptively adds and merges fuzzy rules. Whenever the TD error or the squared
TD error is too high and the so-called ε-completeness property (Lee, 1990) is
violated, a new rule, established by a new radial basis function, is added to the
network. A closeness measure of the radial basis functions decides whether
two (or more) rules should be merged into one. For example, when using
Gaussian functions in the network, if two rules have their centres and their
widths close enough to each other, they will be merged into one. FACRLN is
benchmarked against several other (fuzzy) actor-critic algorithms, including
the original work by Barto et al. (1983), and turns out to outperform them all
in terms of the number of trials needed, without increasing the number of basis
functions significantly.

At about the same time, Niedzwiedz et al. (2008) also claimed, like with
FACRLN, that there is redundancy in learning separate networks for the actor
and critic and developed their Consolidated Actor-Critic Model (CACM) based
on that same principle. They too set up a single neural network, using sigmoid
functions instead of fuzzy rules, and use it for both the actor and the critic. The
biggest difference is that here, the size of the neural network is fixed, so there
is no adaptive insertion/removal of sigmoid functions.

More recently, work on the use of actor-critic algorithms using function
approximation for discounted cost MDPs under multiple inequality constraints
appeared in Bhatnagar (2010). The constraints considered are bounds on the

30

2.4 Standard Gradient Actor-Critic Algorithms

expected values of discounted sums of single-stage cost functions ρn, i.e.

Sn(π) =
∑
x∈X

d0(x)W
π
n
(x)≤ sn, n= 1 . . . N ,

with

Wπ
n
(x) = E

(
∞∑

k=0

γkρn(xk,uk)

����� x0 = x ,π

)

and d0 a given initial distribution over the states. The approach is, as in usual
constrained optimisation problems, to extend the discounted cost function J(π)

to a Lagrangian cost function

L(π, µ̄) = J(π) +

N∑

n=1

µkGn(π),

where µ̄ = (µ1, . . . ,µN)
⊤ is the vector of Lagrange multipliers and Gn(π) =

Sn(π)− sn the functions representing the inequality constraints.

The algorithm generates an estimate of the policy gradient using simultan-
eous perturbation stochastic approximation (SPSA) (Spall, 1992), which has
been found to be efficient even in high-dimensional parameter spaces. The
SPSA gradient requires the introduction of two critics instead of one. The
first critic, parameterised by θ⊤φ(x), evaluates a policy parameterised by ϑk.

The second critic, parameterised by θ ′
⊤
φ(x) evaluates a slightly perturbed

policy parameterised by ϑk + ε∆k with a small ε > 0. The element-wise policy
parameter update is then given by4

ϑi,k+1 = Γi

ϑk +αa

∑
x∈X

d0(x)

(θk − θ

′
k
)
⊤
φ(x)

ε∆i(k)

!
 , (2.30)

where Γi is a truncation operator. The Lagrange parameters µ also have an
update rule of their own, which introduces a third learning rate αL,k into the
algorithm for which the regular conditions

∑

k

αL,k =∞
∑

k

α2
L,k
<∞

4This requires two simultaneous simulations of the constrained MDP.

31

Chapter 2 Actor-Critic Reinforcement Learning

must be satisfied and another constraint relating αL,k to the actor step size αa,k

lim
k→∞

αL,k

αa,k

= 0

must also hold, indicating that the learning rate for the Lagrange multipliers
should decrease quicker than the actor’s learning rate. Under these conditions,
the authors prove the almost sure convergence to a locally optimal policy.

2.4.2 Average Reward Setting

Together with the presentation of the novel ideas of compatible features,
discussed in Section 2.3.4, Konda and Tsitsiklis (2003) introduced two actor-
critic algorithms, differing only in the way they update the critic. The general
update equations for these algorithms are

bJk = bJk−1 +αc,k(rk+1 − bJk−1) (2.31a)

δk = rk+1 − bJk +Qθk
(xk+1,uk+1)−Qθk

(xk,uk) (2.31b)

θk+1 = θk +αc,kδkzk (2.31c)

ϑk+1 = ϑk +αa,kΓ(θk)Qθk
(xk,uk)ψ(xk,uk), (2.31d)

where ψ is the vector of compatible features as defined in Equation (2.27),
and the parameterisation Qθ also contains these compatible features. The first
and the second equation depict the standard update rules for the estimate of
the average cost and the temporal difference error, as seen in Template 2.2.
The third equation is the update of the critic. Here, the vector zk represents
an eligibility trace (Sutton and Barto, 1998) and it is exactly this what
distinguishes the two different algorithms described in the paper. The first
algorithm uses a TD(1) critic, basically taking an eligibility trace with decay
rate λ = 1. The eligibility trace is updated as

zk =

¨
zk−1 +φk(xk,uk) if xk 6= xS

φk(xk,uk) otherwise

where xS is a special reset state for which it is assumed that the probability
of reaching it from any initial state x within a finite number of transitions is
bounded away from zero for any sequence of randomised stationary policies.
Here, the eligibility trace is reset when encountering a state that meets this

32

2.4 Standard Gradient Actor-Critic Algorithms

assumption. The second algorithm is a TD(λ) critic, simply updating the
eligibility trace as

zk = λzk−1 +φk(xk,uk).

The update of the actor in Equation (2.31d) uses the policy gradient estimate
from Theorem 2.2. It leaves out the state distribution dπ(x) earlier seen
in Equation (2.26) of the policy gradient theorem, as the expected value
of ∇J(ϑk) is equal to that of ∇ϑπ(x ,u)bQπ

w
(x ,u) and puts the critic’s current

estimate in place of bQπ
w
(x ,u). Finally, Γ(θk) is a truncation term to control the

step size of the actor, taking into account the current estimate of the critic. For
this particular algorithm, some further assumptions on the truncation operator
Γ must hold, which are not listed here.

It is known that using least-squares TD methods for policy evaluation is
superior to using regular TD methods in terms of convergence rate as they are
more data efficient (Boyan, 2002; Bradtke and Barto, 1996). Inevitably, this
resulted in work on actor-critic methods using an LSTD critic (Peters et al.,
2003; Williams et al., 2006). However, Paschalidis et al. (2009) showed that
it is not straightforward to use LSTD without modification, as it undermines
the assumptions on the step sizes as given by Equations (2.21) and (2.22). As
a result of the basics of LSTD, the step size schedule for the critic should be
chosen as αc,k =

1

k
. Plugging this demand into Equations (2.21) and (2.22)

two conditions on the step size of the actor conflict:

∑

k

αa,k =∞
∑

k

(kαa,k)
d <∞ for some d > 0.

They conflict because the first requires αa to decay at a rate slower than 1/k,
while the second demands a rate faster than 1/k. This means there is a trade-
off between the actor having too much influence on the critic and the actor
decreasing its learning rate too fast. The approach presented by Paschalidis
et al. (2009) to address this problem is to use the following step size schedule
for the actor. For some K ≫ 1, let L = ⌊k/K⌋ and

αa,k :=
1

L+ 1
α̂a(k+ 1− LK),

where
∑

k(kα̂a(k))
d ≤∞ for some d > 0. As a possible example,

α̂a,k(b) := ̺(C) · b−C

33

Chapter 2 Actor-Critic Reinforcement Learning

is provided, where C > 1 and ̺(C) > 0. The critic’s step size schedule is
redefined as

αc,k :=
1

k− κ(L, K)
.

Two extreme cases of κ(L, K) are κ(L, K) ¬ 0 and κ(L, K) = LK − 1. The
first alternative corresponds to the unmodified version of LSTD and the latter
corresponds to “restarting” the LSTD procedure when k is an integer multiple of
K. The reason for adding the κ term to the critic update is theoretical, as it may
be used to increase the accuracy of the critic estimates for k→∞. Nevertheless,
choosing κ(L, K) = 0 gave good results in simulations (Paschalidis et al., 2009).
These step size schedules for the actor and critic allow the critic to converge
to the policy gradient, despite the intermediate actor updates, while constantly
reviving the learning rate of the actor such that the policy updates do not
stop prematurely. The actor step size schedule does not meet the requirement∑

k(kαa)
d <∞ for some d > 0, meaning that convergence of the critic for the

entire horizon cannot be directly established. What is proven by the authors
is that the critic converges before every time instant k = JK, at which point
a new epoch starts5. For the actor, the optimum is not reached during each
epoch, but in the long run it will move to an optimal policy. A detailed proof
of this is provided by Paschalidis et al. (2009).

Berenji and Vengerov (2003) used the actor-critic algorithm of Konda and
Tsitsiklis (2003) to provide a proof of convergence for an actor-critic fuzzy
reinforcement learning (ACFRL) algorithm. The fuzzy element of the algorithm
is the actor, which uses a parameterised fuzzy Takagi-Sugeno rulebase. The
authors show that this parameterisation adheres to the assumptions needed
for convergence given by Konda and Tsitsiklis (2003), hence providing the
convergence proof. The update equations for the average cost and the critic
are the same as Equations (2.31a) and (2.31c), but the actor update is slightly
changed into

ϑk+1 = Γ
�
ϑk +αa,kθ

⊤
k
φk(xk,uk)ψk(xk,uk)

�
,

where the truncation operator Γ is now acting on the complete update
expression, instead of limiting the step size based on the critic’s parameter.
While applying ACFRL to a power management control problem, it was
acknowledged that the highly stochastic nature of the problem and the

5The authors use the term “episode”, but this might cause confusion with the commonly seen
concept of episodic tasks in RL, which is not the case here.

34

2.5 Natural Gradient Actor-Critic Algorithms

presence of delayed rewards necessitated a slight adaptation to the original
framework of Konda and Tsitsiklis (2003). The solution was to split the
updating algorithm into three phases. Each phase consists of running a finite
number of simulation traces. The first phase only estimates the average cost
Ĵ , keeping the actor and critic fixed. The second phase only updates the critic,
based on the Ĵ obtained in the previous phase. This phase consists of a finite
number of traces during which a fixed positive exploration term is used on
top of the actor’s output and an equal number of traces during which a fixed
negative exploration term is used. The claim is that this systematic way of
exploring is very beneficial in problems with delayed rewards, as it allows
the critic to better establish the effects of a certain direction of exploration.
The third and final phase keeps the critic fixed and lets the actor learn the
new policy. Using this algorithm, ACFRL consistently converged to the same
neighbourhood of policy parameters for a given initial parameterisation. Later,
Vengerov et al. (2005) extended the algorithm to ACFRL-2, which took the idea
of systematic exploration one step further by learning two separate critics: one
for positive exploration and one for negative exploration.

Bhatnagar et al. (2009) introduced four algorithms. The first one uses a
regular gradient and will therefore be discussed in this section. The update
equations for this algorithm are

bJk = bJk−1 +αJ ,k(rk+1 − bJk−1) (2.32a)

δk = rk+1 − Ĵk + Vθk
(xk+1)− Vθk

(xk) (2.32b)

θk+1 = θk +αc,kδkφ(xk) (2.32c)

ϑk+1 = Γ(ϑk +αa,kδkψ(xk,uk)). (2.32d)

The critic update is simply an update in the direction of the gradient ∇θV .
The actor update uses the fact that δkψ(xk,uk) is an unbiased estimate of
∇ϑJ under certain conditions (Bhatnagar et al., 2009). The operator Γ is a
projection operator, ensuring boundedness of the actor update. Three more
algorithms are discussed by Bhatnagar et al. (2009), but these make use of a
natural gradient for the updates and hence are discussed in Section 2.5.3.

2.5 Natural Gradient Actor-Critic Algorithms

The previous section introduced actor-critic algorithms which use standard
gradients. The use of standard gradients comes with drawbacks. Standard

35

Chapter 2 Actor-Critic Reinforcement Learning

gradient descent is most useful for cost functions that have a single minimum
and whose gradients are isotropic in magnitude with respect to any direction
away from its minimum (Amari and Douglas, 1998). In practice, these two
properties are almost never true. The existence of multiple local minima of
the cost function, for example, is a known problem in reinforcement learning,
usually overcome by exploration strategies. Furthermore, the performance of
methods that use standard gradients relies heavily on the choice of a coordinate
system over which the cost function is defined. This non-covariance is one of
the most important drawbacks of standard gradients (Bagnell and Schneider,
2003a; Kakade, 2001). An example for this will be given later in this section.

In robotics, it is common to have a “curved” state space (manifold), e.g.
because of the presence of angles in the state. A cost function will then usually
be defined in that curved space too, possibly causing inefficient policy gradient
updates to occur. This is exactly what makes the natural gradient interesting,
as it incorporates knowledge about the curvature of the space into the gradient.
It is a metric based not on the choice of coordinates, but on the manifold that
those coordinates parameterise (Kakade, 2001).

This section is divided into two parts. The first part explains what the
concept of a natural gradient is and what its effects are in a simple optimisation
problem, i.e. not considering a learning setting. The second part is devoted to
actor-critic algorithms that make use of this type of gradient to update the
actor. As these policy updates are using natural gradients, these algorithms are
also referred to as natural policy gradient algorithms.

2.5.1 Natural Gradient in Optimisation

To introduce the notion of a natural gradient, this section summarises work
presented in Amari (1998); Amari and Douglas (1998); Bagnell and Schneider
(2003a). Suppose a function J(ϑ) is parameterised by ϑ. When ϑ lives in a
Euclidean space, the squared Euclidean norm of a small increment ∆ϑ is given
by the inner product

‖∆ϑ‖2
E
=∆ϑ⊤∆ϑ.

A steepest descent direction is then defined by minimising J(ϑ + ∆ϑ) while
keeping ‖∆ϑ‖E equal to a small constant. When ϑ is transformed to other
coordinates eϑ in a non-Euclidean space, the squared norm of a small increment

36

2.5 Natural Gradient Actor-Critic Algorithms

∆eϑ with respect to that Riemannian space is given by the product

‖∆eϑ‖2
R
=∆eϑ⊤G(eϑ)∆eϑ

where G(eϑ) is the Riemannian metric tensor, an n× n positive definite matrix
characterising the intrinsic local curvature of a particular manifold in an n-
dimensional space. The Riemannian metric tensor G(eϑ) can be determined
from the relationship (Amari and Douglas, 1998):

‖∆ϑ‖2
E
= ‖∆eϑ‖2

R
.

Clearly, for Euclidean spaces G(eϑ) is the identity matrix.

Standard gradient descent for the new parameters eϑ would define the

steepest descent with respect to the norm ‖∆eϑ‖2 = ∆eϑ⊤∆eϑ. However, this
would result in a different gradient direction, despite keeping the same cost
function and only changing the coordinates. The natural gradient avoids this
problem, and always points in the “right” direction, by taking into account the
Riemannian structure of the parameterised space over which the cost function
is defined. So now, eJ(eϑ+∆eϑ) is minimised while keeping ‖∆eϑ‖R small (eJ here
is just the original cost J , but written as a function of the new coordinates).
This results in the natural gradient e∇eϑeJ(eϑ) of the cost function, which is just a

linear transformation of the standard gradient ∇eϑeJ(eϑ) by the inverse of G(eϑ):
e∇eϑeJ(eϑ) = G−1(eϑ)∇eϑeJ(eϑ).

As an example of optimisation with a standard gradient versus a natural
gradient, consider a cost function based on polar coordinates

JP(r,ϕ) =
1

2

�
(r cosϕ− 1)2 + r2 sin2ϕ

�
. (2.33)

This cost function is equivalent to JE(x , y) = (x − 1)2 + y2, where x and y are
Euclidean coordinates, so the relationship between (r,ϕ) and (x , y) is given by

x = r cosϕ y = r sinϕ.

Figure 2.3a shows the contours and antigradients of JP(r,ϕ) for 0 ≤ r ≤ 3

and |ϕ| ≤ π, where

−∇(r,ϕ)JP(r,ϕ) = −

�
r − cosϕ

r sinϕ

�
.

37

Chapter 2 Actor-Critic Reinforcement Learning

ϕ

r

0 1 2 3
−3

−2

−1

0

1

2

3

(a) Standard gradient
ϕ

r

0 1 2 3
−3

−2

−1

0

1

2

3

(b) Natural gradient

Figure 2.3 Standard and natural antigradients of the cost function JP(r,ϕ)

in polar coordinates.

The magnitude of the gradient clearly varies widely over the (r,ϕ)-plane.
When performing a steepest descent search on this cost function, the traject-
ories from any point (r,ϕ) to an optimal one will be far from straight paths.
For the transformation of Euclidean coordinates into polar coordinates, the
Riemannian metric tensor is (Amari and Douglas, 1998)

G(r,ϕ) =

�
1 0

0 r2

�
,

so that the natural gradient of the cost function in (2.33) is

−e∇(r,ϕ)JP(r,ϕ) = −G(r,ϕ)−1∇(r,ϕ)JP(r,ϕ)

= −

r − cosϕ
sinϕ

r

 .

Figure 2.3b shows the natural gradients of JP(r,ϕ). Clearly, the magnitude
of the gradient is now more uniform across the space and the angles of the
gradients also do not greatly vary away from the optimal point (1,0).

38

2.5 Natural Gradient Actor-Critic Algorithms

ϕ

r

−2 −1 0 1 2 3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 2.4 Trajectories for standard gradient (dashed) and natural gradient
(solid) algorithms for minimising JP(r,ϕ) in polar coordinates.

Figure 2.4 shows the difference between a steepest descent method using
a standard gradient and a natural gradient on the cost JP(r,ϕ) using a number
of different initial conditions. The natural gradient clearly performs better as it
always finds the optimal point, whereas the standard gradient generates paths
that are leading to points in the space which are not even feasible, because of
the radius which needs to be positive.

To get an intuitive understanding of what the effect of a natural gradient
is, Figure 2.5 shows trajectories for the standard and natural gradient that have
been transformed onto the Euclidean space. Whatever the initial condition6

is, the natural gradient of JP(r,ϕ) always points straight to the optimum and
follows the same path that the standard gradient of JE(x , y) would do.

When J(ϑ) is a quadratic function of ϑ (like in many optimisation problems,

6The exemplified initial conditions are not the same as in Figure 2.4.

39

Chapter 2 Actor-Critic Reinforcement Learning

y

x

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.5 Trajectories for standard gradient (dashed) and natural gradient
(solid) algorithms for minimising JP(r,ϕ), transformed to Euclidean coordin-
ates.

including for example those solved in supervised learning), the Hessian H(ϑ)

is equal to G(ϑ) for the underlying parameter space, and there is no difference
between using Newton’s method and natural gradient optimisation. In general,
however, natural gradient optimisation differs from Newton’s method, since
G(ϑ) is always positive definite by construction, whereas the Hessian H(ϑ)may
not be (Amari and Douglas, 1998). The general intuition developed in this
section is essential before moving on to the natural policy gradient in MDPs,
explained next.

2.5.2 Natural Policy Gradient

The possibility of using natural gradients in online learning was first appre-
ciated in Amari (1998). As shown above, the crucial property of the natural
gradient is that it takes into account the structure of the manifold over which

40

2.5 Natural Gradient Actor-Critic Algorithms

the cost function is defined, locally characterised by the Riemannian metric
tensor. To apply this insight in the context of policy gradient methods, the main
question is then what an appropriate manifold is, and once that is known, what
its Riemannian metric tensor is.

Consider first just the parameterised stochastic policy πϑ(x ,u) at a single
state x; a probability distribution over the actions u. This policy is a
point on a manifold of such probability distributions, found at coordinates
ϑ. For a manifold of distributions, the Riemannian tensor is the so-called
Fisher information matrix (FIM) (Amari, 1998), which for the policy above
is (Kakade, 2001)

F(ϑ, x) = E
�
∇ϑlnπϑ(x ,u)∇ϑlnπϑ(x ,u)⊤

�

=

∫

U

πϑ(x ,u)∇ϑlnπϑ(x ,u)∇ϑlnπϑ(x ,u)⊤du. (2.34)

The single-state policy is directly related with the expected immediate reward,
over a single step from x . However, it does not tell much about the overall
expected return J(π), which is defined over entire state trajectories. To obtain
an appropriate overall FIM, in the average reward case, Kakade (2001) made
the intuitive choice of taking the expectation of F(ϑ, x) with respect to the
stationary state distribution dπ(x)

F(ϑ) =

∫

X

dπ(x)F(ϑ, x)dx . (2.35)

He was, however, unsure whether this was the right choice.

Later on, Peters et al. (2003) and Bagnell and Schneider (2003a) inde-
pendently showed that Equation (2.35) is indeed a true FIM, for the manifold
of probability distributions over trajectories in the MDP. When used to control
the MDP with stochastic dynamics f , πϑ(x ,u) gives rise to different controlled
trajectories with different probabilities, so each value of the parameter ϑ yields
such a distribution over trajectories. To understand how this distribution is
relevant to the value J(π) of the policy, observe that this value can be written as
the expected value of the infinite-horizon return over all possible paths, where
the expectation is taken with respect to precisely the trajectory distribution.
Furthermore, Peters et al. (2003) and Bagnell and Schneider (2003a) show
that this idea also extends to the discounted reward case, where the FIM is still
given by Equation (2.35), only with dπ(x) replaced by the discounted state
distribution dπγ (x), as defined in Section 2.2.1.

41

Chapter 2 Actor-Critic Reinforcement Learning

Examples of the difference in performance between regular policy gradients
and natural policy gradients are provided by Bagnell and Schneider (2003a);
Kakade (2001); Peters et al. (2003).

2.5.3 Natural Actor-Critic Algorithms

This section describes several representative actor-critic algorithms that em-
ploy a natural policy gradient. Again, a distinction is made between algorithms
using the discounted return and the average return.

Discounted Return Setting

After the acknowledgement by Amari (1998) that using the natural gradient
could be beneficial for learning, the aptly called Natural Actor-Critic algorithm
by Peters et al. (2003) was the first actor-critic algorithm that successfully
employed a natural gradient for the policy updates. Together with Kakade
(2001), they gave a proof that the natural gradient e∇ϑJ(ϑ) is in fact the
compatible feature parameter w of the approximated value function, so

e∇ϑJ(ϑ) = w.

Consequently, they were able to use a natural gradient without explicitly
calculating the Fisher Information Matrix. This turns the policy update step
into

ϑk+1 = ϑk +αa
e∇ϑJ(ϑ) (2.36a)

= ϑk +αawk+1. (2.36b)

For the policy evaluation step of the algorithm, i.e. the calculation of the critic
parameter w, LSTD-Q(λ) was used, which was their own extension to LSTD(λ)
by Boyan (2002). The Natural Actor-Critic outperformed standard gradient
policy gradient methods on a cart-pole balancing setup. Later, the work was
extended by Peters and Schaal (2008a), where it was shown that several
well-known reinforcement algorithms (for example, the actor-critic algorithm
of Sutton and Barto (1998) and the Q-learning algorithm of Bradtke et al.
(1994)) are strongly related to natural actor-critic algorithms. Furthermore,
the paper presents the successful application of an episodic variant of Natural
Actor-Critic (eNAC) on an anthropomorphic robot arm. For another example
of a natural-actor critic algorithm with a regression-based critic, see Melo and
Lopes (2008).

42

2.5 Natural Gradient Actor-Critic Algorithms

Park et al. (2005) extend the original work of Peters et al. (2003) by using a
recursive least-squares method in the critic, making the parameter estimation
of the critic more efficient. They then successfully apply it to the control of a
two-link robot arm.

Girgin and Preux (2008) improve the performance of natural actor-
critic algorithms, by using a neural network for the actor, which includes a
mechanism to automatically add hidden layers to the neural network if the
accuracy is not sufficient. Enhancing the eNAC method of Peters and Schaal
(2008a) with this basis expansion method clearly showed its benefits on a cart-
pole simulation.

Though a lot of (natural) actor-critic algorithms use sophisticated function
approximators, Kimura (2008) showed that a simple policy parameterisation
using rectangular coarse coding can still outperform conventional Q-learning
in high-dimensional problems. In the simulations, however, Q-learning did
outperform the natural actor-critic algorithm in low-dimensional problems.

Average Reward Setting

Bhatnagar et al. (2009) introduced four algorithms, three of which are natural-
gradient algorithms. They extend the results of Konda and Tsitsiklis (2003)
by using temporal difference learning for the actor and by incorporating
natural gradients. They also extend the work of Peters and Schaal (2008a)
by providing the first convergence proofs and the first fully incremental
natural actor-critic algorithms. The contribution of convergence proofs for
natural-actor critic algorithms is important, especially since the algorithms
utilised both function approximation and a bootstrapping critic, a combination
which is essential to large-scale applications of reinforcement learning. The
second algorithm only differs from the first algorithm, described at the end of
Section 2.4.2 with Equation (2.32), in the actor update (2.32d). It directly
substitutes the standard gradient with the natural gradient, yielding

ϑk+1 = Γ(ϑk +αa,kF−1
k
(ϑ)δkψ(xk,uk)), (2.37)

where F is the Fisher Information Matrix (FIM). This requires the actual
calculation of the FIM. Since the FIM can be written using the compatible
features ψ as

F(ϑ) =

∫

X

dπ(x)

∫

U

π(x ,u)ψ(x ,u)ψ⊤(x ,u)dudx ,

43

Chapter 2 Actor-Critic Reinforcement Learning

sample averages can be used to compute it with

Fk(ϑ) =
1

k+ 1

k∑

l=0

ψ(x l ,ul)ψ
⊤(x l ,ul).

After converting this equation to a recursive update rule, and putting the critic’s
learning rate in place, the Sherman-Morrison matrix inversion lemma is used
to obtain an iterative update rule for the inverse of the FIM7.

F−1
k
(ϑ) =

1

1−αc,k

F−1

k−1
−αc,k

(F−1
k−1
ψk)(F

−1
k−1
ψk)

⊤

1−αc,k(1−ψ
⊤
k

F−1
k−1
ψk)

 ,

where the initial value F−1
0 is chosen to be a scalar multiple of the identity

matrix. This update rule, together with the adjusted update of the actor then
form the second algorithm.

The third algorithm by Bhatnagar et al. (2009) uses the fact that the
compatible approximation w⊤ψ(x ,u) is better thought of as an advantage
function approximator instead of a state-action value function approximator,
as mentioned in Section 2.3.4. Hence, the algorithm tunes the weights w, such
that the squared error Eπ(w) = E

�
(w⊤ψ(x ,u)− Aπ(x ,u))2

�
is minimised. The

antigradient of this error is

∇wE
π(w) = 2

∑
X

dπ(x)
∑

U

π(x ,u)
�

w⊤ψ(x ,u)− Aπ(x ,u)
�
ψ(x ,u).

As δk is an unbiased estimate of Aπ(xk,uk) (see Bhatnagar et al. (2008)), the
gradient is estimated with

Ø∇wE
π(w) = 2(ψkψ

⊤
k

w −δkψk) (2.38)

and the gradient descent update rule for w (using the same learning rate as the
critic) is

wk+1 = wk −αc,k(ψkψ
⊤
k

wk −δkψk). (2.39)

Furthermore, the natural gradient estimate is given by w (as shown by Peters
and Schaal (2008a)), and an explicit calculation for the FIM is no longer

7For readability, ψ(xk, uk) is replaced by ψk for the remainder of this section.

44

2.5 Natural Gradient Actor-Critic Algorithms

necessary. Therefore, the third algorithm is obtained by using Equation (2.39)
and replacing the actor in Equation (2.37) with

ϑk+1 = Γ(ϑk +αa,kwk+1). (2.40)

The fourth algorithm by Bhatnagar et al. (2009) is obtained by combining
the second and third algorithm. The explicit calculation of F−1

k
is now used for

the update of the compatible parameter w. The update of w now also follows
its natural gradient, by premultiplying the result in Equation (2.38) with F−1

k
,

giving
Øe∇wE

π(w) = 2F−1
k
(ψkψ

⊤
k

w −δkψk),

turning the update of w into

wk+1 = wk −αc,k F−1
k
(ψkψ

⊤
k

wk −δkψk)

= wk −αc,k F−1
k
ψkψ

⊤
k︸ ︷︷ ︸

I

wk +αc,k F−1
k
δkψk

= wk −αc,kwk +αc,k F−1
k
δkψk,

where clever use is made of the fact that Fk is written as the squared ψ’s. The
actor update is still Equation (2.40).

Although most natural actor-critic algorithms use the natural gradient as
defined in Section 2.5, the generalised Natural Actor-Critic (gNAC) algorithm
by Morimura et al. (2009) does not. Instead, a generalised natural gradient
(gNG) is used, which combines properties of the Fisher Information Matrix and
natural gradient as defined before with the properties of a differently defined
Fisher Information Matrix and natural gradient from the work by Morimura
et al. (2008). They consider the fact that the average reward J(ϑ) is not only
affected by the policy π, but also by the resulting state distribution dπ(x) and
define the Fisher Information Matrix of the state-action joint distribution as

FSA(ϑ) = FS(ϑ) + FA(ϑ), (2.41)

where FS(ϑ) is the FIM of the stationary state distribution dπ(x) and FA(ϑ)

the FIM as defined in Equation (2.35). Morimura et al. (2008) consider
the use of FSA(ϑ) as the FIM for learning better than using the original FIM
because of three reasons: (i) Learning with FSA(ϑ) still benefits from the
concepts of natural gradient, since it necessarily and sufficiently accounts for

45

Chapter 2 Actor-Critic Reinforcement Learning

the probability distributions that the average reward depends on. (ii) FSA(ϑ)

is analogous to the Hessian matrix of the average reward. (iii) Numerical
experiments have shown a strong tendency of avoiding plateaus in learning.

Nevertheless, the original FIM FA(ϑ) accounts for the distribution over an
infinite amount of time steps, whereas FSA(ϑ) only accounts for the distribution
over a single time step. This might increase the mixing time of the Markov
chain drastically, making it hard for the RL learning agent to estimate a
gradient with a few samples. Therefore, the authors suggest to use a weighted
average, using a weighting factor ι, of both FIM’s defined in Equations (2.34)
and (2.41). The gNG is then calculated by using the inverse of this weighted
average, leading to the policy gradient

e∇ϑJ(ϑ) =
�
ιFS + FA

�−1
∇ϑJ(ϑ).

The implementation of the algorithm is similar to that of NAC, with the slight
difference that another algorithm, LSLSD (Morimura et al., 2010), is used to
estimate ∇ϑdπ(x). If ι = 0, gNAC is equivalent to the original NAC algorithm
of Peters et al. (2003), but now optimising over the average return instead of
the discounted return. In a numerical experiment with a randomly synthesised
MDP of 30 states and 2 actions, gNAC with ι > 0 outperformed the original
NAC algorithm.

2.6 Applications

This section provides references to papers that have applied actor-critic
algorithms in several domains. Note that the list of applications is not
exhaustive and that other application domains for actor-critic algorithms and
more literature on the applications mentioned below exists.

In the field of robotics, early successful results of using actor-critic type
methods on real hardware were shown on a ball on a beam setup (Benbrahim
et al., 1992), a peg-in-hole insertion task (Gullapalli, 1993) and biped
locomotion (Benbrahim and Franklin, 1997). Peters and Schaal (2008a)
showed that their natural actor-critic method was capable of getting an
anthropomorphic robot arm to learn certain motor skills (see Figure 2.6). Kim
et al. (2010) recently successfully applied a modified version of the algorithm
by Park et al. (2005) to motor skill learning. Locomotion of a two-link robot
arm was learned using a recursive least-squares natural actor-critic method

46

2.6 Applications

Figure 2.6 The episodic Natural Actor-Critic method (Peters and Schaal,
2008a) applied to an anthropomorphic robot arm performing a baseball bat
swing task.

in Park et al. (2005). Another successful application on a real four-legged
robot is given by Kimura et al. (2001). Nakamura et al. (2007) devised an
algorithm based on the work by Peters and Schaal (2008a) which made a
biped robot walk stably. Underwater cable tracking (El-Fakdi et al., 2010) was
done using the NAC method of Peters and Schaal (2008a), where it was used
in both a simulation and real-time setting: once the results from simulation
were satisfactory, the policy was moved to an actual underwater vehicle, which
continued learning during operation, improving the initial policy obtained
from simulation.

An example of a logistics problem solved by actor-critic methods is given
by Paschalidis et al. (2009), which successfully applies such a method to
the problem of dispatching forklift trucks in a warehouse. This is a high-
dimensional problem because of the number of products, forklift trucks and
depots involved. Even with over 200 million discrete states, the algorithm was
able to converge to a solution that performed 20% better in terms of cost than
a heuristic solution obtained by taking the exact solution of a smaller problem

47

Chapter 2 Actor-Critic Reinforcement Learning

and expanding this to a large state space.

Usaha and Barria (2007) use the algorithm from Konda and Tsitsiklis
(2003) described in Section 2.4.2, extended to handle semi-Markov decision
processes8, for call admission control in lower earth orbit satellite networks.
They compared the performance of this actor-critic semi-Markov decision
algorithm (ACSMDP) together with an optimistic policy iteration (OPI) method
to an existing routing algorithm. While both ACSMDP and OPI outperform
the existing routing algorithm, ACSMDP has an advantage in terms of
computational time, although OPI reaches the best result. Based on the
FACRLN from Wang et al. (2007) in Section 2.4.1, Li et al. (2009) devised a
way to control traffic signals at an intersection and showed in simulation that
this method outperformed the commonly seen time slice allocation methods.
Richter et al. (2007) showed similar improvements in road traffic optimisation
when using natural actor-critic methods.

Finally, an application to the finance domain was described by Raju et al.
(2003), where older work on actor-critic algorithms (Konda and Borkar, 1999)
was applied in the problem of determining dynamic prices in an electronic
retail market.

2.7 Discussion

When applying reinforcement learning to a certain problem, knowing a priori
whether a critic-only, actor-only or actor-critic algorithm will yield the best
control policy is virtually impossible. However, a few rules of thumb should
help in selecting the most sensible class of algorithms to use. The most
important thing to consider first is the type of control policy that should
be learned. If it is necessary for the control policy to produce actions in a
continuous space, critic-only algorithms are no longer an option, as calculating
a control law would require solving the possibly non-convex optimisation
procedure of Equation (2.11) over the continuous action space. Conversely,
when the controller only needs to generate actions in a (small) countable, finite
space, it makes sense to use critic-only methods, as Equation (2.11) can be
solved by enumeration. Using a critic-only method also overcomes the problem

8Semi-Markov decision processes extend regular MDPs by taking into account a (possibly
stochastically) varying transition time from one state to another.

48

2.7 Discussion

of high-variance gradients in actor-only methods and the introduction of more
tuning parameters (e.g. extra learning rates) in actor-critic methods.

Choosing between actor-only and actor-critic methods is more straight-
forward. If the problem is modelled by a (quasi-)stationary MDP, actor-
critic methods should provide policy gradients with lower variance than
actor-only methods. Actor-only methods are however more resilient to fast
changing non-stationary environments, in which a critic would be incapable of
keeping up with the time-varying nature of the process and would not provide
useful information to the actor, cancelling the advantages of using actor-critic
algorithms. In summary, actor-critic algorithms are most sensibly used in a
(quasi-)stationary setting with a continuous state and action space.

Once the choice for actor-critic has been made, the issue of choosing
the right features for the actor and critic, respectively, remains. There is
consensus, though, that the features for the actor and critic do not have to be
chosen independently. Several actor-critic algorithms use the exact same set
of features for both the actor and the critic, while the policy gradient theorem
indicates that it is best to first choose a parameterisation for the actor, after
which compatible features for the critic can be derived. In this sense, the use of
compatible features is beneficial as it lessens the burden of choosing a separate
parameterisation for the value function. Note that compatible features do not
eliminate the burden of choosing features for the value function completely
(see Section 2.3.4). Adding state-dependent features to the value function on
top of the compatible features remains an important task as this is the only way
to further reduce the variance in the policy gradient estimates. How to choose
these additional features remains a difficult problem.

Choosing a good parameterisation for the policy in the first place also
remains an important issue as it highly influences the performance after
learning. Choosing this parameterisation does seem less difficult than for the
value function, as in practice it is easier to get an idea what shape the policy
has than the corresponding value function.

One of the conditions for successful application of reinforcement learning
in practice is that learning should be quick. Although this chapter and other
parts of this thesis focus on gradient-based algorithms and how to estimate
this gradient, it should be noted that it is not only the quality of the gradient
estimate that influences the speed of learning. Balancing the exploration and
exploitation of a policy and choosing good learning rate schedules also have a

49

Chapter 2 Actor-Critic Reinforcement Learning

large effect on this, although more recently expectation-maximisation (EM)
methods that work without learning rates have been proposed (Kober and
Peters, 2011; Vlassis et al., 2009). With respect to gradient type, the natural
gradient seems to be superior to the standard gradient. However, an example
of standard Q-learning on low-dimensional problems by Kimura (2008) and
relative entropy policy search (REPS) (Peters et al., 2010) showed better results
than the natural gradient. Hence, even though the field of natural gradient
actor-critic methods is still a very promising area for future research, it does not
always show superior performance compared to other methods. A number of
applications which use natural gradients are mentioned in this chapter. The use
of compatible features makes it straightforward to calculate approximations of
natural gradients, which implies that any actor-critic algorithm developed in
the future should attempt to use this type of gradient, as it speeds up learning
without any real additional computational effort.

50

Efficient Model Learning

Actor-Critic Methods

Chapter

3

The previous chapter introduced the concept of actor-critic reinforcement
learning algorithms and described several example algorithms. All the
algorithms discussed so far do not employ models of any kind of the controlled
process. In this chapter, two new actor-critic algorithms for reinforcement
learning are proposed. A crucial feature of these two algorithms is that they
learn a process model online, which provides an efficient policy update for
faster learning.

The first algorithm uses a novel model-based update rule for the actor
parameters. The second algorithm does not use an explicit actor, but learns
a reference model which represents a desired behaviour, from which control
actions can be calculated using the local inverse of the learned process model.
It should be noted that even though these methods use a process model, they
are still considered model-free methods, as there is no prior knowledge of the
system available at the start of learning.

The two novel methods and a standard actor-critic algorithm are applied
to the pendulum swing-up problem, in which the novel model-learning
methods achieve faster learning than the standard algorithm. Moreover,
the algorithms are capable of handling both parametric and non-parametric
function approximators and a comparison is made between using radial basis
functions (RBFs), which is parametric, and local linear regression (LLR), which

51

Chapter 3 Efficient Model Learning Actor-Critic Methods

is non-parametric, as the function approximator in these algorithms.

3.1 Introduction and Related Work

Many processes in industry can potentially benefit from control algorithms
that learn to optimise a certain cost function, when synthesising a controller
analytically is tough or impossible. Reinforcement learning can offer a good
solution, but it typically starts without any knowledge of the process and has to
improve its behaviour through trial and error. Because of this, the process goes
through a long period of unpredictable and potentially damaging behaviour.
This is usually unacceptable in industry and the long period of trial and error
learning must be considerably reduced for RL controllers to become useful in
practice.

This chapter introduces two novel algorithms that employ an efficient
policy update which increases the learning speed considerably compared to
standard actor-critic methods. The first novel algorithm learns a process
model and employs it to update the actor. However, instead of using the
process model to generate simulated experiences as most model learning RL
algorithms do (Kuvayev and Sutton, 1996; Moore and Atkeson, 1993; Sutton,
1992), it uses the model to directly calculate an accurate policy gradient, which
accelerates learning compared to other policy gradient methods.

The second novel algorithm not only learns a process model, but also a
reference model which represents desired closed-loop behaviour by mapping
states to subsequent desired states. The reference model and inverse process
model are then coupled to serve as an overall actor, which is used to calculate
new inputs to the system. This second algorithm is similar to “learning from
relevant trajectories” (Atkeson and Schaal, 1997), in which LLR is used to
learn the process model of a robotic arm holding a pendulum. The process
model is then employed to control the arm along a demonstrated trajectory that
effectively swings up the pendulum. The main difference is that in this chapter
a trajectory is not demonstrated to the learning controller, but a reference
model, representing the desired closed-loop behaviour, is learned and updated
online.

The next sections first describe the benchmark algorithm and the novel
methods, after which a number of possible function approximators are dis-
cussed. The chapter closes with an analysis of simulation results.

52

3.2 Standard Actor-Critic

3.2 Standard Actor-Critic

A standard temporal difference based actor-critic method described by Buşoniu
et al. (2010) serves as a baseline to compare the novel model learning
methods to. This baseline will be referred to as the standard actor-critic (SAC)
algorithm. The algorithm uses the regular critic update with eligibility traces
given by the discounted return Template 2.1, with a heuristic estimate (Bhat-
nagar et al., 2009; Buşoniu et al., 2010) for the policy gradient ∇ϑJ , giving

∇ϑJ(xk)≈ δk∆uk∇ϑπϑ(xk),

in which ∆uk is the random exploration term, drawn from a zero-mean normal
distribution, that was added to the policy’s output at time k. This results in the
update rule for the actor in SAC being

ϑk+1 = ϑk +αaδk∆uk∇ϑπϑ(xk). (3.1)

The product of the exploration term ∆uk and the temporal difference error
δk serves as a sign switch for the gradient ∇ϑπϑ(xk). When the exploration
∆uk leads to a positive TD error, the direction of exploration is deemed
beneficial to the performance and the policy is adjusted towards the perturbed
action. Conversely, when δk is negative, the policy is adjusted away from this
perturbation.

The diagram of SAC is shown in Figure 2.1. For clarity, the pseudocode of
the SAC algorithm is given in Algorithm 1.

3.3 Model Learning Actor-Critic

The standard actor-critic algorithm described in the previous section is, like
many standard reinforcement learning algorithms, inefficient in its use of
measured data. Once a sample, containing the previous state, the action
taken and the subsequent state, has been used to update the actor and
critic, it is thrown away and never reused in future updates. To overcome
this problem, several techniques have been proposed to remember and reuse
measured data, such as experience replay (Adam et al., 2011; Lin, 1992;
Wawrzyński, 2009) and prioritised sweeping (Moore and Atkeson, 1993). A
drawback of these methods is that they require storage of all the samples
gathered, making them memory intensive and computationally heavy. Dyna

53

Chapter 3 Efficient Model Learning Actor-Critic Methods

Algorithm 1 Standard Actor-Critic (SAC)

Input: γ, λ and learning rates α
1: z0 = 0

2: Initialise x0 and function approximators
3: Apply random input u0

4: k← 0

5: loop
6: Measure xk+1, rk+1

7: δk ← rk+1 + γVθk
(xk+1)− Vθk

(xk)

8: // Choose action / update actor

9: uk+1← πϑk
(xk+1)

10: ϑk+1← ϑk +αaδk∆uk∇ϑπϑ(xk)

11: // Update critic

12: zk ← λγzk−1 +∇θVθk
(xk)

13: θk+1← θk +αcδkzk

14: Choose exploration ∆uk+1 ∼N (0,σ2)

15: Apply uk+1 +∆uk+1

16: k← k+ 1

17: end loop

architectures (Sutton, 1990) combine reinforcement learning with the concept
of planning, by learning a model of the process or environment online and
using this model to generate experiences from which the critic (and thus the
policy) can be updated. This results in more frequent updates and hence
quicker learning.

In MLAC, the learned process model is not used to generate experiences.
Instead, the process model is used directly in the policy gradient, aiming to get
faster convergence of learning without increasing the number of updates for
the actor and/or critic.

3.3.1 The Process Model

Whereas SAC only learns the actor and critic functions, MLAC also learns
an approximate process model x ′ = f̂ζ(x ,u). In case of a parametric
function approximator, like radial basis functions (RBFs), the process model
is parameterised by ζ ∈ Rr·n, where r is the number of basis functions per

54

3.3 Model Learning Actor-Critic

element of process model output used for the approximation and n is the state
dimension.

Having a learned process model available simplifies the update of the actor,
as it allows to predict what the next state x ′ will be, given some input u. The
value function then provides information on the value V (x ′) of the next state
x ′. The best action u to choose in state x would be

u= arg max
u′∈U

�
ρ(x ,u′, f̂ζ(x ,u′)) + γV (f̂ζ(x ,u′))

�
. (3.2)

Using a model for the purpose of predicting a next state and using this
information for updates of a policy and/or value function is also called planning

(Sutton and Barto, 1998).

However, since the action space is assumed to be continuous, it is
impossible to enumerate over all possible inputs u and therefore a policy
gradient, directly employing the process model, is put into place.

3.3.2 Model-Based Policy Gradient

With appropriately chosen function approximators, the gradient of the value
function with respect to the state x and the Jacobian of the process model with
respect to the input u can be estimated. Then, by applying the chain rule, the
Jacobian of the value function with respect to the input u becomes available.

The value function1 adheres to the Bellman equation

V (xk) = ρ(xk,π(xk), xk+1) + γV (xk+1). (3.3)

The learned process model bfζ allows predictions for xk+1 by taking

exk+1 =
bfζ(xk,euk) (3.4)

where the input euk is chosen according the current policy, i.e.

euk = πϑ(xk). (3.5)

Combining Equations (3.3)–(3.5) provides the approximation

V (xk)≈ ρ(xk,euk, exk+1) + γV (exk+1). (3.6)

1The value function is assumed to be exact here.

55

Chapter 3 Efficient Model Learning Actor-Critic Methods

Performing gradient ascent using the gradient of Equation (3.6) corresponds
to moving the policy towards choosing greedy actions according to Equa-
tion (3.2).

The gradient of V (x) with respect to the policy parameter ϑ, evaluated at
xk is then given by

∇ϑV (xk) =∇ϑ
�
ρ(xk,euk, exk+1) + γV (exk+1)

�

=∇ϑρ(xk,euk, exk+1) + γ∇ϑV (exk+1).

The term related to the reward function ρ can be expanded as

∇ϑρ(xk,euk, exk+1) =∇uρ(xk,euk, exk+1)
⊤
∇ϑπϑ(xk)

+∇xk+1
ρ(xk,euk, exk+1)

⊤
∇u
bfζ(xk,euk)∇ϑπϑ(xk). (3.7)

The term related to the value function V expands to

γ∇ϑV (exk+1) = γ∇x V (exk+1)
⊤
∇u
bfζ(xk,euk)∇ϑπϑ(xk). (3.8)

Adding up Equations (3.7) and (3.8), the gradient ∇ϑV (xk) is obtained.

∇ϑV (xk) =∇uρ(xk,euk, exk+1)
⊤
∇ϑπϑ(xk)

+∇xk+1
ρ(xk,euk, exk+1)

⊤
∇u
bfζ(xk,euk)∇ϑπϑ(xk)

+ γ∇x V (exk+1)
⊤
∇u
bfζ(xk,euk)∇ϑπϑ(xk)

=
¦�
∇xk+1

ρ(xk,euk, exk+1)
⊤
+ γ∇x V (exk+1)

⊤
�
∇u
bfζ(xk,euk)

+ ∇uρ(xk,euk, exk+1)
⊤
©
∇ϑπϑ(xk).

In case ρ is not dependent on the future state xk+1, i.e. ρ(xk,uk, xk+1) =

ρ(xk,uk) this simplifies to

∇ϑV (xk) =
¦
∇uρ(xk,euk)

⊤
+ γ∇x V (exk+1)

⊤
∇u
bfζ(xk,euk)

©
∇ϑπϑ(xk).

Since for the discounted case it holds that J(x) = V (x), this allows the
policy gradient ∇ϑJ to be approximated by

∇ϑJ(xk)≈
¦
∇uρ(xk,euk)

⊤
+ γ∇x V (exk+1)

⊤
∇u
bfζ(xk,euk)

©
∇ϑπϑ(xk). (3.9)

The process model itself is updated by applying a gradient descent update,
using the error between the real output of the system and the output of the

56

3.4 Reference Model Actor-Critic

δ

∇u
bfζ(x ,u)

∇x Vθ (x)

Actor

Critic

Process

Process Model

Reward
r

xx u

Figure 3.1 Schematic overview of MLAC.

process model, scaled by a learning rate αp, so

ζk+1 = ζk +αp(xk+1 −
bfζk
(xk,uk))∇ζ

bfζk
(xk,uk).

Here, the input is simply uk and not euk as prescribed by the policy, since
exploration may have been used during this particular time step.

Note that with the SAC algorithm, exploration is needed in the actor
update (3.1). Because MLAC uses the gradient in Equation (3.9) it knows
in what direction to update the actor such that higher state values will be
encountered, without having to perform exploratory actions. As a result,
the MLAC algorithm can estimate the policy gradient, and learn the task,
without exploration. Exploration is nevertheless still needed because it gives
a more complete value function over the entire state space, whereas without
exploration the current policy would only visit a part of the state space. Finally,
exploration improves the model of the process dynamics. A schematic overview
of the MLAC algorithm is given in Figure 3.1 and its pseudocode is given in
Algorithm 2.

3.4 Reference Model Actor-Critic

Reference Model Actor-Critic (RMAC) is different from the typical actor–critic
methods in the sense that it does not learn an explicit mapping from state
xk to action uk. Instead of an explicit actor, RMAC learns a reference model

57

Chapter 3 Efficient Model Learning Actor-Critic Methods

Algorithm 2 Model Learning Actor-Critic (MLAC)

Input: γ, λ and learning rates α
1: z0 = 0

2: Initialise x0 and function approximators
3: Apply random input u0

4: k← 0

5: loop
6: Measure xk+1, rk+1

7: δk ← rk+1 + γVθk
(xk+1)− Vθk

(xk)

8: // Choose action / update actor

9: uk+1← πϑk
(xk+1)

10: ϑk+1← ϑk +αa∇ϑJ(xk)≈
¦
∇uρ(xk,uk)

⊤

11: + γ∇x V (exk+1)
⊤
∇u
bfζ(xk,uk)

©
∇ϑπϑ(xk)

12: // Update process model

13: ζk+1← ζk +αp(xk+1 −
bfζk
(xk,uk))∇ζ

bfζk
(xk,uk)

14: // Update critic

15: zk ← λγzk−1 +∇θVθk
(xk)

16: θk+1← θk +αcδkzk

17: Choose exploration ∆uk+1 ∼N (0,σ2)

18: Apply uk+1 +∆uk+1

19: k← k+ 1

20: end loop

that represents a desired behavior of the system, based on the value function.
Similar to MLAC, this algorithm learns a process model, through which it
identifies a desired next state x ′ with the highest possible value V (x ′). The
difference with respect to MLAC is that an actor, mapping a state x onto
an action u, is not explicitly stored. Instead, the reference model is used in
combination with the inverse of the learned process model to calculate the
action u.

Using a reference model provides a means for the storage of demonstration
data. Some learning algorithms benefit from having the desired behaviour or
task demonstrated to them (see, e.g., Khansari-Zadeh and Billard (2011)). This
can be done, for example, by a human manually moving a robot arm in such a
way that a target task is performed. The demonstrated trajectory is then stored

58

3.4 Reference Model Actor-Critic

as a sequence of (sampled) states and it is exactly this type of information that
can be stored in a reference model.

The parameterised reference model Rη(x), with parameter η ∈ Rs×n, where
s is the number of basis functions per element of reference model output used
for the approximation and n is the state dimension, maps the state xk to a
desired next state bxk+1, i.e.

bxk+1 = Rηk
(xk).

The process is controlled towards this desired next state by using the inverse of
the learned process model xk+1 =

bfζk
(xk,uk). The reference model Rηk

(xk) and

the inverse process model uk =
bf −1
ζk
(xk, xk+1) together act as a policy, by using

the relation uk =
bf −1
ζk
(xk,Rηk

(xk)). This does require that the process model,

or more specifically the function approximator that represents it, is (at least
locally) invertible. Here, invertibility is achieved by using a first order Taylor
expansion of the process model around the point (xk,uk−1), so

bxk+1 ≈
bfζk
(xk,uk−1) +∇u

bfζk
(xk,uk−1)(uk − uk−1).

From this equation, uk can be directly calculated, given xk, bxk+1 and uk−1.
The reason for taking the operating point (xk,uk−1) is that the control signal
u is assumed to be smooth, meaning that uk−1 is close to uk which is a main
requirement for an accurate approximation using a Taylor series.

The introduction of a reference model also requires the introduction of an
update rule for the reference model’s parameters. A natural update rule for
these parameters is to move them in the direction that will yield the highest
value, i.e.

ηk+1 = ηk +αr∇x V (xk+1)
⊤∇ηRηk

(xk) (3.10)

where αr > 0 is the learning rate of the reference model. Update (3.10) may
eventually lead to an infeasible reference model if the output of Rη(x) is not
kept within the reachable set

Rx =
�

x ′ ∈ X |x ′ = f (x ,u),u ∈ U
	

,

which is the set of all states that can be reached from the current state x within
a single sampling interval.

It is not straightforward to determine this set because it depends on the
current state, the (nonlinear) process dynamics and the action space U .

59

Chapter 3 Efficient Model Learning Actor-Critic Methods

To overcome this problem, it is assumed that the reachable set Rx can be
defined by only using the extreme values of the action space U . Defining the set
Ue as the finite discrete set containing all the combinations of extreme values2

of U , the learned process model can be used to calculate the estimated next
state when applying these extreme values, as the reachable set Rx is now
reduced to

bRx =
¦

x ′ ∈ X |x ′ = bfζ(x ,u),u ∈ Ue

©

As an example of what a set Ue can look like, consider a system which takes
two inputs at every time step, i.e. u= (u1,u2). The set Ue would then be

Ue =
¦
(u1,max,u2,max), (u1,max,u2,min), (u1,min,u2,max), (u1,min,u2,min)

©
.

Subsequently, the critic provides the estimated value of those next states
and the state that yields the highest value is selected as the next desired state3

x r = arg max
x ′∈ bRx

Vθ (x
′).

This procedure is justified by the assumption that if the sampling interval is
short enough, both the process model and critic can be approximated locally
by a linear function. As linear functions always have their extreme values
on the edges of their input domain, only the values of next states x ′ that are
reached by using extreme values of the input have to be checked.

The state x r is then used in the update the reference model

ηk+1 = ηk +αr(x r − bxk+1)∇ηRηk
(xk). (3.11)

Because of the approximation of Rx the reference model will be updated by
a desired state x r that is the result of applying the extremes of u. However,
by using the learning rate αr in the update of Rη(x), a smooth reference
model and a smooth policy can still be achieved. This approximation does
mean, though, that the quality of the solution brought up by the algorithm
is compromised and a more accurate calculation of the reachable set should
improve the performance.

2This requires the action space U to be a hyperbox.
3The reasons for not using a maximisation over the expression ρ(x , u) + V (x ′) are that a

quadratic reward function is used and the assumption that |umin| = |umax|, leading to ρ(x , umin) =

ρ(x , umax).

60

3.5 Function Approximators

δ

bf −1
ζ
(x , x ′)

Vθ (x)

Reference Model

Critic

Process

Process Model

Reward
r

xx u

Figure 3.2 Schematic overview of RMAC.

Learning the reference model online and from scratch might pose con-
vergence issues, since another bootstrapping approximation comes into play.
Nonetheless, convergence is likely to be achieved when following the same
reasoning that standard actor-critic algorithms use. For those algorithms,
convergence is ensured as long as the actor is updated on a slower time-
scale than the critic (Borkar, 1997; Konda and Tsitsiklis, 2003). Now that
the reference model is taking up the role of the actor, it reasonable to assume
that keeping the learning rate of the reference model below that of the critic
should also give convergence.

In contrast to SAC, the RMAC improves the reference model using (3.11)
which does not involve exploration. Instead, it improves the reference model
on the basis of previous experiences, but just like with MLAC exploration is still
needed to get a more complete value function over the entire state space and
a more complete model of the process dynamics. The scheme of the RMAC
algorithm is given in Figure 3.2 and its pseudocode in Algorithm 3.

3.5 Function Approximators

Three different function approximators have been used to test the performance
of the actor-critic algorithms presented in this chapter. The first two approx-
imator types, radial basis functions (RBFs) and local linear regression (LLR),
can be applied to SAC, MLAC and RMAC. The third function approximator, tile

61

Chapter 3 Efficient Model Learning Actor-Critic Methods

Algorithm 3 Reference Model Actor-Critic (RMAC)

Input: γ, λ and learning rates α
1: z0 = 0

2: Initialise x0 and function approximators
3: Apply random input u0

4: k← 0

5: loop
6: Measure xk+1, rk+1

7: δk ← rk+1 + γVθk
(xk+1)− Vθk

(xk)

8: // Choose action / update reference model

9: bxk+2← Rηk
(xk+1)

10: uk+1←
bf −1
ζk
(xk+1, bxk+2)

11: Select best reachable state x r from xk

12: ηk+1← ηk +αr(x r − bxk+1)∇ηRηk
(xk)

13: // Update process model

14: ζk+1← ζk +αp(xk+1 −
bfζk
(xk,uk))∇ζ

bfζk
(xk,uk)

15: // Update critic

16: zk ← λγzk−1 +∇θVθk
(xk)

17: θk+1← θk +αcδkzk

18: Choose exploration ∆uk+1 ∼N (0,σ2)

19: Apply uk+1 +∆uk+1

20: k← k+ 1

21: end loop

coding, can only be applied to SAC and not to MLAC and RMAC, as these model
learning algorithms need approximators that are continuously differentiable,
which is not the case for tile coding because of its binary features. In other
words, tile coding can not provide gradient information.

RBFs readily fit the parametric description of the algorithms presented
in the previous sections because they form a parametric approximator. Sec-
tion 3.5.2 describes LLR, which is a non-parametric function approximator.
Therefore, some of the theory of the algorithms changes slightly, which will
also be discussed in the section on LLR. Tile coding, described in Section 3.5.3,
is only used in SAC and fits the description in Section 3.2 without further
adjustments to the theory.

62

3.5 Function Approximators

e φ(
x
)

x

−5 0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Figure 3.3 One-dimensional example of a grid of five normalised RBFs. The
dashed lines show a uniform distribution of the centers.

3.5.1 Radial Basis Functions

The first type of approximator is a linear combination of normalised RBFs. The
critic, for example, is modeled by

Vθ (x) = θ
⊤φ(x),

where φ(x) is a column vector with the value of normalised RBFs, of which
each element is given by

φi(x) =
eφi(x)∑
j
eφ j(x)

, (3.12)

with
eφi(x) = e−

1

2
(x−ci)

⊤B−1(x−ci), (3.13)

where ci are the centers of the RBFs and B is a diagonal matrix defining the
widths of the RBFs. Figure 3.3 shows a one-dimensional example of a grid of
RBFs.

For MLAC and RMAC, the gradient of the approximated functions is needed.
With the normalisation done in Equation (3.12), this gradient is

∇xφi(x) =−φi(x)

B−1(x − ci) +

∑
j∇x

eφ j(x)∑
j
eφ j(x)

 .

63

Chapter 3 Efficient Model Learning Actor-Critic Methods

The setup used for the experiments later in this chapter is a system with
input saturation. This means that for the real system, the process gradient
∇u f (xk,uk) = 0 when uk is outside or on the boundary of the allowed input
range. As MLAC learns a process model, this input saturation needs to be
dealt with when learning. Otherwise, a good policy will not be produced. In
the RBF case, this problem is dealt with by setting the gradient ∇u

bfζ(xk,uk)

in Equation (3.9) to zero when uk is close to the input saturation bounds.
This is measured by taking the Euclidean norm of the difference between the
saturation bounds and the current input, which should not exceed a certain
limit defined by the algorithm. Note that this approach does require prior
knowledge on the bounds of the input space, which is generally available.

3.5.2 Local Linear Regression

The algorithms introduced in this chapter may also use local linear regression
(LLR) as a function approximator. LLR is a non-parametric memory-based
method for approximating nonlinear functions.

Memory-based methods are also called case-based, exemplar-based, lazy,
instance-based or experience-based (Wettschereck et al., 1997; Wilson and
Martinez, 2000). It has been shown that memory-based learning can work in
RL and can quickly approximate a function with only a few observations. This
is especially useful at the start of learning. Memory-based learning methods
have successfully been applied to RL before, mostly as an approximator for the
value function (Gabel and Riedmiller, 2005; Neumann and Peters, 2009) and
in some cases also for the process model (Forbes and Andre, 2002; Ng et al.,
2006).

The main advantage of memory-based methods is that the user does not
need to specify a global structure or predefine features for the (approximate)
model. Instead of trying to fit a global structure to observations of the unknown
function, LLR simply stores the observations in a memory.

Given a memory of a certain size, filled with input/output samples, it is
possible to estimate the output for any arbitrary “query input”, by:

1. Finding the k samples in the memory that are nearest to the query input,
according to a (weighted) distance metric.

64

3.5 Function Approximators

2. Fitting a linear model to these k samples by performing a least squares
fit.

3. Applying this model to the query input.

More formally, a stored observation is called a sample si = [x i
⊤ | yi

⊤]⊤ with
i = 1, . . . , N . One sample si is a column vector containing the input data x i ∈ R

n

and output data yi ∈ R
m. The samples are stored in a matrix called the memory

M with size (n+m)× N whose columns each represent one sample.

When a query xq is made, LLR uses the stored samples to give a prediction
ŷq of the true output yq. The prediction is computed by finding a local
neighbourhood of xq in the samples stored in memory. This neighbourhood
is found by applying a weighted distance metric di (for example, the 1-norm or
2-norm) to the query point xq and the input data x i of all samples in M . The
weighting is used to scale the inputs x and has a large influence on the resulting
neighbourhood and thus on the accuracy of the prediction. Searching through
the memory for nearest neighbour samples is computationally expensive. Here,
a simple sorting algorithm was used, but one can reduce the computational
burden by using, for instance, k-d trees (Bentley and Friedman, 1979).

By selecting a limited number of K samples with the smallest distance d,
a subset K(xq) with the indices of nearest neighbour samples is created. Only
these K nearest neighbours are then used to make a prediction of ŷq. The
prediction is computed by fitting a linear model to these nearest neighbours.
Applying the resulting linear model to the query point xq yields the predicted
value ŷq. An example of this is given in Figure 3.4.

When the K nearest samples have been selected, they are split into an input
matrix X and an output matrix Y , defined as

X =

�
x1 x2 · · · xK

1 1 · · · 1

�

Y =
�

y1 y2 · · · yK

�
.

The last row of X consists of ones to allow for a bias on the output, making the
model affine instead of truly linear.

Most of the time, the X and Y matrices form an over-determined set of
equations

Y = βX

65

Chapter 3 Efficient Model Learning Actor-Critic Methods

x

y

xq

ŷq

Figure 3.4 One-dimensional example of local linear regression. A least-
squares fit on the four nearest neighbours of xq yields the estimate output
ŷq.

which can be solved for the model parameter matrix β ∈ Rm×(n+1) by, for
example, the least squares method using the right pseudo inverse of X , giving

β = Y X⊤(X X⊤)−1.

Finally, the model parameter matrix β is used to compute the predicted output
corresponding to the query xq in the simple linear equation

ŷq = β xq.

As a result, the globally nonlinear function is approximated locally by a
linear function. At the start of a trial, the matrices X and Y will not yet form
a fully determined set of equations. In this case, there are infinitely many
solutions and β will be chosen as the solution with the smallest norm or can
even be set to the trivial zero solution and the value yq will be set to the value
of the closest neighbour.

Memory-based methods directly incorporate new observations, which makes
it possible to get a good local estimate of the function after incorporating only
a few observations. Note that if every observation were stored, the memory
would grow indefinitely and so would the computational effort of finding
K(xq). One has to apply memory management to keep the memory from
growing past a certain size. Several approaches can be implemented for this,
for example:

66

3.5 Function Approximators

• Purge the oldest samples in the memory.

• If two samples are too close to each other, one of them can be removed.

• Remove a sample if it is representing a value close to what would have
been yielded by local linear regression on its neighbours.

The use of LLR comes with a few assumptions. The first and foremost one
is that the approximated function should be smooth enough so that it can be
captured by locally linear models. Any function with discontinuities or other
non-smooth behaviour will be tough to approximate. This also depends on the
maximum possible number of samples in the LLR memory. This number should
be large enough so that the neighbourhood in which a locally linear model
is calculated is small enough, i.e. the linear model is indeed local enough.
More specifically when applying LLR in RL algorithms, the sampling time used
should be small enough so that a locally linear model calculated at one time
step is still good enough at the next time step. This is because the model is also
used for predictions at the next time step.

The saturation issue with the process model learning pictured earlier when
discussing RBFs also holds in the LLR case. Here, however, a solution for
keeping the values bounded is much more straightforward. As the LLR
memories hold input/output samples, it is possible to saturate the output part
of the actor’s memory, such that it can never produce inputs u beyond the
saturation bound. Because of this, setting ∇u

bf (xk,uk) = 0 when uk is close to
the input saturation bounds is not necessary here.

Application to SAC

The only two LLR memories involved in SAC are the critic memory and
the actor memory. The critic memory MC holds samples of the form si =

[x i
⊤ | Vi | zi]

⊤ with i = 1, . . . , NC and stores states with their associated value
and also keeps track of the eligibility trace. The actor memory MA has samples
si = [x i

⊤ | ui
⊤]⊤ with i = 1, . . . , NA and stores the mapping from states to

actions.

At the start of learning, both memories are empty. During learning, the LLR
memories are updated in two ways:

67

Chapter 3 Efficient Model Learning Actor-Critic Methods

1. By inserting the last observed sample into the memory, as the most up-to-
date knowledge should be incorporated in any approximation calculated
from the memory.

2. By adjusting the output parts of the nearest neighbour samples si that
relate to some query point xq.

The exact method of updating them is explained in more detail in the
remainder of this section.

Translating Algorithm 1 to an LLR implementation, yields the following
steps in order to update the actor and critic memories. First, the input-output
sample

�
x⊤

k
| Vθk
(xk) | 1

�
is added to the critic memory, setting its eligibility to

1. Then, the value Vθk
(xk+1) is evaluated such that a temporal difference can

be calculated. The samples corresponding to xk and its nearest neighbours are
then updated using the temporal difference error δk, by adjusting only their
output parts by the increment αcδk. After one update step, the eligibility trace
value for all samples is discounted by λ.

The actor is updated in the same way: the sample [x⊤
k
| u⊤

k
] is added to the

memory. This sample and its nearest neighbours will then have their output
parts adjusted by the increment αaδk∆uk. Should this update result in samples
that represent actions outside of the allowable input range, then these output
values are saturated in the memory directly after the update, such that a query
on the memory will always return allowable inputs.

Application to MLAC

For MLAC, one extra LLR memory has to be introduced in addition to the actor
and critic memories that were also used in SAC. This is the process memory

MP, which has samples si = [x
⊤
i

u⊤
i
| x ′

i

⊤
]⊤ with i = 1, . . . , NP, where x ′ denotes

the observed next state, i.e. x ′ = f (x ,u).

The LLR memory of the critic is updated in the same way as in SAC. With
the process model in place, however, the actor update is replaced by the model-
based policy gradient described earlier. That is, the actor is updated by using
the local gradients of the reward function, value function and process model to
obtain a gradient of the right hand side of the Bellman equation with respect
to a chosen input u. By adjusting the input u in the direction given by this
gradient, the actor is trying to move the policy towards a greedy policy with

68

3.5 Function Approximators

respect to the value function:

ui ← ui+αa

¦
∇uρ(xk,uk)

⊤ + γ∇x V (exk+1)
⊤
∇u
bfζ(xk,uk)

©
∀i ∈ K(x) (3.14)

Recall that exk+1 is given by the state transition function exk+1 = f (x ,eu),
which is approximated here by f̂ , based on the process model memory MP.
Furthermore, eu= π(x), based on the actor’s memory MA.

The value function is approximated by LLR which estimates a local linear
model on the basis of previous observations of V (x). The local linear model is
of the form

V (x) = βC ·

�
x

1

�

=
�
βC

x
βC

b

�
·

�
x

1

�
.

This model has an input vector of length n+1 (n state dimensions plus a bias),
a scalar output V and a model parameter matrix βC of size 1× (n+ 1). The
gradient ∂ V

∂ x
is the part of βC that relates the input x to the output V . This part

is denoted as βC
x

and has size 1× n.

The gradient ∂ x ′

∂ u
can be found by LLR on previous observations of the

process dynamics. The local linear process model is of the form:

x ′ = f̂ (x ,u) = βP ·

x

u

1

=
�
βP

x
βP

u
βP

b

�
·

x

u

1

 .

This model has an input vector of length n+m+1 (n state dimensions, m action
dimensions plus a bias), an output vector x ′ of length n and a model parameter

matrix βC of size n× (n+m+1). The gradient ∂ x ′

∂ u
is the part of βP that relates

u to x ′, denoted as βP
u

and has size n×m.

Now, βC
x
, βP

u
and (3.14) can be used to improve the actor by adapting the

nearest neighbour samples with

ui ← ui +α
¦
∇uρ(xk,uk)

⊤ + γβC
x
βP

u

©
∀i ∈ K(x).

69

Chapter 3 Efficient Model Learning Actor-Critic Methods

Application to RMAC

The reference model MR has samples si = [x
⊤
i
| x̂⊤

i
]⊤ with i = 1, . . . , NR, where

x̂ denotes a desired next state. The process model is still represented by an
LLR memory, i.e.

xk+1 = f̂ (xk,uk) =
�
βP

x
βP

u
βP

b

�
︸ ︷︷ ︸

βP

·

xk

uk

1

By replacing xk+1 in this equation with the desired next state x̂k+1 = R(xk) as
given by the reference model and inverting the process model the action

uk = (β
P⊤

u
βP

u
)−1βP⊤

u
·
�

R(xk)− β
P
x

xk − β
P
b

�

is obtained. R(x) is improved by adapting the desired state x̂ of the nearest
neighbour samples si (i ∈ K(xk−1)) towards higher state-values using the
gradient update rule

x̂ i ← x̂ i +α
∂ V

∂ x

����
x=x ′

i ∈ K(xk−1) (3.15)

then calculate which of these states yields the highest value, using the local
linear model of the value function

V (x) = βC ·

�
x

1

�
.

The state x r that corresponds to the highest value is then used to update the
reference model R(x), giving

x r = arg max
x∈XR

βC ·

�
x

1

�

x̂ i ← x̂ i +αr(x r − x̂) i ∈ K(xk−1).

Because of the approximation of XR the reference model will be updated by a
desired state x r that is the result of applying the extremes of u. However, the
discussion in Section 3.4 also applies here and by using the learning rate αr in
the update of R(x) a smooth reference model and a smooth policy can still be
achieved.

70

3.5 Function Approximators

The above method to update samples already present in the reference
model is also used to insert new samples into the reference model. Once the
desired state x r has been calculated for the state xk−1, the sample [x⊤

k−1
| x⊤

r
]⊤

is inserted into the reference model memory. This means that the reference
model is completely learned and updated from scratch, since it can initialise
itself this way online without using prior knowledge. However, initialising the
reference model with samples learned from a demonstrated trajectory offline
is still possible if they are available.

LLR inserts new experiences (samples) directly into the (initially empty)
memory, whereas parameterised function approximators need to have initial
values set for the parameters that are incrementally adjusted. LLR also allows
for broad generalisation over states at the start of learning when the number
of collected samples is low. As the sample density grows, the neighbourhood of
the local model grows smaller and the scope of generalisation decreases. This
causes LLR to work better than the parametric function approximators at the
start of learning.

3.5.3 Tile Coding

Tile coding is a classical function approximator commonly used in RL, also
allowing for fast computation. It uses a limited number of tilings which each
divide the space into a number of tiles. The distribution of the tiles is often the
uniform grid-like distribution—which is the approach used in this chapter—
but any tile shape and distribution are possible. An illustration of a tile coding
example is shown in Figure 3.5.

Figure 3.5 Tile coding example. The dot represents a point in the state space.
Two tilings each have one (shaded) tile to which that particular point belongs.

71

Chapter 3 Efficient Model Learning Actor-Critic Methods

A point in the state space either belongs to a tile or not, meaning that the
tiles are in fact binary features (Sutton and Barto, 1998). The average of the
parameter values of the T tiles that the state belongs to is used to compute the
prediction.

ŷq =
1

T

T∑

i=1

θi

3.6 Example: Pendulum Swing-Up

To evaluate and compare the performance of the model learning algorithms,
they are applied to the task of learning to swing up an inverted pendulum and
benchmarked against the standard algorithm. The swing-up task was chosen
because it is a low-dimensional, but challenging, highly nonlinear control
problem still commonly used in RL literature (Arruda and Von Zuben, 2011;
Pazis and Lagoudakis, 2011). As the process has two states and one action it
allows for easy visualisation of the functions of interest. A description and a
picture of this system is given in Appendix A.1.

The task is to learn to swing the pendulum from the pointing-down position
to the upright position as quickly as possible and stabilise it in this position. The
(fully measurable) state x consists of the angle ϕ and the angular velocity ϕ̇ of
the pendulum:

x =

�
ϕ

ϕ̇

�

The actuation signal u is limited to u ∈ [−3,3] V, making it impossible to
directly move the pendulum to the upright position. Instead, the controller has
to learn to increase the momentum of the pendulum by swinging it back and
forth before it can push it up.

A continuous quadratic reward function ρ is used to define the swing-up
task. This reward function has its maximum in the upright position [0 0]⊤ and
quadratically penalises non-zero values of ϕ, ϕ̇ and u.

ρ(xk,uk) =−xk
⊤Qxk − Pu2

k
(3.16)

with

Q =

�
5 0

0 0.1

�
P = 1

72

3.6 Example: Pendulum Swing-Up

The standard actor-critic method SAC and the two novel methods MLAC
and RMAC are applied to the pendulum swing-up problem described above,
using different function approximation techniques. The algorithms run for 30
minutes of simulated time, consisting of 400 consecutive trials with each trial
lasting 3 seconds. The pendulum needs approximately 1 second to swing up
with a near-optimal policy. Every trial begins in the upside down position with
zero angular velocity, x0 = [π 0]⊤. A learning experiment is defined as one
complete run of 400 consecutive trials.

The sum of rewards received per trial is plotted over the time which results
in a learning curve. This procedure is repeated for 30 complete learning
experiments to get an estimate of the mean, maximum, minimum and 95%
confidence interval of the learning curve.

Tuning of all algorithm/approximator combinations was done by iterating
over a grid of parameters, which included parameters of the algorithm
(i.e. the learning rates) as well as parameters of the function approximator
(neighborhood sizes in case of LLR and widths of RBFs, for example). For all
experiments, the sampling time was set to 0.03 s, the reward discount rate γ to
0.97 and the decay rate of the eligibility trace to λ = 0.65. Exploration is done
every time step by randomly perturbing the policy with normally distributed
zero mean white noise with standard deviation σ = 1, so

∆u∼N [0,1].

The next sections will describe the results of the simulation, ordered by
algorithm. All the results shown are from simulations that used an optimal
set of parameters after tuning them over a large grid of parameter values. For
each algorithm, the simulation results are discussed separately for each type of
function approximator. At the end of each algorithm section, the results for all
function approximators are compared. Section 3.7 will compare the results of
all algorithms.

3.6.1 Standard Actor-Critic

Tile Coding

The tile coding (Section 3.5.3) setup for SAC consists of 16 tilings, each being
a uniform grid of 7× 7 tiles. The partitions are equidistantly distributed over
each dimension of the state space.

73

Chapter 3 Efficient Model Learning Actor-Critic Methods

Large exploratory actions appear to be beneficial for learning. This can
be explained by the fact that the representation of the value function by tile
coding is not perfect. There is a constant error in the approximation causing
the temporal difference to continuously vary around a certain level. For small
exploratory actions, their contribution to the resulting temporal difference is
small compared to the contribution of the approximation error. This causes the
update of the actor by (3.1) to be very noisy.

The SAC algorithm, using the actor learning rate αa = 0.005 and the critic
learning rate αc = 0.1, applied to the pendulum swing-up task results in the
learning curve as shown in Figure 3.6. Examples of the final tile coding
approximations of V (x) and π(x) after a representative learning experiment
are shown in Figure 3.7 and Figure 3.8.

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.6 Results for the SAC algorithm using tile coding. The mean, max
and min bounds and 95% confidence region are computed from 30 learning
curves.

The method takes, on average, about 10 minutes of simulated time to
converge. One striking characteristic of the curve in Figure 3.6 is the short
drop in performance in the first minutes. This can be explained by the fact
that the value function is initialised to zero, which is too optimistic compared
to the true value function. As a result, the algorithm collects a lot of negative
rewards before it eventually learns the true value of “bad” states and adapts

74

3.6 Example: Pendulum Swing-Up

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−900

−700

−500

−300

−100

−20

−10

0

10

20

Figure 3.7 Final critic V (x) for the SAC algorithm after one learning
experiment.

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−20

−10

0

10

20

Figure 3.8 Final actor π(x) for the SAC algorithm after one learning
experiment.

75

Chapter 3 Efficient Model Learning Actor-Critic Methods

the actor to avoid these. In order to prevent this initial drop in performance,
the value function can be initialised with low values, but this decreases the
overall learning speed as all new unvisited states are initially assumed to be bad
and are avoided. An example of this is given in Figure 3.9, where the value
function has been initialised pessimistically, by using the infinite discounted

Pessimistic

V0(x) = −1000

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

time [min]

0 5 10 15 20 25 30
−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.9 Results for the SAC algorithm with two initialisations for the
value function: V0(x) = −1000 for all x and V0(x) =

1

1−γ
minx ,u r(x ,u)≈−4050

(pessimistic).

sum of minimum rewards, i.e.

V0(x) =

∞∑

j=0

γ j min
x∈X ,u∈U

ρ(x ,u) =
1

1− γ
min

x∈X ,u∈U
ρ(x ,u) (3.17)

with ρ defined as in (3.16). Obviously, ρ has no minimum and tends towards
−∞ for x →∞, but assuming4 that the angular velocity |θ̇ | will never exceed
8π rad/s and using the facts that |θ | ≤ π rad and |u| ≤ 3V, it is still possible to
calculate the worst possible immediate reward that can be received, by using
x = [π 8π]⊤ and u= 3 in (3.16). This worst possible reward is then used as the
minimum of r in (3.17). With γ = 0.97, the value function is then initialised

4This assumption is justified by the fact that typical trajectories do not exceed this velocity.

76

3.6 Example: Pendulum Swing-Up

with V0(x) ≈ −4050. In Figure 3.9, a plot is also given for the case where
the value function was initialised with V0(x) = −1000 for all x . The drop in
performance is gone and learning is still quick. However, estimating an initial
value that will achieve this sort of behaviour is done by trial and error and is
therefore very hard.

The final performance can be improved by increasing the number of
partitions and number of tiles per partition in the tile coding, but this decreases
the learning speed.

Radial Basis Functions

Figure 3.10 shows the learning curve for SAC, when combined with radial
basis functions as a function approximator. The tuned parameters used for this
particular simulation can be found in Table 3.1.

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.10 Results for the SAC algorithm using RBFs. The mean, max and
min bounds and 95% confidence region are computed from 30 learning curves.

The RBF implementation clearly also shows a dip in the learning perform-
ance at the start of learning. As with tile coding, the parametric nature
of the approximator, in combination with an optimistic initial value for the
parameters, is causing this behaviour.

77

Chapter 3 Efficient Model Learning Actor-Critic Methods

Table 3.1 RBF parameters for the SAC, MLAC and RMAC methods.

SAC MLAC RMAC

Actor / Reference model parameters

learning rate αa/r 0.05 0.05 0.5

number of RBFs

�
20

10

� �
15

10

� �
10

10

�

RBF intersection 0.9 0.9 0.9

Critic parameters

learning rate αc 0.4 0.1 0.15

number of RBFs

�
20

10

� �
15

10

� �
10

10

�

RBF intersection 0.5 0.7 0.7

Process model parameters

learning rate αp - 0.5 0.7

RBF intersection - 0.9 0.7

Table 3.2 LLR parameters for the SAC, MLAC and RMAC methods.

SAC MLAC RMAC

Actor / Reference model parameters

learning rate αa/r 0.05 0.05 0.04

memory size N a/r 2000 2000 2000

nearest neighbours Ka/r 20 25 15

Critic parameters

learning rate αc 0.3 0.3 0.2

memory size NC 1000 2000 2000

nearest neighbours KC 10 15 15

Process model parameters

memory size NP 100 100 100

nearest neighbours KP 10 10 10

78

3.6 Example: Pendulum Swing-Up

Local Linear Regression

When local linear regression is used as a function approximator, the learning
curve for SAC looks like Figure 3.11. The parameters used for the LLR
simulations in this chapter are given in Table 3.2.

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.11 Results for the SAC algorithm using LLR. The mean, max and
min bounds and 95% confidence region are computed from 30 learning curves.

The most striking difference with the learning curves produced with tile
coding and radial basis functions is obviously the absence of a dip in learning
performance. Since LLR is non-parametric and starts with empty memories, no
initial values of any kind have to be chosen, which means that also no wrong
initial value can be chosen. Once the LLR memories start filling, the contents
of the memories are always based on actual gathered experience and hence no
sudden setback in learning performance should be expected.

Comparison of Different Function Approximators

To get an idea of the differences in performance when using various function
approximators, the learning curves of Figures 3.6, 3.10 and 3.11 are plotted
together in Figure 3.12. The absence of a learning dip with LLR clearly
shows its benefits, as LLR comes out on top when looking at how fast

79

Chapter 3 Efficient Model Learning Actor-Critic Methods

LLR

RBF

Tile Coding

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

Time [min]

0 5 10 15 20 25 30
−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.12 Results for the SAC algorithm using the three different function
approximators.

the learning progresses. The RBF and tile coding approximators are only
converging after just over 5 and 10 minutes, respectively, where LLR already
reaches its maximum in about 3 minutes. Moreover, when looking at the
final performance of the algorithm (which is the value of the learning curve
at t = 30min), LLR also is outperforming the other two approximators.

3.6.2 Model Learning Actor-Critic

This section will describe the simulation results of MLAC on the pendulum
swing-up task. Because the algorithm needs function approximators that are
differentiable, tile coding can not be used and as a result only RBFs and LLR
will be discussed.

Radial Basis Functions

Using the parameters from Table 3.1, the learning curve in Figure 3.13 was
created. Again, the dip in learning performance at the start of the learning
process is seen. This means that even though the model is helping the actor

80

3.6 Example: Pendulum Swing-Up

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.13 Results for the MLAC algorithm using RBFs. The mean, max
and min bounds and 95% confidence region are computed from 30 learning
curves.

to update more efficiently towards an optimal policy, it can not overcome the
difficulties caused by optimistic initialisation.

Local Linear Regression

The MLAC algorithm was applied using the parameter settings in Table 3.2,
which produced the learning curve in Figure 3.14. As with SAC, the
performance of MLAC is largely monotonically increasing when using LLR
as the function approximator. Futhermore, the figure shows the effects of
learning a model online. Where the combination of SAC and LLR converged in
about 3 minutes, here the maximum is reached after about 2 min to 2.5 min.
Figure 3.15 and Figure 3.16 show an example of how the actor and critic
memories look after one full learning experiment with MLAC.

There is a lack of samples in the lower regions of Figure 3.15 and
Figure 3.16, because none of the trials in this particular learning experiment
generated a trajectory through that region.

The MLAC method converges fast and to a good solution of the swing-

81

Chapter 3 Efficient Model Learning Actor-Critic Methods

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.14 Results for the MLAC algorithm using LLR. The mean, max and
min bounds and 95% confidence region are computed from 30 learning curves.

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−900

−700

−500

−300

−100

−30

−20

−10

0

10

20

30

Figure 3.15 Final critic V (x) for the MLAC algorithm after one learning
experiment. Every point represents a sample [x | V] in the critic memory
MC.

82

3.6 Example: Pendulum Swing-Up

A

n
g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−3

0

3

−30

−20

−10

0

10

20

30

Figure 3.16 Final actor π(x) for the MLAC algorithm after one learning
experiment. Every point represents a sample [x | u] in the actor memory MA.

up task. The fast learning speed can be attributed to the characteristics of
LLR. LLR gives a good quick estimate at the start of learning by inserting
observations directly into the memory and also allows for broad generalisation
over the states when the number of collected samples is still low. Finally, the
update by Equation (3.9) (Equation (3.14) in the LLR case) is not stochastic
in contrast to the update of SAC by Equation (3.1) which is typically based on
the random exploration ∆u. This means that MLAC is less dependent on the
proper tuning of exploration parameters, such as the standard deviation used
in the generation of random exploratory actions.

Comparison of Different Function Approximators

Figure 3.17 shows the two previously discussed learning curves in one plot.
The figure is self-explanatory: LLR is far superior in both learning speed and
performance when compared to the RBF implementation. Using LLR gives
convergence in just over 3 minutes, whereas it takes over 10 minutes in the
RBF case.

83

Chapter 3 Efficient Model Learning Actor-Critic Methods

LLR

RBF

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

Time [min]

0 5 10 15 20 25 30
−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.17 Results for the MLAC algorithm using the two different function
approximators.

3.6.3 Reference Model Actor-Critic

Finally, the results of RMAC on the pendulum swing-up task is discussed. As
with MLAC, only RBFs and LLR can be discussed as an implementation with
tile coding does not exist.

Radial Basis Functions

The results of an implementation with RBFs is shown in Figure 3.18. A peculiar
effect here is that the learning dip is still present, but not as explicit as with the
other algorithms. A possible explanation for this is that the updates in RMAC
are based on using the extreme values for the input, making the algorithm
sweep the whole state space in a much shorter time than the other algorithms.
This explanation is supported by Figure 3.20, which is still to be discussed,
but already shows that the LLR memory samples are much more evenly spread
across the whole state space than was the case with MLAC.

84

3.6 Example: Pendulum Swing-Up

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.18 Results for the RMAC algorithm using RBFs. The mean, max
and min bounds and 95% confidence region are computed from 30 learning
curves.

Local Linear Regression

As expected, the learning curve for RMAC in combination with LLR in
Figure 3.19 shows monotonically increasing performance. Figure 3.20 shows
the samples from the critic memory obtained after one representative learning
experiment, whereas Figure 3.21 shows an example of memory samples for
the reference model, by representing the mapping from states to their next
respective desired states with arrows. Both figures show a large coverage of
the state space5, compared to Figures 3.15 and 3.16, confirming the statement
made earlier that RMAC sweeps a large part of the state space.

The RMAC method combined with LLR converges very quickly and to
a good solution for the pendulum problem. The main reason for the fast
convergence is the fact that the method starts out by choosing the desired
states x̂ that resulted from the extremes of u. Desired states that result from
the extremes of u also result in large values for u and makes the system explore

5The reference model in Figure 3.21 does not show all samples as this would make the figure
less legible.

85

Chapter 3 Efficient Model Learning Actor-Critic Methods

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 3.19 Results for the RMAC algorithm using LLR. The mean, max and
min bounds and 95% confidence region are computed from 30 learning curves.

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−900

−700

−500

−300

−100

−30

−20

−10

0

10

20

30

Figure 3.20 Final critic V (x) for the RMAC algorithm after one learning
experiment. Every point represents a sample [x | V] in the critic memory
MC.

86

3.6 Example: Pendulum Swing-Up

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−30

−20

−10

0

10

20

30

Figure 3.21 Final reference model R(x) for the RMAC algorithm after one
learning experiment. Every arrow represents a sample [x | x̂] in the reference
model memory MR. The arrow points to the desired next state x̂ .

a large part of the state space. This yields a fast initial estimate of the value
function which is beneficial for the learning speed.

Comparison of Different Function Approximators

Although LLR is still outperforming the RBF implementation in terms of
learning speed, the final policy obtained is not near as good, see Figure 3.22.
This difference in final performance is likely to be caused by the updates to the
reference model, using extreme values of the input. In the case of LLR, new
samples based on these extreme values are directly put into the memory and the
learning rate αr only comes into play when existing samples are updated. In
the case of RBFs, the reference model is trained using this new sample, which
means that the learning rate αr of the reference model already has a smoothing
effect. This also explains why the RBF implementation is a tad slower than the
LLR implementation: since the actions taken are not likely to be the extreme
values anymore, the state space is not explored as quickly and hence it takes
longer to build up enough experience across the whole space.

87

Chapter 3 Efficient Model Learning Actor-Critic Methods

LLR

RBF

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

Time [min]

0 5 10 15 20 25 30
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

Figure 3.22 Results for the RMAC algorithm using the two different function
approximators.

3.7 Discussion

Figure 3.23 shows all the learning curves from the previous sections together
in one plot, with the exception of the tile coding implementation of SAC, as
tile coding could not be used with MLAC and RMAC. The first plot shows the
complete learning experiments, the second plot zooms in on the performance
in the last 50 episodes.

It is clear from this picture that all methods learn the quickest when they
use LLR as the function approximator. Furthermore, the MLAC and RMAC
methods are performing better than SAC in terms of learning speed. When
using RBFs, the MLAC and RMAC method do not perform better than SAC,
which implies that they need a better function approximator to become truly
powerful. In addition, the LLR implementations of SAC and MLAC also obtain a
much better performance at the end of the learning experiment than their RBF
counterparts. The RMAC/LLR combination shows a steep learning curve at the
start, but does not reach the best solution. Interestingly, the RMAC method is
the only method here that performs better when using RBFs as the function
approximator.

88

3.7 Discussion

RMAC/LLR

RMAC/RBF

MLAC/LLR

MLAC/RBF

SAC/LLR

SAC/RBF

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

Time [min]

0 5 10 15 20 25 30
−6000

−5000

−4000

−3000

−2000

−1000

0

(a) The complete learning curves of all algorithms and function approximators.

RMAC/LLR

RMAC/RBF

MLAC/LLR

MLAC/RBF

SAC/LLR

SAC/RBF

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

Time [min]

27.5 28 28.5 29 29.5 30
−1700

−1600

−1500

−1400

−1300

−1200

−1100

−1000

−900

−800

(b) The last 2.5 minutes of the learning curves.

Figure 3.23 Comparison of different algorithms and function approximators.

89

Chapter 3 Efficient Model Learning Actor-Critic Methods

From the results in the previous section, local linear regression seems to be
the approximator of choice when the learning should both be quick and deliver
a good performance at the end of a learning experiment.

The MLAC and RMAC methods only really show their power when used in
combination with local linear regression. It is the combination of both LLR and
these new methods that will provide quick, stable and good learning. However,
no tests were done using a mix of function approximators, e.g. RBFs for the
actor and critic and LLR for the process model, which might yield even more
powerful results. Another option is to try and combine the quick learning of
RMAC/LLR with the good performance of MLAC/LLR, by starting with RMAC
and switching to MLAC when the performance does not significantly increase
anymore.

A crucial condition for the model learning algorithms to work is that the
input saturation of a system should be dealt with when learning a process
model. Simply ignoring this will not produce a well performing policy. This
can be overcome by setting the process model’s gradient with respect to the
input to zero at the saturation bounds or by making sure that the actor can not
produce output signals beyond the saturation bounds.

A persisting problem in dynamic programming and reinforcement learning
is the proper tuning of the learning algorithms and, if applicable, function
approximators. The quality of an RL algorithm should therefore not only be
measured by looking at the performance of the policy it produces, but also
by checking its robustness, i.e. how well it keeps performing when deviating
from the set of optimally tuned parameters. This sensitivity analysis for the
algorithms presented here is left for future work.

Although not exploited in this thesis, one benefit of the memory-based
function approximators is that they can easily be initialised with samples
obtained from other experiments. This makes it easy to incorporate prior
knowledge on the process dynamics, a near optimal control policy or near
optimal behaviour. For example, (partial) knowledge of the process could be
incorporated in the process model’s memory and the reference model memory
in RMAC could be initialised with samples of desired closed-loop behaviour.
This can be beneficial if the desired behaviour of the system is known but
the control policy is yet unknown (which is often the case when supplying
prior knowledge by imitation (Peters and Schaal, 2008a)). In both algorithms,
the process model can be initialised with input/state/output samples of the

90

3.7 Discussion

open loop system. This has the benefit that it is usually easy to conduct
experiments that will generate these samples and that it is unnecessary to
derive an analytical model of the system, as the samples are used to calculate
locally linear models that are accurate enough in their neighbourhood.

LLR seems very promising for use in fast learning algorithms, but a few
issues prevent it from being used to its full potential. The first issue is
how to choose the correct input weighting (including the unit scaling of the
inputs), which has a large influence on selecting the most relevant samples
for regression. A second issue that must be investigated more closely is
memory management: different ways of scoring samples in terms of age
and redundancy and thus deciding when to remove certain samples from the
memory will also influence the accuracy of the estimates generated by LLR.

The experiments now only compare the performance of MLAC and RMAC
with a standard actor-critic algorithm. It should also be interesting to see how
these methods compare to direct policy search methods and natural gradient
based techniques. Finally, the approximation of the reachable subset XR may
not be sufficiently accurate for more complex control tasks. A more reliable
calculation of reachable states is the main improvement that could be made to
RMAC.

91

Solutions to Finite Horizon Cost

Problems Using Actor-Critic

Reinforcement Learning

Chapter

4

Up to this chapter, only tasks that are modeled as a Markov decision process
with an infinite horizon cost function have been dealt with. In practice,
however, it is sometimes desired to have a solution for the case where the cost
function is defined over a finite horizon, which means that the optimal control
problem will be time-varying and thus harder to solve. In this chapter, the
algorithms presented in the Chapter 3 are adapted from the infinite horizon
setting to the finite horizon setting and applies them to learning a task on a
nonlinear system. Since this is still in the actor-critic reinforcement learning
setting, no assumptions or knowledge about the system dynamics are needed.
Simulations on the pendulum swing-up problem are carried out, showing
that the presented actor-critic algorithms are capable of solving the difficult
problem of time-varying optimal control.

4.1 Introduction

Most of the literature on reinforcement learning, including the work on actor-
critic algorithms, discusses their use in Markov decision processes (MDPs) in
an infinite horizon cost setting. On one hand, this is a reasonable choice
when considering a controller for regulation or tracking that, after training
or learning, is put into place and stays in operation for an indefinite amount
of time, to stabilise a system for example. On the other hand, one can think of

93

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

control tasks that have to be performed within a given time frame, such as a
pick and place task for a robotic manipulator or network flow and congestion
problems as discussed by Bhatnagar and Abdulla (2008). For these problems,
a description using MDPs with a finite horizon cost function is more suitable.

The main difference between infinite and finite horizon control is the
terminal cost1 constraint that is put in place in finite horizon control. As a
result of this constraint, the control law used near the end of the horizon will,
for example, favour actions that will prevent a large penalty of the terminal cost
constraint, whereas at the start of the process, other actions might be optimal,
since the threat of receiving a large penalty is not as imminent. In other words,
optimality in finite horizon control requires a time-varying control law.

From an RL perspective, a time-varying control law poses the challenge of
having to deal with yet another dimension while learning, being time, obvi-
ously contributing to the well-known curse of dimensionality (Powell, 2010)
and hence making the learning tougher. Nevertheless, learning control might
be a weapon of choice for finding the optimal control for (nonlinear) systems
over a finite time horizon, as explicitly solving the Hamilton-Jacobi-Bellman
equations that follow from this setting is difficult or even impossible (Cheng
et al., 2007).

Existing work on learning optimal control for nonlinear systems in the finite
horizon (or fixed-final-time) setting is mainly carried out in the approximate
dynamic programming community. Quite often, stringent assumptions are
posed on the system to be controlled, such as dynamics or transition probabil-
ities that have to be fully known (Bertsekas and Tsitsiklis, 1996; Cheng et al.,
2007); alternatively, a strategy that requires offline training of a model network
is suggested (Park et al., 1996; Wang et al., 2012). Q-learning and actor-critic
algorithms for use in finite horizon MDPs were developed before by Gosavi
(2010) and Bhatnagar and Abdulla (2008), respectively, but these work for a
finite state space and a compact or finite action space. Moreover, even though
an explicit model of the system was assumed to be unknown, Bhatnagar and
Abdulla (2008) assumed that transitions could be simulated somehow. Another
approach to solving finite horizon Markov decision processes is to find a time-
invariant policy (Furmston and Barber, 2011), hence resulting in a suboptimal
policy.

1Terminal cost is used here, in keeping with existing literature. In the terminology of
reinforcement learning, however, one could also see this as a terminal reward.

94

4.2 Markov Decision Processes for the Finite Horizon Cost Setting

In this chapter, the actor-critic algorithms described in Chapter 3 are
adapted to work online in a finite horizon setting, without requiring any kind
of knowledge of the (nonlinear) system, nor the ability to simulate transitions
throughout the whole state and action space. The algorithms produce time-
varying policies. Furthermore, both state and action space are assumed to be
continuous and hence the time-varying policies should allow for continuous
actions.

The chapter continues with an introduction to the concept of MDP’s in a
finite horizon cost setting in Section 4.2. Section 4.3 discusses how actor-
critic RL algorithms may be used to solve a finite horizon cost MDP and adapts
the previously introduced actor-critic algorithms to work in the finite horizon
setting. Simulations with the newly derived algorithms on a pendulum swing-
up task will be discussed in Section 4.4 and the chapter ends with conclusions
and recommendations for future work in Section 4.5.

4.2 Markov Decision Processes for the Finite Horizon

Cost Setting

This section introduces the concepts of finite horizon Markov Decision Pro-
cesses, partly based on the definitions given by Bäuerle and Rieder (2011), but
combined with notations used throughout this thesis and ideas by Bhatnagar
and Abdulla (2008).

A finite horizon MDP is a tuple 〈X , U , f ,ρ,τN 〉, where X denotes the
state space, U the action space, f : X × U → X the (deterministic) state
transition function, ρ : X × U × X → R the reward function for system times
k = 0,1, . . . , N − 1 and τN : X → R the terminal reward of the system at time
k = N .

The process to be controlled is described by the state transition function2

f , which returns the state xk+1 that the process reaches from state xk after
applying action uk. As in the infinite horizon case, after each transition to a
state xk+1, while the finite time horizon N has not been reached, the controller

2For simplicity, it is assumed here that the transition function f is still time-invariant. Hence,
the use of a terminal cost function is the sole cause of a time-varying policy.

95

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

receives an immediate reward

rk+1 = ρ(xk,uk, xk+1),

which depends on the current state, the action taken and the next state. Note
that for deterministic systems, the next state is fully determined by the current
state and the action taken, making it possible to shorten this definition to

rk+1 = ρ(xk,uk)

and this is the definition that will be used for the remainder of this chapter. For
the finite horizon case, when the system reaches the final time instant k = N ,
a terminal reward τN (xN) is received. The (terminal) reward functions ρ and
τN are both assumed to be bounded.

The action uk taken in a state xk is determined by the policy π, i.e. the
actor, that is time-dependent because of the finite horizon cost setting. This
time-varying policy is denoted by πk : X → U , where the subscript k denotes
the time instant at which the policy πk is active.

The goal of the reinforcement learning agent is to find the N -stage policy
π= (π0,π1, . . . ,πN−1) which maximises the expected value of the cost function
J , which is equal to expected value of the sum of rewards received when
starting from an initial state x0 ∈ X drawn from an initial state distribution
x0 ∼ d0(·);

J(π) = E

(
τN (xN) +

N−1∑

k=0

ρ(xk,πk(xk))

����� d0

)
. (4.1)

This sum is also called the return. Even though a deterministic process and
policy are assumed, the expectation is introduced because of the starting state
distribution d0. For the simulations in this chapter only one starting state is
chosen, making it possible to drop the expected value.

For policy evaluation, the critic will have to estimate the cost-to-go function
for a given N -stage policy π for any state x at some time instant k. The resulting
estimate is the value function. The value function for a finite horizon problem
is time-varying as well, as at every time step it carries the value for a state,
assuming the use of N − k remaining different policies. The time-varying value
function is given at each time step k by (see e.g. Bertsekas and Tsitsiklis, 1996))

Vπ
k
(x) = τN (xN) +

N−1∑

j=k

ρ(x j ,π j(x j)), (4.2)

96

4.3 Actor-Critic RL for Finite Horizon MDPs

where xk = x . Note that the value function at time k = N for any N -stage policy
only depends on the state, as no further actions from a policy are required.
Following Equation (4.2), the value function at the final time step is known to
be

Vπ
N
(x) = τN (x). (4.3)

Expanding Equation (4.2), the Bellman equation for the finite horizon case
is

Vπ
k
(x) = ρ(x ,πk(x)) + Vπ

k+1
(x ′), (4.4)

with x ′ = f (x ,πk(x)).

Optimality for the state value function Vπ
k

is governed by the Bellman
optimality equation. Denoting the optimal state value function with V ∗

k
(x),

the Bellman optimality equation is

V ∗
k
(x) =max

u

¦
ρ(x ,u) + V ∗

k+1
(x ′)

©
,

with x ′ = f (x ,u).

4.3 Actor-Critic RL for Finite Horizon MDPs

To find an optimal control strategy for a finite horizon MDP, adapted versions
of the actor-critic algorithms used in the previous chapter must be used. This
section discusses how this adaptation may be achieved. Before deriving the
finite horizon version of these algorithms, first some ideas that will apply to all
algorithms will be discussed.

4.3.1 Parameterising a Time-Varying Actor and Critic

For the same reasons as before in the infinite horizon case, the time-varying
actor and critic will also be parameterised functions. The critic’s parameterisa-
tion will be denoted with the parameter vector θ and basis functions φ(·) and
the the actor’s parameterisation will be denoted with the parameter vector ϑ
and basis functions ψ(·).

As discussed in Section 4.2, both the actor and the critic need to be time-
varying if they want to be able to represent an optimal control strategy for
a finite horizon MDP. The question then arises how the time-varying nature

97

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

of these functions should be parameterised. One can opt for the actor-critic
representation3 where the time dependence is put into the weights

Vk(x) = θk
⊤φ(x) πk(x) = ϑk

⊤ψ(x) (4.5)

which is done, for example, by Cheng et al. (2007); Wang et al. (2012) or a
respresentation where the time-variance is put into the basis functions

Vk(x) = θ
⊤φ(x , k) πk(x) = ϑ

⊤ψ(x , k). (4.6)

which is done by Bhatnagar and Abdulla (2008). It should be noted that
regardless of the chosen representation, the weights θ and ϑ are always time-
varying during learning because of the update laws applied to them. In other
words, the representations presented here depict the situation when all weights
have converged.

The easiest way to extend existing infinite horizon reinforcement learning
algorithms to finite horizon problems is by using the representation in Equa-
tion (4.6), as it really only requires the expansion of the state dimension with
one extra dimension for time. The necessary changes in the algorithms them-
selves (temporal difference calculations, eligibility trace updates, etc.) will
then follow naturally. Having time as part of the state also adds the advantage
of automatic “time generalisation” to the learning: even though actor and critic
are time-varying, it is not unreasonable to assume that these functions vary
smoothly with time. By choosing this particular parameterisation, an update at
one particular time instance will also update neighboring times, which should
speed up learning.

Although the extension using Equation (4.6) is theoretically straightfor-
ward, the time dimension that is added to the state space is superfluous in some
ways. Firstly, the input space of the basis functions is continuous, whereas time
is usually a discretised variable in learning problems. This means the actor and
critic are approximated over a continuous time axis and this might affect the
quality of the discrete time control policy obtained. Secondly, the discrete-time
dynamics of the time variable are known (a discrete-time integrator), posing
the question if it really should be rendered unknown by making it part of the
state. Both points show that simply considering time to be an element of state
might actually overcomplicate the learning of the value function. In practice,

3Note that the superscript π is no longer present in the value function, as it may no longer
represent the exact value function for a specific policy per se.

98

4.3 Actor-Critic RL for Finite Horizon MDPs

the learning speed achieved might therefore be negatively affected by using
this approach, although the experiments at the end of this chapter do not show
any significant slowdown compared to the experiments in the previous chapter.

Using the parameterisation of Equation (4.5) also has its advantages and
drawbacks. One advantage is that the time axis is held discrete, which
eliminates any approximation error over the time variable and may thus result
in policies at every time step k that are optimal, as every time step has its
own policy parameter which is independent of the policy parameters at other
time steps. Furthermore, the complexity of the basis functions is reduced,
since they only have the state as their input and in this sense should not be
more complicated to choose than in the infinite time horizon case. An obvious
disadvantage is that the number of parameters can grow very large as the time
horizon N increases. Finally, generalisation across the time axis is lost if the
parameters of different time steps are updated independently of each other,
although this may be addressed, for example, by a clever updating technique
similar to eligibility traces.

Since the step from an infinite horizon implementation to a finite horizon
implementation is apparently smaller with the parameterisation in Equa-
tion (4.6), this chapter uses that particular parameterisation. The use of
Equation (4.5) is shortly explored at the end of this chapter.

4.3.2 Standard Actor-Critic

Based on the implementation of the infinite horizon standard actor-critic (SAC)
algorithm, this sections derives its finite horizon version by observing the
changes needed specifically for this algorithm, when the parameterisation in
Equation (4.6) is used.

Having extended the state with a time element, the implementation of
the algorithm itself still needs to be changed to incorporate the effect of the
terminal reward τN (x) in the updates. Equations (4.3) and (4.4) are the
key to implement the needed change. The heuristic ideas behind the update
rules are the same as in the infinite horizon case, but it is the temporal
difference error that is being used for the update that requires attention. Since
Equation (4.4) now contains time-varying value functions, this time-variance
has to be reflected in the definition of the temporal difference. The new
definition of the temporal difference error is obtained by subtracting the left-

99

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

hand side of Equation (4.4) from its right-hand side, giving

δk = ρ(xk,πk(xk)) + Vπ
k+1
(xk+1)− Vπ

k
(xk)

During learning, exploration needs to be added to the inputs generated by the
current policy, such that the learning agent is able to find new, possibly better,
policies. With the exploration at time k defined as ∆uk, and substitution of the
parameterisation of the value function, the temporal difference used is

δk ≈ rk+1 + θ
⊤
�
φ(xk+1, k+ 1)−φ(xk, k)

�

with rk+1 = ρ(xk,uk) and uk = πk(xk) + ∆uk. This definition of the temporal
difference error will hold for time steps k = 0,1, . . . , N−2, but not for k = N−1,
as this would include the approximation term for Vπ

N
(xN), for which the prior

knowledge from Equation (4.3) should be plugged in, yielding

δN−1 = rN +τN (xN)− θ
⊤φ(xN−1, N − 1).

The update law for the critic itself remains the same. The resulting finite
horizon standard actor-critic (SAC-FH) algorithm is given in Algorithm 4.4

4.3.3 Model Learning Actor-Critic

The finite horizon version of the Model Learning Actor-Critic algorithm (MLAC-
FH) not only needs a different calculation of the temporal difference error, but
the policy gradient used in MLAC also needs adjusting, as it depends on the
value function which is now time-varying, implying that the policy gradient
itself is now also time-varying. The exact change needed will be discussed
next.

As a reminder, the idea behind the Model Learning Actor-Critic algorithm
(MLAC) is to increase the learning speed by using each transition sample to
learn a model of the process in an online fashion. The approximate process
model x ′ = bfζ(x ,u) is parameterised by the parameter ζ ∈ Rr·n, where r

is the number of basis functions per element of process model output used
for the approximation and n is the state dimension. The process model is
learned online by using a simple gradient descent method on the modeling

4The symbol ← is used here to indicate a replacement of an old parameter value with a new
one. This is to prevent notational confusion with the time-varying parameter approach discussed
earlier.

100

4.3 Actor-Critic RL for Finite Horizon MDPs

Algorithm 4 SAC-FH

Input: λ,αa,αc

1: Initialise function approximators
2: loop
3: Reset eligibility: z = 0

4: Set x0

5: for k = 0 to N − 1 do
6: Choose exploration ∆uk ∼N (0,σ2)

7: Apply uk = sat
¦
ϑ⊤ψ(xk) +∆uk

©
8: Measure xk+1

9: rk+1 = ρ(xk,uk)

10: // Update actor and critic

11: if k = N − 1 then
12: δk = rk+1 +τN (xk+1)− θ

⊤φ(xk, k)

13: else
14: δk = rk+1 + θ

⊤
�
φ(xk+1, k+ 1)−φ(xk, k)

�
15: end if
16: ϑ← ϑ+αaδk∆ukψ(xk, k)

17: z← λz +φ(xk, k)

18: θ ← θ +αcδkz

19: end for
20: end loop

error between the process model output bfζ(xk,uk) and the actual system output
xk+1.

Substituting the process model into Equation (4.4), the Bellman equation
becomes

Vθ (xk, k) = ρ(xk,πϑ(xk, k)) + Vθ (
bfζ(xk,πϑ(xk, k), k+ 1). (4.7)

This equation shows how the value function for a specific state x and time step
k can be influenced by manipulating the policy parameter ϑ.

Given that the cost-to-go function at any time k is modeled by the time-
dependent value function V (x , k), the gradient of the cost-to-go function, i.e.
the policy gradient, can be found by taking the derivative of Equation (4.7)

101

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

with respect to the policy parameter ϑ, resulting in5

∇ϑV (xk, k)≈∇uρ(xk, ũk)
⊤∇ϑπϑ(xk, k)

+∇x V (x̃k+1, k+ 1)⊤∇u
bfζ(xk, ũk)∇ϑπϑ(xk, k),

with

x̃k+1 =
bfζ(xk, ũk)

ũk = πϑ(xk, k)

Putting the parameterisation of the policy into place, this yields the policy
gradient

∇ϑV (xk, k)≈
¦
∇uρ(xk, ũk)

⊤ +∇x V (x̃k+1, k+ 1)⊤∇u
bfζ(xk, ũk)

©
ψ(xk, k)

Using this policy gradient, the policy parameter ϑ can be moved in a direction
that will produce a better value function for a given state and time.

With the temporal difference update on the critic being the same as in the
SAC-FH case, the algorithm for MLAC-FH is as shown in Algorithm 5.

4.3.4 Reference Model Actor-Critic

To make Reference Model Actor-Critic suitable for finite horizon cost functions,
it is only necessary to add a time variable to the domains of the critic and the
reference model to make them time-varying functions. This means that the
time-dependent critic is defined the same way as with SAC-FH and MLAC-FH.
For the reference model, the input is now the current state and time, since the
desired next state can (and will likely) be different depending on the current
time instant. The output is still the state of the system, but excluding time.
Making time part of the reference model output would imply a redundant
modeling of information, since a system at time k can only move to time instant
k+1 after selecting one input. The rest of the algorithm, e.g. the way in which
the set of reachable states is defined and how the models are updated, remains
unchanged.

With these slight modifications in place, the pseudocode for the RMAC-FH
algorithm is given in Algorithm 6.

5The derivation of this gradient is similar to the derivation presented in Section 3.3.2 and
hence is not repeated here.

102

4.4 Simulation Results

Algorithm 5 MLAC-FH

Input: λ,αa,αc ,αp

1: Initialise function approximators
2: loop
3: Reset eligibility: z = 0

4: Set x0

5: for k = 0 to N − 1 do
6: Choose exploration ∆uk ∼N (0,σ2)

7: Apply uk = sat
¦
ϑ⊤ψ(xk) +∆uk

©
8: Measure xk+1

9: rk+1 = ρ(xk,uk)

10: // Update process model

11: ζ← ζ+αp(xk+1 −
bfζ(xk,uk))∇ζ

bfζ(xk,uk)

12: // Update actor

13: ũk = sat
¦
ϑ⊤ψ(xk)

©

14: x̃k =
bfζ(xk, ũk)

15: ϑ← ϑ+αa

¦
∇uρ(xk, ũk)

⊤

+ ∇x V (x̃k+1, k+ 1)⊤∇u
bfζ(xk, ũk)

©
ψ(xk, k)

16: // Update critic

17: if k = N − 1 then
18: δk = rk+1 +τN (xk+1)− θ

⊤φ(xk, k)

19: else
20: δk = rk+1 + θ

⊤
�
φ(xk+1, k+ 1)−φ(xk, k)

�
21: end if
22: z← λz +φ(xk, k)

23: θ ← θ +αcδkz

24: end for
25: end loop

4.4 Simulation Results

The finite horizon actor-critic algorithms of Section 4.3 have been applied
to the problem of swinging up an inverted pendulum, as described in
Appendix A.1.

The task is the same as before: starting from the pointing down position,

103

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

Algorithm 6 RMAC-FH

Input: λ,αa,αc ,αp

1: Initialise function approximators
2: loop
3: Reset eligibility: z = 0

4: Set x0

5: for k = 0 to N − 1 do
6: Choose exploration ∆uk ∼N (0,σ2)

7: Apply uk ← sat
�
uk +∆uk

	
8: Measure xk+1

9: rk+1 = ρ(xk,uk)

10: bxk+2← Rηk
(xk+1, k+ 1)

11: uk+1←
bf −1
ζk
(xk+1, bxk+2)

12: // Update process model

13: ζ← ζ+αp(xk+1 −
bfζ(xk,uk))∇ζ

bfζ(xk,uk)

14: // Update critic

15: if k = N − 1 then
16: δk = rk+1 +τN (xk+1)− θ

⊤φ(xk, k)

17: else
18: δk = rk+1 + θ

⊤
�
φ(xk+1, k+ 1)−φ(xk, k)

�
19: end if
20: z← λz +φ(xk, k)

21: θ ← θ +αcδkz

22: // Update reference model

23: Select best reachable state x r from (xk, k)

24: ηk+1← ηk +αr(x r − bxk+1)∇ηRηk
(xk)

25: end for
26: end loop

the pendulum must be swung up to the upright position. Again, only limited
actuation is allowed, such that it is impossible to complete the task by
directly moving from the pointing-down position to the upright position in one
direction.

The function approximator used for the actor, critic and process model is a
network of Gaussian radial basis functions (RBFs), with a number of 9 RBFs

104

4.4 Simulation Results

per dimension, centered evenly throughout the state space, where it is assumed
that the position ϕ ∈ [−π,π], the angular velocity ϕ̇ ∈ [−8π, 8π] and it is
further known that k ∈ {0,1, . . . , 99}, since the sampling time for the 3-second
horizon is chosen to be 0.03 s, giving 100 time steps in total. The above implies
that a total of 729 RBFs are used in the time-varying actor and critic as they
both have three dimensions (angle, angular velocity and time) and 81 RBFs in
the process model, which only has two dimensions (angle and angular velocity)
as the process itself is time-invariant.

The reward functions used are

ρ(x ,u) =−x⊤Qx − u2 τN (x) = −x⊤Qx

with

x =

ϕ

ϕ̇

k

 Q =

5 0 0

0 0.1 0

0 0 0

 .

Note that the last row and column of Q are set to zero, meaning that no time-
based penalty is given.

For both experiments, a full learning experiment runs for 30 minutes of
simulated time. The experiment starts with all approximators (actor, critic and
process model) initialised at zero. One experiment consists of 600 episodes,
each with a duration of 3 seconds. At the start of an episode, the state of the
system is reset to the pointing down position x0 = [π 0]⊤ and the eligibility
trace is erased, but the actor, critic and process model are kept intact, such
that the next episodes can benefit from the learning experiences in previous
episodes. For each episode, the return defined in Equation (4.1) can be
calculated, which means that for each experiment 600 returns are calculated.
Plotting these returns versus the episodes results in a learning curve, showing
how the return is improving with each episode. The next sections will use these
learning curves as a measure of learning speed. Note that the learning curves
include the stochastic effects caused by exploration during the episodes.

4.4.1 Finite Horizon Standard Actor-Critic

Figure 4.1a shows a learning curve for the SAC-FH algorithm. To account
for stochastic effects introduced by exploration, the graph is an average of

105

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

20 different learning curves, all generated using the same set of learning
parameters.

The learning parameters αa = 0.05, αc = 0.2 and the widths of the Gaussian
RBF grid (0.55) were tuned for best end performance, by iterating over a grid of
parameters and choosing the parameter set that generated the highest average
return over the 20 experiments in the last 100 episodes. The number of RBFs
used per dimension was held fixed to 9.

From this figure, it can be seen that after learning for about a minute, a dip
occurs in the return. Similar to the results in the infinite horizon case, this is
likely to be a result of the optimistic initialisation (θ = 0) of the value function.
Once a more reasonable value function has been learned, the return gradually
increases and stabilises after roughly 15 minutes.

Figure 4.1b shows the typical time response of the system with a policy that
was learned using SAC-FH. For this figure, the final policy (after 600 episodes)
was used with the exploration switched off.

The policy generated by SAC-FH clearly shows how it forces the pendulum
to pick up momentum by applying the extrema of possible inputs at the start
to make the pendulum swing back and forth. Around 0.5 s, the input switches
sign again to brake the pendulum and keep it in the upright position.

4.4.2 Finite Horizon Model Learning Actor-Critic

After tuning, the learning parameters for the MLAC-FH algorithm were set to
αa = 0.15, αc = 0.4, αp = 0.8. The number of RBFs in each dimension were
again held fixed at 9, but the widths of the RBFs were set to 0.55, 0.65 and 0.75

for the actor, the critic and the process model, respectively. The learning curve
for MLAC-FH is shown in Figure 4.2a. It clearly suffers from a dip in the return
too, but once the process model has learned a fair part of the transition function
f (x ,u) after about 3 minutes, the learning curve becomes much steeper than
the curve for SAC-FH around that same time. Similarly to the infinite horizion
case, the addition of a learned process model boosts the learning speed.

The time response of the policy produced by MLAC-FH in Figure 4.2b
is similar to the one produced by SAC-FH. Apart from having learned the
mirrored solution, the only clear difference is that the input signals is a bit less
smooth. Nevertheless, it can not be concluded that SAC-FH learns smoother

106

4.4 Simulation Results

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−5000

−4000

−3000

−2000

−1000

(a) Learning curve

Input [V]

Time [s]

Velocity [rad/s]

Position [rad]

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

−20

−15

−10

−5

0

5

10

15

(b) Time response

Figure 4.1 Results for SAC-FH using tuned parameter sets.

107

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30

−4000

−3000

−2000

−1000

(a) Learning curve

Input [V]

Time [s]

Velocity [rad/s]

Position [rad]

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

−20

−15

−10

−5

0

5

10

15

(b) Time response

Figure 4.2 Results for MLAC-FH using tuned parameter sets.

108

4.4 Simulation Results

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−5000

−4000

−3000

−2000

−1000

(a) Learning curve

Input [V]

Time [s]

Velocity [rad/s]

Position [rad]

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

−20

−15

−10

−5

0

5

10

15

(b) Time response

Figure 4.3 Results for RMAC-FH using tuned parameter sets.

109

Chapter 4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL

Table 4.1 Averages µ and sample standard deviations s of the accumulated
rewards during the last episode of the SAC-FH and MLAC-FH experiments.

µ s

SAC-FH −995.7016 199.4336

MLAC-FH −835.3521 55.3719

RMAC-FH −840.7689 37.9602

policies than MLAC-FH, as the given time responses of both algorithms are
mere examples of what a typical policy produced by the algorithms can look
like.

4.4.3 Finite Horizon Reference Model Actor-Critic

Figure 4.3a shows the learning curve for RMAC-FH, produced by using the
tuned learning parameters αr = 0.6, αc = 0.2, αr = 0.6. The number of RBFs
in each dimension were again held fixed at 9 and the widths of the RBFs were
set to 0.7 for the reference model and the critic and 0.6 for the process model.
Although no sharp dips are observed, the algorithm clearly is not learning as
fast as SAC-FH and MLAC-FH. The most likely culprit is the reference model,
since the way in which the process model is defined and updated is exactly the
same as with MLAC-FH. The fact that the optimisation procedure explained in
Section 3.4 now has to use a reference model which that has an extra time
dimension in its input space is slowing down the learning speed considerably.

Figure 4.3b shows an example of a time response produced by RMAC-
FH. The only significant difference with the time responses seen before with
SAC-FH and MLAC-FH is that the part between t = 0.2 s and t = 0.5 s is not
smooth, which is likely to be caused by the use of extreme values of inputs
when calculating the desired next state.

When looking at the average and sample standard devation of the return in
the final episode for SAC-FH, MLAC-FH and RMAC-FH given in Table 4.1, the
conclusion is that the model learning methods clearly win over the standard
actor-critic method. The higher average reward means that they learn better
solutions to the problem and the low sample standard deviations show that
they also learn these solutions in a more consistent way. Moreover, MLAC-FH
has shown to be a very fast learning method. The reason why the values in

110

4.5 Discussion

Table 4.1 do not seem to correspond to Figures 4.1a, 4.2a and 4.3a is that the
last episode is carried out without exploration, in contrast to the other episodes,
which are dominantly seen in the figure.

4.5 Discussion

This chapter introduced finite horizon adaptations of the actor-critic algorithms
in Chapter 3, in order to learn optimal control solutions for a finite horizon
task on a nonlinear system. Results from simulation confirm the successful
adaptation of the algorithms to the finite horizon case. As with the infinite
horizon versions introduced in Chapter 3, the use of a learned process model
significantly enhances the quality of the obtained policy and in the case of
MLAC-FH also the learning speed. This can be seen from Figure 4.4, where the
learning curves are put together in one plot.

RMAC-FH

MLAC-FH

SAC-FH

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15 20 25 30
−5000

−4000

−3000

−2000

−1000

Figure 4.4 Learning curves for SAC-FH and MLAC-FH.

111

Simulations with a Two-Link

Manipulator

Chapter

5

To further test the applicability of the actor-critic algorithms presented in
this thesis, this chapter discusses simulations of the algorithms on a two-link
manipulator. The extra difficulty introduced here is that the system now has
multiple inputs, whereas the previous chapters only dealt with single input
systems. As such, the algorithms now have to learn a vector-valued policy, in
order to control the system. Moreover, the order of the system is now four
instead of two in the case of the inverted pendulum, meaning that both actor
and critic have to cover a domain that is much larger.

After first discussing the setup of the manipulator and the effects the higher
order system has on the model learning methods, the experiment is divided
into two parts. In both parts, the goal is to make the dynamical system reach
an equilibrium state. In the first part, the two-link manipulator is suspended
vertically and the the task is to make the system learn how to reach the trivial
equilibrium point, i.e. the point in which the potential energy in the system is
reduced to a minimum. The second part uses the two-link manipulator in a
horizontal plane, which implies that gravity is no longer of influence, and the
task is to steer the system to any reference state.

113

Chapter 5 Simulations with a Two-Link Manipulator

5.1 Simulation Setup

The experimental setup used in this chapter is a manipulator, consisting of
two links and two frictionless rotational joints. One of the joints has a fixed
position, the other connects both links. The system has two degrees of freedom
and is fully actuated by two motors driving the joints. A complete description,
including a table with the physical constants used, and a picture of this system
is given in Appendix A.2.

5.2 Consequences for Model Learning Methods

Now that a fourth order system is considered, the domains of the actor
and critic, which for both is the state space, obviously become much larger.
Moreover, the learned process model and reference model will not only have
larger domains, but also larger codomains, as they have a state (which now has
four elements) as their output. More specifically, for a fourth order system with
two control inputs, the learned process model now has six input arguments
and an output of four elements. In the inverted pendulum case, this was three
input arguments and two outputs. A learned reference model now has four
inputs as well as four outputs, whereas for the inverted pendulum this was two
inputs and two outputs. Applying dynamic programming and reinforcement
learning to higher-order problems is a tough exercise, because of the curse of
dimensionality. For example: if ten basis functions per dimension are used
for the learned process model of the inverted pendulum, this means that the
process will be modelled by a thousand basis functions in total. For the two-
link manipulator, the doubled number of input arguments means that a million

basis functions are needed for the process model if the same resolution in
each dimension is to be kept. This exponential growth of the number of
required basis functions and corresponding parameters to estimate is definitely
a problem for parametric function approximators. A direct consequence is
that the simulation times of MLAC and RMAC using radial basis functions
grew dramatically, making them practically infeasible to use. Therefore,
the test cases are only performed with the standard actor-critic algorithm
using both types of function approximators and the model-learning actor-critic
algorithm with only the LLR function approximator. For RMAC, the simulations
turned out to be computationally too heavy even when LLR was the function
approximator used.

114

5.3 Case I: Learn to Inject Proper Damping

For non-parametric function approximators, it is not quite clear if doubling
the number of input arguments would also imply that, in the case of LLR for
example, the number of samples kept in the memory would need to be squared.
The test cases in this chapter will provide more insight into this subject. The
learning parameters used in the simulations for this chapter are all listed at the
end of this chapter.

5.3 Case I: Learn to Inject Proper Damping

In this first test case, the two-link manipulator is suspended in the vertical
plane, which means that its motion is influenced by the force of gravity. With
no friction or damping present in the system, a non-zero initial position of the
manipulator will result in an endless motion if the system is left uncontrolled,
so ui = 0 for i = 1,2. This motion is illustrated in Figure 5.1.

The objective in this test case is to bring the system to the state which in
practice would be a trivial equilibrium: the state in which the angles of both
links are zero, making the complete setup point downwards, i.e. where the
potential energy in the system is equal to zero. This requires the controller
to inject damping into the system, such that it will come to a standstill in the
downward position.

The state x is defined as

x =

ϕ1

ϕ2

ϕ̇1

ϕ̇2

with ϕi the angle of link i and ϕ̇i its angular velocity. The reward function
used in this test case is similar to the one used for the inverted pendulum. The
angle and angular velocity of both links as well as both inputs ui are weighted
the same way as before, i.e.

ρ(x ,u) = −x⊤Qx − u⊤Pu (5.1)

115

Chapter 5 Simulations with a Two-Link Manipulator

Input 2

Input 1

Time [s]

Inputs [V]

Velocity

Position

Position [rad] and velocity [rad/s] of Link 2

Velocity

Position

Position [rad] and velocity [rad/s] of Link 1

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

−3

−1.5

0

1.5

3

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

Figure 5.1 The uncontrolled motion of the two-link manipulator suspended
in the vertical plane.

with

Q =

5 0 0 0

0 5 0 0

0 0 0.1 0

0 0 0 0.1

 P =

�
1 0

0 1

�

The standard actor-critic method SAC and MLAC and are applied to task
described above, using both RBFs and LLR as approximators in the case of SAC
and only LLR as the approximator in the case of MLAC. The algorithms run for
60 minutes of simulated time, consisting of 600 consecutive trials with each
trial lasting 6 seconds, which is enough to make the manipulator come to a
standstill. Every trial begins in with the initial state x0 = [−1.1 1 0 0]⊤. A
learning experiment is defined as one complete run of 600 consecutive trials.

116

5.3 Case I: Learn to Inject Proper Damping

The sum of rewards received per trial is plotted over the time which results
in a learning curve. This procedure is repeated for 20 complete learning
experiments to get an estimate of the average learning speed.

Tuning of all algorithm/approximator combinations was done by iterating
over a grid of parameters, which included parameters of the algorithm
(i.e. the learning rates) as well as parameters of the function approximator
(neighborhood sizes in case of LLR and widths of RBFs, for example). For all
experiments, the sampling time was set to 0.03 s, the reward discount rate γ to
0.97 and the decay rate of the eligibility trace to λ = 0.65. Exploration is done
every time step by randomly perturbing the policy with normally distributed
zero mean white noise with standard deviation σ = 1.

The next sections will describe the results of the simulation, ordered by
algorithm. All the results shown are from simulations that used an optimal
set of parameters after tuning them over a large grid of parameter values. For
each algorithm, the simulation results are discussed separately for each type of
function approximator.

5.3.1 Standard Actor-Critic

Figure 5.2 shows the results of learning a controller with the SAC algorithm,
using RBFs as the function approximator. The tuned learning rates for the actor
and critic are αa = 0.25 and αc = 0.4, respectively. The number of RBFs in each
dimension is 9 with a width of 0.9.

From Figure 5.2a, it is clear that the algorithm produces a smooth policy
that has clearly learned to steer the system in a direction opposite to its current
motion, as desired. Looking closer at the inputs, it is clear that they are still
non-zero by the end of the trial, indicating that the position x = 0 is not reached
perfectly.

The learning curve in Figure 5.2b shows the familiar picture of a learning
curve with a large dip in the learning performance. The dip is now more
pronounced as the policy does not recover as quickly as before. The most
obvious reason for this is that the state/action space is now much larger and the
whole space is still initialised optimistically. As a result, the learning algorithm
needs more interaction with the system to get rid of the optimistic initial values
and to obtain a more realistic value function and policy for the whole state
space.

117

Chapter 5 Simulations with a Two-Link Manipulator

Input 2

Input 1

Time [s]

Inputs [V]

Velocity

Position

Position [rad] and velocity [rad/s] of Link 2

Velocity

Position

Position [rad] and velocity [rad/s] of Link 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

−3

−1.5

0

1.5

3

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

(a) Time response

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60
−15000

−10000

−5000

0

(b) Learning curve

Figure 5.2 Results for SAC/RBF using tuned parameter sets on Case I.

118

5.3 Case I: Learn to Inject Proper Damping

Input 2

Input 1

Time [s]

Inputs [V]

Velocity

Position

Position [rad] and velocity [rad/s] of Link 2

Velocity

Position

Position [rad] and velocity [rad/s] of Link 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

−3

−1.5

0

1.5

3

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

(a) Time response

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60
−6000

−5000

−4000

−3000

−2000

−1000

0

(b) Learning curve

Figure 5.3 Results for SAC/LLR using tuned parameter sets on Case I.

119

Chapter 5 Simulations with a Two-Link Manipulator

Input 2

Input 1

Time [s]

Inputs [V]

Velocity

Position

Position [rad] and velocity [rad/s] of Link 2

Velocity

Position

Position [rad] and velocity [rad/s] of Link 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

−3

−1.5

0

1.5

3

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

(a) Time response

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60
−3000

−2500

−2000

−1500

−1000

−500

0

(b) Learning curve

Figure 5.4 Results for MLAC/LLR using tuned parameter sets on Case I.

120

5.3 Case I: Learn to Inject Proper Damping

Figure 5.3 shows the results of learning a controller with the SAC algorithm,
now using LLR as the function approximator. The learning rate for the actor is
now much lower (αa = 0.05) while the learning rate for the critic is the same
as in the RBF case (αc = 0.4). For the function approximator, both the actor
and critic LLR memories contain 6000 samples and 30 nearest neighbours are
used for the estimation of a value. The algorithm has still learned to steer the
system in a direction opposite to its current motion (Figure 5.3a), but the final
policy is not as smooth as with RBFs. On the other hand, the system now does
reach the desired state more closely.

The path through which this final policy is reached is also more satisfactory.
Figure 5.3b shows that a dip in the learning behaviour is no longer present
(analogously to the learning behaviour seen in the previous chapters) and the
confidence region is also smaller, indicating a more stable way of learning.
Moreover, note that the scale of the reward axis is much smaller.

5.3.2 Model Learning Actor-Critic

Figure 5.4a shows that the MLAC algorithm is capable of injecting some
damping into the system, but unfortunately can not get the system in a steady
state, as it keeps oscillating slightly around the origin. The learning rates
for the actor and critic here are αa = 0.15 and αc = 0.35, respectively. The
LLR memories for the actor and critic again contain 6000 samples, with 30
nearest neighbours used for approximations. The LLR memory for the process
model contains only 600 samples and uses 25 nearest neighbours for an
approximation.

In Figure 5.4b, the confidence region reduced even further in size, indicat-
ing an even more stable way of learning, also supported by the narrow distance
between the maximum and minimum learning results of all the experiments.

Figure 5.5 shows a graph of the learning curves for Case I for all three
algorithms used. There is a dramatic difference in the performance of the
algorithms using LLR as their function approximator and the performance of
the SAC algorithm using RBFs. Model learning is again showing its advantage
over the other algorithm, with MLAC/LLR already reaching a policy close to its
final result in less than 3 minutes of simulated time, whereas SAC/LLR reaches
a similar result after 10 minutes and SAC/RBF only reaches it after more than
45 minutes.

121

Chapter 5 Simulations with a Two-Link Manipulator

MLAC/LLR

SAC/LLR

SAC/RBF

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60
−15000

−10000

−5000

0

Figure 5.5 Learning curves for Case I. The time axis represents the simulated

time.

5.4 Case II: Learn to Find a Nontrivial Equilibrium

As a second test case, the two-link manipulator is now lying in the horizontal
plane, effectively cancelling out the effects of gravity on the system, i.e. setting
G(ϕ) in the equations of motion equal to zero. The task now is to go from
the initial state x0 = [−3 1 0 0]⊤ to a reference state x r = [1.1 − 0.5 0 0]⊤.
There is still no damping or friction present in the system. In order to carry
out the task succesfully, the controller has to learn how to both accelerate and
decelerate the links such that the desired end position is reached.

The setup of the experiments and the learning parameters such as the
discount factor γ, the decay rate λ of the eligibility traces are the same as in
the previous case. The reward function used here is almost the same as before,
but instead of using the state x in the reward function, the error e between the
current state and the desired state, defined as

e =

wrap(ϕ1 −ϕ1,r)

wrap(ϕ2 −ϕ2,r)

ϕ̇1 − ϕ̇1,r

ϕ̇2 − ϕ̇2,r

is used, where the variables with the r subscript indicate the reference. Note
that the error in the angles is wrapped, such that the difference between the

122

5.4 Case II: Learn to Find a Nontrivial Equilibrium

current angle and the reference angle always lies in the range [−π,π). The
reward function then becomes

ρ(x ,u) = −e⊤Qe− u⊤Pu, (5.2)

with Q and P defined as before in Case I.

5.4.1 Standard Actor-Critic

The result of learning a policy for the second test case with the standard actor-
critic algorithm using radial basis functions as a function approximator for the
actor and critic is shown in Figure 5.6. The tuned learning rates here are
αa = 0.1 for the actor and αc = 0.3 for the critic. The number of RBFs in each
dimension is still 9, but the intersection height of the RBFs is now set at 0.7.

The quality of the policy is striking (Figure 5.6a). The final policy reaches
the desired state very smoothly within two seconds. The policy’s smoothness
is caused by the fact that the function approximator is inherently smooth. The
speed of learning depicted in Figure 5.6b is again somewhat disappointing,
again needing at least 40 minutes to reach a policy close to the end result.
One peculiarity here is that after about 45 minutes, the confidence region is
collapsing, meaning all the different experiments have learned policies which
are very close in terms of the sum of collected rewards per trial they produce.
This behaviour was also seen in Figure 5.2b, albeit that the collapse of the
confidence region and the max and min bounds was less pronounced there.
The reason for the sudden collapse shown here is unknown.

The effects of using a non-parametric LLR approximator in the standard
actor-critic algorithm are demonstrated in Figure 5.6. As with Case I, the
learning rate of the actor is αa = 0.05, but the critic learning rate is slightly
lower at αc = 0.35. The number of samples in the LLR memories for both
the actor and the critic is now only 5000, whereas tuning in Case I prescribed
6000 samples. Although the task itself is slightly more difficult, the critic also
contains an implicit model of the process and since gravity is not considered
here, the model—and therefore the critic—are less complex, which explains
the reduction in the number of necessary samples. The number of neighbours
used in approximations is still 30 for both the actor and critic.

Similar to the first test case, the time response in Figure 5.7a is again a bit
more erratic, but still achieves the task of reaching the reference state, albeit
that it now needs three seconds to reach a steady state. The learning curve

123

Chapter 5 Simulations with a Two-Link Manipulator

Input 2

Input 1

Time [s]

Inputs [V]

Velocity

Position

Position [rad] and velocity [rad/s] of Link 2

Velocity

Position

Position [rad] and velocity [rad/s] of Link 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

−3

−1.5

0

1.5

3

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

(a) Time response

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60

×104

−2

−1.5

−1

−0.5

0

(b) Learning curve

Figure 5.6 Results for SAC/RBF using tuned parameter sets on Case II.

124

5.4 Case II: Learn to Find a Nontrivial Equilibrium

Input 2

Input 1

Time [s]

Inputs [V]

Velocity

Position

Position [rad] and velocity [rad/s] of Link 2

Velocity

Position

Position [rad] and velocity [rad/s] of Link 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

−3

−1.5

0

1.5

3

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

(a) Time response

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60

×104

−2

−1.5

−1

−0.5

0

(b) Learning curve

Figure 5.7 Results for SAC/LLR using tuned parameter sets on Case II.

125

Chapter 5 Simulations with a Two-Link Manipulator

in Figure 5.6b is also meeting expectations: the quality of the policy steadily
increases without a dip and converges quite quickly, with a confidence region
for the mean which is again a bit smaller than in the RBF case, except for
the last part. The confidence region is not collapsing now, because LLR keeps
adding and removing samples to the memories of the actor, critic and process
model. As exploration is not decaying towards the end of an experiment, the
samples added to the memories can vary greatly in each experiment, in turn
having a big influence on the function approximation and, as a result, on the
learned policy.

5.4.2 Model Learning Actor-Critic

Figure 5.8 shows the time response of the MLAC algorithm using LLR as the
function approximator. The learning rates changed slightly to αa = 0.1 and
αc = 0.4 and the number of samples in the actor and critic LLR memories
increased slightly to 7000 in both cases. The number of nearest neighbours
used for estimation of values is now 20 instead of the 30 in Case I. The number
of samples needed in the LLR memory of the process model is now 500 instead
of 600, which again underpins the fact that the model indeed is simpler in this
test case. The number of nearest neighbours used in the process model is 15.

In terms of time-optimality, the policy clearly has degraded a bit (Fig-
ure 5.8a), but nevertheless the system does reach the desired steady state by
the end of the trial. Figure 5.8b again shows a very quick and steady learning
behaviour, converging in less than 5 minutes.

Although the combination of MLAC/LLR seems to produce the worst
policy of all three combinations, Figure 5.9 reveals that in terms of collected
rewards it is outperforming SAC/LLR and is only slightly behind SAC/RBF.
Furthermore, MLAC/LLR reaches this final policy a lot sooner than both other
methods. After just five minutes, the MLAC/LLR policy is already close to its
final policy and way ahead of the other two combinations, which need at least
another 20 or 40 minutes, for SAC/LLR and SAC/RBF respectively, to learn a
policy that is equivalent with respect to the return they yield.

Nevertheless, a case could clearly be made that MLAC/LLR is producing
the worst policy in terms of the time response. Hence, a reasonable statement
to make here is that the somewhat poor quality of the MLAC/LLR policy is
due to the definition of the reward function. Apparently, the reward function

126

5.4 Case II: Learn to Find a Nontrivial Equilibrium

Input 2

Input 1

Time [s]

Inputs [V]

Velocity

Position

Position [rad] and velocity [rad/s] of Link 2

Velocity

Position

Position [rad] and velocity [rad/s] of Link 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

−3

−1.5

0

1.5

3

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

(a) Time response

95% confidence region for the mean

Max and min bounds

Mean

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60
−8000

−6000

−4000

−2000

0

(b) Learning curve

Figure 5.8 Results for MLAC/LLR using tuned parameter sets on Case II.

127

Chapter 5 Simulations with a Two-Link Manipulator

was not capable of distinguishing a very good policy from a mediocre one,
when considering only the time response. This stresses the importance of a
well-chosen reward function in order to learn successfully in terms of collected
rewards and time response.

MLAC/LLR

SAC/LLR

SAC/RBF

Time [min]

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50 60

×104

−1.5

−1

−0.5

0

Figure 5.9 Learning curves for Case II. The time axis represents the simulated

time.

5.5 Discussion

This chapter demonstrated the use of some of the actor-critic algorithms
described in this thesis to a two-link manipulator. A perhaps obvious, but
important point made at the start of this chapter is that model learning
methods lose their applicability in higher order systems. This is due to the fact
that (co)domains of the functions involved (the process model and possibly a
reference model) get too large to be learned efficiently. This is not to say that
MLAC and RMAC do not work at all in this setting. It is their computational
complexity that makes simulation times rise too high for rigorous tuning to
be done, prohibiting to see if there would be a suitable choice of parameters
that would yield good results. It is also not true that a more simple algorithm
like SAC would necessarily outperform the model learning methods in terms of
simulation time: the evaluation of thousands of radial basis functions at each
time step is something that will have a considerable effect too.

128

5.5 Discussion

Good policies were retrieved with SAC using both RBFs and LLR as function
approximators. With MLAC, success within reasonable simulation time was
only possible using the non-parametric LLR function approximator. For the
RMAC algorithm it turns out that even with LLR, the extra effort of having to
learn an extra (reference) model is simply too much and RMAC was therefore
not considered in this chapter.

Looking at Figures 5.5 and 5.9, it is obvious that the learning speed pattern
is the same for both test cases. The standard actor-critic algorithm is without
a doubt the slowest to learn a policy that performs reasonably well. Again,
although not as pronounced as in the previous chapters, a slight dip in the
learning performance can be seen between 10 and 30 minutes of simulated
time which is caused by the optimistic initialisation of the RBFs. Using LLR
instead of RBFs as the function approximator again overcomes this problem
and the learning curve changes significantly, learning a good policy in about
25-50% of the time it takes with RBFs. Adding model learning, i.e. using MLAC,
improves the learning behaviour even more, again reducing the time to learn
an acceptable policy considerably.

The quality of the policies learned using the LLR approximator, both with
and without model learning, is not as good as the quality of the policy learned
by SAC/RBF. As explained earlier, the smoothness of the policy that comes
by design when using RBFs is a favourable factor here. To get a smoother
policy using LLR, one would probably have to choose a larger number of
neighbours used in the approximation, although this will undoubtedly degrade
the performance, given that experiments were actually done using bigger sets
of neighbours, but without showing better a better accumulation of rewards in
the final episode. The fact that the return on the last episode of MLAC/LLR
in Figure 5.9 is about the same as that of SAC/RBF indicates that the chosen
reward function apparently is unable to distinguish a policy of a good quality
from a policy with lesser quality in terms of time response.

129

Learning Rate Free RL Using a

Value-Gradient Based Policy

Chapter

6

The learning speed of RL algorithms heavily depends on the learning rate
parameter, which is difficult to tune. In this chapter, a sample-efficient,
learning-rate-free version of the Value-Gradient Based Policy (VGBP) algorithm
is presented. The main difference between VGBP and other frequently used
RL algorithms, such as SARSA, is that in VGBP the learning agent has a
direct access to the reward function, rather than just the immediate reward
values. Furthermore, the agent learns a process model (see Chapter 3). The
combination of direct access to the reward function and a learned process
model enables the algorithm to select control actions by optimising over
the right-hand side of the Bellman equation. Fast learning convergence in
simulations and experiments with the underactuated pendulum swing-up task
is demonstrated. In addition, experimental results for a more complex 2-DOF
robotic manipulator are discussed.

6.1 Introduction

The first chapters of this thesis already described that one of the main
disadvantages of RL is the slow learning caused by inefficient use of samples
(Wawrzyński, 2009). Numerous methods have been devised to improve
sample efficiency, like eligibility traces (Sutton and Barto, 1998), experience
replay (Adam et al., 2011; Wawrzyński, 2009) and methods that learn a

131

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

process model (Sutton, 1990). Model learning RL algorithms are related to
approximate dynamic programming (Powell, 2010). In Dyna (Sutton, 1990),
the process model is used to increase the learning speed of the value function
by simulating interactions with the system. The model learning actor-critic
(MLAC) and reference model actor-critic (RMAC) algorithms described in
Chapter 3 use a learned process model in efficient actor updates that lead to
faster learning. MLAC uses a model solely in the actor update. Like in Heuristic
Dynamic Programming (HDP) (Si et al., 2004), the model is used to estimate
the policy gradient. The actor is updated with a gradient ascent update rule. In
RMAC the model is used to train a reference model, which contains a mapping
from states to desired next states. The action needed to go to the desired next
state is obtained through a local inverse of the learned process model.

The success of experience replay and model learning RL methods gives rise
to the question if there is more information that can be provided to the agent to
enable it to take better decisions after a shorter learning period. In the standard
RL framework both the reward function and the system are considered to be
part of the environment (Sutton and Barto, 1998). However, in most cases
the reward function is designed by an engineer and therefore can be easily
provided to the learning agent. With the reward function and a learned
process model the agent has complete knowledge of the environment, which
enables it to select optimal actions in a more effective way. An RL method that
selects its actions with this full view is the Value-Gradient Based Policy (VGBP)
algorithm (Doya, 2000). It selects the action by optimising the right-hand
side of the Bellman equation. Because only the process model and the critic
have to be learned and not an explicit actor, it is a critic-only method. VGBP
has a number of favourable properties. By the efficient use of the available
information it achieves fast learning. It is a critic-only method that is able to
generate a smooth continuous policy that is (very close to) the optimal signal.
When the system dynamics are linear and the reward function is quadratic, the
agent generates the same actions as a linear quadratic regulator (Doya, 2000).
Furthermore, prior knowledge about the system dynamics can be incorporated
by initialising the process model.

The contributions of this chapter are the following. A novel variant of the
Value-Gradient Based Policy algorithm is introduced, which is based on Least
Squares Temporal Difference (LSTD) learning (Boyan, 2002) for the critic.
Thanks to the use of LSTD, the VGBP algorithm no longer requires the critic
learning rate and therefore becomes easier to tune. The learning performance

132

6.2 SARSA

of this algorithm is compared with the SARSA algorithm (Sutton and Barto,
1998) and the model based MLAC algorithm of Section 3.3, to see the benefits
of the incorporation of the reward function knowledge into the agent. SARSA
is probably the most well-known critic-only method and this method is used
to compare VGBP to general on-policy critic-only methods. Both MLAC and
VGBP use the process model to compute the gradient of the return with respect
to the policy parameters. Because of this similarity, a comparison between
MLAC and VGBP provides more insight in the use of a process model and
a reward function in continuous reinforcement learning. Different function
approximation techniques are applied to VGBP and it is shown that it not
only achieves quick learning in simulation, but also works very well in real-
time experiments with two benchmarks: the pendulum swing-up and a 2-DOF
manipulator.

The remainder of the chapter is structured as follows. The SARSA algorithm
used in this chapter for comparison is described in Section 6.2. In Section 6.3,
the learning-rate-free version of the VGBP algorithm is introduced. The
performance of VGBP is tested and compared with SARSA and MLAC on two
systems in Section 6.4. Section 6.5 concludes the chapter. The function
approximators used for the critic and the process model are described in
Section 3.5.

6.2 SARSA

In this section, SARSA, an algorithm comparable to VGBP is introduced. This
method learns the value function of the currently used policy, which means it
is an on-policy algorithm. SARSA selects actions based on the Q-function. The
Q-function is learned by minimising the temporal difference (TD) error

δk+1 = rk+1 + γQθk
(xk+1,uk+1)−Qθk

(xk,uk), (6.1)

which is simply the difference between the left and right hand side of the
Bellman Equation. The name SARSA is an acronym (State-Action-Reward-
State-Action) for the tuple (xk,uk, rk+1, xk+1,uk+1) used in the update equation.
The Q-function parameters are updated by means of the gradient descent
formula

θk+1 = θk +αkδk+1

∂Qθk
(xk,uk)

∂ θ
, (6.2)

133

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

where αk > 0 is the learning rate. To guarantee convergence the learning rate
has to satisfy the Robbins-Monro conditions (Robbins and Monro, 1951)

αk > 0 ∀k
∑

k

αk =∞
∑

k

α2
k
<∞. (6.3)

Furthermore, all state-action pairs need to be visited infinitely often. In
theory, this is ensured by sometimes taking exploratory actions instead of
greedy actions. A simple exploration method is ε-greedy action selection:
with probability 1 − ε, where ε ∈ (0,1), the greedy action is taken and with
probability ε a random action is chosen from the action space U . Approximate
SARSA converges with probability 1 if the exploration term ε decays to zero
and the policy satisfies certain regularity conditions (Melo et al., 2008).
The update equations (6.1) and (6.2) assign the current reward rk+1 only to
the latest transition. However, the current reward is the result of an entire
trajectory. Learning can be sped up by using eligibility traces z ∈ Rp that allow
the current reward rk+1 to update the Q-values of the recently visited states.
The update equation with eligibility traces is

zk = λγzk−1 +
∂Qθ (xk,uk)

∂ θ
, (6.4)

θk+1 = θk +αkδk+1zk, (6.5)

where λ ∈ [0,1] is the trace decay parameter and z0 = 0.

6.3 Value-Gradient Based Policy Algorithm

Critic-only algorithms select the greedy action u by finding the maximum

π(x) = argmax
u

Q(x ,u).

This function which is optimized over is the left-hand side of

Qπ(x ,u) = ρ(x ,u) + γVπ(x ′).

The right-hand side of this equation can be used to select the action if both the
reward function and the transition model are known. In most cases the reward

134

6.3 Value-Gradient Based Policy Algorithm

function is known and can therefore be provided to the agent. Given a process
model bf learnt from data, the optimal action is then found by solving

u= argmax
u′

�
ρ
�

x ,u′
�
+ γVθ

�bf (x ,u′)
��

. (6.6)

Because ρ(x ,u), Vθ (x) and f (x ,u) are in general highly nonlinear, the
optimisation problem in Equation (6.6) can be hard to solve. If Vθ is smooth
enough to be approximated by first order Taylor series and the process model is
approximately linear in the control action, the Q-function can be approximated
by

Qθ (x ,u) = ρ(x ,u) + γVθ (x
′) (6.7)

≈ ρ(x ,u) + γVθ (x) + γ
∂ Vθ (x)

∂ x
(x ′ − x) (6.8)

≈ ρ(x ,u) + γVθ (x) + γ
∂ Vθ (x)

∂ x

∂ bf (x ,u)

∂ u
u. (6.9)

The nonlinearity in the reward function remains. If the reward function is
concave, a unique solution can be easily found by setting the derivative of
Equation (6.9) with respect to the action u equal to zero, yielding

−
∂ ρ(x ,u)

∂ u
= γ

∂ Vθ (x)

∂ x

∂ bf (x ,u)

∂ u
. (6.10)

To guarantee exploration, a zero-mean noise term ∆u is added to the action.
As the computed action including exploration may exceed the boundaries of
the action space U it needs to be clipped with

u← sat(u+∆u) (6.11)

where sat is an appropriate saturation function.

6.3.1 Process Model Parametrisation

The process model x ′ = bf (x ,u) is approximated by using LLR. This approx-
imator is chosen because it can learn a locally accurate process model from

just a few observations. Samples ζP
i
= [x⊤

i
u⊤

i
| x ′

⊤

i
]⊤ of the state transitions

are stored in the memory M P . The transition due to action uk in state xk is
predicted with

xk+1 =
�
β P

x
β P

u
β P

b

�

xk

uk

1

 . (6.12)

135

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

The superscript P denotes the process model parameter and the subscripts
denote the input variable which the parameter multiplies. The derivative of

the process model needed in Equation (6.10) is then simply
∂ bf (x ,u)

∂ u
= β P

u
.

6.3.2 Critic Parametrisation

VGBP can use any critic function that is differentiable with respect to the state.
In this chapter two critic approximators are used: the LLR critic of Section 3.5.2
and the RBF approximator. The LLR critic collects the samples ζC

i
= [x⊤

i
| Vi]

⊤

with i = 1, . . . , N C in the critic memory M C . The value of a state is computed
using the local affine model

Vθ (x) =
�
βC

x
βC

b

�
·

�
x

1

�
. (6.13)

with θ = [βC
x
βC

b
]. For the local affine value function approximation, the right

hand side of Equation (6.10) reduces to γβC
x
β P

u
.

The equations of the RBF critic are given in Section 3.5.1. The derivative of
the value function with respect to the state is given by

∂ Vθ (x)

∂ x
= θ⊤

∂ φ(x)

∂ x
. (6.14)

With a diagonal scaling matrix B as used in this chapter,

∂ φi(x)

∂ x
=−φi(x)

B−1(x − ci) +

∑
j

∂ φ̄ j(x)

∂ x∑
j φ̄ j(x)

 . (6.15)

Because the RBF approximator is linear in its parameters, the parameter
vector θ can also be estimated by least squares. The Least Squares Temporal
Difference (LSTD) algorithm (Boyan, 2002) is given by

zk+1 = λγzk +φ(xk), (6.16)

Ak+1 = Ak + zk(φ(xk)− γφ(xk+1))
⊤, (6.17)

bk+1 = bk + zk rk+1, (6.18)

θk+1 = A−1
k+1

bk+1, (6.19)

136

6.4 Simulation and Experimental Results

where z0 = φ(x0), b0 = 0 and A0 is chosen as a small invertible matrix. The
advantages of the LSTD critic are its high learning speed and the fact that there
is no learning rate or schedule to be tuned. A disadvantage is the increased
computational costs. The full algorithm for VGBP using LLR process model
and a generic critic is given in Algorithm 7.

Algorithm 7 Value-Gradient Based Policy with LLR process model

Require: : γ,λ,σ

1: Initialise k = 0, x0, θ , M P , zk = 0

2: Draw action a ∼N (0,σ) and clip it if necessary
3: for every step k = 0,1,2, . . . do
4: Measure xk+1 and compute reward rk+1

5: // Update critic

6: δk+1← rk+1 + γV (xk+1)− V (xk)

7: zk = λγzk +φ(xk)

8: Update critic

9: // Update process model

10: Insert [x⊤
k

u⊤
k
| x⊤

k+1
]⊤ in M P

11: // Choose action

12: Obtain X and Y from M P for xk+1

13: β P = Y X⊤(X X⊤)−1

14: Find uk+1 by solving −
∂ ρ(xk+1,uk+1)

∂ a
= γ

∂ Vθ (xk+1)

∂ x
β P

a

15: Draw ∆uk+1 ∼N (0,σ)

16: uk+1← sat(uk+1 +∆uk+1)

17: Apply action uk+1

18: end for

The critic update equations in Algorithm 7 apply directly to the RBF (or
similar parametric) approximator. For the LLR approximator update, refer to
Algorithm 2 in Chapter 3.

6.4 Simulation and Experimental Results

The working of VGBP is verified for the pendulum swing-up task, both in
simulation and on an experimental setup. This task is a standard benchmark

137

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

in RL (Buşoniu et al., 2010). The learning behaviour of VGBP in a multidimen-
sional action space is also tested on a two-link robotic manipulator.

6.4.1 Underactuated Pendulum Swing-Up

A full description of the inverted pendulum setup is given in Appendix A.1. The
goal is to swing a pendulum up from a down-pointing position to the upright
position as quickly as possible and keep the pendulum upright by applying
an appropriate voltage to the DC-motor. The action space is limited to a ∈

[−3,3] V, which makes it impossible to bring the pendulum directly from the
initial state to its upright position. Instead the agent needs to learn to build up
momentum by swinging the pendulum back and forth.

Learning Experiment Description

The learning parameters used are listed in Table 6.1.

Table 6.1 Learning parameters for the underactuated pendulum experiment.

RL parameter Symbol Value Units

sampling time Ts 0.03 s
discount factor γ 0.97

exploration noise σ2 1 V
maximal action umax 3 V
minimal action umin −3 V

The reward is calculated using the following quadratic function

ρ(xk,uk) =−x⊤
k

Qxk − u⊤
k

Puk, (6.20)

with

Q =

�
5 0

0 0.1

�
P = 1.

A learning experiment consists of 200 trials. Each trial is 3 seconds long
and after the trial, the pendulum is reset to its downward position [π 0]⊤. A
sampling time of 0.03 s is used. All simulations and experiments are repeated
20 times to acquire an average of the learning behaviour as well as a confidence
interval for the mean.

138

6.4 Simulation and Experimental Results

Model Learning Methods

Because MLAC and VGBP differ only in the action selection, the result of the
new algorithm can be clearly illustrated by using in both algorithms the same
process model and critic approximator (LLR). The parameters are stated in
Table 6.2.

Table 6.2 Agent parameters for simulated pendulum swing-up for MLAC and
VGBP with LLR approximators.

Parameter Actor Critic Model

learning rate α 0.04 0.1

trace decay factor λ 0 0.65

memory size N 2000 2000 2500

nearest neighbors K 9 20 30

input scaling diag(W) [1 0.1] [1 0.1] [1 0.1 1]

Given the reward function (6.20), the desired action for VGBP is given by

u=
1

2
γP−1

∂ Vθ (x)

∂ x
β P

u
. (6.21)

An exploratory action is applied for both MLAC and VGBP once every three
time steps, where ∆u ∼ N (0,1). This exploration strategy generates large
exploratory actions, which force the agent out of the known part of the state
space. At the same time, the policy is not dominated by the exploration noise
and the agent gets time to correct unsuccessful exploratory actions and adapt
the critic.

The learning behaviour including confidence bounds of MLAC is shown in
Figure 6.1a. The learning converges in approximately 9 minutes of interaction
time. The confidence region for the mean is very narrow, indicating that
a steady swing-up is achieved each time. The learned policy is given in
Figure 6.1b. The results of VGBP are given in Figure 6.1c. After 25 trials the
learning speed increases, because VGBP has learned to bring the pendulum
near its top position, but not yet how to stabilise it there. The algorithm
converges after 3 minutes of learning. The final policy is slightly worse than
that of MLAC, as VGBP needs two or three swings to get the pendulum upright.
MLAC only needs two. The policy learned is shown in Figure 6.1d.

139

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

Trials

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 50 100 150 200

−6000

−5000

−4000

−3000

−2000

−1000

0

(a) Results of MLAC.

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−25

−20

−15

−10

−5

0

5

10

15

20

25

(b) Typical policy learned by MLAC

Trials

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 50 100 150 200

−6000

−5000

−4000

−3000

−2000

−1000

0

(c) Results of VGBP-LLR

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−25

−20

−15

−10

−5

0

5

10

15

20

25

(d) Typical policy learned by VGBP-LLR

Trials

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 50 100 150 200

−6000

−5000

−4000

−3000

−2000

−1000

0

(e) Results of VGBP-LSTD

A
n

g
u

la
r

v
e
lo

ci
ty

[r
a
d

/s
]

Angle [rad]

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−25

−20

−15

−10

−5

0

5

10

15

20

25

(f) Typical policy learned by VGBP-LSTD

Trials

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 50 100 150 200

−6000

−5000

−4000

−3000

−2000

−1000

0

(g) Results of SARSA

VGBP-LSTD

VGBP-LLR

MLAC

Sarsa

Trials

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 50 100 150 200

−6000

−5000

−4000

−3000

−2000

−1000

0

(h) Average learning behaviour of SARSA,
MLAC VGBP-LLR and VGBP-LSTD

Figure 6.1 Results of 20 simulations of MLAC, VGBP-LLR, VGBP-LSTD and
SARSA on the inverted pendulum swing-up task and typical learned policies.

140

6.4 Simulation and Experimental Results

SARSA

To see how the learning behaviour of VGBP relates to critic-only methods,
SARSA is applied to the inverted pendulum. The critic uses a set of 400
RBFs with their centers placed on a 20× 20 equidistant grid in the Cartesian
product space of the angle domain [−π,π] rad and the angular velocity domain
[−25,25] rad/s. All RBFs have the same scaling matrix B. The scaling matrix is
chosen such that the value of the non-normalised BF is 0.5 at the point where
neighboring BFs intersect. The action space of SARSA is discrete: USARSA =

{−3,0,3}. Each action has the same set of BFs, denoted by φb(x) ∈ R
400. This

results in a parameter vector θ ∈ Rp with p = 3 · 400= 1200.
The actions are selected with ε-greedy action selection, where ε is determined
by

ε=max
�

0.1,0.96trial−1
�

. (6.22)

The decay factor 0.96 and the minimum exploration probability were found
by manual tuning. The critic learning rate is set to αc = 0.5 and the trace
decay factor to λ = 0.85. The results are shown in Figure 6.1g. SARSA
needs more system interaction than the model learning algorithms, but its final
performance is slightly better than that of VGBP-LLR.

LSTD Critic

To remove the dependency of VGBP on the critic learning rate, LSTD is applied.
The same set of 400 equidistant BFs is used as for SARSA. The initial A matrix
is set to A = 0.5I and the b vector to b0 = 0. This gives the value function
a bias towards 0, which is an optimistic initialisation, since all rewards are
negative. This stimulates exploration in the early phase of learning and
prevents overfitting. The eligibility trace decay factor is set to λ = 0.3. With
this relatively low value for the trace decay factor λ, the optimistic initialisation
is retained longer than for bigger values of λ. Tests indicated that this is an
appropriate compromise between stimulating exploration and propagating the
reward to recently visited states.

The critic parameters are updated at the end of every trial, which gives
steadier behaviour than when the critic is updated at each time step. The
reason is that thanks to the use of LSTD, the value function, and hence the
policy, can change considerably in a single update step. This leads to a
noisy policy at early stages of learning. The learning progress is depicted in
Figure 6.1e. A swing-up is learned in less than a minute of system interaction.

141

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

A typical trajectory generated with a learned policy is shown in Figure 6.2. The
agent pulls the pendulum to one side by applying the maximum voltage. When
the maximum angle is reached the agent reverses the control action to swing
the pendulum to the top. Because the control action is cheap compared to the
penalty on the angle, the agent adds more energy to the system than strictly
needed for a swing-up. This is done to leave the expensive downwards position
as quickly as possible. The additional energy is dissipated by the damping in
the final stage of the swing-up after 0.7 s.

In Figure 6.1h the average learning behaviour of all the above methods is
compared. As can be seen VGBP does not only learn faster with an LSTD-critic,
but also finds a better, more steady policy. The quality of the learned policies
of VGBP-LSTD and SARSA is similar. The final policy of MLAC is the best.

Experimental Results on the Physical Setup

Since in simulation the VGBP with the LSTD-critic performed the best, it was
applied to the setup, using exactly the same settings as in simulation. Because
the setup measures only the angle, the system model is used as a state observer.
The action is determined with the predicted state of the model. This makes
the time delay between the state measurement and action execution minimal.
Figure 6.3 shows that the learning with VGBP-LSTD converges in 1.5 minutes.
The results for the setup and the simulation are quite similar, with two main
differences. On the setup, VGBP needs only two swings to get the pendulum
upright. Although the number of swings needed to get the pendulum upright
is smaller on the physical setup, the return does not increase, because there are
some unmodeled dynamics in the setup. It takes slightly longer to complete a
swing-up than in simulation. The other difference is that the spikes in the min-
bound disappear on the setup after 30 trials, and not in the simulation results
(Figure 6.1e). This is probably caused by unmodeled friction. This makes the
movements a fraction smoother on the setup than in simulation. The smoother
behaviour leads to less spikes in the return.

6.4.2 Robotic Manipulator

In this section VGBP learns to control a two-link manipulator to its center
position. Both joints are actuated.

142

6.4 Simulation and Experimental Results

Action

Time [s]

[V
]

Angular velocity

[r
a
d

/s
]

Angle
[r

a
d

]

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

−4

−2

0

2

4

−20

−10

0

10

20

−6

−4

−2

0

2

Figure 6.2 Trajectory of the swing-up of VGBP-LSTD in simulation.

Process Description

This setup is a standard 2-DOF manipulator operating in a horizontal plane,
see the picture and schematic in Appendix A.2. The model parameters used in
this particular case are listed in Table 6.3.

The system has four states, the two angles and two angular velocities: x =

[ϕ1 ϕ̇1 ϕ2 ϕ̇2]
⊤. The action u consists of the torques applied in the joints

u = [u1 u2]
⊤. For safety reasons, the absolute maximum action signal for both

links is set to 0.1. Due to mechanical constraints, the operating range is set for
both links to be −1.2 rad to 1.2 rad. Difficulties are the very high friction in the

143

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

Simulation results

95% confidence region for the mean

Max and min bounds

Mean

Trials

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 10 20 30 40 50
−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Figure 6.3 Performance of VGBP in 20 real-time experiments on the pendu-
lum setup.

Table 6.3 Parameters of the robotic manipulator.

Model parameter Symbol link 1 link 2 Units

length l 0.1 0.1 m
mass m 0.125 0.05 kg
center of mass mc 0.04 0.06 m
inertia I 0.074 1.2 · 104 kg m2

RL parameter Symbol Value Units

sampling time Ts 0.01 s
discount factor γ 0.97
exploration noise σ 0.05
action space U [-0.1,0.1] [-0.1,0.1] N m

144

6.4 Simulation and Experimental Results

links and the coupling between the states. For this task the quadratic reward
function in Equation (6.20) is used with

Q =

200 0 0 0

0 1 0 0

0 0 50 0

0 0 0 1

 P =

�
2 0

0 2

�

In case the manipulator is steered outside the operating range a reward of
−4 · 104 is given and the trial is terminated. This value has been chosen as
an extremely large penalty to discourage the agent from leaving the operating
range. The sampling time is set to 0.05 s. The learning procedure consists of
sequences of four trials with the following initial states:

S0 =

1

0

1

0

 ,

1

0

−1

0

 ,

−1

0

1

0

 ,

−1

0

−1

0

These states are the farthest from the goal state. In this manner an estimate
is made for the lower bound of the return when starting from a random initial
state. Each trial lasts for at most 10 seconds.

Learning Parameters

The value function approximator employs RBFs with their centers placed on
an equidistant grid over the state space. This grid is defined for both links over
−1.2 rad to 1.2 rad and for the angular velocities over −0.8 rad/s to 0.8 rad/s.
The number of BFs along each dimension are [5 3 5 3], giving a total of 225
BFs. The B matrix is chosen in the same way as in Section 6.4.1. The critic
is updated with LSTD(λ) with the trace decay factor λ = 0.3. The parameter
vector θ is updated after the completion of a trial. This proved to give the
highest learning speed, since information over a larger part of the state space
is taken into account. The complete set of learning parameters are listed in
Table 6.4.

Simulation and Experimental Results

Figure 6.5 shows the average learning curve computed from 20 learning
experiments. A typical trajectory is shown in Figure 6.4.

145

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

Time [s]

[r
a
d

]

Action

[r
a
d

/s
]

Angular velocity

[r
a
d

]

Angle

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

−0.1

−0.05

0

0.05

0.1

−0.5

0

0.5

−1

−0.5

0

0.5

1

Figure 6.4 Typical experimental result learned on the manipulator. The solid
blue line represents the first link and the green curve represents the second
link.

146

6.5 Discussion

Table 6.4 RL parameters of VGBP for the robotic manipulator.

Process Model

trace decay factor λ 0

memory size N P 5000

nearest neighbors KP 80

input scaling diag(W)
�

1 0.05 1 0.05 5 5
�

Critic

trace decay factor λ 0.3

basis functions NBF

�
5 3 5 3

�

angles ϕ1; ϕ2 [−1.2,1.2]; [−1.2,1.2] rad
angular velocities ϕ̇1; ϕ̇2 [−0.8,0.8]; [−0.8,0.8] rad/s
initial A-matrix A0 0.5I

The algorithm is able to steer the arm close to its center position. Due
to the very high friction and the long sampling time the assumption made
in Equation (6.9) that the value function is linear with respect to the action
is violated near the center position. This causes a slight overshoot at that
position.

The low minimum bound in Figure 6.5 is the result of VGBP occasionally
steering the arm out of the feasible region. This is caused by the optimistic
initialisation. Through exploratory actions the agent reaches unexplored parts
of the state space. Because unseen states have a higher value than the
known states, the agent leaves its known area and heads towards unexplored
(terminal) states. This can be prevented by giving the known terminal states a
very low initial value. The experiment shows that VGBP can be easily applied to
multidimensional learning problems, finding a proper policy in a short amount
of time.

6.5 Discussion

VGBP learns the value function and uses its derivative in the action selection.
For concave reward functions the action is found by solving an optimisation
problem. In tasks where extreme actions are required for large parts of the
state space, like with the robotic manipulator, this proves to be very efficient,
because the maximum action is taken when the gradient is steep and points

147

Chapter 6 Learning Rate Free RL Using a Value-Gradient Based Policy

95% confidence region for the mean

Max and min bounds

Mean

Trials

S
u

m
o
f

re
w

a
rd

s
p
e
r

tr
ia

l

0 5 10 15

×104

−6

−5

−4

−3

−2

−1

0

Figure 6.5 Results of VGBP for the 2-DOF manipulator (average of 20
simulations).

approximately in the right direction. With an optimistic initialisation this
results in rapid exploration of the state space, leading to quick learning. A
disadvantage is that the variance in the value function estimates is amplified
in the gradient and therefore in the action selection. This resulted in a less
stable final policy in simulations of the inverted pendulum swing-up; the agent
needed two or three swings to get the pendulum upright. Other algorithms
needed the same number of swings each time.

Furthermore, updating the critic at the end of a trial yielded better
performance than updating the critic at each sample, which can result in over-
fitting and consequently in suboptimal policies. Other algorithms that use the
gradient of the value function are MLAC and HDP methods. These methods
suffer less from the variance in the value function because its influence is
reduced by the actor update rule.

This chapter introduced a learning-rate-free version of VGBP. This method
selects its actions via a direct optimisation over the right-hand side of the
Bellman equation. In contrast to standard RL methods, the reward function
must be available to the agent. By using the reward function along with a
learned process model, the agent can predict the result of its actions. It has

148

6.5 Discussion

been shown that the access to the reward function enables VGBP to learn
faster than an actor-critic algorithm which also uses a model to obtain the
same value gradient. The quality of the policy is dependent on the critic and
process model approximation. Furthermore, results show that the framework
works for several critic approximators, both parametric and nonparametric.
VGBP-LSTD achieved the highest learning speed, both in simulations and in
experiments with physical systems. In addition, no learning rates need to be
tuned. In this chapter, LLR is used as a function approximator for the process
model. It is interesting to investigate if the model can also be used to train
the critic like in the Dyna algorithms. The two learning tasks in this chapter
have a quadratic reward function. Further research is needed to find out if the
good learning properties also hold for problems with more complex reward
structures. As addressed in Section 6.4.2, the algorithm has a tendency to
explore unseen states, including bad terminal states. It is worth investigating
how the value function could be optimally initialised using knowledge of the
reward function. This allows safe implementation of VGBP in learning tasks on
mechanical systems with physical limitations.

149

Conclusions and Recommendations

Chapter

7

This thesis presented several algorithms to increase the learning speed of actor-
critic reinforcement learning algorithms, by means of model learning and the
explicit use of a known reward function. This chapter summarises the main
conclusions of the thesis and provides possible directions for future research.

Although this thesis mainly revolves around actor-critic reinforcement
learning, it is by no means a statement that actor-critic methods are always
preferred. When applying reinforcement learning to a certain problem, know-
ing a priori whether a critic-only, actor-only or actor-critic algorithm will yield
the best control policy is virtually impossible. Nevertheless, a few guidelines
towards choosing an appropriate method can be provided. If, for example, it is
necessary for the control policy to produce actions in a continuous space, critic-
only algorithms are no longer an option, as calculating a control law would
require solving a possibly non-convex optimisation problem over a continuous
action space. Conversely, when the controller only needs to generate actions
in a (small) countable, finite space, it makes sense to use critic-only methods,
as these algorithms can solve RL problems by enumeration. Using a critic-
only method also overcomes the problem of high-variance gradients in actor-
only methods and the introduction of more tuning parameters (such as extra
learning rates) in actor-critic methods.

Choosing between actor-only and actor-critic methods is more straight-

151

Chapter 7 Conclusions and Recommendations

forward. If the problem is modeled by a (quasi-)stationary Markov decision
process (MDP), actor-critic methods should provide policy gradients with lower
variance than actor-only methods. Actor-only methods are however more
resilient to fast changing non-stationary environments, in which a critic would
be incapable of keeping up with the time-varying nature of the process and
would not provide useful information to the actor, cancelling the advantages
of using actor-critic algorithms. In summary, actor-critic algorithms are most
sensibly used in a (quasi-)stationary setting with a continuous state and action
space.

Once the choice for actor-critic has been made, there is the issue of choosing
the right function approximator features for the actor and critic. Several actor-
critic algorithms use the exact same set of features for both the actor and the
critic, while the policy gradient theorem indicates that it is best to first choose a
parameterisation for the actor, after which compatible features for the critic can
be derived. In this sense, the use of compatible features is beneficial as it lessens

the burden of choosing a separate parameterisation for the value function.
Adding state-dependent features to the value function on top of the compatible
features remains an important task as this is the only way to further reduce
the variance in the policy gradient estimates. How to choose these additional
features remains a difficult problem.

Even when making use of compatible features, choosing a good paramet-
erisation for the policy in the first place still remains an important issue as it
highly influences the performance after learning. Choosing this parameterisa-
tion does seem less difficult than for the value function, as in practice it is
easier to get an idea what shape the policy has than the corresponding value
function.

7.1 Conclusions

One of the conditions for successful application of reinforcement learning in
practical applications is that learning should be quick, i.e. the number of trials
needed should be limited. In the introduction of this thesis it was mentioned
that classical model-based control techniques usually rely on a model of the
system being available, which means a lot of time is spent on deriving such a
model and introducing modelling errors along the way, which get even worse
after linearisation. As a first general conclusion, it is reasonable to state that

152

7.1 Conclusions

only learning controllers can really overcome the issue of modelling errors.
The time which is normally spent on deriving and linearising models now has
to go into finding a reward function that describes the control task properly
and also allows for actually learning that task quickly. As such, using a learning
controller does not necessarily mean a suitable controller will be found quicker.
Moreover, even with a perfect reward function, tuning for optimal learning
and/or function approximation parameters can take a lot of time. Still, even
when a system model is relatively easy to derive, learning control definitely
has its perks as it could, for example, help in dealing with modelling errors,
improving the usually linear control law given by classical control theory by
introducing non-linearity into it. Therefore, it remains important to find ways
of learning (to improve) a policy in a quick and reliable fashion.

This thesis presented several results that show how online learning of a
model may improve learning speed in Chapters 3, 4 and 5. Additionally,
the influence of using different function approximators was discussed. The
algorithm developed in Chapter 6 tries to improve the learning speed even
more by making explicit use of full knowledge of the reward function.

The most important conclusions of the research presented in this thesis are:

• The model learning actor-critic (MLAC) and reference model actor-critic
(RMAC) algorithms have shown good performance in terms of both
learning speed and performance of the final policy. However, these
methods only really show their power when used in combination with
local linear regression. When using radial basis functions, the MLAC
and RMAC method do not perform better than the standard actor-critic
(SAC) algorithm. It is the combination of both local linear regression
(LLR) and these new methods that will provide quick, stable and good
learning. The advantage of LLR over radial basis functions (RBFs) is
that no initialisation is needed, eliminating the possibility of choosing an
initial value for the samples that turns out to have an adverse effect on
the learning. This resulted in policies being learnt in less than 50 percent
of the time it takes when using RBFs in the same algorithm, although the
quality of the policies in terms of smoothness may be quite different. This
can be attributed to the choice of the reward function.

In Chapter 3, the LLR implementations of SAC and MLAC obtain a much
better performance at the end of the learning experiment than their RBF
counterparts. RMAC was the only exception to this. This reinforces the

153

Chapter 7 Conclusions and Recommendations

statement made in the previous point that the use of a non-parametric
function approximator like LLR can also cause faster and better learning.

• Model learning can also be succesfully supplied to problems which are
set in the finite horizon cost setting. The use of a learned process model
significantly enhances the quality of the obtained policy and in the case
of finite horizon MLAC (MLAC-FH) also the learning speed.

• The experiments on the two-link manipulator in Chapter 5 showed that
the increase in learning speed when using model learning and/or LLR
as a function approximator is even more dramatic than in the inverted
pendulum case of the preceding chapters. Policies were learnt in less
than 20 percent of the time it takes when using the standard actor-critic
algorithm with RBFs as the function approximator. The quality of the
policies were quite different, though, which again can be attributed to
the choice of the reward function.

• Despite the nice advantages of having a learned model available, the
process model (MLAC/RMAC) and reference model (RMAC) will suffer
strongly from the curse of dimensionality, especially when RBFs are used
as the function approximator. For the two-link manipulator problem,
using a model learning algorithm in combination with RBFs turned out
to be practically infeasible because of the increased simulation time. This
is likely to be caused by both the increased computational intensity of the
problem (i.e. the number of function evaluations to perform) as well as
the increased complexity of the model that has to be learnt.

• A crucial condition for the model learning algorithms to work is that
the input saturation of a system should be dealt with when learning a
process model. Simply ignoring the input bounds will not produce a well
performing policy. This can be overcome by either setting the process
model’s gradient with respect to the input to zero at the saturation
bounds, such that an actor update cannot push the actor’s output outside
the saturation bounds (as done while using RBFs), or by making sure that
the actor’s output is manually saturated (as done while using LLR).

• Providing access to the reward function enables the value-gradient based
policy (VGBP) algorithm to learn faster than an actor-critic algorithm
which also uses a model to obtain the same value gradient, but only
uses the values of the instantaneous rewards it receives. VGBP using the
least-squares temporal difference (LSTD) achieved the highest learning

154

7.2 Directions for Future Research

speed, both in simulations and in experiments with physical systems.
In addition, no learning rates need to be tuned when using the LSTD
implementation. Note that this does not necessarily mean that VGBP(-
LSTD) also provides the best policy.

7.2 Directions for Future Research

While carrying out the research for this thesis, a number of open issues
that relate to model learning, the algorithms presented in this thesis, or
even reinforcement learning in general were identified. These are grouped
accordingly and listed below.

7.2.1 Reinforcement Learning

• Tuning a controller, regardless of the method used, can be a daunting
task. Although a learning controller alleviates the task of having to model
a system, the number of parameters involved in a learning controller
(number of basis functions, the parameters that can be set for the basis
functions themselves, learning rates, discount rates for rewards and
eligibility traces, etc.) does not lessen the burden of tuning at all. A
lot can be gained if there would be a more intelligent, systematic way of
tuning these parameters, rather than searching over a grid of parameter
values.

• Complementing the previous point, the quality of an RL algorithm should
not only be measured by looking at the performance of the policy it
produces and/or the speed at which it does so, but also by checking its
robustness, i.e. a sensitivity analysis should be carried out on the learning
parameters of the algorithm to see how well it keeps performing when
deviating from the set of optimally tuned parameters.

• Most learning controllers derive a (static) state-feedback policy. Little
or no work is done on learning dynamic policies, even though dynamic
controllers are amongst the most popular ones in the model-based
control design world.

• Although this thesis focused on gradient-based algorithms and how to
estimate this gradient, it should be noted that it is not only the quality

155

Chapter 7 Conclusions and Recommendations

of the gradient estimate that influences the speed of learning. Balancing
the exploration and exploitation of a policy and choosing good learning
rate schedules also have a large effect on this, although more recently
expectation-maximisation (EM) methods that work without learning
rates have been proposed (Kober and Peters, 2011; Vlassis et al., 2009).

• The learning tasks in this thesis all have a quadratic reward function.
Further research is needed to find out if the good learning properties
also hold for problems with more complex reward structures.

• Given that explicit knowledge of the reward function is usually available,
it is worth investigating how this could help in choosing a better
initialisation of the value function.

7.2.2 Model Learning

• The experiments now only compare the performance of MLAC and RMAC
with a standard actor-critic algorithm. It is worthwhile investigating
how these methods compare to direct policy search methods and natural
gradient based techniques.

• RMAC did not perform as well as MLAC in most of the experiments.
A likely reason for this is that the convex hull approximation of the
reachable subset XR may not be sufficiently accurate for more complex
control tasks. A more reliable calculation of reachable states is a main
improvement that could be made to RMAC.

• As MLAC and RMAC are built on the same principle of building a process
model, one could try and combine the quick learning of RMAC/LLR
seen in Chapter 3 with the good performance of MLAC/LLR, by starting
with RMAC and switching to MLAC when the performance does not
significantly increase anymore.

7.2.3 Function Approximation

• While experimenting with parametric and non-parametric function ap-
proximators, no tests were done using a mix of function approximators,
such as RBFs for the actor and critic and LLR for the process model, which
might yield even more powerful results.

156

7.2 Directions for Future Research

• This thesis has shown that LLR is very promising for use in fast learning
algorithms, but a few issues prevent it from being used to its full
potential. The first issue is how to choose the correct input weighting
(including the unit scaling of the inputs), which has a large influence
on selecting the most relevant samples for use in the least-squares
regression.

• A second LLR related issue that should be investigated more closely is
memory management: different ways of scoring samples in terms of age
and redundancy and thus deciding when to remove certain samples from
the memory will influence the accuracy of the estimates generated by
LLR and hence the learning speed of the algorithms it is used in.

• A benefit of the memory-based function approximators, which is not
exploited in this thesis, is that they can easily be initialised with samples
obtained from other experiments. This makes it easy to incorporate prior
knowledge on the process dynamics, a near optimal control policy or
near optimal behaviour. For example, (partial) knowledge of the process
could be incorporated in the process model’s memory and the reference
model memory in RMAC could be initialised with samples of desired
closed-loop behaviour. This can be beneficial if the desired behaviour
of the system is known but the control policy is yet unknown, which is
often the case when supplying prior knowledge by imitation (Peters and
Schaal, 2008a). In both algorithms, the process model can be initialised
with input/state/output samples of the open loop system. This has the
benefit that it is usually easy to conduct experiments that will generate
these samples and that it is unnecessary to derive an analytical model of
the system, as the samples are used to calculate locally linear models that
are accurate enough in their neighbourhood.

157

Experimental Setups

Appendix

A

This appendix describes the two experimental setups used in this thesis. The
first experimental setup is the inverted pendulum, used in Chapters 3 and 4.
The second setup is a two-link manipulator, used in Chapters 5 and 6.

A.1 Inverted Pendulum

The inverted pendulum consists of an electric motor, which actuates a
(weightless) link with length l. At the end of the link, a (point) mass M is
attached. A picture of this system is shown in Figure A.1.

motor

M
ϕ

l

Figure A.1 The inverted pendulum setup.

159

Appendix A Experimental Setups

The equation of motion of this system is

Jϕ̈ = M gl sin(ϕ)−
�

b+ K2

R

�
ϕ̇+ K

R
u

where ϕ is the angle of the pendulum measured from the upright position. The
model parameters are given in Table A.1.

Table A.1 Inverted pendulum model parameters

Model parameter Symbol Value Units

Pendulum inertia J 1.91 · 10−4 kg m2

Pendulum mass M 5.50 · 10−2 kg
Gravity g 9.81 m/s2

Pendulum length l 4.20 · 10−2 m

Damping b 3 · 10−6 N m s/rad
Torque constant K 5.36 · 10−2 N m/A
Rotor resistance R 9.50 Ω

A.2 Two-Link Manipulator

The two-link manipulator is shown in Figure A.2. Both links have different
lengths, masses and moments of inertia (see Table A.2). The first link has end
points q0 and q1, where q0 is held fixed. The second link has end points q1 and
q2, where the revolute joint at q1 is an electric motor. Another electric motor is
at q0. The system has no internal damping.

The equation of motion of this system is

M(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+ G(ϕ) = u

with ϕ =
�
ϕ1ϕ2

�⊤
, u=

�
u1 u2

�⊤
and matrices

M(ϕ) =

�
P1 + P2 + 2P3 cosϕ2 P2 + P3 cosϕ2

P2 + P3 cosϕ2 P2

�

C(ϕ, ϕ̇) =

�
−P3ϕ̇2 sinϕ2 −P3(ϕ̇1 + ϕ̇2) sinϕ2

P3ϕ̇1 sinϕ2 0

�

G(ϕ) =

�
gl1m1 sinϕ1 + gl1m2 sinϕ1

gl2m2 sinϕ2

�

160

A.2 Two-Link Manipulator

q0

q1

q2

ϕ1

ϕ2

Figure A.2 The two-link manipulator setup.

Table A.2 Parameters of the robotic manipulator used in Chapter 5.

Model parameter Symbol link 1 link 2 Units

Length l 0.3825 0.1 m
Mass m 0.809 0.852 kg
Center of mass c 0.07 0.2450 m
Inertia I 0.1449 0.1635 kg m2

Gravity g 9.81 m/s2

where P1 = m1c2
1
+m2l2

1
+ I1, P2 = m2c2

2
+ I2 and P3 = m2l1c2.

161

References

Adam, S., L. Buşoniu and R. Babuška (2011). Experience Replay for Real-Time
Reinforcement Learning Control. IEEE Transactions on Systems, Man and

Cybernetics—Part C: Applications and Reviews 42:2, pp. 201–212.

Aleksandrov, V. M., V. I. Sysoyev and V. V. Shemeneva (1968). Stochastic
Optimization. Engineering Cybernetics 5, pp. 11–16.

Amari, S. I. (1998). Natural Gradient Works Efficiently in Learning. Neural

Computation 10:2, pp. 251–276.

Amari, S. I. and S. C. Douglas (1998). Why Natural Gradient? Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing.
Seattle, USA, pp. 1213–1216.

Arruda, R. L. S. de and F. J. Von Zuben (2011). A Neural Architecture to Ad-
dress Reinforcement Learning Problems. Proceedings of International Joint

Conference on Neural Networks. San Jose, California, USA, pp. 2930–2935.

Atkeson, C. G. and S. Schaal (1997). Robot Learning From Demonstration.
Proceedings of the 14th International Conference on Machine Learning.
Nashville, Tennessee, USA, pp. 12–20.

Bagnell, J. A. and J. Schneider (2003a). Covariant Policy Search. Proceedings

of the 18th International Joint Conference on Artificial Intelligence. Acapulco,
Mexico, pp. 1019–1024.

Bagnell, J. A. and J. Schneider (2003b). Policy Search in Kernel Hilbert Space.
Tech. rep. 80. Carnegie Mellon University.

163

References

Baird, L. (1995). Residual Algorithms: Reinforcement Learning with Function
Approximation. Proceedings of the 12th International Conference on Machine

Learning. Tahoe City, USA, pp. 30–37.

Baird, L. and A. Moore (1999). Gradient Descent for General Reinforcement
Learning. Advances in Neural Information Processing Systems 11. MIT Press.

Barto, A. G., R. S. Sutton and C. W. Anderson (1983). Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems. IEEE

Transactions on Systems, Man, and Cybernetics 13:5, pp. 834–846.

Bäuerle, N. and U. Rieder (2011). Markov Decision Processes with Applications

to Finance. Universitext. Springer-Verlag Berlin Heidelberg.

Baxter, J. and P. L. Bartlett (2001). Infinite-Horizon Policy-Gradient Estimation.
Journal of Artificial Intelligence Research 15, pp. 319–350.

Benbrahim, H., J. Doleac, J. A. Franklin and O. Selfridge (1992). Real-Time
Learning: a Ball on a Beam. Proceedings of the International Joint Conference

on Neural Networks. Baltimore, USA, pp. 98–103.

Benbrahim, H. and J. A. Franklin (1997). Biped Dynamic Walking Using Rein-
forcement Learning. Robotics and Autonomous Systems 22:3, pp. 283–302.

Bentley, J. L. and J. H. Friedman (1979). Data Structures for Range Searching.
ACM Computing Surveys (CSUR) 11:4, pp. 397–409.

Berenji, H. R. and D. Vengerov (2003). A Convergent Actor-Critic-Based FRL
Algorithm with Application to Power Management of Wireless Transmitters.
IEEE Transactions on Fuzzy Systems 11:4, pp. 478–485.

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control. 3rd ed.
Vol. 2. Athena Scientific.

Bertsekas, D. P. and J. N. Tsitsiklis (1996). Neuro-Dynamic Programming.
Athena Scientific.

Bhatnagar, S. (2010). An Actor-Critic Algorithm with Function Approximation
for Discounted Cost Constrained Markov Decision Processes. Systems &

Control Letters 59:12, pp. 760–766.

Bhatnagar, S. and M. S. Abdulla (2008). Simulation-Based Optimization
Algorithms for Finite-Horizon Markov Decision Processes. Simulation

84:12, pp. 577–600.

164

References

Bhatnagar, S., R. S. Sutton, M. Ghavamzadeh and M. Lee (2008). Incremental
Natural Actor-Critic Algorithms. Advances in Neural Information Processing

Systems 20, pp. 105–112.

Bhatnagar, S., R. S. Sutton, M. Ghavamzadeh and M. Lee (2009). Natural
actor-critic algorithms. Automatica 45:11, pp. 2471–2482.

Borkar, V. S. (1997). Stochastic Approximation with Two Time Scales. Systems

& Control Letters 29:5, pp. 291–294.

Borkar, V. S. (2001). A Sensitivity Formula for Risk-Sensitive Cost and the
Actor-Critic Algorithm. Systems & Control Letters 44:5, pp. 339–346.

Boyan, J. A. (2002). Technical Update: Least-Squares Temporal Difference
Learning. Machine Learning 49:2-3, pp. 233–246.

Bradtke, S. J. and A. G. Barto (1996). Linear Least-Squares Algorithms for
Temporal Difference Learning. Machine Learning 22:1-3, pp. 33–57.

Bradtke, S. J., B. E. Ydstie and A. G. Barto (1994). Adaptive Linear Quadratic
Control Using Policy Iteration. Proceedings of the American Control Confer-

ence. Baltimore, Maryland, USA, pp. 3475–3479.

Buşoniu, L., R. Babuška, B. De Schutter and D. Ernst (2010). Reinforcement

Learning and Dynamic Programming Using Function Approximators. Auto-
mation and Control Engineering Series. CRC Press.

Cheng, T., F. L. Lewis and M. Abu-Khalaf (2007). Fixed-Final-Time-Constrained
Optimal Control of Nonlinear Systems Using Neural Network HJB Ap-
proach. IEEE Transactions on Neural Networks 18:6, pp. 1725–1737.

Cheng, Y. H., J. Q. Yi and D. B. Zhao (2004). Application of Actor-Critic
Learning to Adaptive State Space Construction. Proceedings of the Third

International Conference on Machine Learning and Cybernetics. Shanghai,
China, pp. 2985–2990.

Deisenroth, M. P. and C. E. Rasmussen (2011). PILCO: A Model-Based
and Data-Efficient Approach to Policy Search. Proceedings of the 28th

International Conference on Machine Learning. Bellevue, Washington, USA,
pp. 465–472.

Doya, K. (2000). Reinforcement Learning in Continuous Time and Space.
Neural Computation 12:1, pp. 219–245.

165

References

Dyer, P. and S. R. McReynolds (1970). The Computation and Theory of

Optimal Control. Ed. by R. Bellman. Vol. 65. Mathematics in Science and
Engineering. Academic Press, Inc.

El-Fakdi, A., M. Carreras and E. Galceran (2010). Two Steps Natural Actor
Critic Learning for Underwater Cable Tracking. Proceedings of the IEEE

International Conference on Robotics and Automation. Anchorage, Alaska,
USA, pp. 2267–2272.

Forbes, J. and D. Andre (2002). Representations for Learning Control Policies.
Proceedings of the ICML-2002 Workshop on Development of Representations.
Sydney, Australia, pp. 7–14.

Franklin, G. F., J. D. Powell and A. Emami-Naeini (2002). Feedback Control of

Dynamic Systems. 4th ed. Athens, Greece: Prentice Hall.

Furmston, T. and D. Barber (2011). Lagrange Dual Decomposition for Finite
Horizon Markov Decision Processes. Proceedings of the 2011 European

Conference on Machine Learning and Knowledge Discovery in Databases.
Athens, Greece: Springer-Verlag, pp. 487–502.

Gabel, T. and M. Riedmiller (2005). CBR for State Value Function Approx-
imation in Reinforcement Learning. Proceedings of the 6th International

Conference on Case-Based Reasoning. Chicago, Illinois, USA: Springer Berlin
Heidelberg, pp. 206–221.

Girgin, S. and P. Preux (2008). Basis Expansion in Natural Actor Critic
Methods. Lecture Notes in Artificial Intelligence 5323. Springer-Verlag Berlin
Heidelberg, pp. 110–123.

Glynn, P. W. (1987). Likelihood Ratio Gradient Estimation: An Overview.
Proceedings of the 1987 Winter Simulation Conference. Atlanta, Georgia,
USA: ACM Press, pp. 366–375.

Gordon, G. J. (1995). Stable Function Approximation in Dynamic Program-
ming. Proceedings of the 12th International Conference on Machine Learning.
Tahoe City, USA, pp. 261–268.

Gosavi, A. (2009). Reinforcement Learning: A Tutorial Survey and Recent
Advances. INFORMS Journal on Computing 21:2, pp. 178–192.

Gosavi, A. (2010). Finite Horizon Markov Control with One-Step Variance Pen-
alties. Proceedings of the 48th Annual Allerton Conference on Communication,

Control, and Computing. Allerton, Illinois, USA, pp. 1355–1359.

166

References

Gullapalli, V. (1990). A Stochastic Reinforcement Learning Algorithm for
Learning Real-Valued Functions. Neural Networks 3:6, pp. 671–692.

Gullapalli, V. (1993). Learning Control Under Extreme Uncertainty. Advances

in Neural Information Processing Systems 5. Ed. by S. J. Hanson, J. D. Cowan
and C. L. Giles. Morgan Kaufmann Publishers, pp. 327–334.

Hanselmann, T., L. Noakes and A. Zaknich (2007). Continuous-Time Adaptive
Critics. IEEE Transactions on Neural Networks 18:3, pp. 631–647.

Hasdorff, L. (1976). Gradient Optimization and Nonlinear Control. New York:
John Wiley & Sons, Inc.

Jacobson, D. H. and D. Q. Mayne (1970). Differential Dynamic Programming.
Vol. 24. Modern Analytic and Computational Methods in Science and
Mathematics. New York: American Elsevier Publishing Company, Inc.

Kaelbling, L. P., M. L. Littman and A. W. Moore (1996). Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research 4, pp. 237–285.

Kakade, S. (2001). A Natural Policy Gradient. Advances in Neural Information

Processing Systems 14. MIT Press, pp. 1531–1538.

Kersting, K. and K. Driessens (2008). Non-Parametric Policy Gradients: A
Unified Treatment of Propositional and Relational Domains. Proceedings

of the 25th International Conference on Machine Learning. Helsinki, Finland,
pp. 456–463.

Khansari-Zadeh, S. M. and A. Billard (2011). Learning Stable Nonlinear
Dynamical Systems with Gaussian Mixture Models. IEEE Transactions on

Robotics 27:5, pp. 943–957.

Kim, B., J. Park, S. Park and S. Kang (2010). Impedance Learning for Robotic
Contact Tasks Using Natural Actor-Critic Algorithm. IEEE Transactions on

Systems, Man, and Cybernetics—Part B: Cybernetics 40:2, pp. 433–443.

Kimura, H. (2008). Natural Gradient Actor-Critic Algorithms Using Random
Rectangular Coarse Coding. Proceedings of the SICE Annual Conference.
Chofu, Japan, pp. 2027–2034.

Kimura, H., T. Yamashita and S. Kobayashi (2001). Reinforcement Learning
of Walking Behavior for a Four-Legged Robot. Proceedings of the 40th IEEE

Conference on Decision and Control. Orlando, Florida, USA, pp. 411–416.

167

References

Kober, J. and J. Peters (2011). Policy search for motor primitives in robotics.
Machine Learning 84:1-2, pp. 171–203.

Konda, V. R. and J. N. Tsitsiklis (2003). On Actor-Critic Algorithms. SIAM

Journal on Control and Optimization 42:4, pp. 1143–1166.

Konda, V. R. and V. S. Borkar (1999). Actor-Critic–Type Learning Algorithms
for Markov Decision Processes. SIAM Journal on Control and Optimization

38:1, pp. 94–123.

Kuvayev, L. and R. S. Sutton (1996). Model-Based Reinforcement Learning
with an Approximate, Learned Model. Proceedings of the 9th Yale Workshop

on Adaptive and Learning Systems, pp. 101–105.

Lazaric, A., M. Ghavamzadeh and R. Munos (2010). Finite-Sample Analysis of
LSTD. Proceedings of the 27th International Conference on Machine Learning.
Haifa, Israel, pp. 615–622.

Lee, C. C. (1990). Fuzzy Logic in Control Systems: Fuzzy Logic Controller —
Part I. IEEE Transactions on Systems, Man, and Cybernetics 20:2, pp. 404–
418.

Lewis, F. L. and D. Vrabie (2009). Reinforcement learning and adaptive
dynamic programming for feedback control. IEEE Circuits and Systems

Magazine 9:3, pp. 32–50.

Li, C. G., M. Wang, Z. G. Sun, Z. F. Zhang and F. Y. Lin (2009). Urban Traffic
Signal Learning Control Using Fuzzy Actor-Critic Methods. Proceedings of

the Fifth International Conference on Natural Computation. Tianjin, China,
pp. 368–372.

Li, C. G., M. Wang and Q. N. Yuan (2008). A Multi-Agent Reinforcement
Learning Using Actor-Critic Methods. Proceedings of the Seventh Interna-

tional Conference on Machine Learning and Cybernetics. Kunming, China,
pp. 878–882.

Lin, L. J. (1992). Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching. Machine Learning 8, pp. 293–321.

Maei, H. R., C. Szepesvári, S. Bhatnagar and R. S. Sutton (2010). Toward Off-
Policy Learning Control with Function Approximation. Proceedings of the

27th International Conference on Machine Learning. Haifa, Israel: Rowman
& Littlefield Pub Inc.

168

References

Melo, F. S. and M. Lopes (2008). Fitted Natural Actor-Critic: A New Algorithm
for Continuous State-Action MDPs. Proceedings of the European conference

on Machine Learning and Knowledge Discovery in Databases. Antwerp,
Belgium, pp. 66–81.

Melo, F. S., S. P. Meyn and M. I. Ribeiro (2008). An Analysis of Reinforcement
Learning with Function Approximation. Proceedings of the 25th Interna-

tional Conference on Machine Learning. Helsinki, Finland, pp. 664–671.

Moore, A. W. and C. G. Atkeson (1993). Prioritized Sweeping: Reinforcement
Learning with Less Data and Less Time. Machine Learning 13, pp. 103–130.

Morimura, T., E. Uchibe, J. Yoshimoto and K. Doya (2008). A New Natural
Policy Gradient by Stationary Distribution Metric. Lecture Notes in Artificial

Intelligence 5212. Ed. by W. Daelemans, B. Goethals and K. Morik. Springer-
Verlag Berlin Heidelberg, pp. 82–97.

Morimura, T., E. Uchibe, J. Yoshimoto and K. Doya (2009). A Generalized
Natural Actor-Critic Algorithm. Advances in Neural Information Processing

Systems 22. MIT Press, pp. 1312–1320.

Morimura, T., E. Uchibe, J. Yoshimoto, J. Peters and K. Doya (2010). Derivat-
ives of Logarithmic Stationary Distributions for Policy Gradient Reinforce-
ment Learning. Neural Computation 22:2, pp. 342–376.

Nakamura, Y., T. Mori, M.-a. Sato and S. Ishii (2007). Reinforcement Learning
for a Biped Robot Based on a CPG-Actor-Critic Method. Neural Networks

20, pp. 723–735.

Neumann, G. and J. Peters (2009). Fitted Q-Iteration by Advantage Weighted
Regression. Advances in Neural Information Processing Systems 22 (NIPS

2008).

Ng, A. Y., A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger and
E. Liang (2006). Autonomous Inverted Helicopter Flight via Reinforcement
Learning. Experimental Robotics IX, pp. 363–372.

Niedzwiedz, C., I. Elhanany, Z. Liu and S. Livingston (2008). A Consolidated
Actor-Critic Model with Function Approximation for High-Dimensional
POMDPs. AAAI 2008 Workshop for Advancement in POMDP Solvers. Chicago,
Illinois, USA, pp. 37–42.

169

References

Park, J., J. Kim and D. Kang (2005). An RLS-Based Natural Actor-Critic
Algorithm for Locomotion of a Two-Linked Robot Arm. Lecture Notes on

Artificial Intelligence 3801. Springer-Verlag Berlin Heidelberg, pp. 65–72.

Park, Y. M., M. S. Choi and K. Y. Lee (1996). An Optimal Tracking Neuro-
Controller for Nonlinear Dynamic Systems. IEEE Transactions on Neural

Networks 7:5.

Paschalidis, I. C., K. Li and R. M. Estanjini (2009). An Actor-Critic Method
Using Least Squares Temporal Difference Learning. Proceedings of the

Joint 48th IEEE Congress on Decision and Control and 28th Chinese Control

Conference. Shanghai, China, pp. 2564–2569.

Pazis, J. and M. G. Lagoudakis (2011). Reinforcement Learning in Multidi-
mensional Continuous Action Spaces. Proceedings of the IEEE Symposium on

Adaptive Dynamic Programming and Reinforcement Learning, pp. 97–104.

Pennesi, P. and I. C. Paschalidis (2010). A Distributed Actor-Critic Algorithm
and Applications to Mobile Sensor Network Coordination Problems. IEEE

Transactions on Automatic Control 55:2, pp. 492–497.

Peters, J., K. Mülling and Y. Altün (2010). Relative Entropy Policy Search.
Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta,
Georgia, USA, pp. 1607–1612.

Peters, J. and S. Schaal (2008a). Natural Actor-Critic. Neurocomputing 71,
pp. 1180–1190.

Peters, J. and S. Schaal (2008b). Reinforcement Learning of Motor Skills with
Policy Gradients. Neural Networks 21:4, pp. 682–697.

Peters, J., S. Vijayakumar and S. Schaal (2003). Reinforcement Learning
for Humanoid Robotics. Proceedings of the Third IEEE-RAS International

Conference on Humanoid Robots. Karlsruhe, Germany.

Powell, W. B. (2010). Approximate Dynamic Programming: Solving the Curses

of Dimensionality. 2nd ed. Wiley Series in Probability and Statistics. John
Wiley & Sons, Inc.

Raju, C., Y. Narahari and K. Ravikumar (2003). Reinforcement Learning
Applications in Dynamic Pricing of Retail Markets. IEEE International

Conference on E-Commerce. Newport Beach, California, USA, pp. 339–346.

170

References

Richter, S., D. Aberdeen and J. Yu (2007). Natural Actor-Critic for Road Traffic
Optimisation. Advances in Neural Information Processing Systems 19. Ed. by
B. Schölkopf, J. Platt and T. Hoffman. MIT Press, pp. 1169–1176.

Riedmiller, M., J. Peters and S. Schaal (2007). Evaluation of Policy Gradient
Methods and Variants on the Cart-Pole Benchmark. Proceedings of the

IEEE Symposium on Approximate Dynamic Programming and Reinforcement

Learning. Honolulu, USA, pp. 254–261.

Robbins, H. and S. Monro (1951). A Stochastic Approximation Method. The

Annals of Mathematical Statistics 22:3, pp. 400–407.

Rummery, G. A. and M. Niranjan (1994). On-Line Q-Learning Using Connection-

ist Systems. Tech. rep. CUED/F-INFENG/TR 166. Cambridge University.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development 3:3, pp. 211–229.

Schoknecht, R. (2003). Optimality of Reinforcement Learning Algorithms with
Linear Function Approximation. Advances in Neural Information Processing

Systems 15. MIT Press, pp. 1555–1562.

Si, J., A. Barto, W. Powell and D. Wunsch (2004). Handbook of Learning and

Approximate Dynamic Programming. Wiley-IEEE Press.

Skogestad, S. and I. Postlethwaite (2008). Multivariable Feedback Control -

Analysis and Design. 2nd ed. John Wiley & Sons, Inc.

Spall, J. C. (1992). Multivariate Stochastic Approximation Using a Simultan-
eous Perturbation Gradient Approximation. IEEE Transactions on Automatic

Control 37:3, pp. 332–341.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal
Differences. Machine Learning 3, pp. 9–44.

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and
Reacting Based on Approximating Dynamic Programming. Proceedings of

the Seventh International Conference on Machine Learning. San Mateo,
California, USA, pp. 216–224.

Sutton, R. S. (1992). Reinforcement Learning Architectures. Proceedings of the

International Symposium on Neural Information Processing, pp. 211–216.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Introduction.
MIT Press.

171

References

Sutton, R. S., H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári
and E. Wiewiora (2009). Fast Gradient-Descent Methods for Temporal-
Difference Learning with Linear Function Approximation. Proceedings of

the 26th Annual International Conference on Machine Learning. Montreal,
Canada: ACM.

Sutton, R. S., D. McAllester, S. Singh and Y. Mansour (2000). Policy
Gradient Methods for Reinforcement Learning with Function Approxima-
tion. Advances in Neural Information Processing Systems 12. MIT Press,
pp. 1057–1063.

Szepesvári, C. (2010). Algorithms for Reinforcement Learning. Synthesis

Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers.

Tsitsiklis, J. N. and B. Van Roy (1996). Feature-Based Methods for Large Scale
Dynamic Programming. Recent Advances in Reinforcement Learning. Ed. by
L. P. Kaelbling. Kluwer Academic Publishers, pp. 59–94.

Tsitsiklis, J. N. and B. Van Roy (1997). An Analysis of Temporal-Difference
Learning with Function Approximation. IEEE Transactions on Automatic

Control 42:5, pp. 674–690.

Tsitsiklis, J. N. and B. Van Roy (1999). Average Cost Temporal-Difference
Learning. Automatica 35:11, pp. 1799–1808.

Usaha, W. and J. A. Barria (2007). Reinforcement Learning for Resource
Allocation in LEO Satellite Networks. IEEE Transactions on Systems, Man,

and Cybernetics—Part B: Cybernetics 37:3, pp. 515–527.

Vamvoudakis, K. G. and F. L. Lewis (2010). Online Actor-Critic Algorithm
to Solve the Continuous-Time Infinite Horizon Optimal Control Problem.
Automatica 46:5, pp. 878–888.

Vengerov, D., N. Bambos and H. R. Berenji (2005). A Fuzzy Reinforcement
Learning Approach to Power Control in Wireless Transmitters. IEEE

Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 35:4,
pp. 768–778.

Vlassis, N., M. Toussaint, G. Kontes and S. Piperidis (2009). Learning Model-
Free Robot Control by a Monte Carlo EM Algorithm. Autonomous Robots

27:2, pp. 123–130.

172

References

Wang, D., D. Liu and H. Li (2012). Finite-Horizon Neural Optimal Tracking
Control for a Class of Nonlinear Systems with Unknown Dynamics. Pro-

ceedings of the 10th World Congress on Intelligent Control and Automation.
Beijing, China: IEEE, pp. 138–143.

Wang, X. S., Y. H. Cheng and J. Q. Yi (2007). A Fuzzy Actor-Critic Reinforce-
ment Learning Network. Information Sciences 177, pp. 3764–3781.

Watkins, C. J. C. H. and P. Dayan (1992). Q-Learning. Machine Learning 8,
pp. 279–292.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis. King’s
College, University of Cambridge.

Wawrzyński, P. (2009). Real-Time Reinforcement Learning by Sequential
Actor–Critics and Experience Replay. Neural Networks 22:10, pp. 1484–
1497.

Wettschereck, D., D. W. Aha and T. Mohri (1997). A Review and Empirical
Evaluation of Feature Weighting Methods for a Class of Lazy Learning
Algorithms. Artificial Intelligence Review 11, pp. 273–314.

Williams, J. L., J. W. Fisher III and A. S. Willsky (2006). Importance
Sampling Actor-Critic Algorithms. Proceedings of the 2006 American Control

Conference. Minneapolis, Minnesota, USA: IEEE, pp. 1625–1630.

Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8, pp. 229–256.

Wilson, D. R. and T. R. Martinez (2000). Reduction Techniques for Instance-
Based Learning Algorithms. Machine Learning 38, pp. 257–286.

Witten, I. H. (1977). An Adaptive Optimal Controller for Discrete-Time Markov
Environments. Information and Control 34, pp. 286–295.

173

Glossary

The glossary consists of a summary of the mathematical symbols and abbrevi-
ations used throughout this thesis.

List of symbols and notations

Standard math symbols

R set of real numbers
E expectation
P probability
µ mean
σ standard deviation
s sample standard deviation
N (µ,σ) normal distribution
∼ draw from distribution

x⊤ transpose of x

‖x‖ norm of x

H Hessian

∇x f or
∂ f

∂ x
Gradient of function f with respect to x

e∇x f Natural gradient of function f with respect to x

G(ϑ) Riemannian metric tensor with respect to ϑ
F Fisher information matrix
L Lagrangian
µ Lagrangian multiplier

175

Glossary

MDPs and RL

X state space
U action space
x state
u action
r instantaneous reward
f transition function
ρ reward function
τN terminal reward function
k discrete time
N number of time steps in finite horizon
γ reward discount factor
z eligibility trace
λ eligibility trace discount factor
π policy
V state value function
Q state-action value function
A advantage function
J cost
d state distribution
n size of state vector
∆ exploration
α learning rate
δ temporal difference (error)

Approximate RL

ψ policy feature vector
ϑ policy parameter vector
p size of policy parameter vector
φ value function feature vector
θ value function parameter vector
q size of value parameter vector
ψ compatible feature vector
w compatible feature parameter
M LLR memory
si sample i in LLR memory

176

Glossary

K(x) set of indices i in LLR memory defining the neighbourhood of x .

MLAC / RMAC

bf process model
ζ process model parameter vector
r number of process model parameters per element of output
R reference model
η reference model parameter vector
s number of reference model parameters per element of output
R reachable set of states

List of abbreviations

The abbreviations used throughout the thesis are listed here in lexicographical
order.

ACSMDP actor-critic semi-Markov decision algorithm
ACFRL actor-critic fuzzy reinforcement learning
BF basis function
CACM Consolidated Actor-Critic Model
DOF degrees of freedom
EM expectation-maximization
eNAC episodic natural actor-critic
FACRLN Fuzzy Actor-Critic Reinforcement Learning Network
FIM Fisher information matrix
gNAC generalized natural actor-critic
gNG generalized natural gradient
HDP Heuristic Dynamic Programming
IPA infinitesimal perturbation analysis
LLR local linear regression
LQG linear quadratic Gaussian
LQR linear quadratic regulator
LSTD least-squares temporal difference
MDP Markov decision process
MLAC model learning actor-critic

177

Glossary

NAC natural actor-critic
OPI optimistic policy iteration
PID proportional-integral-derivative
RBF radial basis function
REINFORCE REward Increment = Non-negative Factor × Offset

Reinforcement × Characteristic Eligibility
REPS relative entropy policy search
RL reinforcement learning
RMAC reference model actor-critic
SAC standard actor-critic
SARSA state-action-reward-state-action
SPSA simultaneous perturbation stochastic approximation
TD temporal difference
VGBP value-gradient based policy

178

Publications by the Author

Journal Papers

Depraetere, B., M. Liu, G. Pinte, I. Grondman and R. Babuška (2014).
Comparison of Model-Free and Model-Based Methods for Time Optimal Hit
Control of a Badminton Robot. Mechatronics 24:8, pp. 1021–1030.

Grondman, I., L. Buşoniu, G. A. Lopes and R. Babuška (2012a). A Sur-
vey of Actor-Critic Reinforcement Learning: Standard and Natural Policy
Gradients. IEEE Transactions on Systems, Man and Cybernetics—Part C:

Applications and Reviews 42:6, pp. 1291–1307.

Grondman, I., M. Vaandrager, L. Buşoniu, R. Babuška and E. Schuitema
(2012b). Efficient Model Learning Methods for Actor-Critic Control. IEEE

Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 42:3,
pp. 591–602.

Rooijen, J. C. van, I. Grondman and R. Babuška (2014). Learning Rate
Free Reinforcement Learning for Real-Time Motion Control Using a Value-
Gradient Based Policy. Mechatronics 24:8, pp. 966–974.

Conference Papers

Grondman, I., L. Buşoniu and R. Babuška (2012). Model Learning Actor–Critic
Algorithms: Performance Evaluation in a Motion Control Task. Proceedings

179

Publications by the Author

of the 51st IEEE Conference on Decision and Control. Maui, Hawaii, USA,
pp. 5272–5277.

Grondman, I., M. Vaandrager, L. Buşoniu, R. Babuška and E. Schuitema
(2011). Actor-Critic Control with Reference Model Learning. Proceedings of

the IFAC 18th World Congress. Milan, Italy, pp. 14723–14728.

Grondman, I., H. Xu, S. Jagannathan and R. Babuška (2013). Solutions to
Finite Horizon Cost Problems Using Actor-Critic Reinforcement Learning.
Proceedings of the 2013 International Joint Conference on Neural Networks.
Dallas, Texas, USA, pp. 325–331.

Liu, M., B. Depraetere, G. Pinte, I. Grondman and R. Babuška (2013).
Model-Free and Model-Based Time-Optimal Control of a Badminton Robot.
Proceedings of the 9th Asian Control Conference. Istanbul, Turkey.

180

Summary

Classical control theory requires a model to be derived for a system, before
any control design can take place. This can be a hard, time-consuming process
if the system is complex. Moreover, there is no way of escaping modelling
errors. As an alternative approach, there is the possibility of having the system
learn a controller by itself while it is in operation or offline. Reinforcement
learning (RL) is such a framework in which an agent (or controller) optimises
its behaviour by interacting with its environment1. After taking an action in
some state, the agent receives a scalar reward from the environment, which
gives the agent an indication of the quality of that action. The function that
indicates the action to take in a certain state is called the policy. The main goal
of the agent is to find a policy that maximises the total accumulated reward
during the course of interaction, also called the return. By following a given
policy and processing the rewards, the agent can build estimates of the return
(the value function) and use this information to improve its policy.

For continuous state and action spaces, the use of function approximators
is a necessity and a commonly used type of RL algorithms for these continuous
spaces is the actor-critic algorithm, in which two independent function
approximators take the role of the policy (the actor) and the value function
(the critic).

A main challenge in RL is to use the information gathered during the
interaction as efficiently as possible, such that an optimal policy may be
reached in a short amount of time. The majority of RL algorithms at each
time step measure the state, choose an action corresponding to this state,
measure the next state, the corresponding reward and update a value function

1In this thesis, the system to be controlled is seen as the environment of the controller.

181

Summary

(and possibly a separate policy). As such, the only source of information
used for learning at each time step is the last transition sample. Algorithms
that store these transitions separately and reuse them to enlarge the efficiency
of the algorithm, e.g. the “experience replay” algorithms and Sutton’s Dyna
algorithm, have been around for a while, but even more efficiency in learning
can be achieved by

• Searching for a relation between the collected transition samples and
trying to predict the system’s behaviour from this by interpolation and/or
extrapolation.

• Incorporating prior knowledge, e.g. about the system or the desired
closed-loop behaviour.

• Using the reward function that can often explicitly be made available to
the learning agent.

This thesis describes and explores the use of the above principles, keeping
the objective of improving the learning speed in mind.

Online model learning for RL

Two new model learning actor-critic learning algorithms are introduced in this
thesis: model learning actor-critic (MLAC) and reference model actor-critic
(RMAC). Both have in common that they learn a full-state model of the system
to be controlled, which is then used to make one-step predictions about the
states the system will end up in if a certain input is applied. If available, the
function approximator used for this process model can be pre-trained with
prior knowledge about the system.

Model learning actor-critic

Many standard reinforcement learning algorithms are inefficient in their use of
measured data. Once a transition sample—containing the previous state, the
action taken, the subsequent state and the reward—has been used to update
the actor and critic, it is thrown away and never reused in future updates. To
overcome this problem, several techniques have been proposed to remember
and reuse measured data, such as experience replay and prioritised sweeping.
A drawback of these methods is that they require storage of all the samples

182

Summary

gathered, making them memory intensive and computationally heavy. Dyna
architectures combine reinforcement learning with the concept of planning, by
learning a model of the process or environment online and using this model to
generate experiences from which the critic (and thus the actor) can be updated.
This results in more frequent updates and hence quicker learning.

In MLAC, the learned process model is not used to generate experiences.
Instead, the process model is used directly in the policy gradient, aiming to get
faster convergence of learning without increasing the number of updates for
the actor and/or critic.

Having a learned process model available simplifies the update of the actor,
as it allows to predict what the next state of the system will be, given some
applied input. The value function then provides information on the value of
that next state. Hence, calculating the optimal input to the system reduces to
an optimization problem, in which the objective function is the composition
of the process model and the value function and the decision variable is the
applied input or action.

Reference model actor-critic

RMAC is different from the typical actor–critic methods in the sense that
it does not learn an explicit mapping from state to action. Instead of an
explicit actor/policy, RMAC learns a reference model that represents a desired
behaviour of the system, based on the value function. Similar to MLAC, this
algorithm learns a process model to facilitate one-step predictions about the
system. The difference with respect to MLAC is that the explicit actor is now
replaced by a composition of the learned reference model with the inverse of
the learned process model to calculate an action.

A reference model provides a means for the storage of demonstration data,
if it is available. Some learning algorithms benefit from having the desired
behaviour or task demonstrated to them. This can be done, for example,
by a human manually moving a robot arm in such a way that a target task
is performed. The demonstrated trajectory is then stored as a sequence of
(sampled) states and it is exactly this type of information that can be stored in
a reference model.

The applicability of the model learning actor-critic algorithms has been
verified with simulation experiments on an inverted pendulum and a two-link

183

Summary

manipulator. For the inverted pendulum, experiments have been carried out
in both an infinite and finite horizon setting. Results of these experiments
show that the use of local linear regression as a function approximator and/or
the addition of model learning can reduce the time of learning an acceptable
control policy to about 20 to 50 per cent of the time it takes with a completely
model-free actor-critic algorithm using a parametric function approximator.

Using reward function knowledge

Another way of making learning more efficient, is to make the reward function
directly accessible to the learning agent. Classic reinforcement learning
theory assumes that the reward function is part of the agent’s environment
and therefore unknown. The learning agent only gathers information about
rewards on a per-sample basis. For quite a lot of problems and especially
the problems addressed in this thesis, though, the reward function is usually
designed by an engineer. Hence, an explicit expression representing the reward
function is available and as such can directly be used by the learning agent.

The final algorithm presented in this thesis makes use of the explicit
knowledge of the reward function and also learns a process model online.
This enables the algorithm to select control actions by optimizing over the
right-hand side of the Bellman equation. Fast learning convergence in
simulations and experiments with the underactuated pendulum swing-up task
is demonstrated and additionally, experimental results for a more complex 2-
DOF robotic manipulator task are presented. It was shown that access to the
reward function enables the Value-Gradient Based Policy (VGBP) algorithm to
learn faster than an actor-critic algorithm which also uses a model to obtain
the same value gradient. Nevertheless, the quality of the learned policy is
dependent on the critic and process model approximation and may still be
outperformed by other algorithms.

184

Samenvatting

Klassieke regeltheorie vereist het afleiden van een model voor een systeem,
voordat enig ontwerp van een regelaar kan plaatsvinden. Dit kan een moeilijk,
tijdrovend proces zijn als het een complex systeem betreft. Bovendien is er
niet te ontsnappen aan modelleringsfouten. Als alternatieve aanpak is er
de mogelijkheid om het systeem zelf een regelaar te laten leren terwijl het
in bedrijf is (online) of niet (offline). Reinforcement learning (RL) is zo’n
raamwerk waarin een agent (of regelaar) zijn gedrag optimaliseert door middel
van interactie met zijn omgeving2. Na het nemen van een actie, ontvangt de
agent een scalaire beloning van de omgeving, die een indicatie geeft van de
kwaliteit van die actie. De functie die bepaalt welke actie er genomen wordt
in een bepaalde toestand wordt de strategie genoemd. Het hoofddoel van de
agent is om een strategie te vinden die de totale opbrengst van geaccumuleerde
beloningen tijdens de interactie maximaliseert. Door een gegeven strategie te
volgen en de verkregen beloningen te verwerken, kan de agent schattingen
maken van deze opbrengst (de waardefunctie) en deze gebruiken om zijn
strategie te verbeteren.

Voor continue toestands- en actieruimten is het gebruik van functiebe-
naderingen een noodzaak en een veelgebruikt type RL algoritme voor deze
continue ruimtes is het acteur-criticus algoritme, waarin twee onafhankelijke
functiebenaderingen de rol op zich nemen van de strategie (de acteur) en de
waardefunctie (de criticus).

Een grote uitdaging in RL is om de informatie die tijdens de interactie
is verkregen zo efficiënt mogelijk te gebruiken, zodat een optimale strategie
binnen een korte tijdsduur bereikt kan worden. De meerderheid van RL

2In dit proefschrift wordt het te regelen systeem gezien als de omgeving van de regelaar.

185

Samenvatting

algoritmen meet op elk tijdsinterval de toestand van het systeem, kiest een
actie die hoort bij deze toestand, meet de volgende toestand, de bijbehorende
beloning en updatet daarmee de waardefuntie (en mogelijk een afzonderlijke
strategie). Daardoor is de enige bron van informatie die gebruikt wordt voor
het leren bij elk tijdsinterval de laatste overgangssample. Algoritmen welke al
deze overgangen afzonderlijk opslaan en hergebruiken om de efficiëntie van
het algoritme te vergroten, zoals de “experience replay” algoritmen en Sutton’s
Dyna algoritme, bestaan al een tijd, maar meer efficiëntie in het leren kan
bereikt worden door

• Te zoeken naar een relatie tussen de verzamelde overgangssamples en
hiermee, door middel van interpolatie en extrapolatie, het gedrag van
het systeem proberen te voorspellen.

• Voorkennis te benutten, bijvoorbeeld over het systeem zelf of over het
gewenste gesloten-lus gedrag.

• De beloningsfunctie te gebruiken, die vaak expliciet beschikbaar kan
worden gesteld aan de lerende agent.

Dit proefschrift beschrijft en onderzoekt het gebruik van bovenstaande
principes, met als doel het verbeteren van de leersnelheid.

Online leren van een model voor RL

Twee nieuwe model lerende acteur-criticus leeralgoritmen worden in dit proef-
schrift geïntroduceerd: model lerend acteur-criticus (MLAC) en referentiemo-
del acteur-criticus (RMAC). Beide hebben gemeen dat ze een toestandsmodel
van het te regelen systeem leren, welke vervolgens gebruikt wordt voor het
doen van één stap voorspellingen over de toestanden waarin het systeem zal
overgaan na het toepassen van een bepaalde actie. Indien beschikbaar, kan de
functiebenadering van dit procesmodel vooraf getraind worden met voorkennis
over het systeem.

Model Lerend Acteur-Criticus

Veel standaard reinforcement learning algoritmen zijn inefficiënt in hun
gebruik van gemeten data. Als een overgangssample—bestaande uit vorige
toestand, de gekozen actie, de volgende toestand en de beloning—eenmaal

186

Samenvatting

is gebruikt om de acteur en de criticus te updaten, wordt deze informatie
weggegooid en niet hergebruikt in toekomstige updates. Om dit probleem
te verhelpen zijn verscheidene technieken voorgesteld om gemeten data te
onthouden en te hergebruiken, zoals experience replay en geprioriteerd vegen.
Een nadeel van deze methodes is dat ze opslag vereisen van alle overgangs-
samples, wat ze geheugen- en rekenintensief maakt. Dyna architecturen
combineren reinforcement learning met het concept van plannen. Door een
model van het proces of de omgeving te leren en hiermee ervaringen te
genereren waarmee de criticus (en daarmee de acteur) geüpdatet kan worden
zijn er vaker updates en dus ontstaat een sneller leergedrag.

In MLAC wordt het geleerde procesmodel niet gebruikt om ervaringen te
genereren. In plaats daarvan wordt het model direct gebruikt in de berekening
van de strategiegradiënt, met als doel om het leren sneller te laten convergeren
zonder het aantal updates van de acteur en/of criticus te verhogen.

De beschikbaarheid van een procesmodel vereenvoudigt de update van de
acteur, omdat het mogelijk maakt te voorspellen wat de volgende toestand van
het systeem gaat zijn als een bepaalde actie toegepast wordt. De waardefunctie
geeft vervolgens informatie over de waarde van deze volgende toestand.
Derhalve wordt het berekenen van de optimale ingang voor het systeem gere-
duceerd tot een optimalisatieprobleem, waarin de doelfunctie de samenstelling
van het procesmodel en de waardefunctie is en de beslissingsvariabele de
toegepaste ingang of actie.

Referentiemodel Acteur-Criticus

RMAC verschilt van typische acteur-criticus methoden in de zin dat het geen
directe afbeelding van toestand naar actie probeert te leren. In plaats van een
expliciete acteur/strategie, leert RMAC een referentiemodel wat het gewenste
gedrag voor een systeem weerspiegelt, gebaseerd op de waardefunctie. Net
als MLAC, leert dit algoritme een procesmodel om één stap voorspellingen te
faciliteren. Het verschil met MLAC is dat de expliciete acteur nu vervangen is
door een samenstelling van het geleerde referentiemodel met de inverse van
het procesmodel om een actie te berekenen.

Een referentiemodel voorziet in de mogelijkheid om, indien beschikbaar,
demonstratiedata op te slaan. Enkele leeralgoritmen profiteren ervan als
gewenst gedrag of een taak vooraf wordt gedemonstreerd. Dit kan bijvoorbeeld
gedaan worden door een mens handmatig een robotarm te laten bewegen

187

Samenvatting

zodat een bepaalde taak wordt uitgevoerd. Het gedemonstreerde traject wordt
dan opgeslagen als een rij van opeenvolgende toestanden en het is precies dit
type informatie wat kan worden opgeslagen in een referentiemodel.

De toepasbaarheid van de model lerende acteur-criticus algoritmen is
geverifieerd door middel van simulaties op een omgekeerd pendulum en een
robotarm met twee vrijheidsgraden. Voor het omgekeerde pendulum zijn
experimenten uitgevoerd in zowel een oneindige als eindige horizon setting.
De resultaten van deze experimenten tonen aan dat het gebruik van lokale
lineaire regressie als functiebenadering en/of het toevoegen van het leren van
een model de leertijd kan inkorten tot 20 tot 50 procent van de tijd die het kost
met een volledig modelvrij acteur-criticus algoritme met een parametrische
functiebenadering.

Gebruik maken van de beloningsfunctie

Een alternatief om het leren efficiënter te maken is de lerende agent direct
toegang te geven tot de beloningsfunctie. Klassieke reinforcement learning
gaat er vanuit dat de beloningsfunctie onderdeel is van de omgeving van de
agent en daarom onbekend is. De lerende agent krijgt slechts een keer per
tijdsinterval informatie over een beloning. Echter, voor veel problemen (en
vooral de problemen in dit proefschrift) wordt de beloningsfunctie ontworpen
door een technicus of ingenieur. Derhalve is er een expliciete expressie
beschikbaar die de beloningsfunctie representeert en deze kan als zodanig
gebruikt worden door de lerende agent.

Het laatste algoritme in dit proefschrift maakt gebruik van deze expliciete
kennis van de beloningsfunctie en leert ook online een procesmodel. Dit stelt
het algoritme in staat om regelacties te selecteren door de rechterzijde van
de Bellman vergelijking te optimaliseren. Snelle convergentie van het leren
wordt gedemonstreerd in zowel simulaties als met een echte opstelling. Ook
worden resultaten gepresenteerd van een meer complexe taak op een echte
opstelling van een robotarm met twee vrijheidsgraden. Het wordt aangetoond
dat directe toegang tot de beloningsfunctie de “Value-Gradient Based Policy”
(VGBP) in staat stelt sneller te leren dan een acteur-criticus algoritme dat ook
een model gebruikt om tot dezelfde waardegradiënt te komen. Desalniettemin
hangt de kwaliteit van de verkregen strategie af van de beanderingen van de
criticus en het procesmodel en kan nog steeds overtroffen worden door andere
algoritmen.

188

Curriculum Vitae

Ivo Grondman was born on the 6th of May, 1982 in Overdinkel, municipality of
Losser, The Netherlands.

After attending secondary school at Stedelijk Lyceum Het Kottenpark in
Enschede from 1994 to 2000, he started his studies in Applied Mathematics
and Telematics at the University of Twente, Enschede, and obtained Bachelor
of Science degrees in both disciplines in early 2007. By late 2008 he obtained
his Master of Science degree with Merit in Control Systems from Imperial
College London and accepted a position at MathWorks Ltd. in Cambridge,
United Kingdom.

In December 2009, he commenced his PhD research on actor-critic rein-
forcement learning algorithms at the Delft Center for Systems and Control of
Delft University of Technology in The Netherlands under the supervision of
prof. dr. Robert Babuška and dr. Lucian Buşoniu. In 2011, he received his
DISC certificate from the Dutch Institute of Systems and Control. At the start
of 2013, he spent three months in the United States as a visiting scholar to
conduct part of his research at the Missouri University of Science & Technology
in Rolla, Missouri, under the supervision of prof. dr. Sarangapani Jagannathan.

During his research, he supervised several BSc and MSc students, assisted
and lectured on various courses in the systems and control area and particip-
ated in a number of conferences.

189

ISBN 978-94-6186-432-1

	1 Introduction
	1.1 Model-Based Control Design
	1.2 Actor-Critic Reinforcement Learning
	1.3 Focus and Contributions
	1.3.1 Online Model Learning for RL
	1.3.2 Using Reward Function Knowledge

	1.4 Thesis Outline

	2 Actor-Critic Reinforcement Learning
	2.1 Introduction
	2.2 Markov Decision Processes
	2.2.1 Discounted Reward
	2.2.2 Average Reward

	2.3 Actor-Critic in the Context of RL
	2.3.1 Critic-Only Methods
	2.3.2 Actor-Only Methods and the Policy Gradient
	2.3.3 Actor-Critic Algorithms
	2.3.4 Policy Gradient Theorem

	2.4 Standard Gradient Actor-Critic Algorithms
	2.4.1 Discounted Return Setting
	2.4.2 Average Reward Setting

	2.5 Natural Gradient Actor-Critic Algorithms
	2.5.1 Natural Gradient in Optimisation
	2.5.2 Natural Policy Gradient
	2.5.3 Natural Actor-Critic Algorithms

	2.6 Applications
	2.7 Discussion

	3 Efficient Model Learning Actor-Critic Methods
	3.1 Introduction and Related Work
	3.2 Standard Actor-Critic
	3.3 Model Learning Actor-Critic
	3.3.1 The Process Model
	3.3.2 Model-Based Policy Gradient

	3.4 Reference Model Actor-Critic
	3.5 Function Approximators
	3.5.1 Radial Basis Functions
	3.5.2 Local Linear Regression
	3.5.3 Tile Coding

	3.6 Example: Pendulum Swing-Up
	3.6.1 Standard Actor-Critic
	3.6.2 Model Learning Actor-Critic
	3.6.3 Reference Model Actor-Critic

	3.7 Discussion

	4 Solutions to Finite Horizon Cost Problems Using Actor-Critic RL
	4.1 Introduction
	4.2 Markov Decision Processes for the Finite Horizon Cost Setting
	4.3 Actor-Critic RL for Finite Horizon MDPs
	4.3.1 Parameterising a Time-Varying Actor and Critic
	4.3.2 Standard Actor-Critic
	4.3.3 Model Learning Actor-Critic
	4.3.4 Reference Model Actor-Critic

	4.4 Simulation Results
	4.4.1 Finite Horizon Standard Actor-Critic
	4.4.2 Finite Horizon Model Learning Actor-Critic
	4.4.3 Finite Horizon Reference Model Actor-Critic

	4.5 Discussion

	5 Simulations with a Two-Link Manipulator
	5.1 Simulation Setup
	5.2 Consequences for Model Learning Methods
	5.3 Case I: Learn to Inject Proper Damping
	5.3.1 Standard Actor-Critic
	5.3.2 Model Learning Actor-Critic

	5.4 Case II: Learn to Find a Nontrivial Equilibrium
	5.4.1 Standard Actor-Critic
	5.4.2 Model Learning Actor-Critic

	5.5 Discussion

	6 Learning Rate Free RL Using a Value-Gradient Based Policy
	6.1 Introduction
	6.2 SARSA
	6.3 Value-Gradient Based Policy Algorithm
	6.3.1 Process Model Parametrisation
	6.3.2 Critic Parametrisation

	6.4 Simulation and Experimental Results
	6.4.1 Underactuated Pendulum Swing-Up
	6.4.2 Robotic Manipulator

	6.5 Discussion

	7 Conclusions and Recommendations
	7.1 Conclusions
	7.2 Directions for Future Research
	7.2.1 Reinforcement Learning
	7.2.2 Model Learning
	7.2.3 Function Approximation

	A Experimental Setups
	A.1 Inverted Pendulum
	A.2 Two-Link Manipulator

	References
	Glossary
	Publications by the Author
	Summary
	Samenvatting
	Curriculum Vitae

