
Mach Learn (2018) 107:859–886

https://doi.org/10.1007/s10994-017-5689-6

Online multi-label dependency topic models for text

classification

Sophie Burkhardt1
· Stefan Kramer1

Received: 31 January 2017 / Accepted: 26 October 2017 / Published online: 15 December 2017

© The Author(s) 2017

Abstract Multi-label text classification is an increasingly important field as large amounts

of text data are available and extracting relevant information is important in many application

contexts. Probabilistic generative models are the basis of a number of popular text mining

methods such as Naive Bayes or Latent Dirichlet Allocation. However, Bayesian models for

multi-label text classification often are overly complicated to account for label dependen-

cies and skewed label frequencies while at the same time preventing overfitting. To solve

this problem we employ the same technique that contributed to the success of deep learning

in recent years: greedy layer-wise training. Applying this technique in the supervised set-

ting prevents overfitting and leads to better classification accuracy. The intuition behind this

approach is to learn the labels first and subsequently add a more abstract layer to represent

dependencies among the labels. This allows using a relatively simple hierarchical topic model

which can easily be adapted to the online setting. We show that our method successfully mod-

els dependencies online for large-scale multi-label datasets with many labels and improves

over the baseline method not modeling dependencies. The same strategy, layer-wise greedy

training, also makes the batch variant competitive with existing more complex multi-label

topic models.

Keywords Multi-label classification · Online learning · LDA · Topic model

Editor: Zhi-Hua Zhou.

B Sophie Burkhardt

burkhardt@informatik.uni-mainz.de

Stefan Kramer

kramer@informatik.uni-mainz.de

1 Institute of Computer Science, Johannes Gutenberg-University of Mainz, Staudingerweg 9, 55128

Mainz, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5689-6&domain=pdf
http://orcid.org/0000-0002-5385-3926

860 Mach Learn (2018) 107:859–886

1 Introduction

Multi-label classification is the problem where each instance in a dataset is assigned multiple

labels. Typical application areas include texts, images, and biological datasets. In this paper

we focus on text datasets, in particular, datasets with many labels. While there is considerable

work on datasets with a moderate amount of labels, meaning several tens or hundreds of

labels at the most, dealing with larger label numbers is problematic for many multi-label

methods. However, in real world datasets, there often are large amounts of labels with skewed

frequencies. This poses a problem for most multi-label methods.

An important feature of multi-label datasets is that labels often exhibit dependencies.

Assume for example that a text has two labels, “Language” and “Programming”. This could

mean the text is about programming languages, showing that there is some overlap between

the two labels. Therefore there is a certain dependency between them, one that is perhaps

not exhibited by labels such as “Dog” and “Matrices”. A text about dogs is unlikely to

also be about matrices, whereas a text about languages has a certain probability to also

be about programming. Therefore, modeling dependencies has the potential to improve the

accuracy of multi-label classifiers. The potential improvement is expected to be higher when

the amount of training data for one of the labels is limited. For example if there are only

few documents on programming, but a lot of documents about languages, the dependency

between those labels could enhance the prediction of new documents about programming.

One could understand this as providing additional positive examples that describe a certain

aspect of documents about programming. A model that does not use dependencies only has

the few programming documents as positive examples. Experimental evidence by Read et al.

(2011) suggests that in cases where large numbers of training examples are available, the

modeling of label dependencies may be unnecessary or in some cases even detrimental. In

the streaming setting we deal with large amounts of training data, however, in real world data

sets most labels are rare and only few labels are very frequent. This means that despite the

large amount of data, the modeling of label dependencies might be extremely important if

the number of labels is high enough.

The method we propose in this paper is based on topic modeling using latent Dirichlet allo-

cation (LDA). The underlying multi-label approach was originally introduced as LabeledLDA

(LLDA) (Ramage et al. 2009) and not only has a competitive performance, but also the advan-

tage of interpretability of the resulting model. We can extract word clouds for each label and

human feedback may be incorporated in the priors of this generative model. The method was

extended to Dependency-LDA (Dep.-LLDA) by Rubin et al. (2012), who incorporated the

modeling of label dependencies to develop a method that is competitive with state-of-the-art

discriminative SVM-based methods. However, their method is a complex model with many

parameters and it is not usable in an online setting.

In this paper we propose a simplified version of Dependency-LDA to yield a practically

more appealing and well performing model that may be used in the batch as well as the online

setting. To make this simplification possible without sacrificing classification accuracy, our

method uses a greedy training strategy inspired by recent advances in neural networks training

to train the model one layer at a time. Similarly to boosting, the label level is learned on the

input directly while the next layer receives the output of the label level as input. Thereby,

two models are essentially stacked on top of each other during training and combined into

one larger model during inference. This approach can be justified by considering that the

first level learns the connection between labels and words where the labels are given during

123

Mach Learn (2018) 107:859–886 861

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Word clouds for the Ohsumed dataset after training for 100 iterations using SCVB-Dep.. The size

of the words is scaled according to their frequencies. Each word cloud corresponds to one label and includes

the 30 most frequent words for this label. The labels shown are a antibiotics, b multiple abnormalities, c

adenocarcinoma, d adrenal cortex hormones, e aerosols, f alopecia

training (see Figs. 1 and 2), whereas the higher level learns more abstract label dependencies

(see Figs. 3 and 4 for an example of learned label dependencies).

An example for an application area of online multi-label classification based on topic

modeling is the monitoring of news as they appear everyday. Our topic modeling method

allows the classification of newly arriving documents into predetermined categories, but also

to extract word clouds from each topic and thus identify terms or aspects that become relevant

over time. Furthermore, the model can be updated with new training data at any time. The

feasibility of such an approach has already been shown for unsupervised topic modeling

(AlSumait et al. 2008), however, until now an online supervised multi-label topic modeling

approach that models label dependencies is not available to our knowledge.

Our contributions are as follows: First, we introduce a new LDA topic model that models

label dependencies and can be used on streaming data. Second, we provide Gibbs sampling

equations for the batch version as well as variational Bayes update equations for the online

version of our method. Third, we show that this model is competitive with the previously

existing models in modeling label dependencies in the batch as well as the online setting on

a range of publicly available large-scale multi-label text datasets with thousands of labels.

2 Related work

The main challenge in multi-label classification is the exploitation of label dependencies.

Accordingly, Zhang and Zhou (2014) divide multi-label algorithms into three families. The

first-order strategy ignores dependencies and considers each label separately. Second-order

123

862 Mach Learn (2018) 107:859–886

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Word clouds for the Amazon dataset after training for 100 iterations using SCVB-Dep.. The size of

the words is scaled according to their frequencies. Each word cloud corresponds to one label and includes the

30 most frequent words for this label. The labels shown are a breakfast and cereal bars, b small animals, c

tourist destinations and museums, d vegetables, e assessment, f atlases and maps

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Label clouds for the Ohsumed dataset after training for 100 iterations using SCVB-Dep.. The size of

the labels is scaled according to their frequencies. Each label cloud corresponds to one topic and includes the

30 most frequent labels for this topic

123

Mach Learn (2018) 107:859–886 863

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Label clouds for the Amazon dataset after training for 100 iterations using SCVB-Dep.. The size of

the labels is scaled according to their frequencies. Each label cloud corresponds to one topic and includes the

30 most frequent labels for this topic

strategies consider pairwise dependencies between labels, e.g. by considering a ranking

between relevant and irrelevant labels. High-order strategies allow modeling of high-order

relations between labels. Classifier chains (Read et al. 2011) and RAKEL (RAndom k-

LabELsets) (Tsoumakas and Vlahavas 2007) are among the most popular high-order methods.

Other notable examples for high-order strategies include work by Ghamrawi and McCallum

(2005), who propose to learn label dependencies using conditional random fields and a

Bayesian network model of the label dependencies by Zhang and Zhang (2010). Learning

one global model of label dependencies may lead to overgeneralization in some cases, which

is why (Huang and Zhou 2012) introduced a model to learn local label correlations by

considering instance similarity in addition to global label dependencies. While high-order

strategies can model complex label dependencies, they are typically computationally more

expensive and do not scale well.

Multi-label classification algorithms are also commonly divided into two different types

(Tsoumakas and Katakis 2007): problem transformation methods and algorithm adaptation

methods. Problem transformation methods transform the multi-label classification problem

into a combination of single-label classification problems, e.g. each label or each label set is

predicted by a separate classifier. Algorithm adaptation methods adapt an algorithm to directly

solve the multi-label classification problem. Our algorithm is a variant of the algorithm

adaptation type since we only learn one model specifically for the multi-label task. One of

the most efficient and prominent multi-label classifiers is the Binary Relevance (BR) method

(Tsoumakas and Katakis 2007), a problem transformation method that learns one classifier

for each label and combines the predictions of all classifiers into a multi-label prediction.

This approach is simple yet often surprisingly effective, especially when a large amount of

123

864 Mach Learn (2018) 107:859–886

training data is available for each label (Read et al. 2011). However, BR does not take label

dependencies into account. Nevertheless, it is considered a standard baseline method in this

field. While BR is considered to be an efficient and scalable classifier, it still requires to learn

one classifier per label which can lead to very large models. Most multi-label algorithms

in the literature are even more inefficient, many have a complexity that is quadratic in the

number of labels [see e.g. Zhang and Zhou (2014), Wicker et al. (2012)], and therefore are

not applicable in the kind of large-scale setting we consider here. Recently, there have also

been some approaches using deep learning and neural networks, but none of them scales well

with very large label numbers (Wicker et al. 2016; Gouk et al. 2016; Zhang et al. 2017; Nam

et al. 2014).

In light of these issues, a new line of work on so-called extreme multi-label classification

has developed in recent years. This work is concerned with datasets having several hundred

thousand or even millions of labels and features. For example, FastXML (Fast eXtreme

Multi Label) by Prabhu and Varma (2014), an ensemble of decision trees, has prediction

cost that is logarithmic in the number of labels. Another method, PD Sparse (Primal Dual

Sparse approach to extreme multiclass and multilabel classification) by Yen et al. (2016)

has a training runtime sublinear in the number of classes or labels. Although we compare to

these two methods, our setting is a medium-large-scale setting as compared to the extreme

large-scale setting where these methods are applicable.

The first notable method to do multi-label classification based on latent Dirichlet allocation

(LDA) was the LabeledLDA (LLDA) model by Ramage et al. (2009). This work simply

builds a topic model where each topic corresponds to one label resulting in just one model

for all labels that can be trained and tested in feasible amounts of time. Each document

has a distribution θ over its labels that can be used for prediction. Furthermore, the method

can be used to extract relevant parts of a document for a specific label and to learn word

distributions for the different labels. It is suitable for large collections of data since the

training can efficiently be performed using Gibbs sampling. LLDA is therefore a simple and

efficient method with many advantages. Another related LDA method is the author-topic

model by Rosen-Zvi et al. (2004). It is used to model distributions over topics for different

authors. It has not been used for classification, however, it has strong similarities to our

model. Instead of modeling distributions over topics for different authors, our model learns

distributions over labels for different topics and incorporates a document-topic distribution.

We show in Sect. 4.4 that our model is in fact a generalization of the author-topic model.

A related although unsupervised model is PAM (Li and McCallum 2006), which models

topic correlations, however in contrast to our model it learns correlations for each document

separately, which makes hyperparameter optimization a necessity.

The main shortcoming of LLDA is its failure to model label dependencies. This was

addressed by Rubin et al. (2012), who introduced Dependency-LDA (Dep.-LLDA), which

we will discuss in more detail in the following section. Dep.-LLDA consistently outperforms

LLDA in terms of classification performance, however, it also has a larger runtime and many

parameters. Our Fast-Dep.-LLDA addresses these shortcomings since it is simpler, has fewer

parameters, is usable in an online setting and has a competitive classification performance.

For LDA there exists an online variant for streaming data based on variational Bayes

introduced by Hoffman et al. (2010, 2013). Teh et al. (2006b) and Asuncion et al. (2009)

improved this work by collapsing out the latent variables. Foulds et al. (2013) combine the

online part of Hoffman et al. and Capp and Moulines (2009), and the collapsing part of

Asuncion et al., resulting in an online stochastic collapsed variational Bayes (SCVB) with

improved performance.

123

Mach Learn (2018) 107:859–886 865

Table 1 Notation for Dep.-LLDA Gibbs sampling models

W Words

T Topics

Y Labels

D Documents

Nd Number of words in document d

i , j ,y,k Indices over word tokens, documents, labels and topics resp.

z,c Label indicator variables

z′ Topic indicator variables

α,β,βy ,γ Hyperparameters (see generative processes)

φ, φ′ Word-label distribution, label-topic distribution

θ ,θ ′ Document-label, document-topic distribution

n
wi
−iy

Count for word wi with label y excluding the current token i

n.
−iy

Count for label y excluding the current token i

nd
−iy

Count for label y in document d excluding the current token i

n
y
−ik

Count for label y with topic k excluding the current token i

n.
−ik

Count for topic k excluding the current token i

nd
−ik

Count for topic k in document d excluding the current token i

Using these online variational Bayes methods one can perform online multi-label clas-

sification in the same way as LLDA performs batch classification. We develop a collapsed

variational Bayes formulation for our Fast-Dep.-LLDA, called SCVB-Dep., that allows online

training while learning label dependencies. This is in contrast to Rubin et al.’s Dep.-LLDA,

for which no such formulation exists.

3 Background

In this section we introduce Dep.-LLDA, a topic model for multi-label classification intro-

duced by Rubin et al. (2012). The notation is summarized in Table 1. Our proposed method

is an improved version of this model. The idea of Dep.-LLDA is to learn a model with two

types of latent variables: the labels and the topics. The labels are associated with distributions

over words (see, e.g., Figs. 1 and 2), while the topics are associated with distributions over

labels (see, e.g., Figs. 3 and 4). The topics capture dependencies between the labels since the

frequent labels in one topic are labels that tend to co-occur in the training data.

The generative process for Dep.-LLDA is given as follows:

1. For each topic t ∈ T sample a distribution over labels φ′
t ∼ Dirichlet (βY)

2. For each label y ∈ Y sample a distribution over words φy ∼ Dirichlet (β)

3. For each document d ∈ D:

(a) Sample a distribution over topics θ ′ ∼ Dirichlet (γ)

(b) For each label token in d:

i. Sample a topic z′ ∼ Multinomial(θ ′)

ii. Sample a label c ∼ Multinomial(φ′
z′)

(c) Sample a distribution θ ∼ Dirichlet (α′)

123

866 Mach Learn (2018) 107:859–886

(d) For each word token in d:

i. Sample a label z ∼ Multinomial(θ)

ii. Sample a word w ∼ Multinomial(φz)

The Gibbs sampling equations for the labels z and the topics z′ are given by:

P
(

z = y|w, z−i , z′
−i

)

∝
n

wi

−iy + β

n.
−iy + |W |β

(

nd
−iy + α′

)

(1)

P
(

z′ = k|c = y, c−i , z′
−i

)

∝
n

y
−ik + βy

n.
−ik + |Y |βy

(

nd
−ik + γ

)

, (2)

where n
wi

−iy is the number of times word wi occurs with label y. n.
−iy is the number of times

label y occurs overall, nd
−iy is the number of times label y occurs in the current document,

n
y
−ik is the number of times label y occurs with topic k, n.

−ik is the number of times topic k

occurs overall and nd
−ik is the number of times topic k occurs in document d . The subscript

−i indicates that the current token is excluded from the count.

The connection between the labels and the topics is made through the prior α′. To calculate

α′, Rubin et al. propose to make use of the label tokens c. According to these Md label tokens

α′ for document d is calculated as follows:

α′ =

[

η
nd

1

Md

+ α, η
nd

2

Md

+ α, . . . , η
nd

|Y |

Md

+ α

]

, (3)

where nd
y is set to one during training, and to the number of times a particular label was

sampled during testing, and η and α are parameters.

During testing however, instead of taking M samples and calculating α′ as described

above, a so-called “fast” inference method is used. This means α′ is calculated as follows:

α′ = ηθ̂ ′φ̂′ + α, (4)

where φ̂ and θ̂ are the current estimates of φ and θ . Because there are no label tokens during

testing, the sampled z variables are used directly instead of c. During training, since the labels

of each document are given, φ and φ′ are conditionally independent which allows separate

training of both parts of the topic model. Finally, they apply a heuristic to scale α′ according

to the document length during testing.

4 Proposed method

4.1 Fast-Dep.-LLDA

Our proposed Fast-Dep.-LLDA and Dep.-LLDA have strong similarities. The main difference

is the omission of θ and α′ in our model. Both models learn the label dependencies through

the label-topic distributions φ′. Dep.-LLDA passes the dependency information down via the

label-prior α′ and the label distribution θ . Our model, however, takes the more direct approach

of generating the labels from φ′ directly instead of using the intermediary distribution θ (see

the graphical models in Fig. 5a, c). Thereby Fast-Dep.-LLDA avoids a couple of heuristics

that are employed by Dep.-LLDA:

123

Mach Learn (2018) 107:859–886 867

φ w

z

θ

β

α

cφβy

η

α

z

θγ

|Y | N

|D|

M|T |

φ w

z

z

φd

θ

β

β

α

N

D

|Y |

|T |

φ w

z

z

φ

θ

β

βy

α

N

|D|

|Y |

|T |

(a) (b) (c)

Fig. 5 The graphical models of a Dep.-LLDA from Rubin et al. (2012), b PAM (Li and McCallum 2006), c

our Fast-Dep.-LLDA

1. Dep.-LLDA does not perform the calculation of the parameter α′ according to the pro-

posed model, but rather a fast inference method is used that was empirically found to be

faster and was leading to more accurate results.

2. The calculation of the parameter α′ itself involves two parameters η and γ that are

determined heuristically by the authors. It is unclear how these parameters could be

estimated from the data, except by doing expensive grid search.

3. During evaluation the parameter α′ is scaled according to the document length.

4. During evaluation, the label tokens c and in particular the number of labels are unknown.

To circumvent this problem, the authors replace the label tokens c by the label indicator

variables z during testing, thereby assuming that the number of labels is equal to the

document length.

The full generative process of our model is given in Table 2. Each document is only

associated with one document-specific distribution θ ′ over the topics. In comparison,

Dependency-LDA has two document-specific distributions, θ and θ ′, where θ is a label

distribution. The label distribution θ is implicitly contained in our model and can be obtained

by multiplying the document-specific topic distributions θ ′ with the global topic-label dis-

tributions φ′.

From the graphical model and the generative process we have the joint distribution of

Fast-Dep.-LLDA given by:

P(w, z, z′) = P(w|z, φ)P(z|z′, φ′)P(z′|θ ′) (5)

To obtain a collapsed Gibbs sampler, we have to integrate out φ, φ′, and θ ′ from the three

conditional probabilities respectively. The integrals can be performed separately as in Griffiths

and Steyvers (2004), resulting in the following conditional distribution for the latent variables

123

868 Mach Learn (2018) 107:859–886

Table 2 The generative process of Fast-Dep.-LLDA

For each topic t ∈ T sample a distribution over labels φ′
t ∼ Dirichlet (βY)

For each label y ∈ Y sample a distribution over words φy ∼ Dirichlet (β)

For each document d ∈ D:

1. Sample a distribution over topics θ ′ ∼ Dirichlet (α)

2. For each token in d:

2.1 Sample a topic z′ ∼ Multinomial(θ ′)

2.2 Sample a label z ∼ Multinomial(φ′
z′)

2.3 Sample a word w ∼ Multinomial(φz)

z and z′:

P
(

z = y, z′ = k|w, z−i , z′
−i

)

∝
n

wi

−iy + β

n.
−iy + |W |β

n
y
−ik + βy

n.
−ik + |Y |βy

(

nd
−ik + α

)

(6)

This sampling equation results in a blocked Gibbs sampler that samples two variables at a

time instead of just one: each word is assigned a topic and a label. For our model we propose

to use a basic Gibbs sampler that only samples one variable at a time instead. This may have

the disadvantage of making successive samples more dependent (Bishop 2006), but we find

that the advantages outweigh this potential disadvantage. Mainly, the sampling complexity

is reduced from O(|T ||Y |) to O(|T | + |Y |). Also, it makes more sense in our case to view

each document as a whole entity and sample the variables in a top down manner (see Fig. 2).

First, more abstract topics are sampled (line 3–5, Eq. 8), representing the label dependencies

of the document, and second, the labels are sampled based on these document-specific label

dependencies (line 6–8, Eq. 7).

The corresponding sampling equations for the alternate sampling of labels and topics are

given as follows. Given z′, the equation for sampling z is:

P
(

z = y|w, z′ = k, z−i , z′
−i

)

∝
n

wi

−iy + β

n.
−iy + |W |β

(

n
y
−ik + βy

)

(7)

The sampling equation for z′ follows from P(z′|z) = P(z,z′)
∑

z′ P(z,z′)
, where P(z, z′) =

P(z|z′, φ′)P(z′|θ ′). The same steps as for sampling z apply, giving:

P
(

z′ = k|z = y, z−i , z′
−i

)

∝
n

y
−ik + βy

n.
−ik + |Y |βy

(

nd
−ik + α

)

. (8)

4.2 Greedy layer-wise training

Intuitively, the model cannot benefit from a prior on the label distribution if the prior is

an untrained model of label dependencies. The abstract level of label dependencies has to

be trained first, before we can use it as a prior, otherwise the model is more likely to be

“confused” by the untrained prior.

Another view is to consider the “explaining away” effect as the problem. If a document

is well explained by a certain label, other labels become less likely. In supervised learning,

the labels that explain the document are given and ideally all of them should contribute to

the document-label distribution. Gibbs sampling can lead to certain labels being sampled

123

Mach Learn (2018) 107:859–886 869

1: for each iteration h = 1 . . . I do

2: for each document d in D do

3: for each word wi in d do

4: sample topic z
i

(Equation 8)
5: end for

6: for each word wi in d do

7: sample label zi (Equation 9)

8: end for

9: end for

10: end for

1: for each iteration h = 1 . . . I do

2: for each document d in D do

3: for each word wi in d do

4: sample topic z
i

(Equation 8)
5: end for

6: for each word wi in d do

7: sample label zi (Equation 7)

8: end for

9: end for

10: end for

Fig. 6 The pseudo code for batch Fast-Dep.-LLDA. a Greedy Algorithm, b Non-Greedy Algorithm

extremely rarely or not at all if the document is well explained by a subset of the documents

labels. During training this can be a problem, since similar labels become anti-correlated

through the observed words whereas in fact they are often correlated.

Instead of training the complete model at once, we propose a greedy layer-wise training

procedure inspired by Hinton et al. (2006) and Bengio et al. (2007). This means we begin by

training the label layer using Eq. (7). Since the topic-label distributions φ′ are not trained yet,

we assume they form a uniform prior on the label assignments z such that P(z|w) ∝ P(w|z).

This leads to the following equation for sampling label assignments z during training of Fast-

Dep.-LLDA:

P
(

z = y|w, z′ = k, z−i , z′
−i

)

∝
n

wi

−iy + β

n.
−iy + |W |β

(9)

The model is guaranteed to converge to the optimum given the chosen parameters. The

greedy model may be viewed as letting
∑

y βy → ∞ which means the Dirichlet becomes a

uniform distribution in case of symmetric βy . Greedy training corresponds to choosing the

most extreme parameter value for βy , which leads to the second term vanishing from Eq. (7)

completely. Empirically, we found that on all tested multi-label datasets the convergence was

better using greedy training than non-greedy training (compare the algorithms in Fig. 6). As

Fig. 7 shows for the EUR Lex datasets, the testset loglikelihood increases for the greedy

training procedure. For the non-greedy training procedure, the likelihood increases at first,

but then decreases slightly and remains at a much lower level. We suspect that this effect is

due to overfitting caused by the highly constrained supervised training. The greedy training

can be viewed as performing a kind of regularization by imposing a simplified prior during

the training of the lower level of the model.

As Hinton et al. note, in the supervised setting each label only provides a few bits of con-

straints on the parameters which makes overfitting a much bigger problem than underfitting

and going back to retrain the first level given the information from the topic level is likely to

do more harm than good. The procedure is also similar to boosting in that weak models are

stacked on top of each other, using the output of the previous models. Going back to improve

earlier models based on later ones is not likely to do the model any good. Dep.-LLDA inad-

vertently also employed this principle by training the two parts of the model separately. As

our model shows, it is however not necessary to plug in a completely observed variable c and

make the two parts conditionally independent (see Fig. 5a).

Following Bengio et al. we train the two layers at the same time while still maintaining the

greedy idea. By sampling with the above equation, the parameters of both layers are learned

together, meaning, the second layer can immediately start training on the output of the first

123

870 Mach Learn (2018) 107:859–886

Fig. 7 Testset loglikelihood on

the EUR Lex dataset for the

greedy and the non-greedy

version of our method. For the

non-greedy version we chose

βy = 0.01

-1.01x10
7

-1.005x10
7

-1x10
7

-9.95x10
6

-9.9x10
6

-9.85x10
6

-9.8x10
6

-9.75x10
6

 0 20 40 60 80

te
s
ts

e
t
lo

g
lik

e
lih

o
o

d
#iterations

Greedy Fast-Dep.-LLDA
Non-Greedy Fast-Dep.-LLDA

layer. This means we do not have to pick two separate parameters for the number of training

iterations.

The analogy to Hinton’s layer-wise greedy training is rather loose and, to our knowledge,

without a formal, mathematical connection: Both methods rely on the same idea, however,

our method does not have a theoretical justification in terms of complimentary priors or

convergence guarantees based on variational bounds. Both methods are based on the idea

of training a hierarchical generative model in a greedy, layer-wise manner. Both methods

perform well empirically as compared to their non-greedy counterparts. Thus, we do not

claim any connection that goes deeper than that one method being loosely inspired by the

other.

Overall we derived a compact model named Fast-Dep.-LLDA with only three parameters,

α, β, and βy , and an efficient Gibbs sampler with a greedy layer-wise training procedure.

4.3 Online Fast-Dep.-LLDA (SCVB-Dep.)

Scalability to large datasets or even potentially infinite data streams is an important require-

ment for many application contexts. Additionally to the training runtime, memory constraints

may become a problem when performing Gibbs sampling over large datasets since the whole

dataset has to be kept in memory. Online algorithms allow incremental updates using batches

of data, making them very memory efficient. We therefore present the online version of our

classifier, SCVB-Dependency, in this section. For this we develop a method similar to the

stochastic collapsed variational Bayes (SCVB) method by Foulds et al. (2013) with two

important differences. First, we derive variational update equations suitable to Fast-Dep.-

LLDA with its additional topic level. Second, we put forward a greedy layer-wise training

algorithm that is applicable in the online setting. This enables to train a classifier with only

one iteration over the dataset.

The fully factorized variational distribution of Fast-Dep.-LLDA is given by

q
(

z, z′, θ ′, φ, φ′
)

=
∏

i j

q(zi j |γi j)
∏

i j

q
(

z′
i j |γ

′
i j

)

∏

j

q(θ ′
j |α̃) (10)

for tokens i and documents j .

In the equation, we introduce an additional variational parameter γ ′ for the topic assign-

ments z′. However, computing the updates for γ and γ ′ separately would lead to unnecessary

123

Mach Learn (2018) 107:859–886 871

computational effort. We propose to instead compute an intermediate value λwyk which cor-

responds to the expectation of a joint occurrence of word w, label y and topic k which can be

expressed in terms of an expectation of the indicator function 1 which is one if these values

occur together and otherwise zero: E[1[wn = w, yn = y, kn = k]], where n is the nth token.

Algorithm 1 Online training/inference of SCVB-Dependency

1: Randomly initialize Nφ , N θ ′
, N Z :=

∑

w N
φ
w , Nφ′

and N Z ′
:=

∑

y N
φ′

y

2: for each minibatch M do

3: N̂φ := 0; N̂φ′
:= 0; N̂ Z := 0; N̂ Z ′

:= 0

4: for each document j in M do

5: for each burn-in pass do

6: for each token i do

7: Update λi j (Eq. 13)

8: Update N θ ′

j
(Eq. 16)

9: end for

10: end for

11: for each token i do

12: Update λi j (Eq. 13)

13: Update N θ ′

j
(Eq. 16)

14: N̂
φ
wi j

:= N̂
φ
wi j

+ C
|M|

∑

k λi j.k

15: N̂φ′
:= N̂

φ′

wi j
+ C

|M|λi j

16: N̂ Z := N̂ Z + C
|M|

∑

k λi j.k

17: N̂ Z ′
:= N̂ Z ′

+ C
|M|

∑

y λi j y

18: end for

19: end for

20: Update Nφ (Eq. 17)

21: Update Nφ′
(Eq. 18)

22: Update N Z (Eq. 19)

23: Update N Z ′
(Eq. 20)

24: end for

According to standard variational Bayes derivations, the lower bound for the posterior is

given by

L(q) = E[log(P(θ ′|α)] + E[log(P(z′|θ ′)] + E[log(P(z|z′, φ′)]

+ E[log(P(w|z, φ)] − H(q)

where H(q) denotes the entropy of the variational distribution.

The update for λi j is now obtained by expanding the lower bound and isolating all terms

containing λ,

L[λ](q) =
∑

N

∑

Y

∑

K

λwyk

⎛

⎝ψ(α̃k) − ψ

⎛

⎝

K
∑

j=1

α̃ j

⎞

⎠

⎞

⎠

+
∑

N

∑

Y

∑

K

∑

V

λwykw
v
n log

(

φvyφ
′
yk

)

adding Lagrange multipliers, computing the derivative with respect to λi j , and setting it to

zero. This leads to the following update equation for λi j , assuming that w is the word at

position i of document j .

123

872 Mach Learn (2018) 107:859–886

Table 3 Additional notation for SCVB-Dep. model

M Minibatch

C , C j Number of overall tokens, number of tokens for document j

ρφ , ρφ′
, ρθ ′

Update parameters between zero and one

N , N̂ Expected counts, estimate for expected counts

λwyk ∝ φwyφ
′
yk exp (ψ (α̃k)) (11)

If we include φ and φ′ in the variational distribution, marginalize over θ ′, φ, and φ′ and

only use the first term of the Taylor approximation as in Teh et al. (2006b), we arrive at the

update

λwyk ∝
N

φ
wi j ,y + ηw

N Z
y +

∑

w ηw

N
φ′

yi j
+ ηy

N Z ′

k +
∑

y ηy

(

N θ ′

jk + α

)

(12)

From this we can recover γwk =
∑

k′ λwkk′ and γkk′ =
∑

w λwkk′ by marginalization,

however we do not need these variational distributions for our updates, since it is straight-

forward to use λ directly. N Z is a vector storing the expected number of words for each

label. Nφ is the expected number of tokens for words w and labels y in the whole corpus.

Additionally, N Z ′
stores the expected number of tokens for each topic, Nφ′

is the expected

number of tokens for labels y and topics k, and N θ ′

j is the expected number of words per

topic, only for document j .

The stochastic update equations are derived analogously to the ones by Foulds et al. (2013),

except that we update φ, φ′ and θ ′ instead of just φ and θ . We use the terminology of Foulds

et al. for easier comparison and summarize the additional notation in Table 3. Updates are

done for minibatches M with update percentage ρ. C is the number of overall tokens and C j

is the number of tokens in document j .

For each token (the i th word in the j th document) we calculate λi j yk for label y and topic

k, where during training λ only has to be calculated for the labels of the document and should

be set to zero for all other labels.

λi j yk :∝ λW
i jyλ

T
i j yk (13)

λW
i jy :∝

N
φ
wi j ,y + ηw

N Z
y +

∑

w ηw

(14)

λT
i j yk :∝

N
φ′

yi j
+ ηy

N Z ′

k +
∑

y ηy

(

N θ ′

jk + α

)

(15)

Because we do greedy layer-wise training, we can train the two parts of the model

separately (see Algorithm 2), whereas during testing we have to use the full model (see

Algorithm 1). In Algorithm 2, the first layer treats every word as an input token and updates

the word-label distribution based on λW (lines 11–15), whereas the second layer treats each

label assignment as an input token and learns the label-topic distributions based on λT (lines

16–21). Since we want to train our model online, we cannot wait for the greedy algorithm to

learn the first layer before moving on to the second layer. Therefore, we resort to initializing

the input probabilities of the second layer by using the true labels. Thereby we can train both

layers simultaneously while not having to view any document more than once.

123

Mach Learn (2018) 107:859–886 873

The update equations using λ and the update parameter ρ for estimating Nφ , N Z , Nφ′
,

N Z ′
and N θ ′

are:
N θ ′

j :=
(

1 − ρθ ′
)

N θ ′

j + ρθ ′

C j

∑

y

λi j y (16)

Nφ :=
(

1 − ρφ
)

Nφ + ρφ N̂φ, (17)

where N̂φ = C
|M|

∑

i, j∈M

∑

k Y i, j,k and Y i, j,k is a |W | times |Y | matrix with the wi th row

corresponding to
∑

k λi, j,.,k and zero in all other places.

Nφ′

:=
(

1 − ρφ′
)

Nφ′

+ ρφ′

N̂φ′

(18)

where N̂φ′
= C

|M|
λi j .

N Z :=
(

1 − ρφ
)

N Z + ρφ N̂ Z , (19)

where N̂ Z = C
|M|

∑

i, j∈M

∑

k λi j.k .

N Z ′

:=
(

1 − ρφ′
)

N Z ′

+ ρφ′

N̂ Z ′

, (20)

where N̂ Z ′
= C

|M|

∑

i, j∈M

∑

y λi j y .

The whole inference algorithm is given in Algorithm 1. For each document we first do

zero or more burn-in passes to get a better estimate of N θ ′
(line 5–9). We then update the

estimates N̂φ , N̂φ′
, N̂ Z , and N̂ Z ′

for each token in the current minibatch (line 11–18). Finally,

for each minibatch the global estimates Nφ , Nφ′
, N Z , and N Z ′

are updated (line 20–23).

To sum up, we derived a variational Bayes learning algorithm for Fast-Dep.-LLDA to use

greedy layer-wise training in the online setting.

4.4 Reversed Fast-Dep.-LLDA

One problem when learning a topic model where each topic corresponds to a label is that

the labels might not be a good way to represent the data. There might be very similar labels

(e.g. model, models and modeling) that could be grouped together into a single topic, and

there might be very broad labels that could be subdivided into several topics. To get a better

representation of the data, we may use the same model with topics and labels swapped. This

means each label is associated with a distribution over topics.

We can also apply our model in this context, despite the fact that now the first layer of

topics cannot be trained without information from its prior since it is not supervised anymore.

The second layer however, since it is the supervised level, can be trained greedily by using

a uniform document-label distribution θ ′. Thereby we recover the well-known author-topic

model during training. During testing we would have to put the dependence on the prior

document-label θ ′ distribution back into the model.

This leads to the following update equations for label assignments z′ and topic assignments

z during training:

P
(

z = y|w, z′ = k, z−i , z′
−i

)

∝
n

wi

−iy + β

n.
−iy + |W |β

(

n
y
−ik + βy

)

(21)

P
(

z′ = k|z = y, z−i , z′
−i

)

∝
n

y
−ik + βy

n.
−ik + |Y |βy

(22)

During testing Eq. (8) has to be used instead of Eq. (22).

123

874 Mach Learn (2018) 107:859–886

Algorithm 2 Online greedy layer-wise training of SCVB-Dependency

1: Randomly initialize Nφ , N θ ′
, N Z :=

∑

w N
φ
w , Nφ′

and N Z ′
:=

∑

y N
φ′

y

2: for each minibatch M do

3: N̂φ := 0; N̂φ′
:= 0; N̂ Z := 0; N̂ Z ′

:= 0

4: for each document j in M do

5: for each burn-in pass do

6: for each label y do

7: Update λT
yj

(Eq. 15)

8: N θ ′

j
:= (1 − ρθ ′

)N θ ′

j
+ ρθ ′

C j λ
T
yj

9: end for

10: end for

11: for each token i do

12: Update λW
i j

(Eq. 14)

13: N̂
φ
wi j

:= N̂
φ
wi j

+ C
|M|

∑

k λW
i j

14: N̂ Z := N̂ Z + C
|M|

∑

k λW
i j

15: end for

16: for each label y do

17: Update λT
yj

(Eq. 15)

18: N θ ′

j
:= (1 − ρθ ′

)N θ ′

j
+ ρθ ′

C j λ
T
yj

19: N̂φ′
:= N̂φ′

+ C
|M|λ

T
yj

20: N̂ Z ′
:= N̂ Z ′

+ C
|M|

∑

y λT
yj

21: end for

22: end for

23: Update Nφ (Eq. 17)

24: Update Nφ′
(Eq. 18)

25: Update N Z (Eq. 19)

26: Update N Z ′
(Eq. 20)

27: end for

This model is not meant for classification, but for generating representative word clouds

that are not as much dependent on the given label assignments.

4.5 Prediction

For prediction in our model, we differentiate between two prediction strategies. For both

strategies, we fix the estimated matrices φ and φ′ and just modify the document counts to

get an estimate of θ ′. However, unlike in Dep.-LLDA, we do not have an explicit document-

label distribution incorporated in our model, we only have the document-topic distribution

θ ′. This is not a problem since we can simply use the conditional probabilities for z directly

in our prediction. The first strategy (S1) estimates the probability of label y in document

d given z′ = k as 1
nd

∑

w∈d

n
wi
−iy+β

n.
−iy+|W |β

n
y
−ik+βy

n.
−ik+|Y |βy

(nd
−ik + α). The second strategy (S2) is

more similar to the evaluation strategy of Dep.-LLDA. We estimate the posterior predictive

distribution over labels as P(z = y|φ′, θ ′) =
∑T

t=1 φ′
ytθ

′
dt . We then sample the labels from

a standard LLDA model with an asymmetric label prior αy = nd ∗ P(z = y|φ′, θ ′). This

means the conditional probability for sampling of the labels as well as estimation is given

by P(z = y|rest) ∝
n

wi
−iy+β

n.
−iy+|W |β

(nd y + αy). This evaluation strategy is more expensive since

we have to calculate the asymmetric label prior α, however, it allows to explicitly represent

the document-label distribution needed for prediction.

123

Mach Learn (2018) 107:859–886 875

We run ten chains for each classifier taking 100 samples from each chain to get an estimate

from each chain. These estimates are averaged again over the different chains to produce the

final estimate.

For Dep.-LLDA, the original publication uses an estimate of θ for the prediction. How-

ever to make the comparison fair and because we found it to deliver better results,1 we

also used an average over the conditional probability for z = y (Eq. 1) in this case:

1
nd

∑

w∈d

n
wi
−iy+β

n.
−iy+|W |β

(nd
−iy + α′).

In the case of the online models SCVB and SCVB-Dependency, we use a normalized

version of N Z for the prediction of each document.

4.6 Computational complexity

Both methods, Dep.-LLDA as well as our Fast-Dep.-LLDA have a computational complexity

of O(|Y | + |T |) for one sampling step since we have to sample one of |Y | labels and one of

|T | topics. For Fast-Dep.-LLDA this can be reduced to O(jt +kd), where jt is the number of

labels in topic t and kd is the number of topics in document d using more efficient sampling

techniques (Li et al. 2014). For Dep.-LLDA only the sampling of topics can be sped up,

leading to an improved complexity of O(|Y | + kd). Furthermore, the calculation of α′ leads

to a higher computation time of Dep.-LLDA as compared to our evaluation strategy S1 even

though the complexity is not affected as long as we do not assume that the document length

is much lower than the number of topics. Our second evaluation strategy S2 also involves

the calculation of α meaning the computational complexity is equal to that of Dep.-LLDA in

that case. Summing up, both methods have the same complexity, however, our method using

evaluation strategy S1 is expected to be faster in practice and when more efficient sampling

methods are used, our S1 method has an improved complexity.

5 Experimental results

5.1 Binary predictions

All compared classifiers produce predictions in the form of a probability distribution over

labels. To be able to compare on standard multi-label classification measures such as F-

measure, we need to transform them to binary predictions. The approach we take is to train

a regression model on the features x that predicts the number of labels to set to true for each

instance. We then round the resulting number to the nearest integer and set the most probable

labels to true. The reason for this approach is that it is independent of the used classifier,

meaning that we can predict the number of labels for each test instance once and use this

prediction for the output of each classifier. In experiments not reported here in detail, this

approach outperformed the approach with a cut-off set to an arbitrary fixed value. To train

the model, we use a subset of 10,000 training documents. As a regression method we chose

Lasso. Parameters were chosen via cross-validation.

5.2 Evaluation measures

We evaluate all batch classifiers on three ranking based and five binary classification measures.

The ranking based measures are micro- and macro-averaged AUC and the rank one error.

1 See the manuscript by Papanikolaou et al. (2015) for a formal justification of this approach.

123

876 Mach Learn (2018) 107:859–886

Table 4 Number of labels,

attributes, instances, cardinality

and average number of tokens per

document for the used datasets

Number of EUR Lex Ohsumed Amazon

Labels 3955 11,220 13,330

Attributes 5000 20,000 20,000

Instances 19,314 52,796 1,195,943

Cardinality 5.255 10.576 5.041

Av.#tokens 846 99 111

Micro-averaged AUC is indicative of the overall rankings of correct and incorrect labels over

all instances and labels, whereas macro-averaged AUC evaluates the rankings of all instances

per label and averages over the labels. The rank one loss is the error rate just for the highest

ranking label.

The main binary measures are micro- and macro-averaged F-measure:

Micro-F1 = 2
Micro-Precision ∗ Micro-Recall

Micro-Precision + Micro-Recall
, (23)

where Micro-Precision is defined as:

Micro-Precision =

∑

y∈Y tpy
∑

y∈Y (tpy + fpy)
, (24)

where Y is the set of all labels, tpy are true positives for label y and fpy are the false positives

for label y. Micro-Recall is defined as:

Micro-Recall =

∑

y∈Y tpy
∑

y∈Y tpy + fny

(25)

The macro-averaged F-measure is defined as:

Macro-F1 =
1

|Y |

∑

y∈Y

Precisiony ∗ Recally

Precisiony + Recally

(26)

In addition to the F-measure results, we also report the individual micro-precision and micro-

recall.

Furthermore we report the common Hamming loss measure. The Hamming loss is simply

the error rate over all instances and labels. In our setting with the large number of labels this

is usually a low value since most labels are correctly predicted as negative.

5.3 Datasets

We performed the evaluation on three publicly available multi-label text datasets with a focus

on large datasets with many labels. The dataset statistics are shown in Table 4. We used a

fixed testset for all datasets. EUR Lex is a dataset of legal documents concerning the Euro-

pean Union. It is hand annotated with almost 4,000 labels. For EUR Lex (Loza Mencía

and Fürnkranz 2010) the last 10% are reserved for testing. The Ohsumed dataset2 is a

subset of MEDLINE medical abstracts that were collected in 1987 and that have 11,220

2 http://trec.nist.gov/data/t9_filtering.html.

123

http://trec.nist.gov/data/t9_filtering.html

Mach Learn (2018) 107:859–886 877

different human-assigned MeSH descriptors. We simply used the provided abstracts and

MeSH descriptors and disregarded other information such as further qualifiers or authors.

We removed stop words and retained the most frequent 20,000 features. 10% of the data

were separated for the testset. The Amazon dataset consists of more than one million

product reviews, annotated with corresponding product categories. The original dataset is

available from http://manikvarma.org/downloads/XC/XMLRepository.html under the name

AmazonCat-13K. We randomly sampled 10,000 documents from the testing dataset since

our evaluation methods are not feasible for larger testsets. The features were further pruned

to exclude stopwords and only use the 20,000 most frequent features. Since the dataset is

only provided in a processed format and the authors were not able to provide the unprocessed

dataset, we took the following steps to arrive at a raw tokenized format: We normalized the

document length to 100. The feature values were then rounded to the nearest integer with a

minimum value of 1.

For the experiments with BR, a TF-IDF transform of the features is applied for all datasets.

5.4 Experimental setting

5.4.1 Topic modeling methods

For the batch setting we compared the original Dep.-LLDA to our Fast-Dep.-LLDA. Dep.-

LLDA serves as the main baseline since it is known to consistently outperform other topic

modeling methods such as LLDA. It is also closest to our model with respect to interpretabil-

ity. As discussed in the related work section, most other multi-label classifiers are not able to

deal with datasets of the size and the number of labels that we test with. The implementation

of Dep.-LLDA uses the fast inference method and applies the heuristic of scaling α′ accord-

ing to the document length. We use 100 topics for all datasets and methods. This is the same

default setting employed by Rubin et al. who reported that a higher number tended to induce

redundancy in the topics. We also did not observe a performance improvement. However,

we hypothesize that using nonparametric methods based on hierarchical Dirichlet processes

(Teh et al. 2006a) could possibly enable the use of larger topic numbers in future work. Addi-

tionally, we use β = βy = 0.01,
∑

γ = 10,
∑

α = 30 during testing, and η = 100. These

values also correspond to the values used by Rubin et al. and the values for β and βc are fre-

quently used in most literature on LDA topic models. The optimization of β is shown to have

no positive effect on results in previous work (Wallach et al. 2009), however, grid search for

optimal symmetric values would possibly lead to a small improvement in the batch setting.

Our main emphasis is on the streaming setting and a grid search could lead to poor results if

it is only done on the first batch. Fast-Dep.-LLDA uses the same values for β and
∑

α = 30.

To evaluate our online classifier, SCVB-Dependency, each classifier is first trained for

100 iterations on an initial batch of the data and then sequentially tested on the next batch

before training on it using only one iteration over each batch. As a baseline we compare to

the standard stochastic collapsed variational Bayes (SCVB) model by Foulds et al. (2013).

The update parameter ρ is determined as s
(τ+t)κ

for iteration t with s = 1, τ = 1000 and

κ = 0.9 for ρθ ′
and s = 10 and τ = 2000 for ρφ and ρφ′

. Additionally we use default

parameter values ηw = ηy = 0.01 and α = 0.1.

5.4.2 BR(SVM)

BR is the second baseline we chose because it does not consider label dependencies and

therefore allows assessing the effect of modeling dependencies. Binary Relevance learns

123

http://manikvarma.org/downloads/XC/XMLRepository.html

878 Mach Learn (2018) 107:859–886

one separate SVM for each label. The publicly available LIBLINEAR (version 1.98) is

used for the SVMs, implemented in C++. The SVM parameter C is optimized in the range

[10−3, . . . , 103] using 3-fold cross-validation for each label separately. The output of an SVM

for each label represents the distance to the decision surface. To transform this to probability

outputs, it would be necessary to apply Platt’s scaling or a similar method. Platt’s scaling

involves training a logistic regression model on the output of the SVM. In our case this would

mean, producing the SVM-output for the whole training set and training an additional logistic

regression model for each label. Possibly, this procedure would improve the SVM results

(we are not aware of any systematic study concerning this issue in multi-label classification),

however, we resorted to using the distances directly since the training of BR is already very

expensive without further postprocessing of the results. Previous work follows the same

procedure. Nam et al. (2014) and Rubin et al. (2012) also do not mention a transformation of

SVM outputs to probabilities. This is especially problematic in their evaluation, since they

do not use thresholds for each instance, but use a label-based cut-off for the whole testset, i.e.

they select the number of positive instances per label. For each label, outputs are generated

using a sigmoid as o1 = 1/(1 + exp(−distance)) and o2 = 1 − o1, where distance is the

distance to the decision surface. To be able to train a BR on our large datasets, we used our

own Python implementation and trained the models in parallel. Note that the use of linear

kernels is well supported by previous literature on text classification methods as they are not

only much more efficient in training, but also have a comparable performance to nonlinear

kernels in this high dimensional setting (Lewis et al. 2004).

5.4.3 FastXML

As a state-of-the-art method of comparison in extreme multi-label learning, we addition-

ally chose FastXML by Prabhu and Varma (2014). This model is an ensemble of decision

trees similar to random forests, but optimizing a different loss function leading to improved

results. The C-Code is provided on the author’s website http://manikvarma.org/downloads/

XC/XMLRepository.html and we used the default settings of the software.

5.4.4 PD sparse

PD Sparse is another multi-label method for extreme multi-label classification. Yen et al.

(2016) propose to use a margin-maximizing loss with L1-penalty yielding an extremely

sparse solution. This classifier is sublinear in the number of labels and thus applicable in even

more extreme settings with millions of labels. The C-Code is available at http://manikvarma.

org/downloads/XC/XMLRepository.html and default settings were used.

5.5 Results

5.5.1 Batch methods

As the results in both Tables 5 and 6 show, with regards to our method Fast-Dep.-LLDA,

evaluation strategy S2 is superior to evaluation strategy S1. This shows that it is important

to explicitly represent the label distributions during prediction. Table 5 shows the results for

the batch methods where the final distributions were obtained by averaging the distributions

from ten different chains. We can see that Fast-Dep.-LLDA has almost always the best results

for micro- and macro-averaged AUC. However, BR is better on the binary classification

measures. We assume that this is due to the issue discussed in Sect. 5.4.2. BR does by default

123

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

Mach Learn (2018) 107:859–886 879

Table 5 Classification and ranking measures for Binary Relevance with SVMs, Dep.-LLDA, our Fast-Dep.-

LLDA, and Fast-Dep.-LLDA with the more complex evaluation strategy S2

Dataset PD Sparse FastXML BR(SVM) Dep.LLDA F.Dep.LLDA-S1 F.Dep.LLDA-S2

Micro-averaged AUC

EUR Lex - - 0.8253 (4) 0.9565 (1) 0.9442 (3) 0.9564 (2)

Ohsumed - - 0.9186 (4) 0.9608 (3) 0.9618 (2) 0.9620 (1)

Amazon - - 0.9800 (4) 0.9902 (3) 0.9921 (2) 0.9931 (1)

Average rank - - 4.0000 2.3333 2.3333 1.3333

Macro-averaged AUC

EUR Lex - - 0.7680 (4) 0.9228 (2) 0.8993 (3) 0.9277 (1)

Ohsumed - - 0.8521 (4) 0.8929 (3) 0.8978 (2) 0.9077 (1)

Amazon - - 0.9478 (4) 0.9707 (3) 0.9749 (2) 0.9754 (1)

Average rank - - 4.0000 2.6667 2.3333 1.0000

Micro-averaged F-measure

EUR Lex 0.1227 (6) 0.1138 (5) 0.3802 (1) 0.3546 (2) 0.2697 (4) 0.3376 (3)

Ohsumed 0.3101 (6) 0.3656 (4) 0.4388 (1) 0.4011 (2) 0.3350 (5) 0.4002 (3)

Amazon 0.0186 (6) 0.0491 (5) 0.6113 (1) 0.3760 (2) 0.3226 (4) 0.3640 (3)

Average rank 6.0000 4.6667 1.0000 2.0000 4.3333 3.0000

Macro-averaged F-measure

EUR Lex 0.0166 (5) 0.0137 (6) 0.1492 (2) 0.1571 (1) 0.0712 (4) 0.1466 (3)

Ohsumed 0.1958 (1) 0.0554 (6) 0.1409 (4) 0.1786 (3) 0.0760 (5) 0.1819 (2)

Amazon 0.0322 (5) 0.0252 (6) 0.3185 (1) 0.1935 (3) 0.1342 (4) 0.1959 (2)

Average rank 3.6667 6.0000 2.3333 2.3333 4.3333 2.3333

Micro-averaged precision

EUR Lex 0.1279 (6) 0.1187 (5) 0.3964 (1) 0.3698 (2) 0.2794 (4) 0.3520 (3)

Ohsumed 0.2861 (6) 0.3373 (5) 0.4537 (1) 0.4147 (2) 0.3464 (4) 0.4138 (3)

Amazon 0.0183 (6) 0.0484 (5) 0.6211 (1) 0.3820 (2) 0.3278 (4) 0.3698 (3)

Average rank 6.0000 5.0000 1.0000 2.0000 4.0000 3.0000

Micro-averaged recall

EUR Lex 0.1179 (5) 0.1094 (6) 0.3652 (1) 0.3407 (2) 0.2607 (4) 0.3244 (3)

Ohsumed 0.3385 (5) 0.3990 (2) 0.4248 (1) 0.3883 (3) 0.3243 (6) 0.3875 (4)

Amazon 0.0189 (6) 0.0499 (5) 0.6018 (1) 0.3701 (2) 0.3176 (4) 0.3583 (3)

Average rank 5.3333 4.3333 1.0000 2.3333 4.6667 3.3333

Hamming loss

EUR Lex 0.0023 (5) 0.0023 (6) 0.0016 (1) 0.0017 (2) 0.0019 (4) 0.0018 (3)

Ohsumed 0.0035 (6) 0.0032 (5) 0.0011 (1) 0.0012 (3) 0.0013 (4) 0.0012 (2)

Amazon 0.0024 (6) 0.0023 (5) 0.0003 (1) 0.0005 (2) 0.0005 (4) 0.0005 (3)

Average rank 5.6667 5.3333 1.0000 2.3333 4.0000 2.6667

Rank one error

EUR Lex 0.7659 (5) 0.8156 (6) 0.3692 (1) 0.4148 (2) 0.5365 (4) 0.4363 (3)

Ohsumed 0.3395 (3) 0.1610 (1) 0.1726 (2) 0.4315 (5) 0.4330 (6) 0.4185 (4)

Amazon 0.9725 (6) 0.9227 (5) 0.1133 (1) 0.4993 (3) 0.5091 (4) 0.4981 (2)

Average rank 4.6667 4.0000 1.3333 3.3333 4.6667 3.0000

Results are produced by averaging distributions from 10 different sampling chains. S1 and S2 denote the different evaluation

strategies for our method. The best result for each dataset is highlighted in bold

123

880 Mach Learn (2018) 107:859–886

Table 6 Classification and ranking measures for Binary Relevance with SVMs, Dep.-LLDA, our Fast-Dep.-

LLDA, and Fast-Dep.-LLDA with the more complex evaluation strategy S2

Dataset Dep.-LLDA Fast-Dep.-LLDA (S1) Fast-Dep.-LLDA (S2)

Micro-averaged AUC

EUR Lex 0.9341 (2) 0.9236∗∗◦◦ (3) 0.9348∗◦ (1)

Ohsumed 0.9514 (3) 0.9553∗∗◦◦ (1) 0.9552∗∗◦◦ (2)

Amazon 0.9853 (3) 0.9804∗∗◦◦ (2) 0.9907∗∗◦◦ (1)

Average rank 2.6667 2.0000 1.3333

Macro-averaged AUC

EUR Lex 0.8765 (2) 0.8637∗∗◦◦ (3) 0.8885∗∗◦◦ (1)

Ohsumed 0.8565 (3) 0.8702∗∗◦◦ (2) 0.8796∗∗◦◦ (1)

Amazon 0.9570 (2) 0.9505 (3) 0.9634∗∗◦◦ (1)

Average rank 2.3333 2.6667 1.0000

Micro-averaged F-measure

EUR Lex 0.3335 (1) 0.2179∗∗◦◦ (3) 0.3293∗ (2)

Ohsumed 0.3856 (2) 0.3102∗∗◦◦ (3) 0.3866 (1)

Amazon 0.3574 (1) 0.2076∗∗◦◦ (3) 0.3388∗∗◦◦ (2)

Average rank 1.3333 3.0000 1.6667

Macro-averaged F-measure

EUR Lex 0.1466 (1) 0.0561∗∗◦◦ (3) 0.1449 (2)

Ohsumed 0.1673 (2) 0.0680∗∗◦◦ (3) 0.1711∗∗◦◦ (1)

Amazon 0.1774 (1) 0.0810∗∗◦◦ (3) 0.1712∗∗◦◦ (2)

Average rank 1.3333 3.0000 1.6667

Micro-averaged precision

EUR Lex 0.3477 (1) 0.2272∗∗◦◦ (3) 0.3433∗ (2)

Ohsumed 0.3987 (2) 0.3208∗∗◦◦ (3) 0.3998 (1)

Amazon 0.3632 (1) 0.2110∗∗◦◦ (3) 0.3442∗∗◦◦ (2)

Average rank 1.3333 3.0000 1.6667

Micro-averaged recall

EUR Lex 0.3204 (1) 0.2093∗∗◦◦ (3) 0.3163∗ (2)

Ohsumed 0.3733 (2) 0.3004∗∗◦◦ (3) 0.3743 (1)

Amazon 0.3519 (1) 0.2044∗∗◦◦ (3) 0.3335∗∗◦◦ (2)

Average rank 1.3333 3.0000 1.6667

Hamming loss

EUR Lex 0.0018 (1) 0.0021∗∗◦◦ (3) 0.0018∗ (2)

Ohsumed 0.0012 (2) 0.0014∗∗◦◦ (3) 0.0012∗◦ (1)

Amazon 0.0005 (1) 0.0006∗∗◦◦ (3) 0.0005∗∗◦◦ (2)

Average rank 1.3333 3.0000 1.6667

Rank one error

EUR Lex 0.4323 (1) 0.6323∗∗◦◦ (3) 0.4438∗◦◦ (2)

Ohsumed 0.4447 (2) 0.4721∗∗◦◦ (3) 0.4352∗∗◦◦ (1)

Amazon 0.5228 (1) 0.6875∗∗◦◦ (3) 0.5300∗∗◦◦ (2)

Average rank 1.3333 3.0000 1.6667

Results are produced from only one sampling chain
The best result for each dataset is highlighted in bold
∗/◦Statistically significant difference to Dep.-LLDA at a level of 0.05
∗∗/◦◦Statistically significant difference to Dep.-LLDA at a level of 0.01 according to a Wilcoxon signed-rank test/T-test

123

Mach Learn (2018) 107:859–886 881

not produce probabilities as outputs which might affect the ranking performance between

different instances. Our binary cut-offs are determined instance-wise which means that the

binary results only depend on the ranking of labels per instance. The only binary measure

where BR is not best is macro-averaged F-measure, where BR is only best on the Amazon

dataset, whereas the topic modeling methods are better on the other two datasets. TheAmazon

dataset is the largest dataset which might provide BR with enough training data to be able to

predict the labels without taking dependencies into account. Macro-averaged measures are

indicative for the performance on rare labels. We can therefore draw the conclusion that in

cases where the number of labels is large relative to the size of the training dataset, the topic

modeling methods are better at predicting rare labels.

For PD Sparse and the decision tree method FastXML we only provide the binary measures

and the ranking loss since the methods do not produce probability outputs. In comparison

to BR and the topic modeling methods, these two extreme multi-label methods are mostly

worse. Only for the Ohsumed dataset PD Sparse is best on macro-averaged F-measure

whereas FastXML is best on rank one error. While these extreme multi-label classification

methods are very scalable and could easily handle even bigger label and feature sets, they

are not competitive in terms of classification performance with the other medium-large-scale

multi-label classifiers.

In Table 6 we compare the results of the topic modeling classifiers on only one chain and

perform significance tests. Significance is tested using a t-test comparing our classification

methods to the original Dep.-LLDA. Fast-Dep.-LLDA (S2) is significantly better than Dep.-

LLDA on micro- and macro-averaged AUC. For the binary classification measures the results

are less pronounced. Fast-Dep.-LLDA (S2) has better results on the Ohsumed dataset, but

for the micro-averaged measures they are not significant. For macro-averaged F-measure,

Fast-Dep.-LLDA (S2) is significantly better for the Ohsumed dataset, but worse for the

other two datasets.

5.5.2 Online methods

Figure 8 shows the performance of the online methods for micro- and macro-averaged AUC.

Each classifier is first trained on an initial batch of instances for 100 iterations and then

subsequently tested on the next batch and updated on the next batch using one iteration. The

results are averaged over ten runs. The Fast-Dependency-SCVB method outperforms the

plain SCVB on all datasets and both measures. This shows that our method is able to learn

the dependencies in the online setting.

5.5.3 Runtime

All experiments are performed on an Intel Core i7-4770K CPU 3.50 GHz×8. All methods

were implemented in Java.

The training runtime of the batch vs. the online version of our method is plotted in Fig. 9

against micro-averaged AUC. On the EUR Lex and Amazon datasets, the online method

converges much faster than the batch method and is able to provide results long before the

batch method has even finished the first iteration. On the Ohsumed dataset, the batch method

converges faster. This is probably the case because the Ohsumed dataset has large feature

and label sets relative to the training dataset size. Therefore the overhead introduced by the

batch updates of the online method slows the model down. With a smaller feature set and/or

a larger training dataset, the online method would also be faster in this case. To sum up, the

123

882 Mach Learn (2018) 107:859–886

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 5000 10000 15000

M
ic

ro
-a

v
e

ra
g

e
d

 A
U

C

#instances processed

SCVB
SCVBDep

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 10000 20000 30000 40000

M
ic

ro
-a

v
e

ra
g

e
d

 A
U

C

#instances processed

SCVB
SCVBDep

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 30000 60000 90000

M
ic

ro
-a

v
e

ra
g

e
d

 A
U

C

#instances processed

SCVB
SCVBDep

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 5000 10000 15000

M
a

c
ro

-a
v
e

ra
g

e
d

 A
U

C

#instances processed

SCVB
SCVBDep

(d) (e) (f)

(a) (b) (c)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 10000 20000 30000 40000

M
a

c
ro

-a
v
e

ra
g

e
d

 A
U

C

#instances processed

SCVB
SCVBDep

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 30000 60000 90000

M
a

c
ro

-a
v
e

ra
g

e
d

 A
U

C

#instances processed

SCVB
SCVBDep

Fig. 8 Performance of our online classifier SCVB-Dependency compared to SCVB (micro-/macro-averaged

AUC). An initial batch is trained with 1000 instances. Classifiers are then updated with the next batch size

instances and tested on the following batch size instances. Results are averaged over ten runs with random

orderings of the datasets. a, d EUR Lex dataset, b, e Ohsumed dataset, c, f Amazon dataset

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10000 20000 30000

M
ic

ro
-a

v
e

ra
g

e
d

 A
U

C

runtime (ms)

SCVBDep
Fast Dependency (batch)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10000 20000 30000 40000 50000

M
ic

ro
-a

v
e

ra
g

e
d

 A
U

C

runtime (ms)

SCVBDep
Fast Dependency (batch)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100000 200000

M
ic

ro
-a

v
e

ra
g

e
d

 A
U

C

runtime (ms)

SCVBDep
Fast Dependency (batch)

(a) (b) (c)

Fig. 9 Runtime comparison: training runtime against testset performance in terms of micro-averaged AUC

(the test dataset is fixed). Compared are our online method SCVB-Dep. and our batch method Fast-Dep.-

LLDA. For the batch method, samples are only taken from a single chain which is why the performance of the

online method may be better after convergence. a EUR Lex dataset, b Ohsumed dataset, c Amazon dataset

online method is faster to train and converges earlier than the batch method given a large

enough training dataset.

5.5.4 Reversed Fast-Dep.-LLDA

For the reversed Fast-Dep.-LLDA model described in Sect. 4, three topics after training on the

Ohsumed dataset with 100 topics are shown in Fig. 10. For each topic we show the frequent

labels as a label cloud and the frequent words as a word cloud. As we can see, many labels

are strongly related and the topic clouds might in some cases be more useful descriptions of

the dataset content than the label clouds that result from non-reversed Fast-Dep.-LLDA.

123

Mach Learn (2018) 107:859–886 883

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Label and word clouds for Fast-Dep.-LLDA-Reversed on theOhsumed dataset. The 30 most frequent

words and 10 most frequent labels are shown for three exemplary topics. a Labels for topic 1, b words for

topic 1, c labels for topic 3, d words for topic 3, e labels for topic 6, f words for topic 6

6 Discussion

We introduced a batch method based on Gibbs sampling and an online method based on

variational Bayes. Gibbs sampling generally has the advantage of being unbiased, variational

Bayes is faster to converge but biased. Online variational Bayes has been shown to converge to

a local optimum of the variational Bayes objective function (Hoffman et al. 2010). For Gibbs

sampling we need many iterations for convergence. In practice, however, it might in some

cases be feasible to employ the Gibbs sampling method in an online setting, meaning that

we process each instance only once (Canini et al. 2009). Since the labels are predetermined

during training, it might not be necessary to perform more than one iteration over the training

dataset. However, there is no theoretical guarantee that this is the case. The higher the label

cardinality of a dataset, the longer it generally takes for the Gibbs sampler to converge.

Therefore, our online method is preferable in true online settings where a stream of data

arrives and it is not possible to store all arriving data.

We observed very different outcomes of the ranking performance as compared to the

classification performance of our method. While the ranking performance is mostly better

than that of Dep.-LLDA and the ranking performance of all topic modeling methods is

much better than that of BR with SVMs, the results are different for the binary classification

measures. Here, BR(SVM) clearly emerges as the overall best performing method, except on

macro-averaged F-measure. The performance on macro-averaged F-measure is an indication

for the good performance on rare labels due to the learned label dependencies. We suspect

that the ranking performance of BR(SVM) could be further improved by postprocessing

its prediction outputs. Nevertheless, BR(SVM) is a far more complex method in terms of

123

884 Mach Learn (2018) 107:859–886

training runtime. Despite parallelization, the training of BR for the Amazon dataset took

several days, whereas the training runtime of the topic modeling methods is a matter of

several minutes to a few hours on a single core. BR is therefore more expensive in terms of

runtime, but only preferable if the classification performance is the only important factor and

computational resources are not taken into account. In summary, the topic modeling methods

are more scalable and efficient, ranking performance seems to be better without requiring

expensive postprocessing, and most importantly, they may be used in the online setting where

real-time analyses are required.

7 Conclusion

We identified the main success factor of Dep.-LLDA, namely the separate training of topic and

label level. Based on this, we developed an improved version of the multi-label topic model

Dep.-LLDA, called Fast-Dep.-LLDA, which uses a greedy layer-wise training procedure. We

showed that Fast-Dep.-LLDA has theoretical as well as practical advantages. The sampling

procedure is consistent with the defined model and heuristics are avoided. In terms of ranking

performance, our method is superior to BR(SVM). While the label ranking performance is

superior to the existing Dep.-LLDA model, the binary classification performance is still

competitive. Overall our classifier is easier to implement than Dep.-LLDA, able to handle

thousands of labels as opposed to BR and most other multi-label methods, and therefore

much more appealing for practical applications. Additionally it can easily be modified so it

may be used for analyzing label dependencies, and generalizes the well-known author-topic

model (Rosen-Zvi et al. 2004).

We also introduced an online classifier called SCVB-Dep. that is based on the same

graphical model as Fast-Dep.-LLDA, but is trained in an online fashion. We showed that it

has a better performance than the non-dependency SCVB and that it converges faster than

Fast-Dep.-LLDA during training on large datasets.

In future work we would like to extend the presented online model by allowing it to add

new labels over time.

Acknowledgements The authors would like to thank PRIME Research for their support.

References

AlSumait, L., Barbar, D., & Domeniconi, C. (2008). On-line lda: Adaptive topic models for mining text streams

with applications to topic detection and tracking. In 2008 eighth IEEE international conference on data

mining (pp. 3–12).

Asuncion, A., Welling, M., Smyth, P., & Teh, Y. W. (2009). On smoothing and inference for topic models.

In Proceedings of the 25th conference on uncertainty in artificial intelligence, UAI ’09 (pp. 27–34).

Arlington, Virginia, United States: AUAI Press.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007). Greedy layer-wise training of deep networks.

Advances in Neural Information Processing Systems, 19, 153.

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). New

York: Springer.

Canini, K. R., Shi, L., & Griffiths, T. L. (2009). Online inference of topics with latent dirichlet allocation. In

Proceedings of the international conference on artificial intelligence and statistics (pp. 65–72).

Capp, O., & Moulines, E. (2009). On-line expectation-maximization algorithm for latent data models. Journal

of the Royal Statistical Society Series B, 71(3), 593–613.

123

Mach Learn (2018) 107:859–886 885

Foulds, J., Boyles, L., DuBois, C., Smyth, P., & Welling, M. (2013). Stochastic collapsed variational bayesian

inference for latent dirichlet allocation. In Proceedings of the 19th ACM SIGKDD international confer-

ence on knowledge discovery and data mining, KDD ’13 (pp. 446–454). New York, USA: ACM.

Ghamrawi, N., & McCallum, A. (2005). Collective multi-label classification. In Proceedings of the 14th ACM

international conference on information and knowledge management (pp. 195–200). New York: ACM.

Gouk, H., Pfahringer, B., & Cree, M. J. (2016). Learning distance metrics for multi-label classification. In 8th

Asian conference on machine learning (Vol. 63, pp. 318–333).

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. In Proceedings of the National Academy of

Sciences of the United States of America (Vol. 101, pp. 5228–5235). National Academy of Sciences.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural

Computation, 18(7), 1527–1554.

Hoffman, M., Bach, F. R., & Blei, D. M. (2010). Online learning for latent dirichlet allocation. In Advances

in neural information processing systems (pp. 856–864).

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. Journal of

Machine Learning Research, 14, 1303–1347.

Huang, S. J., & Zhou, Z. H. (2012). Multi-label learning by exploiting label correlations locally. In Proceedings

of the twenty-sixth AAAI conference on artificial intelligence, AAAI’12 (pp. 949–955). Toronto, Ontario,

Canada: AAAI Press.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). Rcv1: A new benchmark collection for text categorization

research. Journal of Machine Learning Research, 5, 361–397.

Li, W., & McCallum, A. (2006). Pachinko allocation: Dag-structured mixture models of topic correlations. In

Proceedings of the 23rd international conference on machine learning (pp. 577–584). New York: ACM.

Li, A. Q., Ahmed, A., Ravi, S., & Smola, A. J. (2014). Reducing the sampling complexity of topic models.

In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data

mining, KDD ’14 (pp. 891–900). New York, NY, USA: ACM.

Loza Mencía, E., & Fürnkranz, J. (2010). Efficient multilabel classification algorithms for large-scale problems

in the legal domain. In E. Francesconi, S. Montemagni, W. Peters, & D. Tiscornia (Eds.), Semantic

processing of legal texts—Where the language of law meets the law of language, lecture notes in artificial

intelligence (1st ed., Vol. 6036, pp. 192–215). Berlin: Springer.

Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., & Fürnkranz, J. (2014). Large-scale multi-label text

classification—Revisiting neural networks. In T. Calders, F. Esposito, E. Hüllermeier, & R. Meo (Eds.),

Proceedings of ECML-PKDD, Part II (pp. 437–452). Berlin, Heidelberg: Springer.

Papanikolaou, Y., Foulds, J. R., Rubin, T. N., & Tsoumakas, G. (2015). Dense distributions from sparse

samples: Improved Gibbs sampling parameter estimators for LDA. ArXiv e-prints.

Prabhu, Y., & Varma, M. (2014). Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label

learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery

and data mining, KDD ’14 (pp. 263–272). New York, USA: ACM.

Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled lda: A supervised topic model for

credit attribution in multi-labeled corpora. In Proceedings of the 2009 conference on empirical methods

in natural language processing: Volume 1, EMNLP ’09 (pp. 248–256). Stroudsburg, USA: Association

for Computational Linguistics.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification.

Machine Learning, 85(3), 333–359.

Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors and

documents. In Proceedings of the 20th conference on uncertainty in artificial intelligence, UAI ’04 (pp.

487–494). Arlington, Virginia, United States: AUAI Press.

Rubin, T., Chambers, A., Smyth, P., & Steyvers, M. (2012). Statistical topic models for multi-label document

classification. Machine Learning, 88(1–2), 157–208.

Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the

American Statistical Association, 101(476), 1566–1581.

Teh, Y. W., Newman, D., & Welling, M. (2006). A collapsed variational bayesian inference algorithm for latent

dirichlet allocation. In Advances in neural information processing systems (pp. 1353–1360).

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International Journal of Data

Warehousing and Mining, 2007, 1–13.

Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification.

In J. N. Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin, D. Mladenič, & A. Skowron (Eds.), Proceedings

of ECML (pp. 406–417). Warsaw, Poland: Springer.

Wallach, H. M., Mimno, D. M., & McCallum, A. (2009). Rethinking lda: Why priors matter. In Y. Bengio,

D. Schuurmans, J. Lafferty, C. Williams, A. Culotta (Eds.), Advances in neural information processing

systems 22 (pp. 1973–1981). Curran Associates Inc.

123

886 Mach Learn (2018) 107:859–886

Wicker, J., Pfahringer, B., & Kramer, S. (2012). Multi-label classification using boolean matrix decomposition.

In Proceedings of the 27th annual ACM symposium on applied computing, SAC ’12 (pp. 179–186). New

York, USA: ACM.

Wicker, J., Tyukin, A., & Kramer, S. (2016). A Nonlinear Label Compression and Transformation Method for

Multi-label Classification Using Autoencoders (pp. 328–340). Cham: Springer International Publishing.

Yen, I.E.H., Huang, X., Ravikumar, P., Zhong, K., & Dhillon, I. (2016). Pd-sparse: A primal and dual sparse

approach to extreme multiclass and multilabel classification. In Proceedings of the 33rd international

conference on machine learning (pp. 3069–3077). New York: ACM.

Zhang, L., Shah, S., & Kakadiaris, I. (2017). Hierarchical multi-label classification using fully associative

ensemble learning. Pattern Recognition, 70, 89–103.

Zhang, M. L., & Zhang, K. (2010). Multi-label learning by exploiting label dependency. In Proceedings of the

16th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’10 (pp.

999–1008). Washington, DC, USA: ACM.

Zhang, M. L., & Zhou, Z. H. (2014). A review on multi-label learning algorithms. IEEE Transactions on

Knowledge and Data Engineering, 26(8), 1819–1837.

123

	Online multi-label dependency topic models for text classification
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Proposed method
	4.1 Fast-Dep.-LLDA
	4.2 Greedy layer-wise training
	4.3 Online Fast-Dep.-LLDA (SCVB-Dep.)
	4.4 Reversed Fast-Dep.-LLDA
	4.5 Prediction
	4.6 Computational complexity

	5 Experimental results
	5.1 Binary predictions
	5.2 Evaluation measures
	5.3 Datasets
	5.4 Experimental setting
	5.4.1 Topic modeling methods
	5.4.2 BR(SVM)
	5.4.3 FastXML
	5.4.4 PD sparse

	5.5 Results
	5.5.1 Batch methods
	5.5.2 Online methods
	5.5.3 Runtime
	5.5.4 Reversed Fast-Dep.-LLDA

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

