
Online Multiscale Dynamic Topic Models

Tomoharu Iwata Takeshi Yamada Yasushi Sakurai Naonori Ueda
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
{iwata,yamada,yasushi,ueda}@cslab.kecl.ntt.co.jp

ABSTRACT
We propose an online topic model for sequentially analyzing
the time evolution of topics in document collections. Top-
ics naturally evolve with multiple timescales. For exam-
ple, some words may be used consistently over one hundred
years, while other words emerge and disappear over periods
of a few days. Thus, in the proposed model, current topic-
specific distributions over words are assumed to be generated
based on the multiscale word distributions of the previous
epoch. Considering both the long-timescale dependency as
well as the short-timescale dependency yields a more robust
model. We derive efficient online inference procedures based
on a stochastic EM algorithm, in which the model is sequen-
tially updated using newly obtained data; this means that
past data are not required to make the inference. We demon-
strate the effectiveness of the proposed method in terms of
predictive performance and computational efficiency by ex-
amining collections of real documents with timestamps.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.2.6 [Artificial Intelligence]: Learning; I.5.1
[Pattern Recognition]: Model—Statistical

General Terms
Algorithms

Keywords
Topic model, Time-series analysis, Online learning

1. INTRODUCTION
Great interest is being shown in developing topic mod-

els that can analyze and summarize the dynamics of docu-
ment collections, such as scientific papers, news articles, and
blogs [1, 5, 7, 11, 14, 20, 21, 22]. A topic model is a hierarchi-
cal probabilistic model, in which a document is modeled as
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a mixture of topics, and a topic is modeled as a probability
distribution over words. Topic models are successfully used
in a wide variety of applications including information re-
trieval [6], collaborative filtering [10], and visualization [12]
as well as the analysis of dynamics.

In this paper, we propose a topic model that permits the
sequential analysis of the dynamics of topics with multiple
timescales, we call it the Multiscale Dynamic Topic Model
(MDTM), and its efficient online inference procedures. Top-
ics naturally evolve with multiple timescales. Let us consider
the topic ‘politics’ in a news article collection as an exam-
ple. There are some words that appear frequently over many
years, such as ‘constitution’, ‘congress’, and ‘president’. On
the other hand, some words, such as the names of members
in Congress, may appear frequently over periods of tens of
years, and other words, such as the names of bills under dis-
cussion, may appear for only a few days. Thus, in MDTM,
current topic-specific distributions over words are assumed
to be generated based on the estimates of multiple timescale
word distributions at the previous epoch. Using these mul-
tiscale priors improves the predictive performance of the
model because the information loss is reduced by consider-
ing the long-timescale dependency as well as short-timescale
dependency.

The online inference and parameter estimation processes
can be achieved efficiently based on a stochastic EM al-
gorithm, in which the model is sequentially updated using
newly obtained data; past data does not need to be stored
and processed to make new inferences. Some topics may ex-
hibit strong long-timescale dependence, and others may ex-
hibit strong short-timescale dependence. Furthermore, the
dependence may differ over time. Therefore, we infer these
dependencies for each timescale, for each topic, and for each
epoch. By inferring the dependencies from the observed
data, MDTM can flexibly adapt to topic dynamics. A dis-
advantage of online inference is that it can be more unstable
than batch inference. With MDTM, the stability can be im-
proved by smoothing using multiple estimates with different
timescales.

The remainder of this paper is organized as follows. In
Section 2, we formulate a topic model for multiscale dynam-
ics, and describe its online inference procedures. In Sec-
tion 3, we briefly review related work. In Section 4, we
demonstrate the effectiveness of the proposed method by an-
alyzing the dynamics of real document collections. Finally,
we present concluding remarks and a discussion of future
work in Section 5.



Table 1: Notation
Symbol Description
Dt number of documents at epoch t
Nt,d number of words in the dth document

at epoch t
W number of unique words
wt,d,n nth word in the dth document at epoch t,

wt,d,n ∈ {1, · · · , W}
Z number of topics
zt,d,n topic of the nth word in the dth document

at epoch t, zt,d,n ∈ {1, · · · , Z}
S number of scales
θt,d multinomial distribution over topics

for the dth document at epoch t,
θt,d = {θt,d,z}Zz=1, θt,d,z ≥ 0,

P

z θt,d,z = 1
φt,z multinomial distribution over words

for the zth topic at epoch t,
φt,z = {φt,z,w}Ww=1, φt,z,w ≥ 0,

P

w φt,z,w = 1

ξ
(s)
t,z multinomial distribution over words

for the zth topic with scale s at epoch t,

ξ
(s)
t,z = {ξ(s)

t,z,w}Ww=1, ξ
(s)
t,z,w ≥ 0,

P

w ξ
(s)
t,z,w = 1

2. PROPOSED METHOD

2.1 Preliminaries
In the proposed model, documents are assumed to be gen-

erated sequentially at each epoch. Suppose we have a set of
Dt documents at the current epoch, t, and each document

is represented by wt,d = {wt,d,n}
Nt,d

n=1 , i.e. the set of words
in the document. Our notation is summarized in Table 1.
We assume that epoch t is a discrete variable, and we can
set the time period for an epoch arbitrarily at, for example,
one day or one year.

Before introducing the proposed model, we review latent
Dirichlet allocation (LDA) [6, 8], which forms the basis of
the proposed model. In LDA, each document has topic pro-
portions θt,d. For each of the Nt,d words in the document,
topic zt,d,n is chosen from the topic proportions, and then
word wt,d,n is generated from a topic-specific multinomial
distribution over words φzt,d,n . Topic proportions θt,d and
word distributions φz are assumed to be generated accord-
ing to symmetric Dirichlet distributions. Figure 1 (a) shows
a graphical model representation of LDA, where shaded and
unshaded nodes indicate observed and latent variables, re-
spectively.

2.2 Model
We consider a set of multiple timescale distributions over

words for each topic to incorporate multiple timescale prop-
erties. In order to account for the influence of the past at
different timescales to the current epoch, we assume that
current topic-specific word distributions φt,z are generated
according to the multiscale word distributions at the previ-

ous epoch {ξ(s)
t−1,z}Ss=1. Here, ξ

(s)
t−1,z = {ξ(s)

t−1,z,w}Ww=1 rep-
resents a distribution over words of topic z with scale s at
epoch t− 1. In particular, we use the following asymmetric
Dirichlet distribution for the prior of current word distri-
bution φt,z, in which the Dirichlet parameter is defined so
that its mean becomes proportional to the weighted sum of
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Figure 2: Illustration of multiscale word distribu-
tions at epoch t with S = 4. Each histogram shows

ξ
(s)
t−1,z, which is a multinomial distribution over words

with timescale s.

multiscale word distributions at the previous epoch,

φt,z ∼ Dirichlet(

S
X

s=0

λt,z,sξ
(s)
t−1,z), (1)

where λt,z,s is a weight for scale s in topic z at epoch t,
and λt,z,s > 0. By estimating weights {λt,z,s}Ss=0 for each
epoch, for each topic, and for each timescale using the cur-
rent data as described in Section 2.3, MDTM can flexibly
respond to the influence on the current distribution of the
previous short- and long-timescale distributions. The esti-

mated multiscale word distributions {ξ(s)
t−1,z}Ss=1 at the pre-

vious epoch are considered as hyperparameters in the cur-
rent epoch. Their estimation will be explained in Section 2.4.

There are many different ways of setting the scales, but

for the simple explanation, we set them so that ξ
(s)
t,z indi-

cates the word distribution from t − 2s−1 + 1 to t, where

larger s represents longer timescale, and ξ
(s=1)
t,z is equivalent

to the estimate of unit time word distribution φt,z. We use

uniform word distribution ξ
(s=0)
t,z,w = W−1 for scale s = 0.

This uniform distribution is used to avoid the zero probabil-
ity problem. Figure 2 illustrates multiscale word distribu-
tions with this setting. Word distributions are likely to be
smoothed as the timescale becomes long, and be peaked as
the timescale becomes short. By using the information pre-
sented in these various timescales as the prior for the current
distribution with weights, we can infer the current distribu-
tion more robustly. In stead of using 2s−1 epochs for scale s,
we can use any number of epochs. For example, if we know
that the given data exhibit periodicity e.g. of one week and
one month, we can use the scale of one week for s = 1 and
one month for s = 2. In such case, we can still estimate
parameters in the similar way with the algorithm described
in Section 2.4. Typically, we do not know the periodicity of
the given data in advance, we therefore consider the simple
scale setting in the paper.

In LDA, topic proportions θt,d are sampled from a Dirich-
let distribution. In order to capture the dynamics of topic
proportions with MDTM, we assume that the Dirichlet pa-
rameters αt = {αt,z}Zz=1 depend on the previous parame-
ters. In particular, we use the following Gamma prior for a
Dirichlet parameter of topic z at epoch t,

αt,z ∼ Gamma(γαt−1,z, γ), (2)

where the mean is αt−1,z, and the variance is αt−1,z/γ. By
using this prior, the mean is the same as that at the previous
epoch unless otherwise indicated by the new data. Parame-
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Figure 1: Graphical models of (a) latent Dirichlet allocation, (b) the multiscale dynamic topic model, and
(c) its online inference version.

ter γ controls temporal consistency of the topic proportion
prior.

Assuming that we have already calculated the multiscale

parameters at epoch t − 1, Ξt−1 = {{ξ(s)
t−1,z}Ss=0}Zz=1 and

αt−1 = {αt−1,z}Zz=1, MDTM is characterized by the fol-
lowing generative process for the set of documents Wt =
{wt,d}Dt

d=1 at epoch t,

1. For each topic z = 1, · · · , Z:

(a) Draw topic proportion prior
αt,z ∼ Gamma(γαt−1,z, γ),

(b) Draw word distribution

φt,z ∼ Dirichlet(
P

s λt,z,sξ
(s)
t−1,z),

2. For each document d = 1, · · · , Dt:

(a) Draw topic proportions
θt,d ∼ Dirichlet(αt),

(b) For each word n = 1, · · · , Nt,d:

i. Draw topic
zt,d,n ∼ Multinomial(θt,d),

ii. Draw word
wt,d,n ∼ Multinomial(φt,zt,d,n).

Figure 1 (b) shows a graphical model representation of MDTM.

2.3 Online inference
We present an online inference algorithm for MDTM, that

sequentially updates the model at each epoch using the newly
obtained document set and the multiscale model of the pre-
vious epoch. The information in the data up to and includ-
ing the previous epoch is aggregated into the previous multi-
scale model. The online inference and parameter estimation
can be efficiently achieved by a stochastic EM algorithm [2,
3], in which the collapsed Gibbs sampling of latent topics [8]
and the maximum likelihood estimation of hyperparameters
are alternately performed [19].

We assume the set of documents Wt at current epoch t,
and estimates of parameters from the previous epoch αt−1

and Ξt−1 are given. The joint distribution on the set of
documents, the set of topics, and the topic proportion priors
given the parameters are defined as follows,

P (Wt, Zt, αt|αt−1, γ,Ξt−1,Λt)

= P (αt|αt−1, γ)P (Zt|αt)P (Wt|Zt,Ξt−1,Λt), (3)

where Zt = {{zt,d,n}
Nt,d

n=1 }
Dt
d=1 represents a set of topics, and

Λt = {{λt,z,s}Ss=0}Zz=1 represents a set of weights. The first
term on the right hand side of (3) is as follows using (2),

P (αt|αt−1, γ) =
Y

z

γγαt−1,z α
γαt−1,z−1
t,z exp(−γαt,z)

Γ(γαt−1,z)
, (4)

where Γ(·) is the gamma function. We can integrate out the
multinomial distribution parameters in MDTM, {θt,d}Dt

d=1

and {φt,z}Zz=1, by taking advantage of Dirichlet-multinomial
conjugacy. The second term is calculated by P (Zt|αt) =
QDt

d=1

R

P (zt,d|θt,d)P (θt,d|αt)dθt,d, and we have the follow-

ing equation by integrating out {θt,d}Dt
d=1,

P (Zt|αt) =

„

Γ(
P

z αt,z)
Q

z Γ(αt,z)

«D
Y

d

Q

z Γ(Nt,d,z + αt,z)

Γ(Nt,d +
P

z αt,z)
, (5)

where Nt,d,z is the number of words in the dth document
assigned to topic z at epoch t, and Nt,d =

P

z Nt,d,z. Sim-

ilarly, by integrating out {φt,z}Zz=1, the third term is given
as follows,

P (Wt|Zt,Ξt−1,Λt) =
Y

z

Γ(
P

s λt,z,s)
Q

w Γ(
P

s λt,z,sξ
(s)
t−1,z,w)

×
Q

w Γ(Nt,z,w +
P

s λt,z,sξ
(s)
t−1,z,w)

Γ(Nt,z +
P

s λt,z,s)
, (6)

where Nt,z,w is the number of times word w was assigned to
topic z at epoch t, and Nt,z =

P

w Nt,z,w.
The inference of the latent topics Zt can be efficiently

computed by using collapsed Gibbs sampling [8]. Let j =
(t, d, n) for notational convenience, and zj be the assign-
ment of a latent topic to the nth word in the dth document



at epoch t. Then, given the current state of all but one
variable zj , a new value for zj is sampled from the following
probability,

P (zj = k|Wt, Zt\j , αt,Ξt−1,Λt)

∝
Nt,d,k\j + αt,k

Nt,d\j +
P

z αt,z

Nt,k,wj\j +
P

s λt,s,kξ
(s)
t−1,k,wj

Nt,k\j +
P

s λt,s,k
,(7)

where \j represents the count yielded by excluding the nth
word in the dth document.

The parameters αt and Λt are estimated by maximizing
the joint distribution (3). The fixed-point iteration method
described in [13] can be used for maximizing the joint dis-
tribution as follows,

αt,z ←
γαt−1,z − 1 + αt,z

P

d(Ψ(Nt,d,z + αt,z)−Ψ(αt,z))

γ +
P

d(Ψ(Nt,d +
P

z′ αt,z′)−Ψ(
P

z′ αt,z′))
,

(8)

where Ψ(·) is a digamma function defined by Ψ(x) = ∂ log Γ(x)
∂x

,
and,

λt,z,s ← λt,z,s

P

w ξ
(s)
t−1,z,wAt,z,w

Bt,z
, (9)

where

At,z,w = Ψ(Nt,z,w+
X

s′

λt,z,s′ξ
(s′)
t−1,z,w)−Ψ(

X

s′

λt,z,s′ξ
(s′)
t−1,z,w),

(10)

Bt,z = Ψ(Nt,z +
X

s′

λt,z,s′)−Ψ(
X

s′

λt,z,s′). (11)

By iterating Gibbs sampling with (7) and maximum likeli-
hood estimation with (8) and (9), we can infer latent topics
while optimizing the parameters. Since MDTM uses the past
distributions as the current prior, the label switching prob-
lem [17] is not likely to occur when estimated λt,z,s is high,
which implies current topics strongly depend on the previ-
ous distributions. Label switching can occur when estimated
λt,z,s is low. By allowing low λt,z,s, which is estimated from
the given data at each epoch and each topic, MDTM can
adapt flexibly to changes even if existing topics disappear
and new topics appear in midstream.

2.4 Efficient estimation of multiscale word dis-
tributions

By using the topic assignments obtained after iterating the
stochastic EM algorithm, we can estimate multiscale word

distributions. Since ξ
(s)
t,z,w represents the probability of word

w in topic z from t − 2s−1 + 1 to t, the estimation is as
follows,

ξ
(s)
t,z,w =

N̂
(s)
t,z,w

P

w N̂
(s)
t,z,w

=

Pt
t′=t−2s−1+1 N̂t′,z,w

P

w

Pt
t′=t−2s−1+1 N̂t′,z,w

, (12)

where N̂
(s)
t,z,w is the expected number of times word w was

assigned to topic z from t − 2s + 1 to t, and N̂t,z,w is the
expected number of times at t. The expected number is
calculated by N̂t,z,w = Nt,zφ̂t,z,w, where φ̂t,z,w is a point
estimate of the probability of word w in topic z at epoch t.
Although we integrate out φt,z,w, we can recover its point
estimate as follows,

φ̂t,z,w =
Nt,z,w +

P

s λt,z,sξ
(s)
t−1,z,w

Nt,z +
P

s λt,z,s
. (13)

1: N̂
(1)
t,z,w ← N̂t,z,w

2: for s = 2, · · · , S do
3: if t mod 2s−1 = 0 then
4: N̂

(s)
t,z,w ← N̂

(s−1)
t,z,w + N̂

(s−1)
t−1,z,w

5: else
6: N̂

(s)
t,z,w ← N̂

(s)
t−1,z,w

7: end if
8: end for

Figure 3: Algorithm for the approximate update of

N̂
(s)
t,z,w.

While it is simpler to use the actual number of times, Nt,z,w,

instead of the expected number of times, N̂t,z,w, in (12), we

use the latter in order to constrain the estimate of ξ
(s=1)
t,z,w to

be the estimate of φt,z,w as follows,

ξ
(s=1)
t,z,w =

N̂t,z,w
P

w N̂t,z,w

= φ̂t,z,w. (14)

Note that the value N̂
(s)
t,z,w can be updated sequentially

from the previous value N̂
(s)
t−1,z,w as follows,

N̂
(s)
t,z,w ← N̂

(s)
t−1,z,w + N̂t,z,w − N̂t−2s−1,z,w. (15)

Therefore, N̂
(s)
t,z,w can be updated through just two additions

instead of 2s−1 additions.
However, to update N̂

(s)
t,z,w, we still need to store values

N̂t,z,w from t−2S−1 to t−1, which means that O(2S−1ZW )
memory is required in total for updating multiscale word
distributions. Since the memory requirement increases ex-
ponentially with the number of scales, this requirement pre-
vents us from modeling long-timescale dynamics. Thus, we
consider approximating the update by decreasing the up-
date frequency for long-timescale distributions as in Algo-
rithm 3; this reduces the memory requirement to O(SZW ),
which is linear against the number of scales. Figure 4 illus-

trates approximate updating N̂
(s)
t,z,w with S = 3 from t = 4

to t = 8. Each rectangle represents N̂t′,z,w, where the num-

ber represents t′. Each row at each epoch represents N̂
(s)
t,z,w,

and shaded rectangles represent that the values that dif-

fer from the previous values. N̂
(s)
t,z,w is updated at every

2s−1nd epoch. Since the dynamics of a word distribution
for a long-timescale is considered to be slower than that for
a short-timescale, this approximation, decreasing the up-
date frequency for long-timescale distributions, is reason-

able. Updating N̂
(s)
t,z,w with this approximation requires us

to store only the previous N̂
(s−1)
t,z,w values, and so the mem-

ory requirement is O(SZW ). Figure 1 (c) shows a graphical
model representation of online inference in MDTM.

For the Dirichlet prior parameter of the word distribution,
we use the weighted sum of the multiscale word distributions
as in (1). The parameter can be rewritten as the weighted
sum of the word distributions for each epoch as follows,

S
X

s=1

λt,z,sξ
(s)
t−1,z,w =

t−1
X

t′=t−2S−1

λ′
t,z,t′ φ̂t′,z,w, (16)



1 2 3 4

3 4

4

t=4

s=3

s=2

s=1

1 2 3 4

3 4

5

t=5

5

1 2 3 4

5 6

6

t=6

6

1 2 3 4

5 6

7

t=7

7

5 6 7 8

7 8

8

t=8

8

1 2 3 41 2 3 4

3 43 4

4

t=4

s=3

s=2

s=1

1 2 3 41 2 3 4

3 43 4

5

t=5

5

1 2 3 41 2 3 4

5 65 6

6

t=6

6

1 2 3 41 2 3 4

5 65 6

7

t=7

7

5 6 7 85 6 7 8

7 87 8

8

t=8

8

Figure 4: Illustration of approximate updating N̂
(s)
t,z,w

from t = 4 to t = 8 with S = 3.

where

λ′
t,z,t′ =

S
X

s=dlog2(t−t′+1)+1e

λt,z,s

P

w N̂t′,z,w
P

w

Pt−1
t′′=t−2s−1 N̂t′′,z,w

, (17)

is its weight. See Appendix for the derivation. Therefore,
the multiscale dynamic topic model can be seen as an ap-
proximation of a model that depends on the word distri-
butions for each of the previous epochs. By considering
multiscale word distributions, the number of weight param-
eters Λt can be decreased from O(2S−1Z) to O(SZ), and
this leads to more robust inference. Furthermore, the use
of multiscaling also decreases the memory requirement from
O(2S−1ZW ) to O(SZW ) as described above.

3. RELATED WORK
A number of methods for analyzing the evolution of top-

ics in document collections have been proposed, such as the
dynamic topic model [5], topic over time [21], online latent
Dirichlet allocation [1], and topic tracking model [11]. How-
ever, none of the above methods take account of multiscale
dynamics. For example, the dynamic topic model (DTM) [5]
depends only on the previous epoch distribution. On the
other hand, MDTM depends on multiple distributions with
different timescales. Therefore, with MDTM, we can model
the multiple timescale dependency, and so infer the current
model more robustly. Moreover, while DTM uses a Gaus-
sian distribution to account for the dynamics, the proposed
model uses conjugate priors. Therefore, inference in MDTM
is relatively simple compared to that in DTM.

The multiscale topic tomography model (MTTM) [14] can
analyze the evolution of topics at various resolutions of timescales
by assuming non-homogeneous Poisson processes. In con-
trast, MDTM models the topic evolution within the Dirichlet-
multinomial framework as the same with most topic models
including latent Dirichlet allocation [6]. Another advantage
of MDTM over MTTM is that it can make inferences in
an online fashion. Therefore, MDTM can greatly reduce
the computational cost as well as the memory requirements
because past data need not be stored. Online inference is
essential for modeling the dynamics of document collections,
in which large numbers of documents continue to accumu-
late at any given moment, such as news articles and blogs,
because it is necessary to adapt to the new data immediately
for topic tracking, and it is impractical to prepare sufficient
memory capacity to store all past data. Online inference
algorithms for topic models have been proposed [1, 4, 7, 11].

Singular value decomposition (SVD) is used for analyzing
multiscale patterns in streaming data [15] as well as topic
models. However, since SVD assumes Gaussian noise, it

is inappropriate for discrete data such as document collec-
tions [9].

4. EXPERIMENTS

4.1 Setting
We evaluated the multiscale dynamic topic model with on-

line inference (MDTM) using four real document collections
with timestamps: NIPS, PNAS, Digg, and Addresses.

The NIPS data consists of papers from the NIPS (Neu-
ral Information Processing Systems) conference from 1987
to 1999. There were 1,740 documents, and the vocabulary
size was 14,036. The unit epoch was set to one year, so
there were 13 epochs. The PNAS data consists of the titles
of papers that appeared in the Proceedings of the National
Academy of Sciences from 1915 to 2005. There were 79,477
documents, and the vocabulary size was 20,534. The unit
epoch was set at one year, so there were 91 epochs. The Digg
data consists of blog posts that appeared in the social news
website Digg (http://digg.com) from January 29th to Febru-
ary 20th in 2009. There were 108,356 documents, and the
vocabulary size was 23,494. The unit epoch was set at one
day, so there were 23 epochs. The Addresses data consists
of the State of the Union addresses from 1790 to 2002. We
increased the number of documents by splitting each tran-
script into 3-paragraph “documents” as done in [21]. We
omitted words that occurred in fewer than 10 documents.
There were 6,413 documents, and the vocabulary size was
6,759. The unit epoch was set at one year, and excluding
the years for which data was missing there were 205 epochs.
We omitted stop-words from all data sets.

We compared MDTM to DTM, LDAall, LDAone, and
LDAonline. DTM is a dynamic topic model with online in-
ference that does not take multiscale distributions into con-
sideration; it corresponds to MDTM with S = 1. Note that
DTM used here models dynamics with Dirichlet priors while
the original DTM with Gaussian priors. LDAall, LDAone,
and LDAonline are based on LDA, and so do not model the
dynamics. LDAall is an LDA that uses all past data for
inference. LDAone is an LDA that uses just the current
data for inference. LDAonline is an online learning exten-
sion of LDA, in which the parameters are estimated using
those of the previous epoch and the new data [4]. For a fair
comparison, the hyperparameters in these LDAs were op-
timized using stochastic EM as described by Wallach [19].
We set the number of latent topics at Z = 50 for all models.
In MDTM, we used γ = 1, and we estimated the Dirichlet
prior for topic proportions subject to αt,z ≥ 10−2 in order
to avoid overfitting. We set the number of scales so that one
of the multiscale distributions covered the entire period, or
S = dlog2 T + 1e, where T is the number of epochs. We did
not compare with the multiscale topic tomography model
(MTTM) because the perplexity of MTTM was worse than
that of LDA in [14] and MDTM has a clear advantage over
MTTM in that MDTM can make inferences in an online
fashion.

We evaluated the predictive performance of each model
using the perplexity of held-out words,

Perplexity = exp

0

@−
P

d

PNtest
t,d

n=1 log P (wtest
t,d,n|t, d,Dt)

P

d N test
t,d

1

A ,

(18)



where N test
t,d is the number of held-out words in the dth doc-

ument at epoch t, wtest
t,d,n is the nth held-out words in the

document, and Dt represents training samples until epoch
t. A lower perplexity represents higher predictive perfor-
mance. We used half of the words in 10% of the documents
as held-out words for each epoch, and used the other words
as training samples. We created ten sets of training and
test data by random sampling, and evaluated the average
perplexity over the ten data sets.

4.2 Results
The average perplexities over the epochs are shown in

Table 2, and the perplexities for each epoch are shown in
Figure 5. For all data sets, MDTM achieved the lowest per-
plexity, which implies that MDTM can appropriately model
the dynamics of various types of data sets through its use
of multiscale properties. DTM had higher perplexity than
MDTM because it could not model the long-timescale de-
pendencies. The reason for the high perplexities of LDAall
and LDAonline is that they do not consider the dynamics.
The perplexity achieved by LDAone is high because it uses
only current data and ignores the past information.

The average perplexities over epochs with different num-
bers of topics are shown in Figure 6. Under the same number
of topics, MDTM achieved the lowest perplexities in all of
the cases except when Z = 150 and 200 in the NIPS data.
Even if the number of topics of the other models increases,
the perplexities of the other models did not become better
than that of our model with fewer topics in PNAS, Digg,
and Addresses data. This result indicates that the larger
number of parameters of our model is not a major reason
for the lower perplexity.

The average perplexities over epochs with different num-
bers of scales in MDTM are shown in Figure 7. Note that
s = 0 uses the uniform distribution only, while s = 1 uses
the uniform distribution and the previous epoch’s distribu-
tion. The perplexities decreased as the number of scales in-
creased. This result indicates the importance of considering
multiscale distributions.

Figure 8 shows the average computational time per epoch
when using a computer with a Xeon5355 2.66GHz CPU.
The computational time for MDTM is roughly linear against
the number of scales. Even though MDTM considers mul-
tiple timescale distributions, its computational time is much
smaller than that of LDAall which considers a single timescale
distribution. This is because that MDTM uses only current
samples for inference, in contrast, LDAall uses all samples
for inference.

Figure 9 shows the estimated λt,z,s with different num-
bers of scales s in MDTM. The sum of the values for each
epoch and for each topic are normalized to one. The pa-
rameters decrease as the timescale lengthens. This result
implies that recent distributions are more informative as re-
gards estimating current distributions, which is intuitively
reasonable.

Figure 10 shows two topic examples of the multiscale topic
evolution in NIPS data analyzed by MDTM. Note that we
omit words appeared in the longer timescales from the table.
In the longest timescale, basic words for the research field are
appropriately extracted, such as ‘speech’, ‘recognition’, and
‘speaker’ in the speech recognition topic, ‘control’, ‘action’,
‘policy’, and ‘reinforcement’ in the reinforcement learning
topic. In the shorter timescale, we can see the evolution of

trends in the research. For example, in the speech recogni-
tion research, phoneme classification is a popular task until
1995, and probabilistic approaches such as hidden Markov
models (HMM) from 1996 are frequently used.

5. CONCLUSION
In this paper, we have proposed a topic model with multi-

scale dynamics and efficient online inference procedures. We
have confirmed experimentally that the proposed method
can appropriately model the dynamics in document data by
considering multiscale properties, and that it is computa-
tionally efficient.

In future work, we could determine the unit time interval
and the length of scale automatically from the given data.
We assumed that the number of topics was known and fixed
over time. We can automatically infer the number of topics
by extending the model to a nonparametric Bayesian model
such as the Dirichlet process mixture model [16, 18]. Since
the proposed method is applicable to various kinds of dis-
crete data with timestamps, such as web access log, blog,
and e-mail, we will evaluate the proposed method further
by applying it to other data sets.
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Table 2: Average perplexities over epochs. The value in the parenthesis represents the standard deviation
over data sets.

MDTM DTM LDAall LDAone LDAonline
NIPS 1754.9 (41.3) 1771.6 (37.2) 1802.4 (36.4) 1822.0 (44.0) 1769.8 (41.5)
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Digg 3388.9 (37.7) 3594.2 (46.4) 3652.6 (27.1) 5162.9 (43.4) 3500.0 (43.6)

Addresses 1968.8 (56.5) 2105.2 (49.7) 2217.2 (75.3) 3033.5 (70.9) 2251.6 (62.0)
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Figure 5: Perplexities for each epoch.
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Figure 6: Average perplexities with different numbers of topics.
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APPENDIX
In this appendix, we give the derivation of (16). Let N̂ t−1

t−2s−1,z
=

P

w

Pt−1
t′=t−2s−1 N̂t′,z,w, and N̂t,z =

P

w N̂t,z,w. The Dirich-
let prior parameter of the word distribution can be rewritten
as the weighted sum of the word distributions for each epoch
using (12) as follows,
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Figure 10: Two topic examples of the multiscale topic evolution in NIPS data analyzed by MDTM: (a) speech
recognition, and (b) reinforcement learning topics. The ten most probable words for each epoch, timescale,
and topic are shown.


