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ABSTRACT

Astronomical images taken by ground-based telescopes suffer degradation due to atmospheric turbulence. This degradation can be
tackled by costly hardware-based approaches such as adaptive optics, or by sophisticated software-based methods such as lucky
imaging, speckle imaging, or multi-frame deconvolution. Software-based methods process a sequence of images to reconstruct a
deblurred high-quality image. However, existing approaches are limited in one or several aspects: (i) they process all images in
batch mode, which for thousands of images is prohibitive; (ii) they do not reconstruct a super-resolved image, even though an image
sequence often contains enough information; (iii) they are unable to deal with saturated pixels; and (iv) they are usually non-blind,
i.e., they assume the blur kernels to be known. In this paper we present a new method for multi-frame deconvolution called online blind
deconvolution (OBD) that overcomes all these limitations simultaneously. Encouraging results on simulated and real astronomical
images demonstrate that OBD yields deblurred images of comparable and often better quality than existing approaches.
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1. Introduction

Astronomical observation using ground-based telescopes is sig-
nificantly degraded by diffraction-index fluctuations caused by
atmospheric turbulence. This turbulence arises from local tem-
perature and density inhomogeneities and results in a time- and
space-variant point spread function (PSF). Often the PSF is as-
sumed to be invariant within a short time-period and a small re-
gion of space, called an isoplanatic patch. The coherence time
and the size of the isoplanatic patch depend on the strength of
the turbulence that is usually quantified by Fried’s parameter ro
(Fried 1978) ranging between 10−20 cm for visible wavelengths
at astronomical telescope sites. The coherence time for atmo-
spheric turbulence is effectively frozen for images with expo-
sure times shorter than 5−15 ms. Longer exposures effectively
perform a time average, and thereby irretrievably wipe out high
frequency information, making them bandlimited to angular fre-
quencies smaller than ro/λ, where λ is the wavelength of the ob-
served light. In contrast, short-exposures encapsulate informa-
tion up to the diffraction-limited upper frequency bound (which
is theoretically given by the ratio D/λwhere D denotes the diam-
eter of the telescope’s primary mirror). Figure 1 depicts this issue
for the simulated image of a single star and shows the radial av-
eraged modular transfer function (MTF) for diffraction-limited,
long- and short-exposure imaging.

The information carried by short exposures was first ex-
ploited by Labeyrie (1970), who proposed the averaging of
the power spectra of a sequence of short exposures to re-
tain diffraction-limited amplitude information. Shortly there-
after, Knox & Thompson (1974) extended Labeyrie’s idea by

⋆ This work was performed when all authors were affiliated with the
Max Planck Institute for Biological Cybernetics.
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Fig. 1. Imaging a single star through atmospheric turbulence: while the
angular resolution of a long exposure image (top left) is limited by the
strength of the atmospheric turbulence (commonly quantified by Fried’s
parameter ro), a short exposure image (bottom left) encapsulates infor-
mation up to the diffraction-limited upper frequency bound which is
proportional to the diameter D of the telescope’s primary mirror. The
right panel shows the radial averaged modular transfer function (MTF)
for diffraction-limited, short and long exposure imaging. While the long
exposure MTF falls to nearly zero at ro/λ, the average short expo-
sure MTF reaches intermediate levels up to the diffraction limited upper
frequency bound. The short exposure MTF was averaged over 5000 tri-
als. The simulation was performed for D/ro = 13.3.

suggesting a method for the recovery of the phase information,
which is not preserved by Labeyrie’s so-called stellar speckle in-
terferometric method. These early works revolutionized ground-
based astronomical observation with large telescopes and have
since led to a number of improved signal-processing methods
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(Lohmann et al. 1983; Stelzer & Ruder 2007) widely referred to
as speckle imaging techniques.

An alternative approach was proposed in the seminal work
of Ayers & Dainty (1988), who presented a blind deconvo-
lution algorithm (BD) for the problem of atmospherically de-
graded imaging. BD recovers object information from a blurry
and noisy observation without any additional measurement of
the distortion. The BD of a single observation is a severely ill-
posed problem: there are an infinite number of solutions, and
small perturbations of the data result in large deviations in the
estimate of the object. The ill-posedness can be alleviated to
some degree by confining the set of solutions to physically plau-
sible ones by introducing additional constraints or prior knowl-
edge. Another possibility is to use multiple images or to exploit
the partial information about wavefront distortion obtained from
wavefront-sensor data, as used in adaptive-optics based myopic
deconvolution algorithms.

Since the work of Ayers & Dainty (1988) BD has grown to
be a valuable tool in astronomical imaging and has been sub-
ject of numerous publications. Today a plethora of algorithms
exist that primarily differ in: (i) the data used; (ii) the a-priori
knowledge incorporated while deblurring; and (iii) the algorith-
mic approaches for estimating the object and its blur. For a good
overview of BD in the domain of astronomical imaging we refer
the reader to Kundur & Hatzinakos (1996); Molina et al. (2001);
Pantin et al. (2007).

Recently, electron-multiplying CCD cameras have enabled
capturing short-time exposures with negligible noise (Mackay
et al. 2001). This in turn has led to a new method: lucky imaging,
which can to some degree overcome atmospherically-induced
resolution limitations of ground-based telescopes (Law et al.
2006; Oscoz et al. 2008; Hormuth et al. 2008). The lucky imag-
ing idea is based on the work of Fried (1978) (who computed the
probability of getting a lucky frame, i.e., an image recorded at a
time instant of exceptionally good seeing). This idea proposes to
collect only the “best” frames available in a recorded sequence.
These “best” frames are subsequently combined to obtain a fi-
nal image of the object. Usually, out of a thousand images, only
a few are selected for the final reconstruction and most of the
observed frames are discarded.

This “wastage” can be avoided, and one can indeed use all
the frames to obtain an improved reconstruction as we will see
in Sect. 5.

Methods for multiframe blind deconvolution (MFBD) aim to
recover the image of a fixed underlying object given a sequence
of noisy, blurry observations. Each observation has a different
and unknown blur, which makes the deconvolution task hard.

Previous approaches to MFBD process all observed frames
simultaneously. Doing so limits the total number of frames that
can be processed. We show how the computational burden can
be greatly reduced by presenting online blind deconvolution
(OBD), our online algorithm that processes the input sequence
one frame at a time. Each new frame helps to gradually improve
the image reconstruction. This simplistic approach is not only
natural, but also has several advantages over non-online meth-
ods, e.g., lower resource requirements, highly competitive image
restoration (Harmeling et al. 2009), low to moderate dependence
on regularization or a priori information, and easy extension to
super-resolution1 and saturation-correction.

1 Here, super-resolution refers to techniques that are able to enhance
the resolution of a imaging system by exploiting the additional infor-
mation introduced by sub-pixel shifts between multiple low resolution
images of the same scene or object.

This paper combines preliminary work (Harmeling et al.
2009, 2010) in the context of astronomical imaging. In partic-
ular, the contributions of this paper are as follows:

(a) we show how to incorporate super-resolution while simulta-
neously performing blind deconvolution;

(b) we tackle saturation, a nuisance familiar to anyone who
works with astronomical images;

(c) we derive our MFBD algorithm in the framework of stochas-
tic gradient-descent; and

(d) we present results with images taken in a simple astronomer
setup, where one does not have access to sophisticated
equipment (e.g., adaptive optics), and computational re-
sources might be limited.

Before describing further details, let us put our work into per-
spective by briefly surveying related work.

2. Related work

MFBD. A multitude of multi-frame (or multiple-image) deblur-
ring papers discuss the non-blind deconvolution setup, where,
in addition to the image sequence the sequence of blur kernels
must be known as well. We do not summarize such methods here
because ours is a blind deconvolution method. Amongst multi-
ple frame blind approaches, the method of Schulz (1993) is per-
haps the earliest. Schulz used penalized likelihood maximiza-
tion based on a generalized expectation maximization (GEM)
framework. Closely related is Li et al. (2004), who also used
a GEM framework, but focused on choosing a good objective
function and regularizer for optimization. In contrast to our
work, both Schulz (1993) and Li et al. (2004) presented batch
algorithms that are computationally prohibitive, which greatly
limits the number of frames they can simultaneously process.

Sheppard et al. (1998) discussed the MFBD problem and
presented a procedure that also processes all frames at the same
time. They did, however, mention the possibility of incremen-
tal processing of frames, but gave an example only for the
non-blind setup. Their blind-deconvolution algorithm was based
on conjugate-gradients, for which they had to reparametrize
(e.g., x → z2) the variables to enforce nonnegativity. This
reparametrization has a long history in image deconvolution
(Biraud 1969), but numerically, the ensuing nonlinearity can be
damaging as it destroys the convexity of sub-problems.

More recently, Matson et al. (2008) also used the same non-
linear (x→ z2) reparametrization for solving MFBD with a par-
allel implementation of conjugate-gradients. Another approach
is that of Zhang et al. (2009), who incorporated a low-pass filter
into the MFBD process for suppressing noise, but again at the
expense of convexity.

Further MFBD work includes: Anconelli et al. (2006) who
considered methods for the reduction of boundary effects;
Zhulina (2006) who discussed the Ayers-Dainty algorithm; and
Löfdahl (2002) who permitted additional linear inequality con-
straints. We refer the reader to Matson et al. (2008) for even
more references – including those to early works – and a nice
summary of blind deconvolution for astronomy. Unlike our al-
gorithm, all the above mentioned blind deconvolution methods
are batch procedures; moreover none of them performs either
super-resolution or saturation correction.

Super-resolution. Numerous papers address the standard
super-resolution problem. For good surveys we refer the reader
to Park et al. (2003); Farsiu et al. (2004). However, most of these
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works are based on the assumption that the blur is known, and
only a few deal with the harder case of blind super-resolution.

The work most closely related to ours is Šroubek et al.
(2007), who propose a unifying framework that simultaneously
performs blind deconvolution and super-resolution. In Šroubek
et al. (2007, 2008) the authors show how a high-resolution image
can be obtained from multiple blurry and noise corrupted low-
resolution frames. However, their model assumes a priori knowl-
edge about both the image and the blur, and Šroubek et al. (2008)
themselves note that their method suffers from numerical insta-
bilities for super-resolution factors larger than 2.5. In contrast,
our approach exploits the abundance of available data, which for
moderate noise levels does not require imposing any image or
blur prior (except nonnegativity), leading to an overall simpler
algorithm. Moreover, our method is computationally more effi-
cient, since it is online.

3. The OBD algorithm

3.1. Problem formulation

For simplicity of exposition, our description will focus on
one-dimensional images and point spread functions (PSFs).
In Appendix A we cover the generalization to two-dimensions.

Let each observed (blurry and noisy) frame be denoted by yt,
the “true” unknown image by x, and each unknown PSF by ft.
Then, we use the observation model

yt = ft ∗ x + nt, t = 1, 2, . . . , T, (1)

where ft ∗ x represents convolution (circular or non-circular),
and nt denotes measurement noise. Further, on physical grounds
we assume both the image x and the PSF ft to be nonnegative.

3.2. Algorithm

First consider the case where given the next observation yt and
the current image estimate xt, we wish to compute the PSF ft.
Assuming the noise nt in Eq. (1) to be Gaussian distributed with
zero mean and incorporating nonnegativity, the PSF ft can be de-
termined by solving a nonnegative least-squares (NNLS) prob-
lem2. For a given observation frame yt and a current estimate xt,
we define the loss

ℓ(yt; x) = min
ft≥0
‖ yt − ft ∗ x ‖2. (2)

For a frame sequence y1, y2, . . . , yT , we aim to minimize the
overall loss by computing the image x that solves

min
x≥0

LT (x) =
1
T

T
∑

t=1

ℓ(yt; x). (3)

Problem (3) is not easy, because it is non-convex and its
optimal solution requires computing both x as well as the
PSFs f1, . . . , fT . Nevertheless, given our formulation, several
methods could potentially be used for minimizing LT (x). For ex-
ample, an ordinary gradient-projection scheme would be

xt+1 = P+
(

xt − αt∇LT (xt)
)

, t = 0, 1, . . . , (4)

where P+ denotes projection onto the nonnegative orthant; xt de-
notes the current image estimate; and αt is an appropriate step-
size. However, when the number of frames T is large, such an

2 This NNLS problem may be solved by various methods; we used the
LBFGS-B algorithm (Byrd et al. 1995).

approach rapidly becomes computationally impractical. Hence
we turn to a simpler method that processes the input one frame
at a time.

3.3. Stochastic gradient descent

A simple and often effective method for minimizing the overall
loss in Eq. (3) is stochastic gradient descent (SGD). This method
does not process all the frames simultaneously, but at step t it
picks (at random) some frame y and updates the current image
estimate xt as

xt+1 = P+
(

xt − αt∇ℓ(y; xt)
)

, (5)

where P+ and αt are as before; computing ∇ℓ(y; xt) requires
solving Eq. (2). By processing only one frame at a time,
SGD leads to huge computational savings. However, there are
two main difficulties: update rule (5) converges slowly; and more
importantly, it is sensitive to the choice of the step-size αt; a pop-
ular choice is αt = β/(t0 + t), where the constants t0 and β must
be tuned empirically.

We propose a practical modification to the step-size compu-
tation, wherein we instead use the scaled-gradient version

xt+1 = P+
(

xt − αtS t∇ℓ(y; xt)
)

, (6)

where S t is a positive-definite matrix. Also update rule (6) can be
shown to converge3 under appropriate restrictions on αt and S t

(Kushner & Yin 2003; Bottou 1998). In general, the matrix S t is
chosen to approximate the inverse of the Hessian of LT (x∗) for an
optimal x∗, thereby yielding quasi-Newton versions of SGD. But
a more straightforward choice is given by the diagonal matrix

S t = Diag
(

(xt + ε)/(F
T
t Ft xt + ε)

)

, (7)

where the Diag operator maps a vector x to a diagonal matrix
with elements of x along its diagonal. Also note that the divi-
sion in (7) is element-wise, Ft is the matrix representation of
the PSF ft (see Appendix A), and ε > 0 is a positive constant
which ensures that S t remains positive definite and bounded
(both requirements are crucial for convergence of the method).
The choice (7) can be motivated with the help of auxiliary func-
tions (e.g., as in Harmeling et al. 2009).

Remark: We note in passing that if one were to use αt = 1,
and set ε = 0, then although convergence is no longer guaran-
teed, iteration (6) takes a particularly simple form, namely,

xt+1 = xt ⊙ (FT
t y)/(F

T
t Ft xt), (8)

where ⊙ denotes the Hadamard (elementwise) product of two
vectors – this update may be viewed as an online version of the
familiar ISRA (see Daube-Witherspoon & Muehllehner 1986).

Note that for (7) the matrix F corresponds to the PSF f com-
puted via the NNLS problem (2) with y and x = xt. We call the
method based on iteration (6) online blind deconvolution (OBD)
and provide pseudo-code as Algorithm 1. We further note that
by assuming photon shot noise (Poisson-distributed) in Eq. (1)
instead of additive noise, we can also design a Richardson-Lucy
type iteration for solving Eq. (3).

3 One can show almost sure (a.s.) convergence of the objective, and
a.s. convergence of the gradient to the gradient at a stationary point.
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Input: Stream of images yt for t ≥ 1
Output: Reconstructed image x
initialize x1 with y1;
while another image yt+1 available do

t ← t + 1;
estimate ft by

ft = arg min f≥0‖ yt − f ∗ xt−1 ‖
2 (9)

update xt by

xt = P+
(

xt−1 − αt−1S t−1∇ℓ(y; xt−1)
)

(10)

end
return last estimate xt.

Algorithm 1: Online blind deconvolution (OBD).

4. Extending OBD

4.1. Super-resolution

In the OBD setup an entire sequence of frames is at our dis-
posal. Can we exploit this sequence to improve the image re-
construction beyond mere blind deconvolution? The answer is
“yes”. With a small increase in computational costs we can aug-
ment the basic algorithm and perform super-resolution. For long-
exposures that often lose higher-frequency structure (finer de-
tails) of the image due to averaging, such increased resolution is
particularly desirable.

To incorporate super-resolution into our framework we in-
troduce the resizing matrix

Dm
n = (In ⊗ 1T

m)(Im ⊗ 1n)/n, (11)

where In is the n × n identity matrix, 1n is an n dimensional
column vector of ones, and ⊗ denotes the Kronecker product.
The matrix Dm

n transforms a vector v of length m into a vector
of length n. The sum of v’s entries 1T

mv = 1T
n Dm

n v is preserved
(formally verified by applying identity (11) twice). This is a fa-
vorable property for images, as the number of photons observed
should not depend on the resolution. Note that even if the sizes n
and m are not multiples of each other, Dm

n will interpolate appro-
priately. Hence, the super-resolution factor, i.e., the ratio n/m,
is not restricted to be integral. Note that for m ≥ n, i.e. down-
scaling, the matrix operation corresponds to integrating neigh-
boring pixels weighted by their overlap with the new pixel grid.
Similarly for m < n, i.e. upscaling, the operation will take the
nearest neighbor, if n is divisible by m, or a weighted linear com-
bination of closeby pixels.

To avoid double indexing let n = ly be the length of y.
For super-resolution by a factor of s we choose x and f large
enough such that the vector f ∗ x has length sn. Then we replace
the loss ℓ(yt; x) by (cf. Eq. (2))

ℓ(yt; x) = min
ft≥0
‖ yt − Dsn

n ( ft ∗ x) ‖2. (12)

For this loss, a derivation similar to that for (7) yields the diago-
nal matrix

S t = Diag
(

(xt + ε)/((D
sn
n Ft)

TDsn
n Ft xt + ε)

)

, (13)

where Ft corresponds to ft obtained by solving (12).

4.2. Overexposed pixels

For astronomical images a common problem is saturation
of pixels due to overexposure, i.e., some pixels receive so
many photons that they exceed the peak intensity permitted
by the hardware. This saturation can be particularly confound-
ing if both bright and faint stars are present in the same
image, especially when some stars are orders of magnitude
brighter. Overexposed pixels impede not only deblurring but
also super-resolution and applications such as estimation of star
magnitudes.

However, since we have an entire sequence of observed
frames, tackling overexposed pictures is feasible. Here the at-
mospheric blurring proves to be helpful, since it creates non-
overexposed margins around a bright star whose center pixels
are overexposed. Our method is able to fit these margins and can
approximate the true star magnitude. Our approach essentially
consists of identifying saturated pixels and excluding them from
the computation of the objective function. This approach might
seem to be overly simple, but its success is deeply tied to the
availability of multiple frames. Specifically, since each frame
can have different pixels attaining saturation (different frames
are aligned differently), we have to check at each iteration which
pixels in the current image are saturated. To ignore these pixels
we define a diagonal weighting matrix (per frame) with entries,

Σt =

{

1 if yt < ρmax
0 otherwise (14)

along its diagonal. Hereby, we assume the value of a saturated
pixel to be ρmax (e.g. in the case of 16 bit images, ρmax = 65 535).
We can modify the updates to ignore saturated pixels by replac-
ing the Euclidean norm with a weighted norm ‖v‖2

Σ
= vTΣv. We

replace the loss ℓ(yt; x) by

ℓ(yt; x) = min
ft≥0
‖ yt − ft ∗ x ‖2Σt

. (15)

For this loss, following a derivation similar to (7) yields the di-
agonal matrix

S t = Diag
(

(xt + ε)/(F
T
t ΣtFt xt + ε)

)

, (16)

where as before Ft corresponds to ft obtained by solving (12).

Remark. One might ask whether we can recover pixels in x that
are saturated in most of the frames? The answer is yes, and can
be understood as follows. The photons corresponding to such a
pixel in x are spread by the PSF across a whole set of pixels
in each observed frame. Thus, if not all these pixels are always
saturated, the true value for the corresponding pixel in x can be
recovered.

5. Results on simulated data

To investigate how our algorithms performs on atmospherically
degraded short-exposure images, we first experiment in a con-
trolled setting with simulated data.

Following Harding et al. (1999), we generate a sequence of
200 PSFs with Kolmogorov random phase screens at a specified
ratio D/ro of the telescope diameter to the atmospheric seeing
parameter (Fried parameter) equal to 13.3. The strength of the
turbulence is chosen to create images recorded by a 26-inch tele-
scope through atmospheric turbulence of a coherence length of
approximately ro = 5 cm.
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Fig. 2. Simulation: from left to right: original object image of OCNR5,
typical PSF, blurred image.

Table 1. SNRs for different parameter settings of λ and σ2.

λ (×103) 0.01 0.02 0.04 0.16 10.0
σ2 (%) 2.0 2.0 2.0 2.0 2.0
SNR in dB 4.6 6.6 10.2 14.8 18.9

Figure 2 shows the original object, one out of the 200 PSFs,
and the noise-free short exposure image obtained by convolv-
ing the shown PSF with the object. The object is a rendered
model of the satellite OCNR5 used by Sheppard et al. (1998)
and was chosen because of its high dynamic range and its great
level of detail.

Before corrupting the images with noise, we add a constant
background b to the blurred image ft ∗ x. To simulate photon
noise we scale the pixel values (ranging between 0 and 255)
of each short exposure to varying large numbers of photons,
i.e. λ( ft∗x+b) and sample a new image z from the corresponding
Poisson distribution, i.e.

zt ∼ Poisson (λ( ft ∗ x + b)). (17)

For differing λ we can hereby simulate differing amounts of
photon shot noise. After scaling down by 1/λ, we add white
Gaussian noise with zero mean and a variance σ2 equal to two
percent of the maximal image intensity of the whole sequence to
model the readout noise common to CCD cameras,

nt ∼ Gaussian (0, σ2) (18)

yt =
zt

λ
+ nt. (19)

To quantify the amount of image noise we define the following
signal-to-noise ratio,

SNRt = 10 log10
Var(x)

Var(yt − x ∗ ft)
, (20)

where x denotes the true satellite image, yt the noise-corrupted
atmospherically degraded observation, and ft the PSF, respec-
tively. Var(x) denotes the variance of the pixel values of x. For an
entire sequence y1, y2, . . . , y200 we average over the computed
SNRs of all 200 frames, SNR = 1

200

∑200
t=1 SNRt. Table 1 shows

the computed SNR for different parameter settings that we use in
our experiments. Note that we use the SNR only to quantify the
amount of noise in the simulated data. To measure the quality of
the reconstruction we use relative error (explained below).

Figure 3 shows typical frames for different SNRs, each 256 ×
256 pixels in size, and the reconstructed object images of our
basic algorithm after having processed all 200 frames within one
sequence. The restored images shown are cropped to the size
of the observations. As initial estimates for the PSFs we chose
constant images of size 60 × 60 pixels, and as the initial estimate
of the object, an average over the first twenty observed frames
embedded in a 315 × 315 array of zeros.

As expected, the quality of the reconstruction suffers as the
SNR decreases, which is also reflected quantitatively in Fig. 4,
where we plot the relative error ‖x − x̂‖/‖x‖ of the reconstructed
image x̂ as a function of observed frames and the correspond-
ing SNR.

Evidently, for high SNRs the reconstruction error decreases
the more observations have been processed and saturates to a
certain value dependent on the SNR. The error is higher the
lower the SNR of the available observations. The error does
not decrease strictly monotonically from frame to frame, but
more in a (long-term) stochastic gradient manner. As expected,
for lower SNRs, the unregularized reconstruction process can
even diverge. In this noisy regime, additional prior knowledge
about the object is necessary and regularization in the restora-
tion process is inevitable.

Figure 5 illustrates that enforcing smoothness by employing
Tikhonov regularization on the gradients of the reconstructed
image (i.e. a prior term η‖ ∇x ‖2 is added to the loss in (2)) is
capable of suppressing noise amplification and stabilizing the
deconvolution process even for low SNRs. As expected, when
the regularization parameter η is too small, the reconstruction
error still diverges (red dotted curve); similarly, when it is too
large, the error is increased due to oversmoothing (blue dashed
curve). A reasonable choice of the regularization parameter may
be obtained by setting it proportional to the noise variance. The
color framed image stamps show the reconstruction results for
different values of the regularization parameter.

To study the influence of the initialization and the order of
frames within one sequence, we reversed and randomly per-
muted the processing order of the input frames. Figure 6 shows
restored object images and the corresponding error curves for
a fixed SNR of 18.9 dB, respectively. As can be seen, the error
evolution of the deconvolution process is almost independent of
the particular ordering of the input frames. All curves converge
to a similar value with small variance, and visually, only little
(if at all) difference is discernible.

To numerically appraise the quality of our results, we did
a quantitative comparison with various state-of-the-art recon-
struction methods. Figure 7 shows the visually best observed
frame, a reconstruction with AviStack (Theusner 2009), a pop-
ular Lucky Imaging software. AviStack partitions the images
into small image patches of variable sizes, evaluates the qual-
ity of all observed frames for all image patches and then aligns
and stacks those image patches, that fulfill a certain quality
threshold. For the final reconstruction only the best percent
of observed frames was taken. Next to it, a Knox-Thompson
reconstruction is shown, which was obtained using Speckle1,
a reconstruction software by Stelzer (2009). For the reconstruc-
tion, 300 Knox-Thompson and 100 triple correlation phase pairs
were used. Finally, the rightmost image shows the result of
our basic algorithm without any additional regularisation. In all
cases no further post-processing was performed.

For a single isoplanatic patch the reconstruction with
AviStack is not substantially better than the visually best ob-
served frame, which is also reflected in the relative error over-
layed in white. In comparison, both the Knox-Thompson recon-
struction and the result by the basic algorithm of our proposed
method reveal much greater detail and higher spatial resolution.
Subjectively, our result is comparable in quality and resolution
to the Knox-Thompson reconstruction, which is quantitatively
confirmed by the negligible difference in the reconstruction er-
ror. Regarding runtime, the C implementation of Stelzer (2009)
takes about 15 min (when invoked carefully by an expert user)
for the entire reconstruction on a single core of an Intel(R)
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SNR = 4.6 SNR = 6.6 SNR = 10.2 SNR = 14.8 SNR = 18.9

Fig. 3. Simulation: typical observed frames (top row) and reconstructed images (bottom row) after having processed a sequence of 200 blurred
frames for different SNRs.

Fig. 4. Simulation: evaluation of relative reconstruction error for differ-
ent SNRs.

Core(TM) i5 processor with 2.67 GHz. Our Matlab implemen-
tation that is however not optimized for speed and logs large
quantities of intermediate results, takes about thrice as long.
A Python implementation using PyCUDA (Klöckner et al. 2009)
for GPU enabled computation of the discrete Fourier transform
(see Eqs. (A.2) and (A.3)) achieves a runtime of less than 10 min
on a low-cost NVIDIA(R) GeForce(TM) GT 430.

Our final set of experiments with simulated data evalu-
ates our algorithm’s super-resolution abilities. We generated
three sequences of atmospherically blurred, differently down-
sampled and noisy observations at a fixed SNR of 18.9 dB.
Panel A of Fig. 8 shows typical input images of these se-
quences together with their corresponding downsampling fac-
tors. On each of these three simulations we ran our algorithm
with various super-resolution factors. The results are shown in
Panel B of Fig. 8. The relative errors overlayed in white are
computed by linearly interpolating the reconstructed images to
the size of the ground truth image. The numbers suggest that
incorporating super-resolution does improve the results of the
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Fig. 5. Simulation: evaluation of the relative reconstruction error for dif-
ferent values of the regularization constant η at a fixed SNR of 4.6 dB.

deconvolution beyond mere interpolation, which validates the
merits of our approach.

6. Results on astronomical data

We now present results of our algorithm on a variety of actual as-
tronomical data. Some of the images were taken with an off-the-
shelf 12-inch f/10 MEADE LX200 ACF Schmidt-Cassegrain
telescope, some with the 24-inch f/8 Hypergraph Cassegrain
telescope “Ganymed” of the Capella Observatory located on
Mount Skinikas in Crete, Greece. The data consists of short-
exposure imagery of star constellations, the lunar Copernicus
crater, as well as long-exposure deep-sky images. We compare
our results against state-of-the-art methods used by both amateur
and professional astronomers, and show that our method yields
competitive if not superior results in all case studies.

6.1. Binary star

The first dataset is an image sequence of the binary star sys-
tem Epsilon Lyrae 2 of the constellation Lyra with an angu-
lar separation of 2.3′′ and a relative magnitude of 1.08. As we
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Fig. 6. Simulation: evaluation of the relative reconstruction error and fi-
nal reconstructed images after having processed 200 frames in chrono-
logical, reverse and various random orders at a fixed SNR of 18.9 dB.

0.3309 0.3257 0.1825 0.1810
bestframe Avistack Knox-Thompson our approach

Fig. 7. Simulation: final reconstructed images after having processed
200 frames at a fixed SNR of 18.9 dB with Avistack, Knox-Thompson
and our proposed method. The relative reconstruction error is overlayed
in white.

know precisely what to expect, our results on this dataset
serve as an additional proof of concept. The sequence con-
sists of 300 frames, each 132 × 112 pixels in size, taken with
a 24-inch Cassegrain telescope at the Capella Observatory and
an Imaging Source DFK 31BU03 CCD camera; the image scale
was 0.06′′ per pixel. The seeing was estimated to FWHM ≈ 0.8′′,
corresponding to a Fried parameter of ro ≈ 20 cm at a wave-
length of λ = 500 nm.

Figure 10 shows in three columns the first four and the last
two frames of the processed sequence and illustrates schemati-
cally how our method works. Each row shows from left to right
the observed image yt, the corresponding PSF ft estimated by
our algorithm and the current estimate xt of the true image we
want to recover. The PSF is chosen to be of size 30 × 30 pixels.

The image x is initialized by the first observed frame y1.
Then f2 is estimated from the second observed frame y2 and
the current estimate of x. After that we improve the estimate
of x by means of (10) and proceed with the next observed frame.
Figure 10 shows nicely that already after 40 frames we obtain a
good reconstruction.

Figure 9 shows an enlarged version of the result of our algo-
rithm after 300 iterations along with the estimated PSFs for each
color channel. Note how blurry the observed image yt is (left),
while our estimate of x is almost free of any degradation (mid-
dle). Furthermore, we see that both stars have almost identical
diffraction patterns which strongly resemble the estimated PSFs
(shown on the right for each color channel). This finding justi-
fies our assumption about a constant PSF for the whole image.
From the final reconstructed image we determined a separation
of 2.28′′ and a magnitude ratio of 1.08, which is in excellent
accordance with the literature.

6.2. Copernicus crater

To evaluate our algorithm on an extended celestial object, we ap-
plied it to a sequence of short exposures of the Copernicus crater,
a prominent lunar crater located in eastern Oceanus Procellarum.
The original recording was taken with a 14-inch f/10 Celestron
C14 and a DMK 31 AF03 CCD camera from Imaging Source
at a frame rate of 30 fps near Frankfurt, Germany (courtesy
Mario Weigand). It consists of 2350 frames in total, where each
frame is 1024 × 768 pixels in size. To meet our assumption of
a constant PSF, we processed only a small image patch of 70 ×
70 pixels, which corresponds to a angular size of 0.92′′. In this
field of view the PSF is assumed to be constant, which is a valid
assumption for the seeing conditions at the time of recording.

The top row of Fig. 11 shows the selected region of the cen-
tral peak in the Copernicus crater and typical observed frames.
The image patches were aligned on a pixel scale before pro-
cessing to reduce computational costs4. For reconstruction all
2350 observed frames were taken into account.

The bottom row of Fig. 11 shows a comparison of dif-
ferent reconstruction methods. Panel (a) of Fig. 11 shows the
visually best observed frame, Panel (b) a reconstruction with
AviStack (Theusner 2009), for which the best ten frames were
taken into account. In Panel (c) a Knox-Thompson recon-
struction is shown, which was done with Stelzer (2009) us-
ing 300 Knox-Thompson and 100 triple correlation phase pairs.
Finally, Panel (d) shows the result of our basic algorithm and
Panel (e) the result two times super-resolved. In all cases no fur-
ther post-processing was performed.

As before, within a single isoplanatic patch the result of
AviStack seems to be not considerably better than the visu-
ally best observed frame. In contrast, the Knox-Thompson re-
construction reveals greater detail and higher spatial resolution.
Subjectively, our result is comparable if not superior in qual-
ity and resolution to the Knox-Thompson reconstruction. The
two times super-resolved reconstruction seems to reveal even
more detail.

6.3. Orion Trapezium

In this experiment, we used a 12-inch f/10 Meade LX200 ACF
Schmidt-Cassegrain telescope and a AVT PIKE F-032B un-
cooled CCD camera to record a short video (191 frames ac-
quired at 120 fps) of the Trapezium in the constellation Orion.
The exposure time of the individual frames was sufficiently short
to “freeze” the atmospheric turbulence and thus retain the high-
frequency information which is present in the atmospheric PSF –
see Fig. 12 for sample frames.

The Orion Trapezium is formed by four stars ranging in
brightness from magnitude 5 to magnitude 8, with angular sep-
arations around 10′′ to 20′′. Here it should be mentioned, that
our assumption of a constant PSF throughout the field of view is
strongly violated. However, by resorting to early stopping in this
case, we avoid overfitting the PSF. The first row of Fig. 13 shows
from left to right (a) an enlarged unprocessed frame; (b) the de-
convolution results obtained by the basic algorithm; (c) the result
using the proposed method to handle saturation; and (d) the re-
sults if we additionally apply the proposed method for four times
super-resolution. The bottom row shows a closeup of the bright-
est star within the Trapezium. Panel (e) of Fig. 13 shows the star

4 Note, that a PSF can account for translational motion but necessitates
a PSF size as large as the translation amplitude, which might increase
the computational cost for severe motion.
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Fig. 8. Simulation: final reconstructed images (panel B)) after having processed 200 frames for differently downsampled input images (panel A))
and various super-resolution factors at a fixed SNR of 18.9 dB. The downsampling and super-resolution factor is abbreviated with DF and SR
respectively. The displayed number corresponds to the relative reconstruction error.

Fig. 9. Binary star system Epsilon Lyrae 2: typical observed image y300

(left), reconstruction x after 300 iterations (middle), estimated PSFs f300

for each color channel. Note the subtle differences in the PSFs due to
wavelength dependent diffraction. Hence, the color channels are not
perfectly aligned.

profiles obtained by slicing as indicated by the colored lines in
the image stamps (a)−(d).

An important application in astronomy is the measurement
of the brightness of stars and other celestial objects (photome-
try). To this end, a linear sensor response is required (for our
purposes, the used CCD sensor may be assumed linear). The
intensity counts can then be translated into stellar magnitudes.
Clearly, this is not directly possible for stars that saturate the
CCD (i.e., where so many photons are recorded that the ca-
pacities of the pixels are exceeded). However, we can use the
proposed method for deconvolution with saturation correction
and reconstruct the photon counts (image intensities) that would
have been recorded had the pixels not been saturated; then we
convert these into ratios between star intensities, i.e. differences
between stellar magnitudes. For the difference between two star
magnitudes, we use the formula m1 − m2 = −2.5 log10 p1/p2
where p1 and p2 are the pixel values of two stars in the recon-
structed image. We do this for all Trapezium stars relative to the
brightest star C and obtain encouraging results (see Table 2).

t yt = ft * xt
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Fig. 10. Binary star system Epsilon Lyrae 2: schematic illustration of the
temporal evolution. From left to right: observed image yt (left), estimate
of the corresponding PSF ft and reconstruction xt after t timesteps.
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overview example sequence of 12 observed frames

(a) visually best frame (b) AviStack (c) Knox-Thompson (d) our approach (e) our approach
2x super-resolved

Fig. 11. Copernicus Crater: top panel: full frame with extracted image patch marked by white square (left) and example sequence of 12 ob-
served frames. Bottom panel: comparison of results of different reconstruction algorithms (from left to right): visually best frame, AviStack,
Knox-Thompson, our approach and our approach with two times super-resolution. All image results are shown without any post-processing. This
figure is best viewed on screen, rather than in print.

Fig. 12. Orion Trapezium Cluster: example sequence of observed frames, y1, . . . , y10.

Table 2. True star magnitudes (note that stars A and B have variable
magnitudes), true differences to star C, and estimated difference values
estimated after deconvolution without and with saturation correction.

Star C (ref.) A B D
True magnitude 5.1 6.7–7.5 8.0–8.5 6.7

A–C B–C D–C
True magnitude differences 1.6–2.4 2.9–3.4 1.6
Est. diff., deconv. w/o sat. cor. 0.2936 1.4608 –0.0964
Est. diff., deconv. w. sat. cor. 1.1955 2.7718 0.8124

Notes. Note that the results with saturation correction are closer to the
true differences.

6.4. Globular cluster M13

M13 is a globular cluster in the constellation Hercules, around
25 000 light years away, with an apparent size of around 20′.
It contains several 100 000 stars, the brightest of which has an
apparent magnitude of 12. Such faint stars cannot be imaged us-
ing our equipment for short exposures; however, long exposures
with budget equipment typically incur tracking errors, caused
by telescope mounts that do not perfectly compensate for the

rotation of the earth. In our case, the tracking errors induced
a significant motion blur in the images, which we attempted
to remove using the same algorithm that we used above on
short exposures. All raw images were recorded using a 12-inch
f/10 MEADE LX200 ACF Schmidt-Cassegrain telescope and a
Canon EOS 5D digital single lens reflex (DSLR) camera. The
whole sequence consists of 26 images with an exposure time
of 60 s each. The top row of Fig. 14 displays a long exposure
with motion blur (left panel and the twice super-resolved result
of our algorithm (right) applied to 26 motion degraded frames.
In the bottom row we clearly see details in our reconstructed
image (right) which where hidden in the recorded frames (left).
However, note that in the bottom right panel there appear also
some JPEG-like artifacts which might suggest that 26 frames
were not enough for two times super-resolution.

7. Conclusions and future work

In this paper, we proposed a simple, efficient, and effective mul-
tiframe blind deconvolution algorithm. This algorithm restores
an underlying static image from a stream of degraded and noisy
observations by processing the observations in an online fash-
ion. For moderate signal-to-noise ratios our algorithm does not
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(a) observed frame y1 (b) plain OBD (c) OBD with SC (d) OBD with SC and SR (e) stellar profile

Fig. 13. Orion Trapezium Cluster (from left to right): a) the first observed frame; b) x191 for basic algorithm; c) x191 for saturation corrected;
and d) x191 for saturation corrected and four times super-resolved. Top row shows the overall trapezium; bottom row shows the brightest star
enlarged. Panel e) shows the stellar profiles at the positions indicated by the coloured lines in plots a)−d).

Fig. 14. Globular cluster M13: (left) example observed frame, (right) result of saturation corrected, two times super-resolved multi-frame blind
deconvolution; (top) overview, (bottom) closeup. For better display the images have been automatically gamma corrected.

depend on any prior knowledge other than nonnegativity of the
PSFs and the images. Thus, in a sense our reconstruction is un-
biased since no specific image model is enforced. Moreover, our
formulation exploits the availability of multiple frames to incor-
porate super-resolution and saturation-correction.

We showed results on both simulated and real world astro-
nomical data to verify and demonstrate the performance of our
algorithm. We experimented with not only short-exposure im-
ages where the degradation is caused by atmospheric turbulence,
but also with long exposures that suffer from saturation and
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additional blur arising from mechanical inaccuracies in the tele-
scope mount. Our method yields results superior to or at worst
comparable to existing frequently used reconstruction methods.

Future work includes further building on the simplicity of
our method to improve it to work in real-time. This goal might
be achievable by exploiting fast graphical processing unit (GPU)
based computing. First attempts already yielded promising re-
sults in terms of speedup (see Sect. 5). Beyond computing im-
provements, two other important aspects are: (i) to explore the
spatio-temporal properties of the speckle pattern; and (ii) to in-
corporate and investigate additional regularization within the re-
construction process. The most challenging subject of future in-
vestigation is to extend our method to space-varying PSFs.

Appendix A: Implementation details

Although in Sects. 3 and 4 we only considered vectors, one-
dimensional convolutions, and vector-norms, all results naturally
generalize to two-dimensional images. However, efficiently im-
plementing the resulting algorithms for two-dimensional images
requires some care and handling of technical details.

A.1. Convolution as matrix-vector multiplication

We introduced f ∗ x as the convolution, which could be either
circular or non-circular. Due to linearity and commutativity, we
can also use matrix-vector notation to write

f ∗ x = Fx = X f . (A.1)

The matrices F and X are given by

F = IT
yW−1 Diag(WI f f )WIx, (A.2)

X = IT
yW−1 Diag(WIxx)WI f . (A.3)

Matrix W is the discrete Fourier transform matrix, i.e., Wx is the
Fourier transform of x. The diagonal matrix Diag(v) has vector v
along its diagonal, while Ix, I f , and Iy are zero-padding matri-
ces which ensure that Ixx, I f f , and Iyy have the same length.
Different choices of the matrices lead to different margin condi-
tion of the convolution.

For two-dimensional images and PSFs we have to consider
two-dimensional Fourier transforms, which can be written as
left- and right-multiplications with W, and represented as a sin-
gle matrix-vector multiplication using Kronecker products and
the vectorization operator vec(x), which stacks columns of the
two-dimensional image x into a one-dimensional vector in lexi-
cographical order; formally,

vec(Wx W) = (W ⊗W) vec(x), (A.4)

which follows from the identity (Horn & Johnson 1991)

vec(A B CT) = (C ⊗ A) vec(B). (A.5)

The zero-padding operations for two-dimensional images can be
written in a similar way.

A.2. Resizing matrices

The resizing matrix Dm
n can be implemented efficiently using

sparse matrices5. Resizing two-dimensional images can also

5 Defining for instance in Octave, D = kron(speye(m),

ones(n,1)’)*kron(speye(n), ones(m,1))/m; the matrix-vector
product D*v will be calculated efficiently.

be implemented by left- and right-multiplications: let x be an
m × n image, then Dm

p × (Dn
q)T is an image of size p × q. Using

Eq. (A.5) we can write this operation as the matrix-vector prod-
uct

vec(Dm
p x (Dn

q)T) = (Dn
q ⊗ Dm

p ) vec(x). (A.6)
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