
Electronic Journal of Statistics
Vol. 12 (2018) 2930–2961
ISSN: 1935-7524
https://doi.org/10.1214/18-EJS1468

Online natural gradient as a Kalman

filter

Yann Ollivier

Facebook Artificial Intelligence Research ∗

6 rue Ménars, 75002 Paris, France
e-mail: yol@fb.com

Abstract: We cast Amari’s natural gradient in statistical learning as a
specific case of Kalman filtering. Namely, applying an extended Kalman
filter to estimate a fixed unknown parameter of a probabilistic model from
a series of observations, is rigorously equivalent to estimating this parameter
via an online stochastic natural gradient descent on the log-likelihood of the
observations.

In the i.i.d. case, this relation is a consequence of the “information fil-
ter” phrasing of the extended Kalman filter. In the recurrent (state space,
non-i.i.d.) case, we prove that the joint Kalman filter over states and param-
eters is a natural gradient on top of real-time recurrent learning (RTRL),
a classical algorithm to train recurrent models.

This exact algebraic correspondence provides relevant interpretations
for natural gradient hyperparameters such as learning rates or initialization
and regularization of the Fisher information matrix.

MSC 2010 subject classifications: Primary 68T05, 65K10; secondary
93E35, 90C26, 93E11, 49M15.
Keywords and phrases: Statistical learning, natural gradient, Kalman
filter, stochastic gradient descent.

Received June 2017.

Contents

1 Problem setting, natural gradient, Kalman filter 2934
1.1 Problem setting . 2934
1.2 Natural gradient descent . 2936
1.3 Kalman filtering for parameter estimation 2938

2 Natural gradient as a Kalman filter: the static (i.i.d.) case 2939
2.1 Natural gradient as a Kalman filter: heuristics 2940
2.2 Statement of the correspondence, static (i.i.d.) case 2941
2.3 Proofs for the static case . 2945

3 Natural gradient as a Kalman filter: the state space (recurrent) case . 2949
3.1 Recurrent models, RTRL . 2949
3.2 Statement of the correspondence, recurrent case 2950
3.3 Proofs for the recurrent case . 2952

A Reminder on exponential families . 2956
References . 2958

∗Work done in part while at CNRS, TAO, Université Paris-Sud

2930

http://projecteuclid.org/ejs
https://doi.org/10.1214/18-EJS1468
mailto:yol@fb.com

Online natural gradient as a Kalman filter 2931

In statistical learning, stochastic gradient descent is a widely used tool to es-
timate the parameters of a model from empirical data, especially when the
parameter dimension and the amount of data are large [BL03] (such as is
typically the case with neural networks, for instance). The natural gradient
[Ama98] is a tool from information geometry, which aims at correcting sev-
eral shortcomings of the widely ordinary stochastic gradient descent, such as
its sensitivity to rescalings or simple changes of variables in parameter space
[Oll15]. The natural gradient modifies the ordinary gradient by using the in-
formation geometry of the statistical model, via the Fisher information ma-
trix (see formal definition in Section 1.2; see also [Mar14]). The natural gradi-
ent comes with a theoretical guarantee of asymptotic optimality [Ama98] that
the ordinary gradient lacks, and with the theoretical knowledge and various
connections from information geometry, e.g., [AN00, OAAH17]. In large di-
mension, its computational complexity makes approximations necessary, e.g.,
[LMB07, Oll15, MCO16, GS15, MG15]; this has limited its adoption despite
many desirable theoretical properties.

The extended Kalman filter (see e.g., the textbooks [Sim06, Sä13, Jaz70])
is a generic and effective tool to estimate in real time the state of a nonlinear
dynamical system, from noisy measurements of some part or some function of
the system. (The ordinary Kalman filter deals with linear systems.) Its use in
navigation systems (GPS, vehicle control, spacecraft...), time series analysis,
econometrics, etc. [Sä13], is extensive to the point it can been described as “one
of the great discoveries of mathematical engineering” [GA15].

The goal of this text is to show that the natural gradient, when applied
online, is a particular case of the extended Kalman filter. Indeed, the extended
Kalman filter can be used to estimate the parameters of a statistical model
(probability distribution), by viewing the parameters as the hidden state of
a “static” dynamical system, and viewing i.i.d. samples as noisy observations
depending on the parameters.1 We show that doing so is exactly equivalent to
performing an online stochastic natural gradient descent (Theorem 2).

This results in a rigorous dictionary between the natural gradient objects from
statistical learning, and the objects appearing in Kalman filtering; for instance,
a larger learning rate for the natural gradient descent exactly corresponds to a
fading memory in the Kalman filter (Proposition 3).

Table 1 lists a few correspondences between objects from the Kalman fil-
ter side and from the natural gradient side, as results from the theorems and
propositions below. Note that the correspondence is one-sided: the online nat-
ural gradient is exactly an extended Kalman filter, but only corresponds to a
particular use of the Kalman filter for parameter estimation problems (i.e., with
static dynamics on the parameter part of the system).

1For this we slightly extend the definition of the Kalman filter to include discrete observa-
tions, by defining (Def. 5) the measurement error as T (y)− ŷ instead of y− ŷ, where T is the
sufficient statistics of an exponential family model for output noise with mean ŷ. This reduces
to the standard filter for Gaussian output noise, and naturally covers categorical outputs as
often used in statistical learning (with ŷ the class probabilities in a softmax classifier and T
a “one-hot” encoding of y).

2932 Y. Ollivier

Table 1

Kalman filter objects vs natural gradient objects. The inputs are ut, the predicted values are
ŷt, and the model parameters are θ.

iid (static, non-recurrent) model ŷt = h(θ, ut)
Extended Kalman filter on static Online natural gradient on θ with
parameter θ learning rate ηt = 1/(t+ 1)

Covariance matrix Pt Fisher information matrix Jt = ηtP
−1
t

Bayesian prior P0 Fisher matrix initialization J0 = P−1
0

Fading memory Larger or constant learning rate
Fading memory+constant prior Fisher matrix regularization
Recurrent (state space) model ŷt = Φ(ŷt−1, θ, ut)
Extended Kalman filter on (θ, ŷ) RTRL+natural gradient+state correction
Covariance of θ alone, P θ Fisher matrix Jt = ηt (P θ)−1

Correlation between θ and ŷt RTRL gradient estimate ∂ŷt/∂θ

Beyond the static case, we also consider the learning of the parameters of
a general dynamical system, where subsequent observations exhibit temporal
patterns instead of being i.i.d.; in statistical learning this is called a recurrent
model, for instance, a recurrent neural network. We refer to [Jae02] for an intro-
duction to recurrent models in statistical learning (recurrent neural networks)
and the afferent techniques (including Kalman filters), and to [Hay01] for a
clear, in-depth treatment of Kalman filtering for recurrent models. We prove
(Theorem 12) that the extended Kalman filter applied jointly to the state and
parameter, amounts to a natural gradient on top of real-time recurrent learning
(RTRL), a classical (and costly) online algorithm for recurrent network training
[Jae02].

Thus, we provide a bridge between techniques from large-scale statistical
learning (natural gradient, RTRL) and a central object from mathematical en-
gineering, signal processing, and estimation theory. Casting the natural gradient
as a specific case of the extended Kalman filter is an instance of the provocative
statement from [LS83] that “there is only one recursive identification method”
that is optimal on quadratic functions. Indeed, the online natural gradient de-
scent fits into the framework of [LS83, §3.4.5]. Arguably, this statement is lim-
ited to linear models, and for non-linear models one would expect different
algorithms to coincide only at a certain order, or asymptotically; however, all
the correspondences presented below are exact.

Related work. In the i.i.d. (static) case, the natural gradient/Kalman filter
correspondence follows from the information filter phrasing of Kalman filtering
[Sim06, §6.2] by relatively direct manipulations. Nevertheless, we could find no
reference in the literature explicitly identifying the two. [SW88] is an early ex-
ample of the use of Kalman filtering for training feedforward neural networks in
statistical learning, but does not mention the natural gradient. [RRK+92] ar-
gue that for neural networks, backpropagation, i.e., ordinary gradient descent,
“is a degenerate form of the extended Kalman filter”. [Ber96] identifies the ex-
tended Kalman filter with a Gauss–Newton gradient descent for the specific
case of nonlinear regression. [dFNG00] interprets process noise in the static
Kalman filter as an adaptive, per-parameter learning rate, thus akin to a pre-

Online natural gradient as a Kalman filter 2933

conditioning matrix. [ŠKT01] uses the Fisher information matrix to study the
variance of parameter estimation in Kalman-like filters, without using a natu-
ral gradient; [BL03] comment on the similarity between Kalman filtering and
a version of Amari’s natural gradient for the specific case of least squares re-
gression; [Mar14] and [Oll15] mention the relationship between natural gradient
and the Gauss–Newton Hessian approximation; [Pat16] exploits the relationship
between second-order gradient descent and Kalman filtering in specific cases in-
cluding linear regression; [LCL+17] use a natural gradient descent over Gaussian
distributions for an auxiliary problem arising in Kalman-like Bayesian filtering,
a problem independent from the one treated here.

For the recurrent (non-i.i.d.) case, our result is that joint Kalman filtering
is essentially a natural gradient on top of the classical RTRL algorithm for re-
current models [Jae02]. [Wil92] already observed that starting with the Kalman
filter and introducing drastic simplifications (doing away with the covariance
matrix) results in RTRL, while [Hay01, §5] contains statements that can be
interpreted as relating Kalman filtering and preconditioned RTRL-like gradient
descent for recurrent models (Section 3.2).

Perspectives. In this text our goal is to derive the precise correspondence be-
tween natural gradient and Kalman filtering for parameter estimation (Thm. 2,
Prop. 3, Prop. 4, Thm. 12), and to work out an exact dictionary between the
mathematical objects on both sides. This correspondence suggests several pos-
sible venues for research, which nevertheless are not explored here.

First, the correspondence with the Kalman filter brings new interpretations
and suggestions for several natural gradient hyperparameters, such as Fisher
matrix initialization, equality between Fisher matrix decay rate and learning
rate, or amount of regularization to the Fisher matrix (Section 2.2). The natural
gradient can be quite sensitive to these hyperparameters. A first step would be to
test the matrix decay rate and regularization values suggested by the Bayesian
interpretation (Prop. 4) and see if they help with the natural gradient, or if
these suggestions are overriden by the various approximations needed to apply
the natural gradient in practice. These empirical tests are beyond the scope of
the present study.

Next, since statistical learning deals with either continuous or categorical
data, we had to extend the usual Kalman filter to such a setting. Traditionally,
non-Gaussian output models have been treated by applying a nonlinearity to
a standard Gaussian noise (Section 2.3). Instead, modeling the measurement
noise as an exponential family (Appendix and Def. 5) allows for a unified treat-
ment of the standard case (Gaussian output noise with known variance), of
discrete categorical observations, or other exponential noise models (e.g., Gaus-
sian noise with unknown variance). We did not test the empirical consequences
of this choice, but it certainly makes the mathematical treatment flow smoothly,
in particular the view of the Kalman filter as preconditioned gradient descent
(Prop. 6).

Neither the natural gradient nor the extended Kalman filter scale well to
large-dimensional models as currently used in machine learning, so that approx-

2934 Y. Ollivier

imations are required. The correspondence raises the possibility that various
methods developed for Kalman filtering (e.g., particle or unscented filters) or
for natural gradient approximations (e.g., matrix factorizations such as the Kro-
necker product [MG15] or quasi-diagonal reductions [Oll15, MCO16]) could be
transferred from one viewpoint to the other.

In statistical learning, other means have been developed to attain the same
asymptotic efficiency as the natural gradient, notably trajectory averaging (e.g.,
[PJ92], or [Mar14] for the relationship to natural gradient) at little algorithmic
cost. One may wonder if these can be generalized to filtering problems.

Proof techniques could be transferred as well: for instance, Amari [Ama98]
gave a strong but sometimes informal argument that the natural gradient is
Fisher-efficient, i.e., the resulting parameter estimate is asymptotically optimal
for the Cramér–Rao bound; alternate proofs could be obtained by transferring
related statements for the extended Kalman filter, e.g., combining techniques
from [ŠKT01, BRD97, LS83].

Organization of the text. In Section 1 we set the notation, recall the defi-
nition of the natural gradient (Def. 1), and explain how Kalman filtering can be
used for parameter estimation in statistical learning (Section 1.3); the definition
of the Kalman filter is included in Def. 5. Section 2 gives the main statements
for viewing the natural gradient as an instance of an extended Kalman filter for
i.i.d. observations (static systems), first intuitively via a heuristic asymptotic
argument (Section 2.1), then rigorously (Thm. 2, Prop. 3, Prop. 4). The proof
of these results appears in Section 2.3 and sheds some light on the geometry of
Kalman filtering. Finally, the case of non-i.i.d. observations (recurrent or state
space model) is treated in Section 3.

Acknowledgments. Many thanks to Silvère Bonnabel, Gaétan Marceau-
Caron, and the anonymous reviewers for their careful reading of the manuscript,
corrections, and suggestions for the presentation and organization of the text.
I would also like to thank Shun-ichi Amari, Frédéric Barbaresco, and Nando de
Freitas for additional comments and for pointing out relevant references.

1. Problem setting, natural gradient, Kalman filter

1.1. Problem setting

In statistical learning, we have a series of observation pairs (u1, y1), . . . ,
(ut, yt), . . . and want to predict yt from ut using a probabilistic model pθ. As-
sume for now that yt is real-valued (regression problem) and that the model for
yt is a Gaussian centered on a predicted value ŷt, with known covariance matrix
Rt, namely

yt = ŷt +N (0, Rt), ŷt = h(θ, ut) (1.1)

The function h may represent any computation, for instance, a feedforward
neural network with input u, parameters θ, and output ŷ. The goal is to find

Online natural gradient as a Kalman filter 2935

the parameters θ such that the prediction ŷt = h(θ, ut) is as close as possible to
yt: the loss function is

�t =
1

2
(ŷt − yt)

�R−1
t (ŷt − yt) = − ln p(yt|ŷt) (1.2)

up to an additive constant.
For non-Gaussian outputs, we assume that the noise model on yt given ŷt

belongs to an exponential family, namely, that ŷt is the mean parameter of an
exponential family of distributions2 over yt; we again define the loss function
as �t := − ln p(yt|ŷt), and the output noise Rt can be defined as the covariance
matrix of the sufficient statistics of yt given this mean (Def. 5). For a Gaussian
output noise this works as expected. For instance, for a classification problem,
the output is categorical, yt ∈ {1, . . . ,K}, and ŷt will be the set of probabilities
ŷt = (p1, . . . , pK−1) to have yt = 1, . . . ,K − 1. In that case Rt is the (K −
1) × (K − 1) matrix (Rt)kk′ = diag(pk) − pkpk′ . (The last probability pK is
determined by the others via

∑
pk = 1 and has to be excluded to obtain a

non-degenerate parameterization and an invertible covariance matrix Rt.)
This convention allows us to extend the definition of the Kalman filter to

such a setting (Def. 5) in a natural way, just by replacing the measurement
error yt − ŷt with T (yt)− ŷt, with T the sufficient statistics for the exponential
family. (For Gaussian noise this is the same, as T (y) is y.)

In neural network terms, this means that the output layer of the network is
fed to a loss function that is the log-loss of an exponential family, but places no
restriction on the rest of the model.

General notation. In statistical learning, the external inputs or regressor
variables are often denoted x. In Kalman filtering, x often denotes the state of
the system, while the external inputs are often u. Thus we will avoid x altogether
and denote by u the inputs and by s the state of the system.

The variable to be predicted at time t will be yt, and ŷt is the corresponding
prediction. In general ŷt and yt may be different objects in that ŷt encodes a
full probabilistic prediction for yt. For Gaussians with known variance, ŷt is just
the predicted mean of yt, so in this case yt and ŷt are the same type of object.
For Gaussians with unknown variance, ŷ encodes both the mean and second
moment of y. For discrete categorical data, ŷ encodes the probability of each
possible outcome y.

2The Appendix contains a reminder on exponential families. An exponential family of
probability distributions on y, with sufficient statistics T1(y), . . . , TK(y), and with parameter
β ∈ R

K , is given by

pβ(y) :=
1

Z(β)
e
∑

k βkTk(y) λ(dy) (1.3)

where Z(β) is a normalizing constant, and λ(dy) is any reference measure on y. For instance,
if y ∈ R

K , Tk(y) = yk and λ(dy) is a Gaussian measure centered on 0, by varying β one
gets all Gaussian measures with the same covariance matrix and another mean. y may be
discrete, e.g., Bernoulli distributions correspond to λ the uniform measure on y ∈ {0, 1} and a
single sufficient statistic T (0) = 0, T (1) = 1. Often, the mean parameter T̄ := Ey∼pβT (y) is a
more convenient parameterization than β. Exponential families maximize entropy (minimize
information divergence from λ) for a given mean of T .

2936 Y. Ollivier

Thus, the formal setting for this text is as follows: we are given a sequence of
finite-dimensional observations (yt) with each yt ∈ R

dim(y), a sequence of inputs
(ut) with each ut ∈ R

dim(u), a parametric model ŷ = h(θ, ut) with parameter
θ ∈ R

dim(θ) and h some fixed smooth function from R
dim(θ)×R

dim(u) to R
dim(ŷ).

We are given an exponential family (output noise model) p(y|ŷ) on y with mean
parameter ŷ and sufficient statistics T (y) (see the Appendix), and we define the
loss function �t := − ln p(yt|ŷt).

The natural gradient descent on parameter θt will use the Fisher matrix Jt.
The Kalman filter will have posterior covariance matrix Pt.

For multidimensional quantities x and y = f(x), we denote by ∂y
∂x the Jaco-

bian matrix of y w.r.t. x, whose (i, j) entry is ∂fi(x)
∂xj

. This satisfies the chain

rule ∂z
∂y

∂y
∂x = ∂z

∂x . With this convention, gradients of real-valued functions are

row vectors, so that a gradient descent takes the form x ← x− η (∂f/∂x)�.
For a column vector u, u⊗2 is synonymous with uu�, and with u�u for a row

vector.

1.2. Natural gradient descent

A standard approach to optimize the parameter θ of a probabilistic model, given
a sequence of observations (yt), is an online gradient descent

θt ← θt−1 − ηt
∂�t(yt)

∂θ

�
(1.4)

with learning rate ηt. This simple gradient descent is particularly suitable for
large datasets and large-dimensional models [BL03], but has several practical
and theoretical shortcomings. For instance, it uses the same non-adaptive learn-
ing rate for all parameter components. Moreover, simple changes in parameter
encoding or in data presentation (e.g., encoding black and white in images by
0/1 or 1/0) can result in different learning performance.

This motivated the introduction of the natural gradient [Ama98]. It is built to
achieve invariance with respect to parameter re-encoding; in particular, learning
become insensitive to the characteristic scale of each parameter direction, so that
different directions naturally get suitable learning rates. The natural gradient is
the only general way to achieve such invariance [AN00, §2.4].

The natural gradient preconditions the gradient descent with J(θ)−1 where
J is the Fisher information matrix [Kul97] with respect to the parameter θ. For
a smooth probabilistic model p(y|θ) over a random variable y with parameter
θ, the latter is defined as

J(θ) := Ey∼p(y|θ)

[
∂ ln p(y|θ)

∂θ

⊗2
]
= −Ey∼p(y|θ)

[
∂2 ln p(y|θ)

∂θ2

]
(1.5)

Definition 1 below formally introduces the online natural gradient. If the model
for y involves an input u, then an expectation or empirical average over the
input is introduced in the definition of J [AN00, §8.2] [Mar14, §5].

Online natural gradient as a Kalman filter 2937

However, this comes at a large computational cost for large-dimensional mod-
els: just storing the Fisher matrix already costs O((dim θ)2). Various strategies
are available to approximate the natural gradient for complex models such as
neural networks, using diagonal or block-diagonal approximation schemes for
the Fisher matrix, e.g., [LMB07, Oll15, MCO16, GS15, MG15].

Definition 1 (Online natural gradient). Consider a statistical model with pa-
rameter θ that predicts an output y given an input u. Suppose that the prediction
takes the form y ∼ p(y|ŷ) where ŷ = h(θ, u) depends on the input via a model
h with parameter θ. Given observation pairs (ut, yt), the goal is to minimize,
online, the loss function∑

t

�t(yt), �t(y) := − ln p(y|ŷt) (1.6)

as a function of θ.
The online natural gradient maintains a current estimate θt of the parame-

ter θ, and a current approximation Jt of the Fisher matrix. The parameter is
estimated by a gradient descent with preconditioning matrix J−1

t , namely

Jt ← (1− γt)Jt−1 + γt Ey∼p(y|ŷt)

[
∂�t(y)

∂θ

⊗2
]

(1.7)

θt ← θt−1 − ηt J
−1
t

(
∂�t(yt)

∂θ

)�
(1.8)

with learning rate ηt and Fisher matrix decay rate γt.

In the Fisher matrix update, the expectation over all possible values y ∼
p(y|ŷ) can often be computed algebraically, but this is sometimes computation-
ally bothersome (for instance, in neural networks, it requires dim(ŷt) distinct
backpropagation steps [Oll15]). A common solution [APF00, LMB07, Oll15,
PB13] is to just use the value y = yt (outer product approximation) instead of
the expectation over y. Another is to use a Monte Carlo approximation with
a single sample of y ∼ p(y|ŷt) [Oll15, MCO16], namely, using the gradient of
a synthetic sample instead of the actual observation yt in the Fisher matrix.
These latter two solutions are often confused; only the latter provides an unbi-
ased estimate, see discussion in [Oll15, PB13].

The online “smoothed” update of the Fisher matrix in (1.7) mixes past and
present estimates (this or similar updates are used in [LMB07, MCO16]). The
reason is at least twofold. First, the “genuine” Fisher matrix involves an expec-
tation over the inputs ut [AN00, §8.2]: this can be approximated online only via
a moving average over inputs (e.g., γt = 1/t realizes an equal-weight average
over all inputs seen so far). Second, the expectation over y ∼ p(y|ŷt) in (1.7)
is often replaced with a Monte Carlo estimation with only one value of y, and
averaging over time compensates for this Monte Carlo sampling.

As a consequence, since θt changes over time, this means that the estimate
Jt mixes values obtained at different values of θ, and converges to the Fisher

2938 Y. Ollivier

matrix only if θt changes slowly, i.e., if ηt → 0. The correspondence below with
Kalman filtering suggests using γt = ηt.

1.3. Kalman filtering for parameter estimation

One possible definition of the extended Kalman filter is as follows [Sim06, §15.1].
We are trying to estimate the current state of a dynamical system st whose
evolution equation is known but whose precise value is unknown; at each time
step, we have access to a noisy measurement yt of a quantity ŷt = h(st) which
depends on this state.

The Kalman filter maintains an approximation of a Bayesian posterior on st
given the observations y1, . . . , yt. The posterior distribution after t observations
is approximated by a Gaussian with mean st and covariance matrix Pt. (In-
deed, Bayesian posteriors always tend to Gaussians asymptotically under mild
conditions, by the Bernstein–von Mises theorem [vdV00].) The Kalman filter
prescribes a way to update st and Pt when new observations become available.

The Kalman filter update is summarized in Definition 5 below. It is built to
provide the exact value of the Bayesian posterior in the case of linear dynamical
systems with Gaussian measurements and a Gaussian prior. In that sense, it is
exact at first order.

The Kalman filtering viewpoint on a statistical learning problem is that we
are facing a system with hidden variable θ, with an unknown value that does not
evolve in time, and that the observations yt bring more and more information on
θ. Thus, a statistical learning problem can be tackled by applying the extended
Kalman filter to the unknown variable st = θ, whose underlying dynamics from
time t to time t + 1 is just to remain unchanged (f = Id and noise on s is
0 in Definition 5). In such a setting, the posterior covariance matrix Pt will
generally tend to 0 as observations accumulate and the parameter is identified
better3 (this occurs at rate 1/t for the basic filter, which estimates from all
t past observations at time t, or at other rates if fading memory is included,
see below). The initialization θ0 and its covariance P0 can be interpreted as
Bayesian priors on θ [SW88, LS83].

We will refer to this as a static Kalman filter. In the static case and without
fading memory, the posterior covariance Pt after t observations will decrease
like O(1/t), so that the parameter gets updated by O(1/t) after each new obser-
vation. Introducing fading memory for past observations (equivalent to adding
noise on θ at each step, Qt ∝ Pt|t−1 in Def. 5) leads to a larger covariance and
faster updates.

An example: Feedforward neural networks. The Kalman approach above
can be applied to any parametric statistical model. For instance [SW88] treat the
case of a feedforward neural network. In our setting this is described as follows.
Let u be the input of the model and y the true (desired) output. A feedforward

3But Pt must still be maintained even if it tends to 0, since it is used to update the
parameter at the correct rate.

Online natural gradient as a Kalman filter 2939

neural network can be described as a function ŷ = h(θ, u) where θ is the set of
all parameters of the network, where h represents all computations performed
by the network on input u, and ŷ encodes the network prediction for the value
of the output y on input u. For categorical observations y, ŷ is usually a set of
predicted probabilities for all possible classes; while for regression problems, ŷ
is directly the predicted value. In both cases, the error function to be minimized
can be defined as �(y) := − ln p(y|ŷ): in the regression case, ŷ is interpreted as
a mean of a Gaussian model on y, so that − ln p(y|ŷ) is the square error up to
a constant.

Training the neural network amounts to estimating the network parameter θ
from the observations. Applying a static Kalman filter for this problem [SW88]
amounts to using Def. 5 with s = θ, f = Id and Q = 0. At first glance this
looks quite different from the common gradient descent (backpropagation) ap-
proach for neural networks. The backpropagation operation is represented in the

Kalman filter by the computation of H = ∂h(s,u)
∂s (2.17) where s is the parame-

ter. We show that the additional operations of the Kalman filter correspond to
using a natural gradient instead of a vanilla gradient.

Unfortunately, for models with high-dimensional parameters such as neu-
ral networks, the Kalman filter is computationally costly and requires block-
diagonal approximations for Pt (which is a square matrix of size dim θ); more-
over, computing Ht = ∂ŷt/∂θ is needed in the filter, and requires doing one
separate backpropagation for each component of the output ŷt.

2. Natural gradient as a Kalman filter: the static (i.i.d.) case

We now write the explicit correspondence between an online natural gradient
to estimate the parameter of a statistical model from i.i.d. observations, and a
static extended Kalman filter. We first give a heuristic argument that outlines
the main ideas from the proof (Section 2.1).

Then we state the formal correspondences. First, the static Kalman filter
corresponds to an online natural gradient with learning rate 1/t (Thm. 2). The
rate 1/t arises because such a filter takes into account all previous evidence
without decay factors (and with process noise Q = 0 in the Kalman filter), thus
the posterior covariance matrix decreases like O(1/t). Asymptotically, this is
the optimal rate in statistical learning [Ama98]. (Note, however, that the online
natural gradient and extended Kalman filter are identical at every time step,
not only asymptotically.)

The 1/t rate is often too slow in practical applications, especially when start-
ing far away from an optimal parameter value. The natural gradient/Kalman
filter correspondence is not specific to the O(1/t) rate. Larger learning rates in
the natural gradient correspond to a fading memory Kalman filter (adding pro-
cess noise Q proportional to the posterior covariance at each step, corresponding
to a decay factor for the weight of previous observations); this is Proposition 3.
In such a setting, the posterior covariance matrix in the Kalman filter does not
decrease like O(1/t); for instance, a fixed decay factor for the fading memory

2940 Y. Ollivier

corresponds to a constant learning rate.

Finally, a fading memory in the Kalman filter may erase prior Bayesian in-
formation (θ0, P0) too fast; maintaining the weight of the prior in a fading
memory Kalman filter is treated in Proposition 4 and corresponds, on the nat-
ural gradient side, to a so-called weight decay [Bis06] towards θ0 together with
a regularization of the Fisher matrix, at specific rates.

2.1. Natural gradient as a Kalman filter: heuristics

As a first ingredient in the correspondence, we interpret Kalman filters as gra-
dient descents: the extended Kalman filter actually performs a gradient descent
on the log-likelihood of each new observation, with preconditioning matrix equal
to the posterior covariance matrix. This is Proposition 6 below. This relies on
having an exponential family as the output noise model.

Meanwhile, the natural gradient uses the Fisher matrix as a preconditioning
matrix. The Fisher matrix is the average Hessian of log-likelihood, thanks to the
classical double definition of the Fisher matrix as square gradient or Hessian,

J(θ) = Ey∼p(y|θ)

[
∂ ln p(y)

∂θ

⊗2]
= −Ey∼p(y|θ)

[
∂2 ln p(y)

∂θ2

]
for any probabilistic model

p(y|θ) [Kul97].

Assume that the probability of the data given the parameter θ is approxi-
mately Gaussian, p(y1, . . . , yt|θ) ∝ exp(−(θ − θ∗)�Σ−1(θ − θ∗)) with covariance
Σ. This often holds asymptotically thanks to the Bernstein–von Mises theo-
rem; moreover, the posterior covariance Σ typically decreases like 1/t. Then the
Hessian (w.r.t. θ) of the total log-likelihood of (y1, . . . , yt) is Σ−1, the inverse
covariance of θ. So the average Hessian per data point, the Fisher matrix J ,
is approximately J ≈ Σ−1/t. Since a Kalman filter to estimate θ is essentially
a gradient descent preconditioned with Σ, it will be the same as using a natu-
ral gradient with learning rate 1/t. Using a fading memory Kalman filter will
estimate Σ from fewer past observations and provide larger learning rates.

Another way to understand the link between natural gradient and Kalman
filter is as a second-order Taylor expansion of data log-likelihood. Assume that
the total data log-likelihood at time t, Lt(θ) := −

∑t
s=1 ln p(ys|θ), is approxi-

mately quadratic as a function of θ, with a minimum at θ∗t and a Hessian ht,
namely, Lt(θ) ≈ 1

2 (θ−θ∗t)
�ht(θ−θ∗t). Then when new data points become avail-

able, this quadratic approximation would be updated as follows (online Newton
method):

ht ≈ ht−1 + ∂2
θ (− ln p(yt|θ∗t−1)) (2.1)

θ∗t ≈ θ∗t−1 − h−1
t ∂θ(− ln p(yt|θ∗t−1)) (2.2)

and indeed these are equalities for a quadratic log-likelihood. Namely, the update
of θ∗t is a gradient ascent on log-likelihood, preconditioned by the inverse Hessian
(Newton method). Note that ht grows like t (each data point adds its own
contribution). Thus, ht is t times the empirical average of the Hessian, i.e.,

Online natural gradient as a Kalman filter 2941

approximately t times the Fisher matrix of the model (ht ≈ tJ). So this update
is approximately a natural gradient descent with learning rate 1/t.

Meanwhile, the Bayesian posterior on θ (with uniform prior) after obser-
vations y1, . . . , yt is proportional to e−Lt by definition of Lt. If Lt ≈ 1

2 (θ −
θ∗t)

�ht(θ − θ∗t), this is a Gaussian distribution centered at θ∗t with covariance
matrix h−1

t . The Kalman filter is built to maintain an approximation Pt of this
covariance matrix h−1

t , and then performs a gradient step preconditioned on Pt

similar to (2.2).

The simplest situation corresponds to an asymptotic rate O(1/t), i.e., esti-
mating the parameter based on all past evidence; the update (2.1) of the Hessian
is additive, so that ht grows like t and h−1

t in (2.2) produces an effective learn-
ing rate O(1/t). Introducing a decay factor for older observations, multiplying
the term ht−1 in (2.1), produces a fading memory effect and results in larger
learning rates.

These heuristics justify the statement from [LS83] that “there is only one
recursive identification method”. Close to an optimum (so that the Hessian
is positive), all second-order algorithms are essentially an online Newton step
(2.1)–(2.2) approximated in various ways.

But even though this heuristic argument appears to be approximate or asymp-
totic, the correspondence between online natural gradient and Kalman filter
presented below is exact at every time step.

2.2. Statement of the correspondence, static (i.i.d.) case

For the statement of the correspondence, we assume that the output noise on
y given ŷ is modelled by an exponential family with mean parameter ŷ. This
covers the traditional Gaussian case y = N (ŷ,Σ) with fixed Σ often used in
Kalman filters. The Appendix contains necessary background on exponential
families.

Theorem 2 (Natural gradient as a static Kalman filter). These two algorithms
are identical under the correspondence (θt, Jt) ↔ (st, P

−1
t /(t+ 1)):

1. The online natural gradient (Def. 1) with learning rates ηt = γt = 1/(t+
1), applied to learn the parameter θ of a model that predicts observations
(yt) with inputs (ut), using a probabilistic model y ∼ p(y|ŷ) with ŷ =
h(θ, u), where h is any model and p(y|ŷ) is an exponential family with
mean parameter ŷ.

2. The extended Kalman filter (Def. 5) to estimate the state s from obser-
vations (yt) and inputs (ut), using a probabilistic model y ∼ p(y|ŷ) with
ŷ = h(s, u) and p(y|ŷ) an exponential family with mean parameter ŷ, with
static dynamics and no added noise on s (f(s, u) = s and Q = 0 in Def. 5).

Namely, if at startup (θ0, J0) = (s0, P
−1
0), then (θt, Jt) = (st, P

−1
t /(t + 1))

for all t � 0.

2942 Y. Ollivier

The correspondence is exact only if the Fisher metric is updated before the
parameter in the natural gradient descent (as in Definition 1).

The correspondence with a Kalman filter provides an interpretation for vari-
ous hyper-parameters of online natural gradient descent. In particular, J0 = P−1

0

can be interpreted as the inverse covariance of a Bayesian prior on θ [SW88].
This relates the initialization J0 of the Fisher matrix to the initialization of θ: for
instance, in neural networks it is recommended to initialize the weights accord-
ing to a Gaussian of covariance diag(1/fan-in) (number of incoming weights) for
each neuron; interpreting this as a Bayesian prior on weights, one may recom-
mend to initialize the Fisher matrix to the inverse of this covariance, namely,

J0 ← diag(fan-in) (2.3)

Indeed this seemed to perform quite well in small-scale experiments.

Learning rates, fading memory, and metric decay rate. Theorem 2
exhibits a 1/(t+1) learning rate for the online natural gradient. This is because
the static Kalman filter for i.i.d. observations approximates the maximum a
posteriori (MAP) of the parameter θ based on all past observations; MAP and
maximum likelihood estimators change by O(1/t) when a new data point is
observed.

However, for nonlinear systems, optimality of the 1/t rate only occurs asymp-
totically, close enough to the optimum. In general, a 1/(t + 1) learning rate is
far from optimal if optimization does not start close to the optimum or if one
is not using the exact Fisher matrix Jt or covariance matrix Pt.

Larger effective learning rates are achieved thanks to so-called “fading mem-
ory” variants of the Kalman filter, which put less weight on older observations.
For instance, one may multiply the log-likelihood of previous points by a for-
getting factor (1 − λt) before each new observation. This is equivalent to an
additional step Pt−1 ← Pt−1/(1−λt) in the Kalman filter, or to the addition of
an artificial process noise Qt proportional to Pt−1 in the model. Such strategies
are reported to often improve performance, especially when the data do not truly
follow the model [Sim06, §5.5, §7.4], [Hay01, §5.2.2]. See for instance [Ber96] for
the relationship between Kalman fading memory and gradient descent learning
rates (in a particular case).

Proposition 3 (Natural gradient rates and fading memory). Under the same
model and assumptions as in Theorem 2, the following two algorithms are iden-
tical via the correspondence (θt, Jt) ↔ (st, ηtP

−1
t):

• An online natural gradient step with learning rate ηt and metric decay
rate γt

• A fading memory Kalman filter with an additional step Pt−1 ← Pt−1/(1−
λt) before the transition step; such a filter iteratively optimizes a weighted
log-likelihood function Lt of recent observations, with decay (1−λt) at each

Online natural gradient as a Kalman filter 2943

step, namely:

Lt(θ) = ln pθ(yt)+(1−λt)Lt−1(θ) , L0(θ) := −1

2
(θ− θ0)

�P−1
0 (θ− θ0)

(2.4)

provided the following relations are satisfied:

ηt = γt, P0 = η0J
−1
0 , (2.5)

1− λt = ηt−1/ηt − ηt−1 for t � 1 (2.6)

For example, taking ηt = 1/(t + cst) corresponds to λt = 0, no decay for
older observations, and an initial covariance P0 = J−1

0 /cst. Taking a constant
learning rate ηt = η0 corresponds to a constant decay factor λ = η0.

The proposition above computes the fading memory decay factors 1−λt from
the natural gradient learning rates ηt via (2.6). In the other direction, one can
start with the decay factors λt and obtain the learning rates ηt via the cumulated
sum of weights St: S0 := 1/η0 then St := (1−λt)St−1+1, then ηt := 1/St. This
clarifies how λt = 0 corresponds to ηt = 1/(t+ cst) where the constant is S0.

The learning rates also control the weight given to the Bayesian prior and
to the starting point θ0. For instance, with ηt = 1/(t + t0) and large t0, the
gradient descent will move away slowly from θ0; in the Kalman interpretation
this corresponds to λt = 0 and a small initial covariance P0 = J−1

0 /t0 around
θ0, so that the prior weighs as much as t0 observations.

This result suggests to set γt = ηt in the online natural gradient descent
of Definition 1. The intuitive explanation for this setting is as follows: Both
the Kalman filter and the natural gradient build a second-order approximation
of the log-likelihood of past observations as a function of the parameter θ, as
explained in Section 2.1. Using a fading memory corresponds to putting smaller
weights on past observations; these weights affect the first-order and the second-
order parts of the approximation in the same way. In the gradient viewpoint,
the learning rate ηt corresponds to the first-order term (comparing (1.8) and
(2.2)) while the Fisher matrix decay rate corresponds to the rate at which the
second-order information is updated. Thus, the setting ηt = γt in the natural
gradient corresponds to using the same decay weights for the first-order and
second-order expansion of the log-likelihood of past observations.

Still, one should keep in mind that the extended Kalman filter is itself only
an approximation for nonlinear systems. Moreover, from a statistical point of
view, the second-order object Jt is higher-dimensional than the first-order in-
formation, so that estimating Jt based on more past observations may be more
stable. Finally, for large-dimensional problems the Fisher matrix is always ap-
proximated, which affects optimality of the learning rates. So in practice, con-
sidering γt and ηt as hyperparameters to be tuned independently may still be
beneficial, though γt = ηt seems a good place to start.

Regularization of the Fisher matrix and Bayesian priors. A potential
downside of fading memory in the Kalman filter is that the Bayesian interpre-
tation is partially lost, because the Bayesian prior is forgotten too quickly. For

2944 Y. Ollivier

instance, with a constant learning rate, the weight of the Bayesian prior de-
creases exponentially; likewise, with ηt = O(1/

√
t), the filter essentially works

with the O(
√
t) most recent observations, while the weight of the prior decreases

like ≈ e−
√
t (as does the weight of the earliest observations; this is the product∏

(1 − λt)). But precisely, when working with fewer data points one may wish
the prior to play a greater role.

The Bayesian interpretation can be restored by explicitly optimizing a combi-
nation of the log-likelihood of recent points, and the log-likelihood of the prior.
This is implemented in Proposition 4.

From the natural gradient viewpoint, this translates both as a regulariza-
tion of the Fisher matrix (often useful in practice to numerically stabilize its
inversion) and of the gradient step. With a Gaussian prior N (θprior, Id), this
manifests as an additional step towards θprior and adding ε. Id to the Fisher ma-
trix, known respectively as weight decay and Tikhonov regularization [Bis06,
§3.3, §5.5] in statistical learning.

Proposition 4 (Bayesian regularization of the Fisher matrix). Let π =
N (θprior,Σ0) be a Gaussian prior on θ. Under the same model and assump-
tions as in Theorem 2, the following two algorithms are equivalent:

• A modified fading memory Kalman filter that iteratively optimizes Lt(θ)+
nprior lnπ(θ) where Lt is a weighted log-likelihood function of recent obser-
vations with decay (1− λt):

Lt(θ) = ln pθ(yt) + (1− λt)Lt−1(θ), L0 := 0 (2.7)

initialized with P0 = η1

1+npriorη1
Σ0.

• A regularized online natural gradient step with learning rate ηt and metric
decay rate γt, initialized with J0 = Σ−1

0 ,

θt ← θt−1 − ηt
(
Jt + ηtnpriorΣ

−1
0

)−1

(
∂�t(yt)

∂θ

�
+ λtnpriorΣ

−1
0 (θ − θprior)

)

(2.8)

provided the following relations are satisfied:

ηt = γt, 1− λt = ηt−1/ηt − ηt−1, η0 := η1 (2.9)

Thus, the regularization terms are fully determined by choosing the learning
rates ηt, a prior such as N (0, 1/fan-in) (for neural networks), and a value of
nprior such as nprior = 1 (the prior weighs as much as nprior data points). This
holds both for regularization of the Fisher matrix Jt + ηtnpriorΣ

−1
0 , and for

regularization of the parameter via the extra gradient step λtnpriorΣ
−1
0 (θ −

θprior).
The relative strength of regularization in the Fisher matrix decreases like ηt.

In particular, a constant learning rate results in a constant regularization.
The added gradient step λtnpriorΣ

−1
0 (θ − θprior) is modulated by λt which

depends on ηt; this extra term pulls towards the prior θprior. The Bayesian

Online natural gradient as a Kalman filter 2945

viewpoint guarantees that this extra term will not ultimately prevent conver-
gence of the gradient descent (as the influence of the prior vanishes when the
number of observations increases).

It is not clear how much these recommendations for natural gradient descent
coming from its Bayesian interpretation are sensitive to using only an approxi-
mation of the Fisher matrix.

2.3. Proofs for the static case

The proof of Theorem 2 starts with the interpretation of the Kalman filter as a
gradient descent (Proposition 6).

We first recall the exact definition and the notation we use for the extended
Kalman filter.

Definition 5 (Extended Kalman filter). Consider a dynamical system with
state st, inputs ut and outputs yt,

st = f(st−1, ut) +N (0, Qt), ŷt = h(st, ut), yt ∼ p(y|ŷt) (2.10)

where p(·|ŷ) denotes an exponential family with mean parameter ŷ (e.g., y =
N (ŷ, R) with fixed covariance matrix R).

The extended Kalman filter for this dynamical system estimates the current
state st given observations y1, . . . , yt in a Bayesian fashion. At each time, the
Bayesian posterior distribution of the state given y1, . . . , yt is approximated by a
Gaussian N (st, Pt) so that st is the approximate maximum a posteriori, and Pt

is the approximate posterior covariance matrix. (The prior is N (s0, P0) at time
0.) Each time a new observation yt is available, these estimates are updated as
follows.

The transition step (before observing yt) is

st|t−1 ← f(st−1, ut) (2.11)

Ft−1 ← ∂f

∂s

∣∣∣∣
(st−1,ut)

(2.12)

Pt|t−1 ← Ft−1Pt−1F
�
t−1+Qt (2.13)

ŷt ← h(st|t−1, ut) (2.14)

and the observation step after observing yt is

Et ← sufficient statistics(yt)− ŷt (2.15)

Rt ← Cov(sufficient statistics(y)|ŷt) (2.16)

(these are just the error Et = yt − ŷt and the covariance matrix Rt = R for a
Gaussian model y = N (ŷ, R) with known R)

Ht ←
∂h

∂s

∣∣∣∣
(st|t−1,ut)

(2.17)

2946 Y. Ollivier

Kt ← Pt|t−1H
�
t

(
HtPt|t−1H

�
t +Rt

)−1
(2.18)

Pt ← (Id−KtHt)Pt|t−1 (2.19)

st ← st|t−1 +KtEt (2.20)

For non-Gaussian output noise, the definition ofEt andRt above via the mean
parameter ŷ of an exponential family, differs from the practice of modelling
non-Gaussian noise via a nonlinear function applied to Gaussian noise. This
allows for a straightforward treatment of various output models, such as discrete
outputs or Gaussians with unknown variance. In the Gaussian case with known
variance our definition is fully standard.4

The proof starts with the interpretation of the Kalman filter as a gradient
descent preconditioned by Pt. Compare this result and Lemma 9 to [Hay01,
(5.68)–(5.73)].

Proposition 6 (Kalman filter as preconditioned gradient descent). The update
of the state s in a Kalman filter can be seen as an online gradient descent
on data log-likelihood, with preconditioning matrix Pt. More precisely, denoting
�t(y) := − ln p(y|ŷt), the update (2.20) is equivalent to

st = st|t−1 − Pt

(
∂�t(yt)

∂st|t−1

)�
(2.21)

where in the derivative, �t depends on st|t−1 via ŷt = h(st|t−1, ut).

Lemma 7 (Errors and gradients). When the output model is an exponential
family with mean parameter ŷt, the error Et is related to the gradient of the
log-likelihood of the observation yt with respect to the prediction ŷt by

Et = Rt

(
∂ ln p(yt|ŷt)

∂ŷt

)�

Proof of the lemma.
For a Gaussian yt = N (ŷt, R), this is just a direct computation. For a general
exponential family, consider the natural parameter β of the exponential family
which defines the law of y, namely, p(y|β) = exp(

∑
i βiTi(y))/Z(β) with suf-

ficient statistics Ti and normalizing constant Z. An elementary computation
(Appendix, (A.3)) shows that

∂ ln p(y|β)
∂βi

= Ti(y)− ETi = Ti(y)− ŷi (2.22)

4Non-Gaussian output noise is often modelled in Kalman filtering via a continuous non-
linear function applied to a Gaussian noise [Sim06, 13.1]; this cannot easily represent discrete
random variables. Moreover, since the filter linearizes the function around the 0 value of
the noise [Sim06, 13.1], the noise is still implicitly Gaussian, though with a state-dependent
variance.

Online natural gradient as a Kalman filter 2947

by definition of the mean parameter ŷ. Thus,

Et = T (yt)− ŷt =

(
∂ ln p(yt|β)

∂β

)�
(2.23)

where the derivative is with respect to the natural parameter β. To express the
derivative with respect to ŷ, we apply the chain rule

∂ ln p(yt|β)
∂β

=
∂ ln p(yt|ŷ)

∂ŷ

∂ŷ

∂β

and use the fact that, for exponential families, the Jacobian matrix of the mean
parameter ∂ŷ

∂β is equal to the covariance matrix Rt of the sufficient statistics

(Appendix, (A.11) and (A.6)).

Lemma 8. The extended Kalman filter satisfies KtRt = PtH
�
t .

Proof of the lemma.
This relation is known, e.g., [Sim06, (6.34)]. Indeed, using the definition of
Kt, we have KtRt = Kt(Rt + HtPt|t−1H

�
t) − KtHtPt|t−1H

�
t = Pt|t−1H

�
t −

KtHtPt|t−1H
�
t = (Id−KtHt)Pt|t−1H

�
t = PtH

�
t .

Proof of Proposition 6.
By definition of the Kalman filter we have st = st|t−1 + KtEt. By Lemma 7,

Et = Rt

(∂�t
∂ŷt

)�
. Thanks to Lemma 8 we find st = st|t−1 + KtRt

(∂�t
∂ŷt

)�
=

st|t−1 + PtH
�
t

(∂�t
∂ŷt

)�
= st|t−1 + Pt

(∂�t
∂ŷt

Ht

)�
. But by the definition of H, Ht is

∂ŷt
∂st|t−1

so that
∂�t
∂ŷt

Ht is
∂�t

∂st|t−1
.

The first part of the next lemma is known as the information filter in the
Kalman filter literature, and states that the observation step for P is addi-
tive when considered on P−1 [Sim06, §6.2]: after each observation, the Fisher
information matrix of the latest observation is added to P−1.

Lemma 9 (Information filter). The update (2.18)–(2.19) of Pt in the extended
Kalman filter is equivalent to

P−1
t ← P−1

t|t−1 +H�
tR

−1
t Ht (2.24)

(assuming Pt|t−1 and Rt are invertible).
In particular, for static dynamical systems (f(s, u) = s and Qt = 0), the

whole extended Kalman filter (2.12)–(2.20) is equivalent to

P−1
t ← P−1

t−1 +H�
tR

−1
t Ht (2.25)

st ← st−1 − Pt

(
∂�t(yt)

∂st−1

)�
(2.26)

2948 Y. Ollivier

Proof.
The first statement is well-known for Kalman filters [Sim06, (6.33)]. Indeed,
expanding the definition of Kt in the update (2.19) of Pt, we have

Pt = Pt|t−1 − Pt|t−1H
�
t

(
HtPt|t−1H

�
t +Rt

)−1
HtPt|t−1 (2.27)

but this is equal to (P−1
t|t−1 + H�

tR
−1
t Ht)

−1 thanks to the Woodbury matrix

identity.
The second statement follows from Proposition 6 and the fact that for

f(s, u) = s, the transition step of the Kalman filter is just st|t−1 = st−1 and
Pt|t−1 = Pt−1.

Lemma 10. For exponential families p(y|ŷ), the term H�
tR

−1
t Ht appearing in

Lemma 9 is equal to the Fisher information matrix of y with respect to the
state s,

H�
tR

−1
t Ht = Ey∼p(y|ŷt)

[
∂�t(y)

∂st|t−1

⊗2
]

where �t(y) = − ln p(y|ŷt) depends on s via ŷ = h(s, u).

Proof.

Let us omit time indices for brevity. We have
∂�(y)

∂s
=

∂�(y)

∂ŷ

∂ŷ

∂s
=

∂�(y)

∂ŷ
H. Con-

sequently, Ey

[∂�(y)
∂s

⊗2]
= H�

Ey

[∂�(y)
∂ŷ

⊗2]
H. The middle term Ey

[∂�(y)
∂ŷ

⊗2]
is

the Fisher matrix of the random variable y with respect to ŷ.
Now, for an exponential family y ∼ p(y|ŷ) in mean parameterization ŷ, the

Fisher matrix with respect to ŷ is equal to the inverse covariance matrix of the
sufficient statistics of y (Appendix, (A.16)), that is, R−1

t .

Proof of Theorem 2.
By induction on t. By the combination of Lemmas 9 and 10, the update of the
Kalman filter with static dynamics (st|t−1 = st−1) is

P−1
t ← P−1

t−1 + Ey∼p(y|ŷt)

[
∂�t(y)

∂st−1

⊗2
]

(2.28)

st ← st−1 − Pt

(
∂�t(yt)

∂st−1

)�
(2.29)

Defining Jt = P−1
t /(t+ 1), this update is equivalent to

Jt ←
t

t+ 1
Jt−1 +

1

t+ 1
Ey∼p(y|ŷt)

[
∂�t(y)

∂st−1

⊗2
]

st ← st−1 −
1

t+ 1
J−1
t

(
∂�t(yt)

∂st−1

)�

Under the identification st−1 ↔ θt−1, this is the online natural gradient update
with learning rate ηt = 1/(t+ 1) and metric update rate γt = 1/(t+ 1).

Online natural gradient as a Kalman filter 2949

The proof of Proposition 3 is similar, with additional factors (1−λt). Propo-
sition 4 is proved by applying a fading memory Kalman filter to a modified
log-likelihood L̄0 := nprior lnπ(θ), L̄t := ln pθ(yt)+(1−λt)L̄t−1+λtnprior lnπ(θ)
so that the prior is kept constant in L̄t.

3. Natural gradient as a Kalman filter: the state space (recurrent)
case

3.1. Recurrent models, RTRL

Let us now consider non-memoryless models, i.e., models defined by a recurrent
or state space equation

ŷt = Φ(ŷt−1, θ, ut) (3.1)

with ut the observations at time t. To save notation, here we dump into ŷt the
whole state of the model, including both the part that contains the prediction
about yt and all state or internal variables (e.g., all internal and output layers
of a recurrent neural network, not only the output layer). The state ŷt, or a part
thereof, defines a loss function �t(yt) := − ln p(yt|ŷt) for each observation yt.

The current state ŷt can be seen as a function which depends on θ via the
whole trajectory. The derivative of the current state with respect to θ can be
computed inductively just by differentiating the recurrent equation (3.1) defin-
ing ŷt:

∂ŷt
∂θ

=
∂Φ(ŷt−1, θ, ut)

∂θ
+

∂Φ(ŷt−1, θ, ut)

∂ŷt−1

∂ŷt−1

∂θ
(3.2)

Real-time recurrent learning [Jae02] uses this equation to keep an estimate
Gt of ∂ŷt

∂θ . RTRL then uses Gt to estimate the gradient of the loss function �t
with respect to θ via the chain rule, ∂�t/∂θ = (∂�t/∂ŷt)(∂ŷt/∂θ) = (∂�t/∂ŷt)Gt.

Definition 11 (Real-time recurrent learning). Given a recurrent model ŷt =
Φ(ŷt−1, θt−1, ut), real-time recurrent learning (RTRL) learns the parameter θ
via

Gt ←
∂Φ

∂θt−1
+

∂Φ

∂ŷt−1
Gt−1, G0 := 0 (3.3)

gt ←
∂�t(yt)

∂ŷt
Gt (3.4)

θt ← θt−1 − ηtg
�
t (3.5)

Since θ changes at each step, the actual estimate Gt in RTRL is only an
approximation of the gradient ∂ŷt

∂θ at θ = θt, valid in the limit of small learning
rates ηt.

In practice, RTRL has a high computational cost due to the necessary storage
of Gt, a matrix of size dim θ×dim ŷ. For large-dimensional models, backpropaga-
tion through time is usually preferred, truncated to a certain length in the past
[Jae02]; [OTC15, TO17] introduce a low-rank, unbiased approximation of Gt.

2950 Y. Ollivier

3.2. Statement of the correspondence, recurrent case

There are several ways in which a Kalman filter can be used to estimate θ for
such recurrent models.

1. A first possibility is to view each ŷt as a function of θ via the whole
trajectory, and to apply a Kalman filter on θ. This would require, in prin-
ciple, recomputing the whole trajectory from time 0 to time t using the
new value of θ at each step, and using RTRL to compute ∂ŷt/∂θ, which
is needed in the filter. In practice, the past trajectory is not updated,
and truncated backpropagation through time is used to approximate the
derivatice ∂ŷt/∂θ [Jae02, Hay01].

2. A second possibility is the joint Kalman filter, namely, a Kalman filter
on the pair (θ, ŷt) [Hay01, §5], [Sim06, §13.4]. This does not require going
back in time, as ŷt is a function of ŷt−1 and θ. This is the version appearing
in Theorem 12 below.

3. A third possibility is the dual Kalman filter [WN96]: a Kalman filter for θ
given ŷ, and another one for ŷ given θ. This requires to explicitly couple
the two Kalman filters by manually adding RTRL-like terms to account
for the (linearized) dependency of ŷ on θ [Hay01, §5].

Intuitively, the joint Kalman filter maintains a covariance matrix on (θ, ŷt),
whose off-diagonal term is the covariance between ŷt and θ. This term captures
how the current state would change if another value of the parameter had been
used. The decomposition (3.13) in the theorem makes this intuition precise in
relation to RTRL: the Kalman covariance between ŷt and θ is directly given by
the RTRL gradient Gt.

Theorem 12 (Kalman filter on (θ, ŷ) as RTRL+natural gradient+state cor-
rection). Consider a recurrent model ŷt = Φ(ŷt−1, θt−1, ut). Assume that the
observations yt are predicted with a probabilistic model p(y|ŷt) that is an expo-
nential family with mean parameter a subset of ŷt.

Given an estimate Gt of ∂ŷt/∂θ, and an observation y, denote

gt(y) :=
∂�t(y)

∂ŷt
Gt (3.6)

the corresponding estimate of ∂�t(y)/∂θ.
Then these two algorithms are equivalent:

• The extended Kalman filter on the pair (θ, ŷ) with transition function

(Id,Φ), initialized with covariance matrix P
(θ,ŷ)
0 =

(
P θ
0 0
0 0

)
, and with

no process noise (Q = 0).
• A natural gradient RTRL algorithm with learning rate ηt = 1/(t + 1),

defined as follows. The state, RTRL gradient and Fisher matrix have a
transition step

ŷt ← Φ(ŷt−1, θt−1, ut) (3.7)

Online natural gradient as a Kalman filter 2951

Gt ←
∂Φ

∂θt−1
+

∂Φ

∂ŷt−1
Gt−1, G0 := 0 (3.8)

Jt ← (1− ηt)Jt−1 + ηtEy∼p(y|ŷt)

[
gt(y)

⊗2
]
, J0 := (P θ

0)
−1 (3.9)

and after observing yt, the state and parameter are updated as

δθ ← J−1
t gt(yt)

� (3.10)

θt ← θt−1 − ηt δθ (3.11)

ŷt ← ŷt − ηt Gt δθ (3.12)

Moreover, at each time t, the covariance matrix of the extended Kalman filter
over (θ, ŷ) is related to Gt and Jt via

P
(θ,ŷ)
t = ηt

(
J−1
t J−1

t G�
t

GtJ
−1
t GtJ

−1
t G�

t

)
(3.13)

This result may explain an observation from [Wil92, §4.2] that RTRL can
be obtained by introducing some drastic simplifications in the Kalman filter
equations (changing the formula of the Kalman optimal gain and neglecting the
covariance matrix update).

Again, the expectation for the Fisher matrix in (3.9) may be estimated by a
Monte Carlo sample y ∼ p(y|ŷt), or by just using the current observation y = yt,
as discussed after Definition 1.

As before, learning rates ηt different from 1/(t + 1) can be obtained by in-
troducing a fading memory (i.e., process noise Q proportional to P) in the
joint Kalman filter. We omit the statement for simplicity, but it is analogous to
Propositions 3 and 4.

The algorithm above features a state update (3.12) together with the pa-
rameter update; this is not commonly used in online recurrent neural network
algorithms. In small-scale experiments, we have not found any clear effect of this;
besides, such state updates must be applied cautiously if the range of possible
values for the state ŷ is somehow constrained.

In the result above, the Kalman filter is initialized with a covariance matrix
in which every uncertainty comes from uncertainty on θ rather than the initial
state ŷ0. This has the advantage of making the correspondence algebraically
simple, but is not a fundamental restriction. If modelling an initial uncertainty
on ŷ0 is important, one can always apply the theorem by incorporating the initial
condition as an additional component of the parameter θ, with its own variance;
in this case, G0 must be initialized to Id on the corresponding component of θ,
namely

θ+init := (θ, ŷ0)
�, G0 :=

∂ŷ0
∂θ+init

= (0, Id) (3.14)

and then Theorem 12 can be applied to θ+init.
Actually this operation is often not needed at all: indeed, if the dynamical

system is such that the initial condition is forgotten reasonably quickly, then the
initial covariance of ŷ0 decreases (terms W in the proof below) and the Kalman

2952 Y. Ollivier

covariance tends to the type (3.13) above exponentially fast, even without using
θ+init. This is the case, for instance, for any stable linear dynamical system,
as a consequence of Lemmas 13-14, and more generally for any system with
geometric memory in the sense that ∂ŷt

∂ŷt−1
is contracting for a fixed parameter

and a given input.

The filtering literature contains updates similar to the above for Gt, but
more complex [LS83, Hay01]; this is, first, because they are expressed over the
variable Cov(ŷt, θ) = GtJ

−1
t instead of Gt alone, second, because we have ini-

tialized the uncertainty on ŷ0 to 0, and, third, because in dual rather than joint
filter approaches, higher-order terms depending on second derivatives of F are
sometimes included. Interestingly, there is some debate in the literature about
whether to add some second-order corrections to the joint Kalman filter (es-
pecially [LS83, §2.3.3], see discussion in [Hay01, §5.3.4]). The interpretation in
Theorem 12 makes it clear which terms are neglected: in particular, in RTRL
Gt is not recomputed after the update of θ and ŷt, so that Gt contains a mix-
ture of derivatives at different values of θ over time. Correcting for this would
involve second derivatives of F (as in [Hay01, §5, Appendix A]), thus amounting
to a partial implementation of a second-order extended Kalman filter (EKF2,
[Sim06, §13.3]).

In terms of computational cost, for recurrent neural networks (RNNs), RTRL
alone is already as costly as the joint Kalman filter [Wil92]. Indeed, RTRL
requires (dim θ) forward tangent propagations at each step, each of which costs
O(dim θ) for a standard RNN model [Jae02], thus for a total cost of O((dim θ)2)
per time step. The Fisher matrix is of size (dim θ)2; if a single Monte Carlo
sample y ∼ p(y|ŷt) is used, then the Fisher matrix update is rank-one and costs
O((dim θ)2); the update of the inverse Fisher matrix can be maintained at the
same cost thanks to the Woodbury matrix identity (as done, e.g., in [LMB07]).
Thus, if RTRL is computationally affordable, there is little point in not using
the Fisher matrix on top.

3.3. Proofs for the recurrent case

We now turn to the proof for the recurrent case, involving a joint Kalman filter
on (θ, ŷ). The key is to decompose the Kalman covariance matrix of the pair
(θ, ŷ) into three variables (3.17): the covariance of θ, the correlation between θ
and ŷ, and the part of the covariance of ŷ that does not come from its correlation
with θ (its so-called Schur complement). This provides a nice expression for the
transition step of the Kalman filter (Lemma 13).

Then we find that the correlation between θ and ŷ is exactly the gradient G =
∂ŷ
∂θ maintained by RTRL (Corollary 15); meanwhile, we find θ and its covariance
essentially follow a standalone Kalman filter related to the observations via G,
which is a natural gradient for the same reasons as in the static case.

In the recurrent case, we are applying an extended Kalman filter to the state

s =

(
θ
ŷ

)
with transition function f =

(
Id
Φ

)
. Let us decompose the covariance

Online natural gradient as a Kalman filter 2953

matrix Pt of this system as

Pt =

(
P θ
t (P θŷ

t)�

P θŷ
t P ŷ

t

)
(3.15)

From now on, for simplicity we omit the time indices when no ambiguity is
present.

By the theory of Schur complement for positive-semidefinite matrices [BV04,
Appendix A.5.5], letting P+ be any generalized inverse of P θ, we know that

P ŷ − P θŷP+P θŷ� is positive-semidefinite and that P θŷ(Id−P+P θ) = 0. The
latter rewrites as P θŷ = P θŷP+P θ. Let us set

W := P ŷ − P θŷP+P θŷ�, G := P θŷP+ (3.16)

Then P θŷ = GP θ andW = P ŷ−GP θG�. Thus, at each time t we can decompose
Pt as

Pt =

(
P θ (GP θ)�

GP θ W +GP θG�

)
(3.17)

without loss of generality, where W is positive-semidefinite. This decomposition
tells us which part of the covariance of the current state ŷ comes from the
covariance of the parameter θ via the dynamics of the system.

First, we will show that if W0 = 0, then Wt = 0 for all t, and that in this
case Gt satisfies the RTRL equation.

Lemma 13. Consider the extended Kalman filter on the pair s = (θ, ŷ)� with
transition function f = (θ,Φ(ŷ, θ, u))� and no added noise (Qt = 0). Then the
Kalman transition step (2.13) on P , expressed in the decomposition (3.17), is
equivalent to

P θ ← P θ (3.18)

W ← ∂Φ

∂ŷ
W

∂Φ

∂ŷ

�
(3.19)

G ← ∂Φ

∂θ
+

∂Φ

∂ŷ
G (3.20)

This equation for G is the RTRL update.

Proof of the lemma.
This is a direct computation using the Kalman transition step (2.13) for P .
Indeed, the decomposition (3.17) of P rewrites as

Pt =

(
Id 0
G Id

)(
P θ 0
0 W

)(
Id G�

0 Id

)
(3.21)

Now, the Kalman transition step (2.13) for P is Pt|t−1 = ∂f
∂sPt−1

∂f
∂s

�
when

Q = 0. So the update is equivalent to replacing

(
Id 0
G Id

)
with ∂f

∂s

(
Id 0
G Id

)
on

both sides in (3.21). Here we have ∂f
∂s =

(
Id 0
∂Φ
∂θ

∂Φ
∂ŷ

)
. This yields the result.

2954 Y. Ollivier

Lemma 14. Consider the extended Kalman filter on the pair s = (θ, ŷ)� with
transition function f = (θ,Φ(ŷ, θ, u))�. Then the observation update (2.18)–
(2.19) of Pt, expressed in the variables P θ, W , and G, is given by

P θ ← P θ − P θG�(W +R+GP θG�)−1GP θ (3.22)

W ← W −W (W +R)−1W (3.23)

G ← (Id−R−1W)G (3.24)

in that order, where R is given by (2.16). Moreover, if P θ or W are invertible
then their respective updates are equivalent to

(P θ)−1 ← (P θ)−1 +G�(W +R)−1G (3.25)

and

W−1 ← W−1 +R−1 (3.26)

Thus, the updates for W , (3.19) and (3.23), are just the updates of an ex-
tended Kalman filter on ŷ alone, with covariance matrix W and noise measure-
ment R. The update for P θ is identical to an extended Kalman filter on θ where
measurements are made on ŷ, with ŷ seen as a function of θ with derivative
∂ŷ/∂θ = G, and where the measurement noise on ŷ is R+W (the measurement
noise on y plus the covariance of ŷ). Thus, these two lemmas relate the joint
Kalman filter on (θ, ŷ) to the dual Kalman filter that filters separately θ given ŷ
and ŷ given θ, together with an estimate of ∂ŷ/∂θ. As far as we could check, this
decomposition is specific to a situation in which one component (the parameter)
is supposed to have static underlying dynamics, θt+1 = θt.

Proof of the lemma.
In our case, the function h of the extended Kalman filter is the function that
sends (θ, ŷ) to ŷ. In particular, Ht = (0, Id).

First, if P θ and W are invertible, then the updates (3.22), (3.23) for P θ

and W follow from the updates (3.25), (3.26) on their inverses, thanks to the
Woodbury matrix identity. Since working on the inverses is simpler, we shall
prove only the latter. Since (3.22), (3.23) are continuous in P θ and W , the
non-invertible case follows by continuity.

Starting again with the decomposition of Pt as a product (3.21), the inverse
of Pt is

P−1
t =

(
Id G�

0 Id

)−1 (
P θ 0
0 W

)−1 (
Id 0
G Id

)−1

(3.27)

=

(
(P θ)−1 +G�W−1G −G�W−1

−W−1G W−1

)
(3.28)

From Lemma 9, the Kalman observation udpate for Pt amounts to adding

H�R−1H to P−1
t . Here H = (0, Id) so that H�R−1H is

(
0 0
0 R−1

)
. So the

Online natural gradient as a Kalman filter 2955

update for Pt amounts to

P−1
t ←

(
(P θ)−1 +G�W−1G −G�W−1

−W−1G W−1 +R−1

)
(3.29)

To interpret this as an update on P θ, W and G, we have to introduce new

variables W̃ , G̃, and P̃ θ such that (3.29) takes the original form (3.28) in these
new variables.

Introducing W̃−1 := W−1 +R−1, the update rewrites as

P−1
t ←

(
(P θ)−1 +G�W−1G −G�(Id−R−1W̃)W̃−1

−W̃−1(Id−W̃R−1)G W̃−1

)
(3.30)

Introducing G̃ := (Id−W̃R−1)G and (P̃ θ)−1 := (P θ)−1+G�W−1G−G̃�W̃−1G̃,
we get back the original form (3.28). This provides the updates W̃ and G̃ for

W and G. We still have to find a more explicit expression for (P̃ θ)−1.
Since we have defined W̃ and G̃ by identifying (3.29) with the original form

(3.28), we have W̃ G̃ = WG by construction. Thus

(P̃ θ)−1 = (P θ)−1 +G�W−1G− G̃�W̃−1G̃ (3.31)

= (P θ)−1 +G�W−1G− G̃�W̃−1W̃W̃−1G̃ (3.32)

= (P θ)−1 +G�W−1G−G�W−1W̃W−1G (3.33)

Thanks to the identity A−1 − A−1BA−1 = (A + (B−1 − A−1)−1)−1 for any
matrices A and B (this follows from the matrix inversion formula (A+C)−1 =
A−1 −A−1(A−1 + C−1)−1A−1 applied to C = (B−1 −A−1)−1), we find

W−1 −W−1W̃W−1 = (W + (W̃−1 −W−1)−1)−1 (3.34)

but by definition, W̃−1 = W−1 +R−1 so that

W−1 −W−1W̃W−1 = (W +R)−1 (3.35)

thus
(P̃ θ)−1 = (P θ)−1 +G�(W +R)−1G (3.36)

which concludes the proof of the lemma.

Putting the last two lemmas side by side in the case W = 0, we obtain a
much simpler update.

Corollary 15. Consider the extended Kalman filter on the pair s = (θ, ŷ)�

with transition function f(s) = (θ,Φ(ŷ, θ, u))� and no added noise (Qt = 0).
Decompose the covariance P of the state s as in (3.17) using P θ, G, W . If W = 0
and P θ is invertible then performing the Kalman transition update followed by
the observation update is equivalent to

G ← ∂Φ

∂θ
+

∂Φ

∂ŷ
G (3.37)

2956 Y. Ollivier

(P θ)−1 ← (P θ)−1 +G�R−1G (3.38)

W ← 0 (3.39)

in that order.

From this, the end of the proof of Theorem 12 essentially proceeds as in the
non-recurrent case. Since we initialize W to 0 in Theorem 12, we have W = 0
at all times. As before, for exponential families R−1 is equal to the Fisher

matrix with respect to ŷt, namely, R−1 = Ey∼p(y|ŷ)

[∂�t(y)
∂ŷt

⊗2]
(Appendix).

Now, the term Ey∼p(y|ŷ)
[
gt(y)

⊗2
]
in the Fisher matrix update (3.9) uses gt(y) =

∂�t(y)

∂ŷt
Gt (3.6) to estimate the derivative of the loss �t(y) with respect to θ.

So the term G�R−1G in (3.38) coincides with the Fisher matrix update term
Ey∼p(y|ŷ)

[
gt(y)

⊗2
]
in (3.9). (Compare Lemma 10.) So if we just define Jt :=

ηt(P
θ
t)

−1 with ηt = 1/(t + 1), the additive update (3.38) on (P θ)−1 translates
as the online Fisher matrix update (3.9) on Jt.

Moreover, since the Kalman gradient is an ordinary gradient preconditioned
with the covariance matrix Pt (Proposition 6), the update of the pair (θ, ŷ) is

(
θt
ŷt

)
←

(
θt−1

ŷt

)
− Pt

⎛
⎝ 0

∂�t
∂ŷt

�

⎞
⎠ (3.40)

(indeed �t does not depend explicitly on θ in recurrent models, only via the cur-

rent state ŷt). Given the decomposition Pt =

(
P θ (GP θ)�

GP θ GP θG�

)
, this translates

as (
θt
ŷt

)
←

(
θt−1

ŷt

)
−

(
P θ

GP θ

)(
∂�t
∂ŷt

G

)�
(3.41)

which is the update in Theorem 12.

Appendix A: Reminder on exponential families

An exponential family of probability distributions on a variable x (discrete or
continuous), with sufficient statistics T1(x), . . . , TK(x), is the following family
of distributions, parameterized by β ∈ R

K :

pβ(x) =
1

Z(β)
e
∑

k βkTk(x) λ(dx) (A.1)

where Z(β) is a normalizing constant, and λ(dx) is any reference measure on x,
such as the Lebesgue measure or any discrete measure. The family is obtained by
varying the parameter β ∈ R

K , called the natural or canonical parameter. We
will assume that the Tk are linearly independent as functions of x (and linearly
independent from the constant function); this ensures that different values of β
yield distinct distributions.

Online natural gradient as a Kalman filter 2957

For instance, Bernoulli distributions are obtained with λ the uniform measure
on x ∈ {0, 1} and with a single sufficient statistic T (0) = 0, T (1) = 1. Gaus-
sian distributions with a fixed variance are obtained with λ(dx) the Gaussian
distribution centered on 0, and T (x) = x.

Another, often convenient parameterization of the same family is the follow-
ing: each value of β gives rise to an average value T̄ of the sufficient statistics,

T̄k := Ex∼pβ
Tk(x) (A.2)

For instance, for Gaussian distributions with fixed variance, this is the mean,
and for a Bernoulli variable this is the probability to sample 1.

Exponential families satisfy the identities

∂ ln pβ(x)

∂βk
= Tk(x)− T̄k,

∂ lnZ

∂βk
= T̄k (A.3)

by a simple computation [AN00, (2.33)].
These identities are useful to compute the Fisher matrix Jβ with respect to

the variable β, as follows [AN00, (3.59)]:

(Jβ)ij := Ex∼pβ

[
∂ ln pβ(x)

∂βi

∂ ln pβ(x)

∂βj

]
(A.4)

= Ex∼pβ

[
(Ti(x)− T̄i)(Tj(x)− T̄j)

]
(A.5)

= Cov(Ti, Tj) (A.6)

or more synthetically

Jβ = Cov(T) (A.7)

where the covariance is under the law pβ . That is, for exponential families the
Fisher matrix is the covariance matrix of the sufficient statistics. In particular
it can be estimated empirically, and is sometimes known algebraically.

In this work we need the Fisher matrix with respect to the mean parameter
T̄ ,

(JT̄)ij = Ex∼pβ

[
∂ ln pβ(x)

∂T̄i

∂ ln pβ(x)

∂T̄j

]
(A.8)

By substituting ∂ ln p(x)
∂α = ∂ ln p(x)

∂β
∂β
∂α , the Fisher matrices Jα and Jβ with respect

to parameterizations α and β are related to each other via

Jα =
∂β

∂α

�
Jβ

∂β

∂α
(A.9)

(consistently with the interpretation of the Fisher matrix as a Riemannian met-
ric and the behavior of metrics under change of coordinates [GHL87, §2.3]). So
we need to compute ∂T̄ /∂β. Using the log-trick

∂Ex∼pf(x) = Ex∼p [f(x) ∂ ln p(x)] (A.10)

2958 Y. Ollivier

together with (A.3), we find

∂T̄i

∂βj
=

∂ETi(x)

∂βj
= E

[
Ti(x)(Tj(x)− T̄j)

]
= E

[
(Ti(x)− T̄i)(Tj(x)− T̄j)

]
= (Jβ)ij (A.11)

so that
∂T̄

∂β
= Jβ (A.12)

(see [AN00, (3.32)], where η denotes the mean parameter) and consequently

∂β

∂T̄
= J−1

β (A.13)

so that we find the Fisher matrix with respect to T̄ to be

JT̄ =
∂β

∂T̄

�
Jβ

∂β

∂T̄
(A.14)

= J−1
β JβJ

−1
β (A.15)

= J−1
β = Cov(T)−1 (A.16)

that is, the Fisher matrix with respect to T̄ is the inverse covariance matrix of
the sufficient statistics.

This gives rise to a simple formula for the natural gradient of expectations
with respect to the mean parameters. Denoting ∇̃ the natural gradient,

∇̃T̄ Ef(x) := J−1
T̄

∂Ef(x)

∂T̄

�
(A.17)

= J−1
T̄

∂β

∂T̄

� ∂Ef(x)

∂β

�
(A.18)

= JβJ
−1
β

∂Ef(x)

∂β

�
(A.19)

=
∂Ef(x)

∂β

�
(A.20)

= E

[
f(x)

∂ ln pβ(x)

∂β

]
(A.21)

= E
[
f(x)(T (x)− T̄)

]
(A.22)

= Cov(f, T) (A.23)

which in particular, can be estimated empirically.

References

[Ama98] Shun-ichi Amari. Natural gradient works efficiently in learning. Neu-
ral Comput., 10:251–276, February 1998.

Online natural gradient as a Kalman filter 2959

[AN00] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information ge-
ometry, volume 191 of Translations of Mathematical Monographs.
American Mathematical Society, Providence, RI, 2000. Translated
from the 1993 Japanese original by Daishi Harada. MR1800071

[APF00] Shun-ichi Amari, Hyeyoung Park, and Kenji Fukumizu. Adaptive
method of realizing natural gradient learning for multilayer percep-
trons. Neural Computation, 12(6):1399–1409, 2000.

[Ber96] Dimitri P. Bertsekas. Incremental least squares methods and the
extended Kalman filter. SIAM Journal on Optimization, 6(3):807–
822, 1996. MR1402206

[Bis06] Christopher M. Bishop. Pattern recognition and machine learning.
Springer, 2006. MR2247587

[BL03] Léon Bottou and Yann LeCun. Large scale online learning. In NIPS,
volume 30, page 77, 2003.

[BRD97] M. Boutayeb, H. Rafaralahy, and M. Darouach. Convergence analy-
sis of the extended Kalman filter used as an observer for nonlinear
deterministic discrete-time systems. IEEE transactions on automatic
control, 42(4):581–586, 1997. MR1442599

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge University Press, 2004. MR2061575

[dFNG00] João FG de Freitas, Mahesan Niranjan, and Andrew H. Gee. Hier-
archical Bayesian models for regularization in sequential learning.
Neural computation, 12(4):933–953, 2000.

[GA15] Mohinder S. Grewal and Angus P. Andrews. Kalman filtering:
Theory and practice using MATLAB. Wiley, 2015. 4th edition.
MR3331076

[GHL87] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian geometry. Uni-
versitext. Springer-Verlag, Berlin, 1987. MR0909697

[GS15] Roger B. Grosse and Ruslan Salakhutdinov. Scaling up natural gra-
dient by sparsely factorizing the inverse Fisher matrix. In ICML,
pages 2304–2313, 2015.

[Hay01] Simon Haykin. Kalman filtering and neural networks. John Wiley &
Sons, 2001.

[Jae02] Herbert Jaeger. Tutorial on training recurrent neural networks, cov-
ering BPTT, RTRL, EKF and the ‘‘echo state network’’ approach.
Technical Report 159, German National Research Center for Infor-
mation Technology, 2002.

[Jaz70] Andrew H. Jazwinski. Stochastic processes and filtering theory. Aca-
demic Press, 1970.

[Kul97] Solomon Kullback. Information theory and statistics. Dover Publica-
tions Inc., Mineola, NY, 1997. Reprint of the second (1968) edition.
MR1461541

[LCL+17] Yubo Li, Yongqiang Cheng, Xiang Li, Xiaoqiang Hua, and Yuliang
Qin. Information geometric approach to recursive update in nonlin-
ear filtering. Entropy, 19(2):54, 2017.

http://www.ams.org/mathscinet-getitem?mr=1800071
http://www.ams.org/mathscinet-getitem?mr=1402206
http://www.ams.org/mathscinet-getitem?mr=2247587
http://www.ams.org/mathscinet-getitem?mr=1442599
http://www.ams.org/mathscinet-getitem?mr=2061575
http://www.ams.org/mathscinet-getitem?mr=3331076
http://www.ams.org/mathscinet-getitem?mr=0909697
http://www.ams.org/mathscinet-getitem?mr=1461541

2960 Y. Ollivier

[LMB07] Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Top-
moumoute online natural gradient algorithm. In Advances in Neural
Information Processing Systems 20, Proceedings of the Twenty-First
Annual Conference on Neural Information Processing Systems, Van-
couver, British Columbia, Canada, December 3-6, 2007, pages 849–
856, 2007.

[LS83] Lennart Ljung and Torsten Söderström. Theory and Practice of Re-
cursive Identification. MIT Press, 1983. MR0719192

[Mar14] James Martens. New insights and perspectives on the natural gradi-
ent method. arXiv preprint arXiv:1412.1193, 2014.

[MCO16] Gaétan Marceau-Caron and Yann Ollivier. Practical Riemannian
neural networks. arXiv preprint arXiv:1602.08007, 2016.

[MG15] James Martens and Roger B. Grosse. Optimizing neural networks
with Kronecker-factored approximate curvature. In ICML, pages
2408–2417, 2015.

[OAAH17] Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen.
Information-geometric optimization algorithms: A unifying picture
via invariance principles. Journal of Machine Learning Research,
18(18):1–65, 2017. MR3634885

[Oll15] Yann Ollivier. Riemannian metrics for neural networks I: feed-
forward networks. Information and Inference, 4(2):108–153, 2015.
MR3354452

[OTC15] Yann Ollivier, Corentin Tallec, and Guillaume Charpiat. Train-
ing recurrent networks online without backtracking. arXiv preprint
arXiv:1507.07680, 2015.

[Pat16] Vivak Patel. Kalman-based stochastic gradient method with stop
condition and insensitivity to conditioning. SIAM Journal on Opti-
mization, 26(4):2620–2648, 2016. MR3576578

[PB13] Razvan Pascanu and Yoshua Bengio. Natural gradient revisited.
CoRR, abs/1301.3584, 2013.

[PJ92] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control and Opti-
mization, 30(4):838–855, 1992. MR1167814

[RRK+92] Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Peter S.
Maybeck, and Mark E. Oxley. Comparative analysis of backpropa-
gation and the extended Kalman filter for training multilayer per-
ceptrons. IEEE Transactions on Pattern Analysis & Machine Intel-
ligence, (6):686–691, 1992.

[Sim06] Dan Simon. Optimal state estimation: Kalman, H∞, and nonlinear
approaches. John Wiley & Sons, 2006.

[ŠKT01] Miroslav Šimandl, Jakub Královec, and Petr Tichavskỳ. Filtering,
predictive, and smoothing Cramér–Rao bounds for discrete-time
nonlinear dynamic systems. Automatica, 37(11):1703–1716, 2001.
MR2108831

[SW88] Sharad Singhal and Lance Wu. Training multilayer perceptrons with
the extended Kalman algorithm. In NIPS, pages 133–140, 1988.

http://www.ams.org/mathscinet-getitem?mr=0719192
http://www.ams.org/mathscinet-getitem?mr=3634885
http://www.ams.org/mathscinet-getitem?mr=3354452
http://www.ams.org/mathscinet-getitem?mr=3576578
http://www.ams.org/mathscinet-getitem?mr=1167814
http://www.ams.org/mathscinet-getitem?mr=2108831

Online natural gradient as a Kalman filter 2961

[Sä13] Simo Särkkä. Bayesian filtering and smoothing. Cambridge Univer-
sity Press, 2013. MR3154309

[TO17] Corentin Tallec and Yann Ollivier. Unbiased online recurrent opti-
mization. arXiv preprint arXiv:1702.05043, 2017.

[vdV00] A.W. van der Vaart. Asymptotic statistics. Cambridge university
press, 2000. MR1652247

[Wil92] Ronald J Williams. Training recurrent networks using the extended
Kalman filter. In Neural Networks, 1992. IJCNN., International
Joint Conference on, volume 4, pages 241–246. IEEE, 1992.

[WN96] Eric A. Wan and Alex T. Nelson. Dual Kalman filtering methods
for nonlinear prediction, smoothing and estimation. In NIPS, pages
793–799, 1996.

http://www.ams.org/mathscinet-getitem?mr=3154309
http://www.ams.org/mathscinet-getitem?mr=1652247

	Problem setting, natural gradient, Kalman filter
	Problem setting
	Natural gradient descent
	Kalman filtering for parameter estimation

	Natural gradient as a Kalman filter: the static (i.i.d.) case
	Natural gradient as a Kalman filter: heuristics
	Statement of the correspondence, static (i.i.d.) case
	Proofs for the static case

	Natural gradient as a Kalman filter: the state space (recurrent) case
	Recurrent models, RTRL
	Statement of the correspondence, recurrent case
	Proofs for the recurrent case

	Reminder on exponential families
	References

