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Abstract— Autonomous robot navigation is becoming an 
increasingly important research topic for mobile robots. In the 
last few years, significant progress has been made towards 
stable robotic bipedal walking. This is creating an increased 
research interest in developing autonomous navigation 
strategies which are tailored specifically to humanoid robots. 
Efficient approaches to perception and motion planning, which 
are suited to the unique characteristics of biped humanoid 
robots and their typical operating environments, are receiving 
special interest. In this paper, we present a time-efficient 
motion planning system for a Fujitsu HOAP-2 humanoid robot. 
The sampling based algorithm is used to provide the robot with 
minimal free configuration space which is sampled to extract 
the robot path. For collision detection, a cylinder model is used 
to approximate the trajectory for the body center of the 
humanoid robot during navigation. It calculates the actual 
distances required to execute different actions of the robot and 
compares them with the distances to the nearest obstacles. The 
A* search algorithm is then implemented to find smooth and 
low-cost footstep placements of the humanoid robot within the 
resulting configuration space. The proposed hybrid algorithm 
reduces searching time and produces a smoother path for the 
humanoid robot at a low cost. 

I. INTRODUCTION 
umanoid robotic hardware and control techniques have 
been developing rapidly during the last decade. Lately, 

several companies have announced the commercial 
availability of various humanoid robot prototypes such as 
Sony QRIO, Fujitsu HOAP, ZMP NUVO, and Honda 
ASIMO. The ability of these bipedal humanoid robots to 
step over and onto obstacles makes them ideally suited for 
environments designed for humans [1]. They have been 
attracting many researchers due to their performance of 
human-like behaviors [1-3]. As the robot body has many 
degrees of freedom, the robot shape and its available actions 
are approximated for finding solutions efficiently [2, 4]. In 
order to improve the autonomy and overall functionality of 
these robots, reliable sensors, safety mechanisms, and 
general integrated software tools and techniques are needed.   

The navigation autonomy for humanoid robots comprises 
an increasingly important research area. The development of 
practical motion planning algorithms and obstacle avoidance 

software is considered as one of the most important fields of 
study in the task of building autonomous or semi-
autonomous robot systems. This will lead to a rising demand 
for software and algorithms useful to improve the usability 
and autonomy of humanoids. The motion planning problem 
is characterized by the ability to compute a collision-free 
path of a mobile robot from its initial position to a final 
position through its workspace. It covers many different 
aspects of mobile robotics, including path planning among 
obstacles, optimal path finding among weighted regions, 
path planning to traverse narrow passages, etc [5].  There are 
many applications that rely on motion planning, such as: 
systems for robot guidance, assembly and disassembly, and 
computer animation [6].  
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Many researchers [3, 7, 8] have concentrated on various 
approaches to generate reliable and stable gaits with 
feedback, and also on developing global navigation 
autonomy for humanoid robots. Emphasis has primarily 
been laid on pre-generating walking trajectories, online 
trajectory generation, and dynamic balance, without 
accounting for obstacles. Most of them use one of the two 
main approaches of biped locomotion: static or dynamic. 
The main objective, in any case, is to produce a gait as 
natural and stable as possible. Static walkers rely on the 
static equilibrium condition: maintain the Center of Gravity 
(CoG) on the convex hull within the contact area with the 
ground. This approach denies inertial forces. Therefore, it 
can be applied only if robot movements are very slow. 
Dynamic walkers achieve fast and natural walking motion 
following the principle of dynamic equilibrium: they use 
Zero Moment Point (ZMP) [9] instead of CoG, so that 
inertia components and gravity are considered [8]. 

The rest of this paper is organized as follows. Some 
current related work and an overview of motion planning 
algorithms are discussed in section 2. In section 3, we will 
introduce an overview of our humanoid robot navigation 
system architecture and then discuss the proposed hybrid 
motion planning algorithm for HOAP-2 humanoid robot in 
more detail.  Section 4 describes the system implementation. 
Conclusion and future work are presented in section 5.  

II. RELATED WORK 
Motion planning has been studied for several decades and 

many motion planning algorithms have been proposed in the 
literature [10-14].  Robot motion planning algorithms can be 
classified into being either global or local. While a global 
method is one that assumes complete knowledge about its 
environment, a local method assumes partial knowledge. 
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Given the existing extensive literature on this subject, 
researchers are starting to look at the problem in a more 
general and realistic form such as navigation in higher-
dimensional spaces and time-varying environments [12, 15, 
16]. 

In mobile robotics, the degrees of freedom are usually 
small. Therefore, many search techniques can be specially 
tailored to the path planning problem. If one can neglect 
orientation, the resulting 2D configuration space can be 
searched efficiently by grid-based approaches [2, 10, 15] 
which overlay configuration space (C-space) with a grid. 
They assume that each configuration is identified with a grid 
point. At each grid point, the robot is allowed to move to 
adjacent grid points as long as the line between them is 
completely contained within free configuration space (Cfree). 
This discretizes the set of actions, and search algorithms 
(such as A*, D*, and dynamic programming) are used to 
find a path from the start to the destination. These 
approaches require the setting of a grid resolution. Search is 
faster with coarser grids, but the algorithm will fail to find 
paths through narrow portions of Cfree. Furthermore, the 
number of points on the grid grows exponentially in the C-
space dimension, which makes them inappropriate for high-
dimensional problems.  

Potential fields [17, 18] and sampling-based algorithms [6, 
11] can be used to solve the high-dimensional motion 
planning problems. Potential field techniques treat the 
robot’s configuration as a point in a potential field that 
combines attraction to the goal with repulsion from 
obstacles. These algorithms have the advantage that the 
trajectory is produced with little computation. However, 
they are usually incomplete and may fail to find a free path, 
even if one exists, because they can get trapped in a local 
minimum. Another problem with these methods is that they 
are not very suitable to generate an optimal path [19]. On the 
other hand, sampling-based motion planning techniques 
provide a faster practical solution by sacrificing 
completeness, in which a set of sampling points are used to 
represent the C-space that is used in constructing solutions. 
Traditionally, sampling-based algorithms are based on 
uniform sampling which considers the whole environment as 
uniformly complex and thus the overall sampling density 
will be equivalent to the density needed by the most 
complex region. The result is that every region in the C-
space has the same computational complexity, which is 
worst hen narrow passage areas exist in the environment. 
Furthermore, paths produced by randomized planners 
usually contain non-smooth segments because of this 
randomness and the absence of optimization criteria [6]. 

On the other hand, Global navigation strategies for mobile 
robots can usually be obtained by searching for a collision-
free path in the environment. Because of the low 
dimensionality of the search space, very efficient and 
complete (or resolution-complete) algorithms can be 
employed. For humanoid robots, conservative global 

navigation strategies can be obtained by choosing an 
appropriate bounding volume (e.g. a cylinder) [2], and by 
designing gaits for following navigation trajectories 
computed by a path planner. Motion planning algorithms 
that account for system dynamics typically approach the 
problem in one of two ways: 1) decoupling the problem by 
first computing a kinematic path, and subsequently 
transforming the path into a dynamic trajectory, or 2) 
searching the system state-space directly by reasoning on the 
possible controls that can be applied.  

In our system, we used the cylinder model to approximate 
the trajectory for the body-center of the HOAP-2 humanoid 
robot. We approximate the robot’s shape by using one 
cylinder surrounding its body. It allows us to perform the 
collision detection check in a constant time by comparing 
the cylinder radius to the distance of the nearest obstacle 
which is calculated by triangulation. The sampling-based 
algorithm is used to provide the robot with minimal Cfree and 
sample Cfree to generalize the robot path. We used the 
Probabilistic Roadmap Mechanism (PRM) with a non-
uniform sampling density to avoid the computational 
complexity of generating a denser search area. The A* 
search algorithm is then implemented to find smooth and 
low-cost footstep placements of the humanoid robot within 
the resulting path in Cfree.  

III. SYSTEM ARCHITECTURE 
We developed a motion planning system for a Fujitsu 

HOAP-2 humanoid robot to execute the user’s navigation 
tasks in a miniature city environment. Fig. 1 shows the main 
building blocks of our system and the output from each 
stage. The robot navigation is based on the route described 
by the user to generate an initial path estimation which is 
supplied to the motion planner. The humanoid robot begins 
from the start point and moves along that path to collect 
information and recognize the landmarks by using its stereo 
vision. Based on the new findings and the processed route, 
the path is then re-planned to adjust the robot’s position 
during navigation.  

At the beginning, the user verbally describes the route to 
the robot by using our route instruction language (RIL) [20]. 
Then, the route instructions are parsed and analyzed by the 
instruction interpreter to present the motion actions, spatial 
relationships, and landmarks in a symbolic representation. 
The resulting symbolic script is used to generate a 
topological map of the route to introduce a more abstract 
representation of the route environment [21].  

After generating the topological map, the resulting 
symbolic representation is divided into segments and 
supplied to the motion planner as an initial path estimation 
of the route. The sampling-based technique processes each 
path segment to get minimal Cfree and finds an initial plan 
that takes any known obstacles into account. To calculate 
suitable footstep placements which should be processed by 
the humanoid robot to execute the path, we used the A* 
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search algorithm to generate the shortest and lowest cost 
sequence of footstep locations. The motion planner returns 
an optimal sequence of footstep locations according to the 
cost functions and plausible sets of footstep locations 
defined. The humanoid robot’s cameras are used to capture 
the current view and process it to recognize the landmarks 
which are present along the route. A color histogram and 
SIFT algorithms are used to recognize the route landmarks. 
The distance estimation between the robot and the processed 
landmark is calculated by triangulation [22].   

In the following subsections, the system building blocks 
will be explained. The implementation of the online 
algorithm for robot motion planning and the generation of 
the humanoid robot footstep location sequence will be 
elucidated in detail. 

 
Fig. 1. The motion planning system architecture 

A. Route Description and Topological Map Generation 
The route is described for the humanoid robot verbally by 

using our Route Instruction Language (RIL). It is intended 
as a semi-formal language for instructing robots and it is 
designed to be an intuitive interface that will be easy and 
natural for non-expert users to instruct their robots. Fig. 2 
shows an example of a route description from the railway 
station to the McDonald’s restaurant in our miniature city. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A route description from the railway station to the McDonald’s 
restaurant in our miniature city by using RIL. 

 After describing the route, the instruction interpreter 
parses the RIL instructions and then analyzes them 
syntactically. It also combines definitions from the lexicon 
according to the parse structure of the instruction, creating a 
symbolic representation of the route description. This 
symbolic script is represented in an abstract graphical 
representation as a topological map to describe relationships 

among features of the route environment, without any 
absolute reference system. The topological map prevents the 
robot from getting trapped in local loops or dead-ends in 
unknown environments. It supplies the robot with global 
information about the route in graph-like descriptions, where 
nodes correspond to significant, easy-to-distinguish 
landmarks, and arrows correspond to actions or action 
sequences that connect landmarks. Fig. 3 shows the 
generated topological map after processing the “railway 
station –McDonald’s” route. 

 
Fig. 3. The topological map from railway station to the McDonald’s 
restaurant in our miniature city. 

In the topological map representation, the blue arrows 
represent the estimated robot path, whereas the yellow 
dashed lines represent the positions of the landmarks. The 
rounded rectangles represent the processed landmarks and 
their colors indicate the type of landmark. Finally, orange 
circles indicate the start and destination points, whereas 
green circles represent intermediate nodes in the robot’s path 
[21]. 

B. Motion Planner 
The motion planner is used to accomplish autonomous 

biped locomotion. It allows the humanoid robot to take 
advantage of its bipedal capabilities and navigates in its 
surrounding environment. The planner operates at the level 
of footsteps and it ignores the lower-level details of leg 
movements and control. Its main task is to find a sequence 
of actions as close to optimal as possible that causes the 
robot to reach the goal location while avoiding the obstacles 
in the environment. The motion planner has two inputs as 
shown in Fig. 1. First, the symbolic representation of the 
processed route is supplied as an initial path estimation. The 
second is the output of the stereo vision and landmark 
detection stage which is processed during robot navigation. 
The motion planner consists of three main components: 
collision detection, path planning, and footstep planner. In 
the following paragraphs, the motion planning components 
will be presented in detail. 

$START( RailwayStation, right) 
$GO( forward, into, Street) 
$PASS( Saturn, left) 
$PASS( BurgerKing, right) 
$PASS( C&A, left) 
$BE( at, CrossRoads) 
$GO( forward, into, Street) 
$PASS( Church, left) 
$PASS( KarStadt, right) 
$BE( at, CrossRoads) 
$TURN( right) 
$GO( forward, into, Street) 
$PASS( TownHall, left) 
$STOP( McDonalds, left) 

Collision detection is considered to be one of the crucial 
factors in path planning. For humanoid robots, there is an 
effective and simple way to detect collision by choosing an 
appropriate bounding volume approximating the shape of 
the robot. A trajectory for the body-center of a humanoid 
robot is computed by approximating its shape by using one 
cylinder surrounding its body as shown in Fig. 4. A cylinder 
model is useful during humanoid robot turns and lateral 
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walking to calculate the actual processing space required. As 
the positions of the nearest obstacles to the robot are 
calculated by using triangulation, a cylinder model of the 
humanoid robot can be checked for obstacle avoidance in a 
constant time. Simply put, if the distance between the robot 
and the obstacle is known, then it will be compared to the 
radius of the cylinder model. When the robot walks 
straightforward or sideways, no additional space is needed. 
Therefore, the obstacle distance is compared to the cylinder 
radius plus the expected step distance. Otherwise, as 
humanoid robots are non-holonomic, they cannot turn in 
place without requiring additional space. For turns, the 
humanoid robot wants extra turning space in a cylinder 
model, and then the cylinder model is enlarged by twice the 
turn radius to let the humanoid robot turn in a specific 
direction. Therefore, such an approximation enables a 
humanoid robot to find paths in real-time and includes 
actions such as walking sideways through a narrow space. 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Approximating the HOAP-2 humanoid robot shape by using one 
cylinder.  

The second component of our motion planner is the path 
planning stage which processes the route description as 
segments. Each segment represents the distance between 
two adjacent landmarks in the robot path.  It is processed as 
an independent path with its own start and end points. The 
path planning stage is implemented by using a simplified 
sampling based algorithm which represents a faster practical 
solution of discovering the search space. It returns only the 
path not the ability to execute that path. We used the 
probabilistic roadmap approach (PRM) to sample the C-
space, retrieve Cfree, and determine the robot path.  A crucial 
ingredient of that approach is a sampling algorithm that 
samples the Cfree by using a medial axis approach which 
returns with the minimal free search space to avoid the 
computational complexity of generating a denser search 
area. The PRM approach consists of a preprocessing phase 
and a query phase. In the preprocessing phase, collision-free 
configurations – called samples – are generated which can 
be considered as the vertices of the roadmap. Then, a 
number of attempts are made to connect each sample to its 
nearest neighbors to generate a roadmap graph (G). In the 
query phase, the start and goal configurations for each 
segment are connected to the graph. The path is obtained by 
performing a  shortest path query on the graph. To avoid bad 
estimations for the path planner, we used limited time for 
processing and generating a roadmap graph. Finally, the Cfree 
will be divided into small cells of 6.5 cm width x 5 cm 

height to generate a search grid. The resulting grid of cells 
will be supplied to the footstep planner with the path graph 
to search for the best footstep placements of the humanoid 
robot. 

The footstep planner is used to get the shortest footstep 
placements between the start and the destination in each 
processed path segment. The A* path planning algorithm 
[10, 23] is popular due to its accuracy and calculation speed 
in searching for an optimal solution. It is used to generate 
the shortest and lowest-cost sequence of footstep locations 
to reach the target point. A* works by exploring grid nodes 
(cells) and calculating the cost function F(n) which is the 
sum of the following three functions: 

1) Step Cost G(n): This is  the cost of making the 
desired step from the start node to node n. It is calculated 
with respect to the values listed in Fig. 5. 
2) Estimated Heuristic Cost H(n): This is the estimated 
cost from node n to the goal. It uses a heuristic search to 
estimate the cost of the goal node and it minimizes the 
cost of the path so far. A* is optimal if the estimated cost 
to the goal is always underestimated. Since the shortest 
distance between two points is a straight line, Euclidean 
distance serves as a very accurately estimated cost to the 
goal, making A* well suited for fast computations. 

13 cm 

50
 c

m
 

3) Clearance Cost C(n): It is used to insure that the 
generated paths are directed to the middle of the empty 
space (Cfree) not adjacent to the obstacles. It indicates 
how far the robot is from an obstacle. It is a normalized 
cost that is inversely proportional to this distance d, so 
that the closer the point is from an obstacle the higher its 
cost, according to: 

                                   
d

dDC −
=                                      (1) 

where D indicates the clearance distance beyond which the 
node will be assigned a zero cost. 
 

 
Fig. 5. The step cost values of the A* search algorithm. 
 

After the cost functions have been calculated, the planner 
computes the optimal sequence of footstep locations to reach 
the desired goal. The robot actions are modeled by storing a 
symmetric collection of candidate footstep transitions for 
both feet. A sequence of footstep placements to reach a goal 
in an environment is computed from a discrete set of 
feasible footstep locations corresponding to stable candidate 
stepping motion trajectories. The planner returns the 
solution as an ordered list of the footsteps which should be 
processed to reach the goal. The motion planner algorithm is 
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shown in Fig. 6. The planner searches the space until it finds 
a path to the goal or exceeds a specified time.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 6. Motion planner Algorithm 
 
where Cf is the candidate footstep displacement and has five 
arguments: start step, step cost, estimated heuristic cost, 
clearance cost, and the desired step. The T is footstep 
transition which calculates action effects, A is the set of 
possible actions that can be commanded to the humanoid 
robot, and E is the set of environments. Gn, Hn, Cn are step, 
heuristic, and clearness costs, respectively. P0 and Pb 
represent the start and best points. The maximum allowed 
time of the footstep search is tmax to prevent end loops. 

C. Motion Trajectory Generator 
After the footstep placements are estimated, the walking 

parameters are calculated and sent to the humanoid robot’s 
actuators to generate its motion. We considered the walking 
process as a symmetric, periodic and smooth motion. The 
ZMP walking pattern is used to produce humanoid robot 
gaits as dynamic and stable as possible to execute the 
robot’s motion. The foot placement actions indicate the 
motion, turns, and change of orientation actions. These 
actions are divided into six humanoid footstep placement 
actions: straightforward, straight backward, turn right, turn 
left, sideways right, and sideways left. Table 1 shows some 
foot placement actions and their parameters for the HOAP-2 
humanoid robot. 

On the other hand, the robot's head is moved depending on 
the direction of landmarks and the movement range of the 
neck’s motors. The robot will tilt its head to the right and 
left to detect the landmarks which are located at the road 
sides. It also looks down to the floor to detect landmarks 
such as crossroads and street boundaries in the miniature 

city. The head orientations of the humanoid robot are 
divided into four actions: turn right, turn left, move up, and 
move down. The humanoid robot can turn its head by 45º in 
both the right and left directions. It can also raise its head by 
45º and lower it by 15º.  

Cf.Insert(P0, 0, 0, 0,NULL); 
foreach Segmenti Є Path do 

c←a configuration in Cfree 
V←V ∪ {c} 
Nc ←a set of nodes chosen from V 
 for each c0 ∈ Nc do 

if c0 and c are not connected in G then 
if a path between c0 and c is found then 

 add the edge c0c to E 
   end 
      while runningTime < tmax do 

Pb← Cf.ExtractMinimum(); 
if GoalReached(Pb, Pg) then  

   return Pb; 
end 

                 e←E(Pb.time); 
                A←F(Pb,e); 
               foreach a  Є A do 

Pn←T(Pb, a, e); 
Gn←LocationCost(e, Pn); 
Hn←ExpectedCost(e, Pn); 
Cn←ClearnessCost(e, D, d); 
Cf.Insert(Pn, Gn, Hn, Cn,  Pb); 

end 
        end 
end 

TABLE I 
HOAP-2 FOOT PLACEMENT ACTIONS 

IV. IMPLEMENTATION 
We have implemented our approach on the second 

generation of Fujitsu’s Humanoid for Open Architecture 
Platform (HOAP-2) [24]. HOAP-2 is equipped with 25 
servo actuators: six for each leg, four for each arm, one for 
each hand, two for the head, and one for its waist. It has four 
force sensing registers (FSRs) in each foot to detect reaction 
forces from the floor. It is also equipped with an 
accelerometer and gyroscope inside the torso. The vision 
system consists of two 0.25`` CMOS cameras, capable of 
capturing frames of 320X240 pixels at 25fps. 

The navigation task is described by the user as route 
instructions via a graphical user interface (GUI). The 
navigation process is executed in a miniature city which is 
built on a 5m x 3.2m area. It contains buildings of 
recognizable shapes and colors (such as the railway station 
and the town hall) and other buildings of unique 
characteristics and symbols as shown in Fig. 7. 

 

 
Fig. 7. The miniature city. 
 

We tested the proposed algorithm on simple routes (such 
as in Fig. 2) and it takes approximately 1.7 sec to process 
each segment in the processed route. Fig. 8 shows some 
snapshots of the “railway station – McDonald’s restaurant” 
route. We are still working on handling long and more 
complex routes which contain narrow passages.  

Action Straightforward Turn Right Sideways Right 
Footstep 
 Shape 

  
 
 
 
 

 

Distance 0-10 cm 0-10 cm 0-4 cm 
Angle 0º 0º-17º 0º-17º 

θ 

d 

θ

 
d 

d
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