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Online Multi-modal Distance Metric Learning
with Application to Image Retrieval
Pengcheng Wu, Steven C. H. Hoi, Peilin Zhao, Chunyan Miao, Zhi-Yong Liu

Abstract—Distance metric learning (DML) is an important technique to improve similarity search in content-based image retrieval.

Despite being studied extensively, most existing DML approaches typically adopt a single-modal learning framework that learns the

distance metric on either a single feature type or a combined feature space where multiple types of features are simply concatenated.

Such single-modal DML methods suffer from some critical limitations: (i) some type of features may significantly dominate the others

in the DML task due to diverse feature representations; and (ii) learning a distance metric on the combined high-dimensional feature

space can be extremely time-consuming using the naive feature concatenation approach. To address these limitations, in this paper, we

investigate a novel scheme of online multi-modal distance metric learning (OMDML), which explores a unified two-level online learning

scheme: (i) it learns to optimize a distance metric on each individual feature space; and (ii) then it learns to find the optimal combination

of diverse types of features. To further reduce the expensive cost of DML on high-dimensional feature space, we propose a low-rank

OMDML algorithm which not only significantly reduces the computational cost but also retains highly competing or even better learning

accuracy. We conduct extensive experiments to evaluate the performance of the proposed algorithms for multi-modal image retrieval,

in which encouraging results validate the effectiveness of the proposed technique.

Index Terms—content-based image retrieval, multi-modal retrieval, distance metric learning, online learning

✦

1 INTRODUCTION

One of the core research problems in multimedia retrieval

is to seek an effective distance metric/function for comput-

ing similarity of two objects in content-based multimedia

retrieval tasks [1], [2], [3]. Over the past decades, multimedia

researchers have spent much effort in designing a variety

of low-level feature representations and different distance

measures [4], [5], [6]. Finding a good distance metric/function

remains an open challenge for content-based multimedia re-

trieval tasks till now. In recent years, one promising direction

to address this challenge is to explore distance metric learning

(DML) [7], [8], [9] by applying machine learning techniques

to optimize distance metrics from training data or side infor-

mation, such as historical logs of user relevance feedback in

content-based image retrieval (CBIR) systems [6], [7].

Although various DML algorithms have been proposed

in literature [7], [10], [11], [12], [13], most existing DML

methods in general belong to single-modal DML in that they

learn a distance metric either on a single type of feature or

on a combined feature space by simply concatenating multiple

types of diverse features together. In a real-world application,

such approaches may suffer from some practical limitations: (i)

some types of features may significantly dominate the others

in the DML task, weakening the ability to exploit the potential
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of all features; and (ii) the naive concatenation approach may

result in a combined high-dimensional feature space, making

the subsequent DML task computationally intensive.

To overcome the above limitations, this paper investigates

a novel framework of Online Multi-modal Distance Metric

Learning (OMDML), which learns distance metrics from

multi-modal data or multiple types of features via an efficient

and scalable online learning scheme. Unlike the above con-

catenation approach, the key ideas of OMDML are twofold:

(i) it learns to optimize a separate distance metric for each

individual modality (i.e., each type of feature space), and (ii)

it learns to find an optimal combination of diverse distance

metrics on multiple modalities. Moreover, OMDML takes ad-

vantages of online learning techniques for high efficiency and

scalability towards large-scale learning tasks. To further reduce

the computational cost, we also propose a Low-rank Online

Multi-modal DML (LOMDML) algorithm, which avoids the

need of doing intensive positive semi-definite (PSD) projec-

tions and thus saves a significant amount of computational cost

for DML on high-dimensional data. As a summary, the major

contributions of this paper include:

• We present a novel framework of Online Multi-modal

Distance Metric Learning (OMDML), which simultane-

ously learns optimal metrics on each individual modality

and the optimal combination of the metrics from multiple

modalities via efficient and scalable online learning;

• We further propose a low-rank OMDML algorithm which

by significantly reducing computational costs for high-

dimensional data without PSD projection;

• We offer theoretical analysis of the OMDML method;

• We conduct an extensive set of experiments to evaluate

the performance of the proposed techniques for CBIR
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tasks using multiple types of features.

The remainder of this paper is organized as follows. Section

2 reviews related work. Section 3 first gives the problem

formulation, and then presents our method of online multi-

modal metric learning, followed by proposing an improved

low-rank algorithm. Section 4 provides theoretical analysis for

the proposed algorithms, Section 5 discusses our experimental

results, and finally Section 6 concludes this work.

2 RELATED WORK

Our work is related to three major groups of research: content-

based image retrieval, distance metric learning, and online

learning. In the following, we briefly review the closely related

representative works in each group.

2.1 Content-based Image Retrieval

With the rapid growth of digital cameras and photo sharing

websites, image retrieval has become one of the most impor-

tant research topics in the past decades, among which content-

based image retrieval is one of key challenging problems [1],

[2], [3]. The objective of CBIR is to search images by

analyzing the actual contents of the image as opposed to

analyzing metadata like keywords, title and author, such that

extensive efforts have been done for investigating various

low-level feature descriptors for image representation [14].

For example, researchers have spent many years in studying

various global features for image representation, such as color

features [14], edge features [14], and texture features [15].

Recent years also witness the surge of research on local feature

based representation, such as the bag-of-words models [16],

[17] using local feature descriptors (e.g., SIFT [18]).

Conventional CBIR approaches usually choose rigid dis-

tance functions on some extracted low-level features for

multimedia similarity search, such as the classical Euclidean

distance or cosine similarity. However, there exists one key

limitation that the fixed rigid similarity/distance function may

not be always optimal because of the complexity of visual im-

age representation and the main challenge of the semantic gap

between the low-level visual features extracted by computers

and high-level human perception and interpretation. Hence,

recent years have witnesses a surge of active research efforts

in design of various distance/similarity measures on some low-

level features by exploiting machine learning techniques [19],

[20], [21], among which some works focus on learning to hash

for compact codes [22], [19], [23], [24], [25], and some others

can be categorized into distance metric learning that will be

introduced in the next subsection. Our work is also related to

multimodal/multiview studies, which have been widely studied

on image classification and object recognition fields [26],

[27], [28], [29]. However, it is usually hard to exploit these

techniques directly on CBIR because (i) in general, image

classes will not be given explicitly on CBIR tasks, (ii) even if

classes are given, the number will be very large, (iii) image

datasets tend to be much larger on CBIR than on classification

tasks. We thus exclude the direct comparisons to such existing

works in this paper. There are still some other open issues

in CBIR studies, such as the efficiency and scalability of

the retrieval process that often requires an effective indexing

scheme, which are out of this paper’s scope.

2.2 Distance Metric Learning

Distance metric learning has been extensively studied in both

machine learning and multimedia retrieval communities [30],

[7], [31], [32], [33], [34], [35], [36]. The essential idea is to

learn an optimal metric which minimizes the distance between

similar/related images and simultaneously maximizes the dis-

tance between dissimilar/unrelated images. Existing DML

studies can be grouped into different categories according

to different learning settings and principles. For example, in

terms of different types of constraint settings, DML techniques

are typically categorized into two groups:

• Global supervised approaches [30], [7]: to learn a metric

on a global setting, e.g., all constraints will be satisfied

simultaneously;

• Local supervised approaches [32], [33]: to learn a metric

in the local sense, e.g., the given local constraints from

neighboring information will be satisfied.

Moreover, according to different training data forms, DML

studies in machine learning typically learn metrics directly

from explicit class labels [32], while DML studies in multime-

dia mainly learn metrics from side information, which usually

can be obtained in the following two forms:

• Pairwise constraints [7], [9]: A must-link constraint set

S and a cannot-link constraint set D are given, where

a pair of images (pi,pj) ∈ S if pi is related/similar

to pj , otherwise (pi,pj) ∈ D. Some literature uses

the term equivalent/positive constraint in place of “must-

link”, and the term inequivalent/negative constraint in

place of “cannot-link”.

• Triple constraints [20]: A triplet set P is given, where

P = {(pt,p
+
t ,p

−
t )|(pt,p

+
t ) ∈ S; (pt,p

−
t ) ∈ D, t =

1, . . . , T }, S contains related pairs and D contains un-

related pairs, i.e., p is related/similar to p+ and p is

unrelated/dissimilar to p−. T denotes the cardinality of

entire triplet set.

When only explicit class labels are provided, one can also

construct side information by simply considering relationships

of instances in same class as related, and relationships of

instances belonging to different classes as unrelated. In our

works, we focus on triple constraints.

Finally, in terms of learning methodology, most existing

DML studies generally employ batch learning methods which

often assume the whole collection of training data must be

given before the learning task and train a model from scratch,

except for a few recent DML studies which begin to explore

online learning techniques [37], [38]. All these works gener-

ally address single-modal DML, which is different from our

focus on multi-modal DML. We also note that our work is very

different from the existing multiview DML study [26] which is

concerned with regular classification tasks by learning a metric

on training data with explicit class labels, making it difficult to

be compared with our method directly. We note that our work

is different from another multimodal learning study in [39]

which addresses a very different problem of search-based face
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Fig. 1. Overview of the proposed multi-modal distance metric learning scheme for multi-modal retrieval in CBIR

annotation where their multimodal learning is formulated with

a batch learning task for optimizing a specific loss function

tailored for search-based face annotation tasks from weakly

labeled data. Finally, we note that our work is also differ-

ent from some existing distance learning studies that learn

nonlinear distance functions using kernel or deep learning

methods [21], [40], [35]. In comparison to the linear distance

metric learning methods, kernel methods usually may achieve

better learning accuracy in some scenarios, but falls short

in being difficult to scale up for large-scale applications due

to the curse of kernelization, i.e., the learning cost increases

dramatically when the number of training instances increases.

Thus, our empirical study is focused on direct comparisons to

the family of linear methods.

2.3 Online Learning

Our work generally falls in the category of online learning

methodology, which has been extensively studied in machine

learning [41], [42]. Unlike batch learning methods that usually

suffer from expensive re-training cost when new training data

arrive, online learning sequentially makes a highly efficient

(typically constant) update for each new training data, making

it highly scalable for large-scale applications. In general,

online learning operates on a sequence of data instances with

time stamps. At each time step, an online learning algorithm

processes an incoming example by first predicting its class

label; after the prediction, it receives the true class label which

is then used to measure the suffered loss between the predicted

label and the true label; at the end of each time step, the

model is updated with the loss whenever it is nonzero. The

overall objective of an online learning task is to minimize the

cumulative loss over the entire sequence of received instances.

In literature, a variety of algorithms have been proposed for

online learning [43], [44], [45], [46], [47]. Some well-known

examples include the Hedge algorithm for online prediction

with expert advice [48], the Perceptron algorithm [43], the

family of passive-Aggressive (PA) learning algorithms [44],

and the online gradient descent algorithms [49]. There is also

some study that attempts to improve the scalability of online

kernel methods, such as [50] which proposed a bounded online

gradient descent for addressing online kernel-based classifica-

tion tasks. In this work, we apply online learning techniques,

i.e., the Hedge, PA, and online gradient descent algorithms,

to tackle the multi-modal distance metric learning task for

content-based image retrieval. Besides, we note that this work

was partially inspired by the recent study of online multiple

kernel learning which aims to address online classification

tasks using multiple kernels [51]. In the following, we give a

brief overview of several popular online learning algorithms.

2.3.1 Hedge Algorithms
The Hedge algorithm [48], [52] is a learning algorithm which

aims to dynamically combine multiple strategies in an optimal

way, i.e., making the final cumulative loss asymptomatically

approach that of the best strategy. Its key idea is to main-

tain a dynamic weigh-distribution over the set of strategies.

During the online learning process, the distribution is updated

according to the performance of those strategies. Specifically,

the weight of every strategy is decreased exponentially with
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respect to its suffered loss, making the overall strategy ap-

proaching the best strategy.

2.3.2 Passive-Aggressive Learning
As a classical well-known online learning technique, the

Perceptron algorithm [43] simply updates the model by adding

an incoming instance with a constant weight whenever it

is misclassified. Recent years have witnessed a variety of

algorithms proposed to improve Perceptron [53], [44], which

usually follow the principle of maximum margin learning in

order to maximize the margin of the classifier. Among them,

one of the most notable approaches is the family of Passive-

Aggressive (PA) learning algorithms [44], which updates the

model whenever the classifier fails to produce a large margin

on the incoming instance. In particular, the family of online

PA learning is formulated to trade off the minimization of

the distance between the target classifier and the previous

classifier, and the minimization of the loss suffered by the

target classier on the current instance. The PA algorithms enjoy

good efficiency and scalability due to their simple closed-form

solutions. Finally, both theoretical analysis and most empirical

studies demonstrate the advantages of the PA algorithms over

the classical Perceptron algorithm.

2.3.3 Online Gradient Descent
Besides Perceptron and PA methods, another well-known on-

line learning method is the family of Online Gradient Descent

(OGD) algorithms, which applies the family of online convex

optimization techniques to optimize some particular objective

function of an online learning task [49]. It enjoys solid theoret-

ical foundation of online convex optimization, and thus works

effectively in empirical applications. When the training data is

abundant and computing resources are comparatively scarce,

some existing studies showed that a properly designed OGD

algorithm can asymptotically approach or even outperform a

respective batch learning algorithm [54].

3 ONLINE MULTI-MODAL DISTANCE METRIC
LEARNING

3.1 Overview

In literature, many techniques have been proposed to improve

the performance of CBIR. Some existing studies have made

efforts on investigating novel low-level feature descriptors in

order to better represent visual content of images, while others

have focused on the investigation of designing or learning

effective distance/similarity measures based on some extracted

low-level features. In practice, it is hard to find a single

best low-level feature representation that consistently beats

the others at all scenarios. Thus, it is highly desirable to

explore machine learning techniques to automatically combine

multiple types of diverse features and their respective distance

measures. We refer to this open research problem as a multi-

modal distance metric learning task, and present two new algo-

rithms to solve it in this section. Figure 1 illustrates the system

flow of the proposed multi-modal distance metric learning

scheme for content-based image retrieval, which consists of

two phases, i.e., learning phase and retrieval phase. The goal

is to learn the distance metrics in the learning phase in order to

facilitate the image ranking task in the retrieval phase. We note

that these two phases may operate concurrently in practice,

where the learning phase may never stop by learning from

endless stream training data.

During the learning phase, we assume triplet training data

instances arrive sequentially, which is natural for a real-world

CBIR system. For example, in online relevance feedback, a

user is often asked to provide feedback to indicate if a retrieved

image is related or unrelated to a query; as a result, users’

relevance feedback log data can be collected to generate the

training data in a sequential manner for the learning task [55].

Once a triplet of images is received, we extract different low-

level feature descriptors on multiple modalities from these

images. After that, every distance function on a single modality

can be updated by exploiting the corresponding features and

label information. Simultaneously, we also learn the optimal

combination of different modalities to obtain the final optimal

distance function, which is applied to rank images in the

retrieval phase.

During the retrieval phase, when the CBIR system receives

a query from users, it first applies the similar approach to

extract low-level feature descriptors on multiple modalities,

then employs the learned optimal distance function to rank

the images in the database, and finally presents the user with

the list of corresponding top-ranked images. In the following,

we first give the notation used throughout the rest of this paper,

and then formulate the problem of multi-modal distance metric

learning followed by presenting online algorithms to solve it.

3.2 Notation

For the notation used in this paper, we use bold upper case

letter to denote a matrix, for example, M ∈ R
n×n, and bold

lower case letter to denote a vector, for example, p ∈ R
n. We

adopt I to denote an identity matrix. Formally, we define the

following terms and operates:

• m: the number of modalities (types of features).

• ni: the dimensionality of the i-th visual feature space

(modality).

• p(i): the i-th type of visual feature (modality) of the

corresponding image p(i) ∈ R
ni .

• M(i): the optimal distance metric on the i-th modality,

where M(i) ∈ R
ni×ni .

• W(i): a linear transformation matrix by decomposing

M(i), such that, M(i) = W(i)TW(i), Wi ∈ R
ri×ni ,

where ri is the dimensionality of projected feature space.

• S: a positive constraint set, where a pair (pi,pj) ∈ S if

and only if pi is related/similar to pj .

• D: a negative constraint set, where a pair (pi,pj) ∈ S if

and only if pi is unrelated/dissimilar to pj .

• P : a triplet set, where P = {(pt,p
+
t ,p

−
t )|(pt,p

+
t ) ∈

S; (pt,p
−
t ) ∈ D, t = 1, . . . , T }, where T denotes the

cardinality of entire triplet set.

• di(p2,p2): the distance function of two images p1 and

p2 on the i-th type of visual feature (modality).

When only one modality is considered, we will omit the

superscript (i) or subscript i in the above terms.
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3.3 Problem Formulation

Our goal is to learn a distance function from side information

for content-based image retrieval. We restrict our discussion

for learning the family of Mahalanobis distances. In particular,

for any two images p1,p2 ∈ R
n, where n is the dimension-

ality of represented feature space, we aim to learn an optimal

distance metric M to calculate the distance between p1 and

p2 as the following distance function:

d(p1,p2) = (p1 − p2)
⊤M(p1 − p2);M � 0, (1)

where M � 0 denotes that M is a positive semi-definite (PSD)

matrix, i.e., p⊤Mp ≥ 0 for any nonzero real vector p ∈ R
n.

Obviously, if one chooses M as the identity matrix I, the

above formula is reduced to the (square) Euclidean distance.

To formulate the learning task, we assume a collection of

training data instances are given (sequentially) in the form

of triplet constraints, i.e., P = {(pt,p
+
t ,p

−
t ), t = 1, . . . , T },

where each triplet indicates the relationship of three images,

i.e., image pt is similar to image p+
t and dissimilar to p−

t .

Typically, we can pose such a triplet relationship as the

following constraint

d(pt,p
+
t ) ≤ d(pt,p

−
t )− 1; ∀t = 1, . . . , T ; (2)

where −1 is a margin parameter to ensure a sufficiently large

difference.

The above discussion generally assumes DML on single-

modal data. We now generalize it to multi-modal data. In

particular, we assume each image can be represented by a

total of m feature spaces (modalities) and assume each feature

space Fi is a ni-dimensional vector space, i.e., Fi = R
ni . The

general idea of our multi-modal distance metric leaning is to

learn a separate optimal distance metric M(i) ∈ R
ni×ni for

each feature space as

di(p
(i)
1 ,p

(i)
2 ) = (p

(i)
1 − p

(i)
2 )⊤M(i)(p

(i)
1 − p

(i)
2 );M(i) � 0,

and meanwhile learn an optimal combination of the distance

functions from different modalities to obtain the final optimal

distance function:

d(p1,p2) =

m
∑

i=1

θ(i)di(p
(i)
1 ,p

(i)
2 )

=

m
∑

i=1

θ(i)(p
(i)
1 − p

(i)
2 )⊤M(i)(p

(i)
1 − p

(i)
2 )

where θ(i) ∈ [0, 1] denotes the combination weight for the i-

th modality and p
(i)
1 ,p

(i)
2 ∈ Fi denote the visual features on

the space of i-th modality. In the following, without loss of

clarity, we will simplify denote di(p
(i)
1 ,p

(i)
2 ) as di(p1,p2) by

removing the superscript.

To simultaneously learn both the optimal combination

weights θ = (θ(1), . . . , θ(m)) and the optimal individual

distance metric {M(i)|i = 1 . . . ,m}, we cast the multi-

modal distance metric learning problem into the following

optimization task:

min
θ∈∆

min
M(i)�0

1

2

m
∑

i=1

‖M(i)‖2F + C

T
∑

t=1

ℓt
(

(pt,p
+
t ,p

−
t ); d

)

(3)

where ‖·‖F denotes the Frobenius norm, ∆ = {θ|∑m

i=1 θ
(i) =

1, θ(i) ∈ [0, 1], ∀i} and ℓt(·) is a loss function such as

ℓ((pt,p
+
t ,p

−
t ); d) = max(0, d(pt,p

+
t )− d(pt,p

−
t ) + 1).

The constraints in Eqn.(2) are implicitly imposed in the above

hinge loss function, and C is a regularization parameter to

prevent overfitting.

3.4 OMDML Algorithm

One way is to directly solve the optimization task in Eqn.(3)

via a batch learning approach. This is however not a good

solution primarily for two key reasons:

• A critical drawback of such a batch training solution

is that it suffers from extremely high re-training cost,

i.e, whenever there is a new training instance, the entire

model has to be completely re-trained from scratch,

making it non-scalable for real-world applications;

• Beside, solving Eqn.(3) directly can be computationally

very expensive for a large amount of training data;

To address these challenges, we present an online learning

algorithm to tackle the multi-modal distance metric learning

task.

Algorithm 1 OMDML — Online Multi-modal DML

1: INPUT:
• Discount weight: β ∈ (0, 1)
• regularization parameter: C > 0
• margin parameter: γ ≥ 0

2: Initialization:

• θ
(i)
1 = 1/m, ∀i = 1, . . . ,m

• M
(i)
b1 = I, ∀i = 1, . . . ,m

3: for t = 1, 2, . . . , T do
4: Receive: (pt,p

+
t ,p

−
t )

5: f
(i)
t = di(pt,p

+
t )− di(pt,p

−
t ), ∀i = 1, . . . ,m

6: ft =
∑m

i=1 θ
(i)
t f

(i)
t

7: if ft + γ > 0 then
8: for i = 1, 2, . . . ,m do
9: Set z

(i)
t = I(f

(i)
t > 0)

10: Update θ
(i)
t+1 ← θ

(i)
t βz

(i)
t

11: Update M
(i)
t+1 ←M

(i)
t − τ

(i)
t V

(i)
t by Eq. (5)

12: Update M
(i)
t+1 ← PSD(M

(i)
t+1)

13: end for
14: Θt+1 =

∑m

i=1 θ
(i)
t+1

15: θ
(i)
t+1 ← θ

(i)
t+1/Θt+1, ∀i = 1, . . . ,m

16: end if
17: end for

The key challenge to online multi-modal distance metric

learning tasks is to develop an efficient and scalable learning

scheme that can optimize both the distance metric on each in-

dividual modality and meanwhile optimize the combinational

weights of different modalities. To this end, we propose to

explore an online distance metric learning algorithm, i.e., a

variant of OASIS [20] and PA [44], to learn the individual dis-

tance metric, and apply the well-known Hedge algorithm [48]



6

to learn the optimal combinational weights. We discuss each

of the two learning tasks in detail below.

Let us denote by M
(i)
t the matrix on the i-th modality at step

t. To learn the optimal metric M
(i)
t on an individual modality,

following the similar ideas of OASIS [20] and PA [44], we can

formulate the optimization task of the online distance metric

learning as follows:

M
(i)
t+1 = argmin

M

1

2
‖M−M

(i)
t ‖F + Cξ, (4)

s.t. ℓ((pt,p
+
t ,p

−
t ); di) ≤ ξ, ξ ≥ 0

It is not difficult to derive the closed-form solution:

M
(i)
t+1 = M

(i)
t − τ

(i)
t V

(i)
t (5)

where τ
(i)
t and V

(i)
t are computed as follows:

τ
(i)
t = min(C, ℓ((pt,p

+
t ,p

−
t ); di)/‖V

(i)
t ‖2F ),

V
(i)
t = (pt − p+

t )(pt − p+
t )

⊤ − (pt − p−
t )(pt − p−

t )
⊤.

In the above, we omit the superscript (i) for each pt.

One main issue of the above solution, as existed in OA-

SIS [20], is that it does not guarantee the resulting matrix

M
(i)
t+1 is positive semi-definite (PSD), which is not desirable

for DML. To fix this issue, at the end of each learning iteration,

we will need to perform a PSD projection of the matrix M

onto the PSD domain:

M
(i)
t+1 ← PSD(M

(i)
t+1).

Another key task of multi-modal DML is to learn the

optimal combinational weights θ = (θ(1), . . . , θ(m)), where

θ(i) is set to 1/m at the beginning of the learning task. We

apply the well-known Hedge algorithm [48] to update the

combinational weights online, which is a simple and effective

algorithm for online learning with expert advice. In particular,

given a triplet training instance (pt,p
+
t ,p

−
t ), at the end of

each online learning iteration, the weight is updated as follows:

θ
(i)
t+1 =

θ
(i)
t βz

(i)
t

∑m

i=1 θ
(i)
t βz

(i)
t

(6)

where β ∈ (0, 1) is a discounting parameter to penalize the

poor modality, and z
(i)
t is an indicator of ranking result on

the current instance, i.e., z
(i)
t = I(f

(i)
t > 0) = I(di(pt,p

+
t )−

di(pt,p
−
t ) > 0) which outputs 1 when f

(i)
t = di(pt,p

+
t ) −

di(pt,p
−
t ) > 0 and 0 otherwise. In particular, f

(i)
t > 0,

namely di(pt,p
+
t ) > di(pt,p

−
t ), indicates the current i-th

metric makes a mistake on predicting the ranking of the triplet

(pt,p
+
t ,p

−
t ).

Finally, Algorithm 1 summarizes the details of the proposed

Online Multi-modal Distance Metric Learning (OMDML)

algorithm.

Remark on Space and Time complexity. The space com-

plexity of the algorithm is O(∑m

i=1 ni
2). Denoting n =

max(n1, . . . , nm), the worst-case space complexity is simply

O(m×n2). The overall time complexity is linear with respect

to T — the total number of training triplets. The most

computationally intensive step is the PSD projection step,

which can be O(n3) for a dense matrix. Hence, the worst-

case time overall complexity is O(T ×m× n3).

3.5 Low-Rank Online Multi-modal Distance Metric
Learning Algorithm

One critical drawback of the proposed OMDML algorithm

in Algorithm 1 is the PSD projection step, which can be

computationally intensive when some feature space is of

high dimensionality. In this section, we present a low-rank

learning algorithm to significantly improve the efficiency and

scalability of OMDML.

Instead of learning a full-rank matrix, for each M(i), our

goal is to learn a low-rank decomposition, i.e.,

M(i) := W(i)⊤W(i),

where Wi ∈ R
ri×ni and ri ≪ ni. Thus, for any two images

p1 and p2, the distance function on the i-th modality can be

expressed as:

di(p1,p2) = (p1 − p2)
TW(i)⊤W(i)(p1 − p2)

Following the similar idea in the previous section, we can

apply online learning techniques to solve W
(i)
t and θt, respec-

tively. In this section, we consider the Online Gradient Descent

(OGD) approach to solve W
(i)
t . In particular, we denote by

ℓ
(i)
t = ℓ((pt,p

+
t ,p

−
t ); di)

= max(0, d(pt,p
+
t )− d(pt,p

−
t ) + 1),

and introduce the following notation

qt = W
(i)
t pt, q

+
t = W

(i)
t p+

t , q
−
t = W

(i)
t p−

t ,

we can compute the gradient of ℓ
(i)
t with respect to W(i):

∇tW
(i) =

∂ℓ
(i)
t

∂W(i)

=

ri
∑

j=1

(

∂ℓ
(i)
t

∂qj,t

∂qj,t
∂W(i)

+
∂ℓ

(i)
t

∂q+j,t

∂q+j,t
∂W(i)

+
∂ℓ

(i)
t

∂q−j,t

∂q−j,t
∂W(i)

)

∣

∣

∣

W(i)=W
(i)
t

= 2(−q+
t + q−

t )p
⊤
t + 2(−qt + q+

t )p
+
t

⊤
+ 2(qt − q−

t )p
−
t

⊤
,

where qj,t is the j-th entry of qt.

We then follow the idea of Online Gradient Descent [49] to

update W
(i)
t+1 of each modality as follows:

W
(i)
t+1 ←W

(i)
t − η∇tW

(i) (7)

where η is a learning rate parameter.

Similarly, we also apply the Hedge algorithm as intro-

duced in the previous section to update the combinational

weight θt. Finally, Algorithm 2 summarizes the details of

the proposed Low-rank Online Multi-modal Metric Learning

algorithm (LOMDML).

Clearly this algorithm naturally preserves the PSD prop-

erty of the resulting distance metric M(i) = W(i)⊤W(i)

and thus avoids the needs of performing the intensive PSD

projection. By assuming all r1 = . . . = rm = r and

n = max(n1, . . . , nm), the overall time complexity of the

algorithm is O(T ×m× r × n).
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Algorithm 2 LOMDML—Low-rank OMDML algorithm

1: INPUT:
• Discount weight parameter: β ∈ (0, 1)
• Margin parameter: γ > 0
• Learning rate parameter: η > 0

2: Initialization: θ
(i)
1 = 1/m, W

(i)
t , ∀i = 1, . . . ,m

3: for t = 1, 2, . . . , T do
4: Receive: (pt,p

+
t ,p

−
t )

5: Compute: f
(i)
t = di(pt,p

+
t )−di(pt,p

−
t ), i = 1, . . . ,m

6: Compute: ft =
∑m

i=1 θ
(i)
t f

(i)
t

7: if ft + γ > 0 then
8: for i = 1, 2, . . . ,m do
9: Set z

(i)
t = I(f

(i)
t > 0)

10: Update θ
(i)
t+1 ← θ

(i)
t βz

(i)
t

11: W
(i)
t+1 ←W

(i)
t − η∇tW

(i) by Eq. (7)

12: end for
13: Θt+1 =

∑m

i=1 θ
(i)
t+1

14: θ
(i)
t+1 ← θ

(i)
t+1/Θt+1, i = 1, . . . ,m

15: end if
16: end for

4 THEORETICAL ANALYSIS

We now analyze the theoretical performance of the proposed

algorithms. To be concise, we give a theorem for the bound

of mistakes made by Algorithm 1 for predicting the relative

similarity of the sequence of triplet training instances. The

similar result can be derived for Algorithm 2.

For the convenience of discussions in this section, we define:

z
(i)
t = I

(

f
(i)
t > 0

)

,

where I(x) is an indicator function that outputs 1 when x is

true and 0 otherwise. We further define the optimal margin

similarity function error for M(i) with respect to a collection

of training examples P = {(pt,p
+
t ,p

−
t ), t = 1, . . . , T } as

F (M(i), ℓ,P) = min
M(i)







[

‖M(i) − I‖2F + 2C
∑T

t=1 ℓt(di)
]

min(C, 1)







where ℓt(di) denotes ℓ((pt,p
+
t ,p

−
t ); di). We then have the

following theorem for the mistake bound of the proposed

OMDML algorithm.

Theorem 1. After receiving a sequence of T training ex-

amples, denoted by P = {(pt,p
+
t ,p

−
t ), t = 1, . . . , T },

the number of mistakes M on predicting the ranking of

(pt,p
+
t ,p

−
t ) made by running Algorithm 1, denoted by

M =
T
∑

t=1

I (ft > 0) =
T
∑

t=1

I

(

m
∑

i=1

θ
(i)
t f

(i)
t > 0

)

is bounded as follows

M ≤ 2 ln(1/β)

1− β
min

1≤i≤m

T
∑

t=1

z
(i)
t +

2 lnm

1− β

≤ 2 ln(1/β)

1− β
min

1≤i≤m
F (M(i), ℓ,P) + 2 lnm

1− β

By choosing β =
√
T√

T+
√
lnm

, we then have

M ≤ 2

(

(

1 +

√

lnm

T

)

min
1≤i≤m

F (M(i)
, ℓ,P) + lnm+

√
T lnm

)

In general, it is not difficult to prove the above theorem

by combining the results of the Hedge algorithm and the PA

online learning, similar to the technique used in [51]. More

details about the proof can be found in the online supplemental

file 1. Basically the above theorem indicates that the total

number of mistakes of the proposed algorithm is bounded by

O(
√
T ) compared with the optimal single metric.

5 EXPERIMENTS

In this section, we conduct an extensive set of experiments to

evaluate the efficacy of the proposed algorithms for similarity

search with multiple types of visual features in CBIR.

5.1 Experimental Testbeds

We adopt four publicly-available image data sets in our exper-

iments, which have been widely adopted for the benchmarks

of content-based image retrieval, image classification and

recognition tasks. TABLE 1 summarizes the statistics of these

databases.

TABLE 1

List of image databases in our testbed.

Datasets size classes # avg # per class

Caltech101 8,677 101 85.91

Indoor 15,620 67 233.14

ImageCLEF 7,157 20 367.85

Corel 5,000 50 100

ImageCLEFFlickr 1,007,157 21 47959.86

The first testbed is the “caltech101”2, which has been widely

adopted for object recognition and image retrieval [56], [20].

This dataset contains 101 object categories and 8,677 images.

The second testbed is the “indoor” dataset3, which was used

for recognizing indoor scenes [57]. This dataset consists of 67

indoor categories, and 15,620 images. The numbers of images

in different categories are diverse, but each category contains

at least 100 images. It is further divided into 5 subsets: store,

home, public spaces, leisure, and working place. We simply

consider it as a dataset of 67 categories and evaluate different

algorithms on the whole indoor collection.

The third testbed is the “ImageCLEF” dataset4, which was

also used in [58]. It is a medical image dataset and has 7,157

images in 20 categories.

The fourth testbed is the “Corel” dataset [7], which consists

of photos from COREL image CDs. It has 50 categories,

each of which has exactly 100 images randomly selected from

related examples in COREL image CDs.

1. http://omdml.stevenhoi.org/

2. http://www.vision.caltech.edu/Image Datasets/Caltech101/

3. http://web.mit.edu/torralba/www/indoor.html

4. http://imageclef.org/
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We also combine “ImageCLEF” with a collection of one

million social photos crawled from Flickr, this larger set is

named “ImageCLEFFlickr”. We treat the Flickr photos as a

special class of background noisy photos, which are mainly

used to test the scalability of our algorithms.

5.2 Experimental Setup

For each database, we split the whole dataset into three disjoint

partitions: a training set, a test set, and a validation set. In

particular, we randomly choose 500 images to form a test

set, and other 500 images to build up a validation set. The

remaining images are used to form a training set for learning

similarity functions.

To generate side information in the form of triplet instances

for learning the ranking functions, we sample triplet con-

straints from the images in the training set according to their

ground truth labels. Specifically, we generate a triplet instance

by randomly sampling two images belonging to the same class

and one image from a different class. In total, we generate

100K triplet instances for each standard dataset (except for

the small-scale and large-scale experiments).

To fairly evaluate different algorithms, we choose their

parameters by following the same cross validation scheme. For

simplicity, we empirically set ri = r = 50 for the i-th modality

in the LOMDML algorithm and set the maximum iteration

to 500 for LMNN. To evaluate the retrieval performance, we

adopt the mean Average Precision (mAP) and top-K retrieval

accuracy. As a widely used IR metric, mAP value averages

the Average Precision (AP) value of all the queries, each

of which denotes the area under precision-recall curve for a

query. The precision value is the ratio of related examples over

total retrieved examples, while the recall value is the ratio of

related examples retrieved over total related examples in the

database.

Finally, we run all the experiments on a Linux machine with

2.33GHz 8-core Intel Xeon CPU and 16GB RAM.

5.3 Diverse Visual Features for Image Descriptors

We adopt both global and local feature descriptors to extract

features for representing images in our experiments. Each

feature will correspond to one modality in the algorithm.

Before the feature extraction, we have preprocessed the images

by resizing all the images to the scale of 500×500 pixels while

keeping the aspect ratio unchanged.

Specifically, for global features, we extract five types of

features to represent an image, namely

• Color histogram and color moments (n = 81),

• Edge direction histogram (n = 37),

• Gabor wavelets transformation (n = 120),

• Local binary pattern (n = 59),

• GIST features (n = 512).

For local features, we extract the bag-of-visual-words rep-

resentation using two kinds of descriptors:

• SIFT — we adopt the Hessian-Affine interest region

detector with a threshold of 500;

• SURF — we use the SURF detector with a threshold of

500.

For the clustering step, we adopt a forest of 16 kd-trees and

search 2048 neighbors to speed up the clustering task. By

combining different descriptors (SIFT/SURF) and vocabulary

sizes (200/1000), we extract four types of local features:

SIFT200, SIFT1000, SURF200 and SURF1000. Finally, we

adopt the TF-IDF weighing scheme to generate the final

bag-of-visual-words for describing the local features. For all

learning algorithms, we normalize the feature vectors to ensure

that every feature entry is in [0, 1].

5.4 Comparison Algorithms

To extensively evaluate the efficacy of our algorithms, we

compare the proposed two online multi-modal DML algo-

rithms, i.e., OMDML and LOMDML, against a number of

existing representative DML algorithms, including RCA [30],

LMNN [32], and OASIS [20]. As a heuristic baseline method,

we also evaluate the square Euclidean distance, denoted as

“EUCL-*”.

To adapt the existing DML methods for multi-modal image

retrieval, we have implemented several variants of each DML

algorithm by exploring three fusion strategies [59], [60]:

1) “Best” — applying DML for each modality individually

and then selecting the best modality. We name these al-

gorithms with suffix “-B”, e.g., RCA-B, in which we first

learn metrics over each modality separately on the train-

ing set by Relevance Component Analysis (RCA) [30].

After that, we validate the retrieval performance of all

metrics on corresponding modality against the validation

set, and then choose the modality with the highest mAP

as the best modality. We report the mAP score over the

best modality by ranking on test set with RCA.

2) “Concatenation” — an early fusion approach by concate-

nating features of all modalities before applying DML.

We name these algorithms with suffix “-C”, e.g., LMNN-
C, in which we first concatenate all types of features

together, and then learn the optimal metric on this com-

bined feature space by LMNN [32], and finally evaluate

the mAP score on the optimal metric.

3) “Uniform combination” — a late fusion approach by

uniformly combining all modalities after metric learning.

We name these algorithms with suffix “-U”, e.g., OASIS-
U, in which we first learn an optimal metric by OA-

SIS [20] for each modality, and then uniformly combine

all distance functions for the final ranking.

5.5 Evaluation on Small-Scale Datasets

In this section, we build four small-scale data sets, named

“Caltech101(S)”, “Indoor(S)”, “COREL(S)” and “ImageCLE-

F(S)”, from the corresponding standard datasets by first choos-

ing 10 object categories, and then randomly sampling 50

examples from each category. We adopt 5 global features

described above as the multi-modal inputs. To construct triplet

constraints for online learning approaches, we generate all

positive pairs (two images belong to the same class), and

for each positive pair we randomly select an image from the

other different classes to form a triplet. In total, about 10K

triplets are generated for each dataset. TABLE 2 summarizes
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Fig. 2. Evaluation of average precision at Top-K results on the datasets

the evaluation results on the small-scale data sets, from which

we can draw the following observations.

TABLE 2
Evaluation of the mAP performance.

Alg. COREL(S) Caltech101(S) Indoor(S) ImageCLEF(S)

Eucl-B 0.4431 0.4299 0.1726 0.4325
RCA-B 0.5097 0.4984 0.1915 0.4492

LMNN-B 0.4876 0.5462 0.1852 0.5231
OASIS-B 0.4445 0.5072 0.1884 0.4424

Eucl-C 0.5220 0.4306 0.1842 0.4431
RCA-C 0.6437 0.6156 0.2078 0.5927

LMNN-C 0.5816 0.5894 0.2027 0.5821
OASIS-C 0.5657 0.5441 0.2017 0.5618

Eucl-U 0.5220 0.4306 0.1842 0.4431
RCA-U 0.5625 0.4860 0.1894 0.4909

LMNN-U 0.6026 0.4282 0.2007 0.4647
OASIS-U 0.5679 0.5419 0.1989 0.5338

OMDML 0.6620 0.6543 0.2113 0.6824
LOMDML 0.6975 0.6646 0.2250 0.7080

First of all, the two kinds of fusion strategies, i.e., early

fusion (with suffix“-C”) and late fusion (with suffix“-U”),

generally tend to perform better than the best single metric

approaches (with suffix“-B”). This is primarily because com-

bining multiple types of features with learning could better

explore the potential of all the features, which validates the

importance of the proposed technique.

Second, some of the uniformly combination algorithms (i.e.,

the late fusion strategy) failed to outperform the best single

metric approach in some cases, e.g., “RCA-U” (compared with

“RCA-B”) and “LMNN-U” (compared with “LMNN-B”) on

Caltech101(S). This implies that uniform concatenation is not

optimal to combine different kinds of features. Thus, it is

critical to identify the effective features via machine learning

and then assign them higher weights.

Third, among all the compared algorithms, the proposed

OMDML and LOMDML algorithms outperform the other

algorithms. Finally, it is interesting to observe that the pro-

posed low-rank algorithm (LOMDML) not only improves the

efficiency and scalability of OMDML, but also enhances the

retrieval accuracy. This is probably because by learning met-

rics in intrinsic lower-dimensional space, we may potentially

avoid the impact of overfitting and noise issues.
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TABLE 3
Running time cost (in sec.) on “COREL(S)”.

RCA-C LMNN-C OASIS-C RCA-U

5.07 1442.66 404.35 2.91

LMNN-U OASIS-U OMDML LOMDML

858.94 376.77 34765.13 22.11

TABLE 3 shows the running CPU time cost (in seconds) on

the “COREL(S)” data set. We can see that, the running time

of LOMDML results in a speedup factor of 10 comparison to

OASIS, and the gain in efficiency will increase when the data

set gets larger or the data dimensionality increases. Conversely,

OMDML has the extremely high computational cost because

a PSD projection is performed after each iteration, which can

be O(n3) for a dense matrix. A possible solution to tackle this

problem is that in we could perform the PSD projection after

a bunch of iterations, instead of after each iteration.

5.6 Evaluation on the Standard Datasets

TABLE 4

Evaluation of the mAP performance.

Alg. COREL Caltech101 Indoor ImageCLEF

Eucl-B 0.1877 0.2187 0.0469 0.5523

RCA-B 0.2305 0.2837 0.0499 0.6010

OASIS-B 0.1958 0.3025 0.0522 0.6723

Eucl-C 0.2628 0.2259 0.0559 0.5752

RCA-C 0.2714 0.2473 0.0604 0.6272

OASIS-C 0.3202 0.3660 0.0726 0.7394

Eucl-U 0.2628 0.2259 0.0559 0.5752

RCA-U 0.2992 0.2413 0.0565 0.6161

OASIS-U 0.3594 0.3243 0.0705 0.6891

LOMDML 0.4137 0.4128 0.0804 0.8155

We further evaluate the proposed algorithms on standard-

sized image datasets. We exclude LMNN and OMDML be-

cause of their extremely high computational cost. Following

the standard experimental setup with 5 global features and 4

local features, TABLE 4 summarizes the experimental results,

Figure 2 presents the top-K precisions on four datasets and

TABLE 5 shows the running time cost on the COREL dataset

with 100K triplet instances. From the results, we observed that

the proposed LOMDML algorithm considerably surpasses all

the other approaches for most cases. This clearly validates

the efficacy of the proposed algorithm for learning effective

metrics on multi-modal data. Finally, in terms of the time

cost, the proposed LOMDML algorithm is considerably more

efficient and scalable than the other algorithms, making it

practical for large-scale applications.

TABLE 5
Running time (in sec.) on “COREL”.

RCA-C OASIS-C RCA-U OASIS-U LOMDML

468.19 65060.93 184.3 8781.54 789.81

Remark. We note that the learnt metric/function can be

easily integrated into a generic image indexing and retrieval

system, i.e., performing a linear projection for each image

instance p by p ← Wp. The time cost for retrieval on

OMDML is thus the same as the original Euclidean distance,

while the time cost on LOMDML is the same as Euclidean

distance on dimension-reduced feature space. To avoid the

trivial redundant results, we thus skip the time cost evaluation

of retrieval in our experiments.

5.7 Evaluation of online mistake rate of individual
metric learning on each single modality

To further examine how the proposed LOMDML algorithm

performs in comparison to individual metric learning on each

single modality, we evaluate the online average mistake rate

of the proposed LOMDML algorithm and single-modal metric

learning schemes on each individual modality. Figure 3 shows

the experimental results on the “COREL” data set. Several

observations can be drawn from the results as follows.

First of all, we notice that for all the schemes, the online cu-

mulative mistake rate consistently decreases when the number

of iterations increases in the online learning process. Second,

among all kinds of features, we found that the scheme of

single-modal metric learning on “Surf1000” achieved the best

performance. Finally, by comparing the proposed LOMDML

scheme and the best single-modal metric learning, we found

that LOMDML consistently achieves the smaller mistake rate

than that of the best single-modal metric learning scheme

in the entire online learning process. This encouraging result

again validates the efficacy of the proposed multi-modal online

learning scheme for combining multiple modalities in an

effective way.

1 2 3 4 5 6 7 8 9 10

x 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

M
is

ta
k
e
 r

a
te

Corel

 

 

LOMDML

Surf1000

Sift1000

LBP

Surf200

Color

Gabor
GIST

Sift200

Edge

Fig. 3. Evaluation of online mistake rates of LOMDML
and single-modal metric learning on individual modalities

on the “Corel” dataset

5.8 Comparison with Online Multi-modal Distance
Learning (OMDL) with Multiple Kernels

In this section, we compare the proposed LOMDML algo-

rithm with an existing Online Multi-modal Distance Learning

method (OMDL-LR) [40], which is a kernel-based low-rank

online learning approach to learning distance functions on

multi-modal data by combining multiple kernels. We evaluate
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TABLE 6
Comparison between LOMDML and OMDL-LR

(gaussianmeanvar).

Metric Dataset LOMDML OMDL-LR

mAP

COREL(S) 0.6975 0.6693
Caltech101(S) 0.6646 0.5994

Indoor(S) 0.2250 0.2088
ImageCLEF(S) 0.7080 0.6729

Time cost (in sec.) COREL(S) 22.11 209.57
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Fig. 4. Evaluation of the mAP (y-axis) of OMDL-LR w.r.t.
the number of Nearest Neighbors (x-axis).

the mAP performance and the training time cost of OMDL-LR

on four datasets, “COREL(S)”, “Caltech101(S)”, “Indoor(S)”

and “ImageCLEF(S)”, under the same experimental setting

as the previous sections. The parameters for the OMDL-LR

algorithm are set as follows: (i) dLR, the dimensionality of the

low-rank for all the models is set to 50, the same as the rank

setting of r for the LOMDML algorithm; (ii) other hyper-

parameters, including C1, C2, η and the number of nearest

neighbors (“NN”) for graph Laplacian, are determined by grid

search on a separated validation set. Fig. 4 shows the mAP

with respect to “NN” on each dataset.

From the comparison results in TABLE 6, we observed

that LOMDML is even better than OMDL-LR in terms of the

mAP performance. This may seem counterintuitive as OMDL-

LR is a kernel-based approach. However, we conjecture that

this is primarily because OMDL-LR fairly depends on a good

selection of the underlying kernels and the parameters of the

kernel functions. With carefully selected kernels, OMDL-LR

would likely achieve better results. However, how to tune

and find the best kernels is beyond the scope of this paper.

In terms of training time cost, we observed that LOMDML

is considerably more efficient than OMDL-LR. Similar to

OMDML, the most computationally intensive step in OMDL-

LR is the PSD projection, which can be O(r3) for a dense

matrix, thus the overall time complexity is O(T ×m× r3). In

the above experiment, the dimensions of raw features range

from 37 to 512, which are much smaller than r2 = 2500.

Thus, LOMDML consumes much less time than OMDL-LR.
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Fig. 5. Precision at Top-K on “ImageCLEF+Flickr”

5.9 Evaluation on the Large-scale Dataset

To examine its scalability, we apply the proposed algorithm

on a large-scale image retrieval application on “ImageCLE-

F+Flickr”, which has over one million images and 300K triplet

training data. TABLE 7 shows the mAP performance of the

five algorithms.

TABLE 7

Evaluation of mAP on the “ImageCLEF+Flickr” dataset.

Eucl-C RCA-C OASIS-C RCA-U OASIS-U LOMDML

0.5766 0.6163 0.7161 0.6219 0.7028 0.7413

Clearly, our proposed algorithm OLMDML achieves the

best mAP. Figure 5 presents the top-K precisions on Image-

CLEF+Flickr. We can have the similar observation that our

proposed methods significantly outperform the state of the

art, in terms of precision. In short, the proposed algorithm

significantly outperforms the state of the art, in terms of both

mAP and retrieval accuracy performance measures.

5.10 Qualitative Comparison

Finally, to examine the qualitative retrieval performance, we

randomly sample some query images from the query set, and

compare the qualitative image similarity search by different

algorithms. Figure 6 shows the comparison of retrieval results

on “COREL” and “Caltech101” datasets using different algo-

rithms. From the visual results, we can see that LOMDML

generally returns more related results than the other baselines.

6 CONCLUSIONS

This paper investigated a novel family of online multi-modal

distance metric learning (OMDML) algorithms for CBIR tasks

by exploiting multiple types of features. We pinpointed some

major limitations of traditional DML approaches in practice,

and presented the online multi-modal DML method which

simultaneously learns both the optimal distance metric on

each individual feature space and the optimal combination

of multiple metrics on different types of features. Further,

we proposed the low-rank online multi-modal DML algorithm

(LOMDML), which not only runs more efficiently and scal-

ably, but also achieves the state-of-the-art performance among

the competing algorithms in our experiments. Future work can
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extend our framework in resolving other types of multimodal

data analytics tasks beyond image retrieval.
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Fig. 6. Qualitative evaluation of top-5 retrieved images by different algorithms. For each block, the first image is the

query, and the results from the first line to the sixth line represents “Eucl-C”, “RCA-C”, “OASIS-C”, “RCA-U”, “OASIS-U”

and “LOMDML” respectively. The left column is from the “Corel” dataset and the right is from the “Caltech101” dataset.


