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Online Object Tracking With Sparse Prototypes
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Abstract— Online object tracking is a challenging problem as
it entails learning an effective model to account for appearance
change caused by intrinsic and extrinsic factors. In this paper,
we propose a novel online object tracking algorithm with sparse
prototypes, which exploits both classic principal component
analysis (PCA) algorithms with recent sparse representation
schemes for learning effective appearance models. We introduce
ℓ1 regularization into the PCA reconstruction, and develop a
novel algorithm to represent an object by sparse prototypes that
account explicitly for data and noise. For tracking, objects are
represented by the sparse prototypes learned online with update.
In order to reduce tracking drift, we present a method that
takes occlusion and motion blur into account rather than simply
includes image observations for model update. Both qualitative
and quantitative evaluations on challenging image sequences
demonstrate that the proposed tracking algorithm performs
favorably against several state-of-the-art methods.

Index Terms— Appearance model, ℓ1 minimization, object
tracking, principal component analysis (PCA), sparse prototypes.

I. INTRODUCTION

AS ONE of the fundamental problems in computer vision,

object tracking plays a critical role in numerous lines

of research such as motion analysis, image compression, and

activity recognition. While much progress has been made in

the past decades, developing a robust online tracker is still a

challenging problem due to difficulties to account for appear-

ance change of a target object, which includes intrinsic (e.g.,

pose variation and shape deformation) and extrinsic factors

(e.g., varying illumination, camera motion, and occlusions).

A tracking method typically consists of three components:

an appearance (observation) model which evaluates the like-

lihood of an observed image patch (associated to a state)

belonging to the object class; a dynamic model (or motion

model), which aims to describe the states of an object over

time (e.g., Kalman filter [1] and particle filter [2], [3]); and a

search strategy for finding the likely states in the current frame

(e.g., mean shift [1] and sliding window [4]). In this paper, we

propose a robust appearance model that considers the effects of
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occlusion and motion blur. Hence, we only discuss key issues

related to appearance models rather than present a detailed

review of all components.

In order to develop effective appearance models for robust

object tracking, several critical factors need to be considered.

The first one is concerned with how objects are represented.

Any representation scheme can be categorized based on

adopted features (e.g., intensity [5], color [2], texture [6],

Haar-like feature [4], [7], super-pixel based feature [8], and

sparse coding [9]), and description models (e.g., holistic his-

togram [1], part-based histogram [10], and subspace represen-

tation [5]). Instead of treating the target object as a collection

of low-level features, subspace representation methods provide

a compact notion of the “thing” being tracked, which facilitates

other vision tasks (e.g., object recognition).

Second, representation schemes can be either generative or

discriminative. For object tracking, generative methods focus

on modeling appearance and formulate the problem as finding

the image observation with minimal reconstruction error (e.g.,

using templates [1], [10] and subspace models [5], [11], [12]).

On the other hand, discriminative algorithms aim at determin-

ing a decision boundary that distinguishes the target from the

background (e.g., using boosting algorithms [4], [6], [7], [13],

and support vector machines [14], [15]). It has been shown that

discriminative models perform better if the training set size is

large [16], while generative models achieve higher generaliza-

tion when limited data is available [17]. In addition, several

algorithms that exploit the advantages of both generative and

discriminative models have been proposed [15], [18]–[20]. In

this paper, we focus on developing a robust algorithm using

a generative appearance model that considers occlusion and

motion blur to alleviate tracking drift.

Third, it has been shown that online learning facilitates

tracking algorithms by adapting to appearance change of

the target and the background. Numerous methods including

template update [1], [21], incremental subspace learning [5],

[11], [12], [22], [23], and online classifiers [4], [6] have been

demonstrated to be effective for object tracking. However, due

to straightforward update of appearance models using tracking

results, slight inaccuracy can therefore result in incorrectly

labeled training examples and degrade the models gradu-

ally with drifts. To address this problem, Avidan [6] adopts

a simple outlier rejection scheme, and Babenko et al. [7]

introduce multiple instance learning (MIL) [24] into visual

tracking. Alternatively, Grabner et al. [13] propose a semi-

supervised boosting algorithm to address the online update

problem where labeled training examples come from the

first frame only, and subsequent instances are regarded as

unlabeled data. This strategy is further extended in [25], which

introduces constraints for positive and negative examples to

exploit the structure of unlabeled data.
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Notwithstanding the demonstrated success in reducing

drifts, considerably few attempts have been made to directly

address the occlusion problem, which remains as arguably

the most critical factor for causing tracking failures. To deal

with this challenging problem, several part-based models have

been employed. Adam et al. [10] propose a fragment-based

tracking method using histograms. Yang et al. [26] apply

the “bag of words” model from the category-level object

recognition [27] to visual tracking. In [21], Mei et al. propose

a tracking algorithm by casting the problem as determining

the most likely patch with a sparse representation of tem-

plates. This method is able to model partial occlusion by

sparse representation of trivial templates. However the space

or time complexity is quite significant. Recently, motivated

by the success of the HOG-LBP pedestrian detector [28],

Dinh et al. [29] propose a complex co-training approach using

generative and discriminative trackers that deals with partial

occlusion. Although these algorithms perform relatively well

in handling partial occlusion, they often fail to track objects in

challenging image sequences with drastic appearance change

and background clutters.

In this paper, we propose a robust generative tracking

algorithm with adaptive appearance model which handles

partial occlusion and other challenging factors. Compared

with part-based models [10], [26], our algorithm maintains

holistic appearance information and therefore provides a com-

pact representation of the tracked target. By exploiting the

advantage of subspace representation, our algorithm is able

to process higher resolution image observations, and performs

more efficiently with favorable results than the existing method

based on sparse representation of templates [21]. In compar-

ison to the subspace based tracking algorithms [5], [12], our

algorithm is able to deal with heavy occlusion effectively.

Different from [29], our algorithm does not require a complex

combination of generative and discriminative trackers for han-

dling partial occlusion. Numerous experiments and evaluations

on challenging image sequences bear out that the proposed

algorithm is efficient and effective for robust object tracking.

II. RELATED WORK AND CONTEXT

Much work has been done in object tracking and more

thorough reviews on this topic can be found in [30]. In this

section we discuss the most relevant algorithms and put this

work in proper context.

A. Object Tracking With Incremental Subspace Learning

Object tracking via online subspace learning ([5], [11], [12],

[22], [23]) has attracted much attention in recent years. The

incremental visual tracking (IVT) method [5] introduces an

online update approach for efficiently learning and updating a

low dimensional PCA subspace representation of the target

object. Several experimental results demonstrate that PCA

subspace representation with online update is effective in

dealing with appearance change caused by in-plane rotation,

scale, illumination variation and pose change. However, it has

also been shown that the PCA subspace based representa-

tion scheme is sensitive to partial occlusion, which can be

(a)

(b)

Fig. 1. Motivation of our work. (a) PCA. (b) Sparse representation. (c) Sparse
prototypes. Prototypes consist of PCA basis vectors and trivial templates.

explained by Eq. 1

y = Uz + e (1)

where y denotes an observation vector, z indicates the corre-

sponding coding or coefficient vector, U represents a matrix

of column basis vectors, and e is the error term (Figure 1(a)).

In PCA, the underlying assumption is that the error vector e

is Gaussian distributed with small variances (i.e., small dense

noise). Therefore, the coding vector z can be estimated by

z = U⊤y, and the reconstruction error can be approximated

by
∥∥y − UU⊤y

∥∥2

2
. However, this assumption does not hold for

object representation in visual tracking when partial occlusion

occurs as the noise term cannot be modeled with small vari-

ance. Hence, the IVT method is sensitive to partial occlusion.

In addition, the IVT method is not equipped with an effective

update mechanism since it simply uses new observations for

learning new basis vectors without detecting partial occlusion

and processing these samples accordingly. In order to account

for partial occlusion for object tracking, we model the error

term e with arbitrary but sparse noise.

B. Object Tracking With Sparse Representation

Sparse representation has recently been extensively stud-

ied and applied in pattern recognition and computer vision,

e.g., face recognition [31], super-resolution [32], and image

inpainting [33]. Motivated by [31], Mei et al. [21] propose

an algorithm (ℓ1 tracker) by casting the tracking problem as

finding the most likely patch with sparse representation and

handling partial occlusion with trivial templates by

y = Az + e = [A I]

[
z

e

]
= Bc (2)

where y denotes an observation vector, A represents a matrix

of templates, z indicates the corresponding coefficients, and e

is the error term which can be viewed as the coefficients of

trivial templates. Figure 1(b) illustrates the sparse representa-

tion scheme with trivial templates for object tracking.

By assuming that each candidate image patch is sparsely

represented by a set of target and trivial templates, Eq. 2 can
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be solved via ℓ1 minimization [21]

min
1

2
‖y − Bc‖2

2 + λ‖c‖1 (3)

where ‖.‖1 and ‖.‖2 denote the ℓ1 and ℓ2 norms respectively.

The underlying assumption of this approach is that error

e can be modeled by arbitrary but sparse noise, and therefore

it can be used to handle partial occlusion. However, the ℓ1

tracker has two main drawbacks. First, the computational

complexity limits its performance. As it requires solving a

series of ℓ1 minimization problems, it often deals with low-

resolution images (e.g., 12 × 15 patches in [21]) as a tradeoff

of speed and accuracy. Such low-resolution images may not

capture sufficient visual information to represent objects for

tracking. The ℓ1 tracker is computationally expensive even

with further improvements [34]. Second, it does not exploit

rich and redundant image properties which can be captured

compactly with subspace representations. We present an effi-

cient and effective representation that factors out the part

describing the object appearance and the other part for noise.

C. Motivation of This Work

In this paper, we exploit the strength of both subspace learn-

ing and sparse representation for modeling object appearance.

It can be viewed as introducing ℓ1 regularization into subspace

representation with PCA. For object tracking, we model target

appearance with PCA basis vectors, and account for occlusion

with trivial templates by

y = Uz + e = [U I]

[
z

e

]
(4)

where y denotes an observation vector, U represents a matrix

of column basis vectors, z indicates the coefficients of basis

vectors, and e is the error term (which can be viewed as

the coefficients of trivial templates). In our formulation, the

prototypes consist of a small number of PCA basis vectors and

a set of trivial templates (See Figure 1(c)). As e is assumed

to be arbitrary but sparse noise, we solve Eq. 4 by

min
z,e

1

2
‖y − Uz − e‖2

2 + λ‖e‖1. (5)

We present an algorithm to solve this optimization problem in

the next section. Here, we first highlight the difference between

the formulations in Eq. 5 and Eq. 3. For the formulation with

Eq. 3, the coefficients for both target and trivial templates

should be sparse (as illustrated in Figure 1(b)) since the

target templates are coherent [35] and coefficients for trivial

templates are used to model partial occlusion. However, for

our formulation with Eq. 5, coefficients for trivial templates

should be sparse while the coefficients for the basis vectors

are not sparse as PCA basis vectors are not coherent but

orthogonal. As the number of trivial templates is much larger

than the number of basis vectors, an observation can be

sparsely represented by prototypes. Thus, we need to develop

an algorithm to solve Eq. 5 rather than use existing ones.

Our formulation has the following advantages. First, com-

pared with the incremental subspace representation of the IVT

tracker [5], our method models partial occlusion explicitly

Algorithm 1 Algorithm for Computing zopt and eopt

Input: An observation vector y, orthogonal basis vectors

U, and a small constant λ.

1: Initialize e0 = 0 and i = 0

2: Iterate

3: Obtain zi+1 via zi+1 = U⊤ (y − ei )

4: Obtain ei+1 via ei+1 = Sλ (y − Uzi+1)

5: i ← i + 1

6: Until convergence or termination

Output: zopt and eopt

and therefore handles it effectively. Second, compared with

the ℓ1 tracker [21], our algorithm is able to handle high-

resolution image patches with less computational complexity

by exploiting subspace representation.

III. OBJECT REPRESENTATION VIA ORTHOGONAL BASIS

VECTORS AND ℓ1 REGULARIZATION

In this section, we propose an algorithm for object repre-

sentation with sparse prototypes as formulated in Eq. 5. Let

the objective function be L (z, e) = 1
2
‖y − Uz − e‖2

2 +λ‖e‖1,

the optimization problem is

min
z,e

L (z, e)

s.t. U⊤U = I
(6)

where y ∈ Rd×1 denotes an observation vector, U ∈ Rd×k

represents a matrix of orthogonal basis vectors, z ∈ Rk×1

indicates the coefficients of basis vectors, e ∈ Rd×1 describes

the error term, λ is a regularization parameter, and I ∈ Rd×d

indicates an indentity matrix (where d is the dimension of

the observation vector, and k represents the number of basis

vectors). As there is no close-form solution for Eq. 6, we

propose an iterative algorithm to compute zopt and eopt .

Lemma 1: Given eopt , zopt can be obtained from zopt =

U⊤
(
y − eopt

)
.

Proof : If eopt is given, the problem of Eq. 6 is

equivalent to the minimization of J (z), where J (z) =
1
2

∥∥(
y − eopt

)
− Uz

∥∥2

2
. This is a simple least squares

problem, and the solution can be easily found as zopt =

U⊤
(
y − eopt

)
.

Lemma 2: Given zopt , eopt can be obtained from eopt =

Sλ

(
y − Uzopt

)
where Sτ (x) is a shrinkage operation defined

as Sτ (x) = sgn (x) · (|x | − τ ).

Proof : If zopt is given, the minimization of Eq. 6 is equiv-

alent to the minimization of G (e) = 1
2

∥∥e −
(
y − Uzopt

)∥∥2

2
+

λ‖e‖1. This is a convex optimization problem and the global

minimum can be found by the shrinkage operator, eopt =

Sλ

(
y − Uzopt

)
[36].

By Lemmas 1 and 2, the optimization in Eq. 5 can be solved

efficiently. The steps of our algorithm are presented in Table 1.

We note that several approaches for sparse principal com-

ponent analysis have been proposed [37]–[39]. These methods

extend classical PCA algorithms to find sparse factors via non-

negative matrix factorization, ℓ1 penalty, and LASSO approach

for generic data sets. Our work focuses on inferencing sparse
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coefficients with prototypes (PCA basis vectors and trivial

templates as illustrated in Figure 1(c) as well as Eq. 4),

whereas sparse PCA (SPCA) aims to learn sparse basis vectors

from a given training set. As the proposed algorithm exploits

image properties for representing observations with sparse pro-

totypes, it is likely to be more effective for vision applications.

The experimental results presented in Section V bear out the

motivation of this formulation for object tracking.

IV. OBJECT TRACKING VIA SPARSE PROTOTYPES

Object tracking can be considered as a Bayesian inference

task in a Markov model with hidden state variables [5]. Given

a set of observed images Yt = {y1, y2, ..., yt } at the t-th frame,

we estimate the hidden state variable xt recursively

p (xt |Yt ) ∝ p (yt | xt )

∫
p (xt | xt−1) p (xt−1|Yt−1)dxt−1

(7)

where p (xt |xt−1) represents the dynamic (motion) model

between two consecutive states, and p (yt |xt ) denotes obser-

vation model that estimates the likelihood of observing yt at

state xt . The optimal state of the tracked target given all the

observations up to t-th frame is obtained by the maximum a

posteriori estimation over N samples at time t by

x̂t = arg
xi

t

max p
(

yi
t |x

i
t

)
p

(
xi

t |xt−1

)
, i = 1, 2, . . . , N (8)

where xi
t indicates the i -th sample of the state xt , and yi

t

denotes the image patch predicated by xi
t . Figure 2 shows the

main steps of our tracking algorithm. At the outset, the state

of the target object is manually initialized.

A. Dynamic Model

In this paper, we apply an affine image warp to model the

target motion between two consecutive frames. The six para-

meters of the affine transform are used to model p (xt |xt−1)

of a tracked target. Let xt = {xt , yt , θt , st , αt , φt }, where

xt , yt , θt , st , αt , φt denote x , y translations, rotation angle,

scale, aspect ratio, and skew respectively. The state tran-

sition is formulated by random walk, i.e., p (xt |xt−1) =

N (xt ; xt−1,�), where � is a diagonal covariance matrix.

B. Observation Model

If no occlusion occurs, an image observation yt can be

assumed to be generated from a subspace of the target object

spanned by U and centered at µ. However, it is necessary to

account for partial occlusion in an appearance model for robust

object tracking. We assume that a centered image observation

yt (yt = yt − µ) of the tracked object can be represented

by a linear combination of the PCA basis vectors U and

few elements of the identity matrix I (i.e., trivial templates)

(Figure 1(c)), i.e., yt = Uzt + et . We note that U consists of a

few basis vectors and zt is usually dense. On the other hand, et

accounts for noise or occlusion. Some samples drawn by our

dynamic model are shown in Figure 3. If there is no occlusion,

the most likely image patch can be effectively represented

by the PCA basis vectors and coefficients corresponding to

trivial templates (referred as trivial coefficients) tend to be

Fig. 2. Our tracking algorithm. It consists of three main parts: dynamic
model, observation model, and update module.

zeros (as illustrated by the sample y1 of Figure 3(b)). On the

other hand, a candidate patch that does not correspond to the

true target location (e.g., mis-aligned sample) often leads to

a dense representation (as illustrated by the samples y2 and

y3 of Figure 3(b)). If partial occlusion occurs, the most likely

image patch can be represented as a linear combination of

PCA basis vectors and very few number of trivial templates (as

illustrated by y4 of Figure 3(c)). As shown in Figure 3(c), the

trivial coefficients of the sample that best matches the target,

y4, are much sparser than those that do not correspond to

the true object location (y5 and y6). Based on these obser-

vations, we note that the precise localization of the tracked

target can be benefited by penalizing the sparsity of trivial

coefficients.

For each observation corresponding to a predicted state, we

solve the following equation efficiently using the proposed

algorithm as summarized in Table 1

L
(

zi , ei
)

= min
zi ,ei

1

2

∥∥∥yi − Uzi − ei
∥∥∥

2

2
+ λ

∥∥∥ei
∥∥∥

1
, (9)

and obtain zi and ei , where i denotes the i -th sample of

the state x (without loss of generality, we drop the frame

index t). The observation likelihood can be measured by the

reconstruction error of each observed image patch

p(yi |xi ) = exp

(
−

∥∥∥yi − Uzi
∥∥∥

2

2

)
. (10)
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Fig. 3. Coefficients and alignment as well as occlusions. This figure illustrates
how the PCA and trivial coefficients indicate whether a sample is aligned on
the target when it is unconcluded or occluded. (a) Prototypes consist of PCA
basis vectors and trivial templates. (b) Good and bad candidates when no
occlusion occurs. (c) Good and bad candidates when partial occlusion occurs.
The red bounding box represents a good candidate while the blue and green
bounding boxes denote two bad samples. The coefficients of PCA basis vectors
are shown with circles on the right. The trivial coefficients are shown with
solid lines in the sub-figures pointed by arrows. See text for details.

However, Eq. 10 does not consider occlusion. Thus, we use a

mask to factor out non-occluding and occluding parts

p
(

yi |xi
)

= exp

[
−

(∥∥∥wi ⊙

(
yi − Uzi

)∥∥∥
2

2

+β
∑ (

1 − wi
))]

(11)

where wi =
[
wi

1, w
i
2, . . . , w

i
d

]⊤
is a vector that indicates the

zero elements of ei , ⊙ is the Hadamard product (element-

wise product), and β is a penalty term (simply set to λ in this

study). If the j -th element of ei (obtained from Eq. 9), is zero

then wi
j = 1, otherwise wi

j = 0. The first part of the exponent

accounts for the reconstruction error of unoccluded proportion

of the target object, and the second term aims to penalize

TABLE I

EVALUATED IMAGE SEQUENCES

Image sequence # Frames Challenging factors

Occlusion 1 [10] 898 partial occlusion

Occlusion 2 [7] 819 partial occlusion

in-plane rotation, out-plane rotation

Caviar 1 [41] 382 partial occlusion, scale change

Caviar 2 [41] 500 partial occlusion, scale change

Car 4 [5] 659 illumination variation, scale change

Singer1 [40] 321 illumination variation, scale change

David Indoor [5] 462 illumination variation

scale change, out-plane rotation

Car 11 [5] 393 illumination variation

scale change, background clutter

Deer [40] 71 abrupt motion, background clutter

Jumping [25] 313 abrupt motion

Lemming [19] 1336 out-plane rotation, scale change

occlusion, background clutter

Cliffbar [7] 471 in-plane rotation, scale change

background clutter, abrupt motion

labeling any pixel as being occluded. The experimental results

in Section V demonstrate the effectiveness of our formulation.

C. Update of Observation Model

It is essential to update the observation model for handling

appearance change of a target object for visual tracking. The

model degrades if some imprecise samples are used for update,

thereby causing tracking drift. Instead, we explore the trivial

coefficients for occlusion detection since the corresponding

templates are used to account for noise. First, each trivial

coefficient vector corresponds to a 2D map as a result of

reverse raster scan of an image patch. A non-zero element of

this map indicates that pixel is occluded (referred as occlusion

map). Second, we compute the ratio η, of the number of non-

zero pixels and the number of occlusion map pixels. We use

two thresholds tr1 and tr2 to describe the degree of occlusion

(e.g., tr1 = 0.1 and tr2 = 0.6 in this paper). Third, based

on the occlusion ratio η, we apply one of the three kinds

of operations: full, partial, and no update. If η < tr1, we

directly update the model with this sample. If tr1 ≤ η ≤ tr2,

it indicates that the target is partially occluded. We then replace

the occluded pixels by its corresponding parts of the average

observation µ, and use this recovered sample for update.

Otherwise if η > tr2, it means that a significant part of the

target object is occluded, and we discard this sample without

update. Figure 2(d) shows several cases regarding three update

scenarios. After we cumulate enough samples, we use an

incremental principal component analysis method [5] to update

our observation model (i.e., PCA basis vectors U and the

average vector µ).

D. Discussion

We note that our tracker is robust since it is able to tackle

the presence of potential outliers (e.g., occlusion and mis-

alignment) with the proposed observation model and update

scheme. For the accurate location of the tracked target, the

proposed representation model (Eq. 9) and observation like-

lihood (Eq. 11) as presented in Section IV-B, enable the
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tracker to handle partial occlusion explicitly and facilitate

it to choose the well-aligned observation (See Figure 3 for

illustrated examples). With the update scheme of the proposed

observation model, as presented in Section IV-C, our tracker

is able to alleviate the problem caused by inaccurate samples

(i.e., update the model by outliers).

V. EXPERIMENTS

The proposed algorithm is implemented in MATLAB which

runs at 2 frames per second on a Pentium 2.0 GHz Dual

Core PC with 3 GB memory. For each sequence, the location

of the target object is manually labeled in the first frame.

For PCA representation, each image observation is normal-

ized to 32 × 32 pixels and 16 eigenvectors are used in all

experiments. In addition, we use 1024 trivial templates. With

our formation in Eq. 4, the dimensionality of z and e is

16 and 1024 respectively. As a trade-off between compu-

tational efficiency and effectiveness, 600 particles are used

and our tracker is incrementally updated every 5 frames.

The regularization constant λ is set to 0.05 in all experi-

ments. We present some representative results in this section.

All the MATLAB source codes and datasets are available

on our web sites (http://ice.dlut.edu.cn/lu/publications.html,

http://faculty.ucmerced.edu/mhyang/pubs.html).

We use twelve challenging image sequences in the exper-

iments. Table I lists all the evaluated image sequences and

only gray scale information is used for experiments. We use

the ground truth information when it is provided along with

each sequence (e.g., Occlusion 1, Caviar 1, Caviar 2), and

label the other videos on our own. We evaluate the proposed

tracker against six state-of-the-art algorithms using the source

codes provided by the authors for fair comparisons, including

the IVT [5], ℓ1 [21], FragTrack [10], MILTrack [7], VTD [40],

and PN algorithms [25]. Both qualitative as well as quantitative

evaluations are presented, and more results can be found at

http://faculty.ucmerced.edu/mhyang/video/prototype1.avi.

A. Qualitative Evaluation

Heavy occlusion: In the Occlusion 1 sequence [10], our

algorithm, FragTrack and ℓ1 methods perform better, as shown

in Figure 4(a), since these methods take partial occlusion into

account. The FragTrack method is able to handle occlusion via

the part-based representation with histograms. The proposed

and ℓ1 trackers handle occlusion using sparse representation

with trivial templates. For the Occlusion 2 sequence (Fig-

ure 4(b)), our tracker performs best especially when partial

occlusion or in-plane rotation occurs (e.g., #0150, #0500,

and #0700). In these frames, the FragTrack method performs

poorly since it does not handle appearance change caused by

pose and occlusion. Although the MILTrack method is able to

track the target object, it is not able to estimate the in-plane

rotation due to its design. We note that it is not straightforward

to extend this method by simply using an affine motion model

as a result of the adopted representation with generalized

Haar-like features. On the other hand, the ℓ1 tracker does not

perform well in this sequence. This can be explained by that

#0001 #0130 #0200

#0300 #0500 #0550

(a)

#0001 #0150 #0500

#0600 #0700 #0819

(b)

#0001 #0090 #0110

#0115 #0125 #0382

(c)

#0001 #0150 #0205

#0235 #0360 #0500

(d)

Fig. 4. Qualitative evaluation: objects undergo heavy occlusion and
pose change. Similar objects also appear in the scenes. (a) Occlusion 1.
(b) Occlusion 2. (c) Caviar 1. (d) Caviar 2.

the simple update method of the ℓ1 tracker takes new image

observations for update without factoring out occlusion.

Figure 4(c)-(d) shows the tracking results of different algo-

rithms in surveillance videos. These videos are challenging

as they contain scale change, partial occlusion and similar

objects. The MILTrack method does not perform well when

the target is occluded by a similar object. As the generalized

Haar-like features are used for object representation in the

MILTrack method, they are less effective when similar objects

occlude each other. The ℓ1 and IVT trackers drift away from
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#0001 #0160 #0200

#0230 #0250 #0659

(a)

#0001 #0060 #0200

#0250 #0300 #0393

(b)

#0001 #0070 #0090

#0115 #0150 #0321

(c)

#0001 #0100 #0150

#0300 #0400 #0462

(d)

Fig. 5. Qualitative evaluation: object appearance change drastically due to
large variation of lighting, pose, scale and low contrast. (a) Car 4. (b) Car 11.
(c) Singer 1. (d) David Indoor.

the target after it is occluded by a similar object. In contrast,

our algorithm performs well in terms of position and scale

even when the target is heavily occluded.

Illumination change: Figure 5 shows results from four

challenging sequences with significant change of illumination

and scale, as well as pose variation. For the Car 4 sequence,

there is a drastic lighting change when the vehicle goes

underneath the overpass or the trees. The target object is

small with low contrast and drastic illumination change in

#0001 #0025 #0035

#0050 #0052 #0071

(a)

#0001 #0070 #0075

#0080 #0170 #0313

(b)

Fig. 6. Qualitative evaluation: significant object appearance change due to
fast movement and motion blur in cluttered background. (a) Deer. b) Jumping.

the Car 11 video. The IVT and proposed algorithms perform

well in tracking this vehicle whereas the other methods drift

away when drastic illumination variation occurs (e.g., #0200)

or when similar objects appear in the scene (e.g., #0300).

In the Singer 1 video, drastic change of illumination and

scale makes it difficult to track. Likewise, the appearance of

the person changes significantly when he walks from a dark

room into areas with spot light in the David Indoor video.

In addition, appearance change caused by scale and pose as

well as camera motion pose great challenges. We note that

the IVT and proposed trackers perform better than the other

methods. This can be attributed to that appearance change of

the object can be well approximated by a subspace at fixed

pose [42]. We also note that some trackers do not adapt to

scale (e.g., MILTrack) or in-plane rotation (e.g., MILTrack,

PN, and FragTrack).

Fast motion: Figure 6 illustrates the tracking results using

the Deer and Jumping sequences. As the objects undergo

abrupt motion, it is difficult to predict their locations. In

addition, it is rather challenging to account for appearance

change caused by motion blur and properly update these

appearance models. In the Deer video, the VTD method and

our tracker perform better than the other algorithms. For

the Jumping sequence, our tracker performs better than the

other methods whereas the MILTrack and PN algorithms are

able to track the objects in some frames. We note that the

PN algorithm is equipped with a re-initialization mechanism

which facilitates object tracking. Due to repetitive motion in

the Jumping sequence, some trackers may be able to track the

object again by chance after failure (e.g., ℓ1, MILTrack and

FragTrack methods from #0070 to #0075). Similarly, some
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#0001 #0230 #0330

#0450 #0710 #0900

#1000 #1060 #1336

(a)

#0001 #0090 #0140

#0155 #0220 #0280

#0328 #0329 #0471

(b)

Fig. 7. Qualitative evaluation: objects undergo in- and out-plane rotation,
fast motion, scale change in cluttered background. (a) Lemming. (b) Cliffbar.

trackers may be able to capture the object by chance as the

object reappears at the same image location due to camera

pan (e.g., VTD and PN methods from #0052 to #0071) in the

Deer video.

Cluttered background: The Lemming sequence is chal-

lenging for visual tracking as the object undergoes change

of scale and pose, as well as heavy occlusion in cluttered

background. Figure 7(a) shows that the proposed and PN track-

ers perform better than the other methods. It is worth noting

that our tracker is able to adapt to scale change (e.g., #0001,

#0230, #0710, and #1336), in-plane rotation (e.g., #0230,

#1000, #1060, and #1336), and occlusion (e.g., #0330, and

#0450). The object in the Cliffbar clip (Figure 7(b)) undergoes

scale change, in-plane rotation, abrupt motion in a cluttered

background. In addition, the target and the surrounding region

have similar texture. The ℓ1 and FragTrack methods perform

poorly since the surrounding background is similar to the

target object (#0090 of Figure 7(b)). The IVT algorithm fails

after abrupt motion occurs (e.g., #0328, and #0329) and the PN

tracker drifts gradually (e.g., #0280, #0328, and #0329). These

results can be attributed to problem with appearance update.

Both the MILTrack method and our algorithm are able to track

(a)

(b)

(c)

Fig. 8. Some representative cases. The red bounding box represents a good
candidate while the blue and green boxes denote two bad samples. For each
sample, the original sample image y, the reconstructed image Uz+y, and the
error image e are shown from left to right in the right panel. (a) Illumination
variation. (b) Pose change and background clutter. (c) Motion blur.

the locations. However, the proposed algorithm adapts better

to change of scale (e.g., #0001, #0090, #0280, and #0471) and

rotation (e.g., #0001, #0140, #0155, and #0471).

Discussion: In Section IV, we present some justifications

why the proposed method is able with partial occlusion

effectively by using two representative cases (Figure 3(b)

and (c)). We further present more results to illustrate how

our algorithm handles other challenging factors. Figure 8

shows three representative tracking results under illumination

variation, pose change, background clutter and motion blur. As

shown in Figure 8(a) and (b), the best candidates can be well

represented by the PCA basis and therefore the error terms

are more sparse than those of the misaligned candidates. This

can be attributed to the strength of subspace representation. If

the tracked target undergoes illumination variation and slight

pose change, the appearance variation can be well modeled by

a low dimension PCA subspace. Thus, our tracker performs

well when the target objects undergo illumination variation and

pose change. In addition, we note that accurate locations of

the tracked objects can be obtained by penalizing the sparsity

of the error term. Our tracker capture the targets accurately

when they appear in cluttered backgrounds (Figure 8(b)) or

move abruptly (Figure 8(c)). In Figure 8(c) while the well-

aligned and mis-aligned candidates are not well reconstructed,

the error terms of the mis-aligned ones are larger and the
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(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

(l)(k)(j)

Fig. 9. Overlap rate evaluation. This figure shows overlap rates for twelve video clips we tested on. Our algorithm is compared with six state-of-the-art
methods: IVT [5], L1 tacker [21], FragTrack [10], MILTrack [7], VTD [40], and PN methods [25]. (a) Occlusion 1. (b) Occlusion 2. (c) Caviar 1. (d) Caviar 2.
(e) Car 4. (f) Singer 1. (g) David. (h) Car11. (i) Deer. (j) Jumping. (k) Lemming. (l) Cliffbar.

corresponding representations are denser. Thus, our tracker is

able to distinguish the targets from their surrounding back-

grounds. Furthermore, we note that the error term facilitates

more accurate appearance update (with aligned samples).

B. Quantitative Evaluation

Performance evaluation is an important issue that requires

sound criteria in order to fairly assess the strength of tracking

algorithms. Quantitative evaluation of object tracking typically

involves computing the difference between the predicated and

the ground truth center locations, as well their average values.

Table II summarizes the results in terms of average tracking

errors. Our algorithm achieves lowest tracking errors in almost

all the sequences. On the other hand, the tracking overlap

rate indicates stability of each algorithm as it takes the size

and pose of the target object into account. Given the tracking

result of each frame RT and the corresponding ground truth

RG , the overlap rate is defined by the PASCAL VOC [43]

criterion, score =
area(RT ∩RG )
area(RT ∪RG )

. An object is regarded as being

successfully tracked when the score is above 0.5. Figure 9

shows the overlap rates of each tracking algorithm for all

the sequences and Table III presents the average overlap

rates. Overall, our tracker performs favorably against the other

algorithms.

While our work is different from sparse PCA (as mentioned

in Section III), we also implement a SPCA based tracker

within the same Bayesian framework. Given a Gram matrix

G, the SPCA method [38] aims to compute sparse principal

components, which only have a limited number of nonzero

entries while capturing the maximum amount of variance

max u⊤Gu − ρ|u|2

s.t. ‖u‖2 = 1
(12)

where |u| is the number of nonzero entries of u and ρ

controls the sparsity of u. In our experiments, ρ is empirically
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TABLE II

AVERAGE CENTER ERROR (PIXELS). THE THIRD COLUMN FROM THE RIGHT SHOWS THE RESULTS FROM OUR

IMPLEMENTED SPCA TRACKER, THE SECOND COLUMN FROM THE RIGHT SHOWS THE RESULTS USING (10),

AND THE RIGHTMOST COLUMN SHOWS THE RESULTS USING (11) WITH OCCLUSION MASK

IVT ℓ1 PN VTD MIL FragTrack SPCA
Ours Ours

Eq. 10 Eq. 11

Occlusion 1 9.2 6.5 17.5 11.1 32.3 5.6 4.4 5.3 4.7

Occlusion 2 10.2 11.1 18.6 10.4 14.1 15.5 10.4 17.9 4.0

Caviar 1 45.1 119.9 5.6 3.9 48.5 5.7 49.2 23.0 1.7

Caviar 2 8.6 3.2 8.5 4.7 70.3 5.6 30.5 65.1 2.2

Car 4 2.9 4.1 18.8 12.3 60.1 179.8 3.1 2.8 3.0

Singer 1 8.5 4.6 32.7 4.1 15.2 22.0 96.0 4.2 4.7

David Indoor 3.6 7.6 9.7 13.6 16.2 76.7 9.2 76.1 3.7

Car 11 2.1 33.3 25.1 27.1 43.5 63.9 1.6 2.3 2.2

Deer 127.6 171.5 25.7 11.9 66.5 92.1 152.8 121.7 8.5

Jumping 36.8 92.4 3.6 63.0 9.9 58.5 4.6 5.8 5.0

Lemming 93.4 184.9 23.2 86.9 25.6 149.1 25.0 58.1 9.1

Cliffbar 24.8 24.8 11.3 34.6 13.4 48.7 4.8 4.1 3.5

Average 31.1 55.3 16.7 23.6 34.6 60.3 32.6 32.2 4.4

TABLE III

OVERLAP RATE OF TRACKING METHODS. THE THIRD COLUMN FROM THE RIGHT SHOWS THE RESULTS FROM OUR

IMPLEMENTED SPCA TRACKER, THE SECOND COLUMN FROM THE RIGHT SHOWS THE RESULTS USING (10),

AND THE RIGHTMOST COLUMN SHOWS THE RESULTS USING (11) WITH OCCLUSION MASK

IVT ℓ1 PN VTD MIL FragTrack SPCA
Ours Ours

Eq. 10 Eq. 11

Occlusion 1 0.85 0.88 0.65 0.77 0.59 0.90 0.92 0.90 0.91

Occlusion 2 0.59 0.67 0.49 0.59 0.61 0.60 0.49 0.37 0.84

Caviar 1 0.28 0.28 0.70 0.83 0.25 0.68 0.28 0.28 0.89

Caviar 2 0.45 0.81 0.66 0.67 0.25 0.56 0.30 0.29 0.71

Car 4 0.92 0.84 0.64 0.73 0.34 0.22 0.92 0.92 0.92

Singer 1 0.66 0.70 0.41 0.79 0.34 0.34 0.26 0.84 0.82

David Indoor 0.71 0.62 0.60 0.52 0.45 0.19 0.47 0.76 0.80

Car 11 0.81 0.44 0.38 0.43 0.17 0.09 0.82 0.81 0.81

Deer 0.22 0.04 0.41 0.58 0.21 0.08 0.08 0.22 0.61

Jumping 0.28 0.09 0.69 0.08 0.53 0.14 0.70 0.67 0.69

Lemming 0.18 0.13 0.49 0.35 0.53 0.13 0.17 0.18 0.75

Cliffbar 0.56 0.20 0.38 0.33 0.46 0.13 0.74 0.76 0.74

Average 0.54 0.48 0.54 0.56 0.39 0.33 0.51 0.58 0.79

set to 5, and the Gram matrix G is updated with new

observation every 5 frames. We present the results of SPCA

based tracker in Table II and Table III. The results show that

our algorithm with Eq. 11 performs better than the SPCA

based tracker, especially for some challenging sequences (e.g.,

Occlusion 2, Singer 1, Deer, Lemming) and surveillance videos

(Caviar 1 and Caviar 2). For presentation clarity, we put the

tracking results of the proposed and SPCA based methods at

http://faculty.ucmerced.edu/mhyang/video/prototype2.avi. We

note that it takes about 5 seconds for the SPCA tracker

requires to process each frame (using the algorithm proposed

by d’Aspremont et al. [44]) since it is a time-consuming task

to solve the optimization problem of Eq. 12.

To demonstrate how the occlusion map facilities object

tracking and appearance update, we present the results using

only Eq. 10 without occlusion map, and Eq. 11 with occlusion

map in Table II and Table III. The results show that our

algorithm is able to estimate occlusion maps effective, thereby

further improving the tracking results both in terms of overlap

rate and center location error. We note that the occlusion mask

can be estimated reliably in the proposed algorithm whether

the target object is occluded or not. Figure 10 shows some

estimated occlusion maps and their use for model update.

If the target is well tracked and the occlusion rate is

small, the tracking result is used to update the observation

model directly (Figure 10(c) and (f)). When the tracked target

suffers from partial occlusion (Figure 10(a) and (b)), the

occlusion maps reflect this situation and the occlusion rates

are consequently higher. Therefore, partial update prevents the

tracker from inaccurate update. When the tracking results are

not accurate (Figure 10(d), (e), and (i)), the occlusion rates

are also consequently higher. In such cases, partial update is

carried out to reduce the risk of inaccurate update (especially

for Figure 10(d) and (i), some noise regions, shown in blue
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TABLE IV

COMPUTATIONAL COMPLEXITY. THE CRITICAL STEPS OF IVT METHOD [5], ℓ1 TRACKER [21] AND OUR ALGORITHM. IN THIS TABLE, d PRESENTS

THE DIMENSION OF AN IMAGE OBSERVATION, k INDICATES THE NUMBER OF EIGENVECTORS OR TEMPLATES, U ∈ Rd×k STANDS FOR

EIGENVECTORS CALCULATED BY PCA (d ≫ k IN THIS WORK), AND A ∈ Rd×k PRESENTS TEMPLATES OR SPARSE REPRESENTATION.

THE LAST TWO COLUMNS PRESENT THE AVERAGE TIME FOR SOLVING ONE IMAGE PATCH (16 × 16 OR 32 × 32), WHERE k = 16

Algorithm Aims Computational complexity time (16 × 16) time (32 × 32)

IVT [5] z = U⊤y O (dk) 0.11 ms 0.19 ms

ℓ1 tracker [21] [z, e] = arg min
z,e

1
2

∥∥∥∥∥∥
y − [A, I]

⎡
⎣ z

e

⎤
⎦

∥∥∥∥∥∥

2

2

+ λ

∥∥∥∥∥∥

⎡
⎣ z

e

⎤
⎦

∥∥∥∥∥∥
1

O

(
d2 + dk

)
2.2 ms 248 ms

Our [z, e] = arg min
z,e

1
2

‖y − Uz − e‖2
2 + λ‖e‖1 O (ndk) 0.57 ms 1.5 ms

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Occlusion mask and appearance update. The estimated occlusion
maps are shown in the lower right of each frame. The occlusion rate is used
to determine whether a new observation is used for update or not. (a) 0.24,
partial update. (b) 0.45, partial update. (c) 0.03, full update. (d) 0.33, partial
update. (e) 0.52, partial update. (f) 0.05, full update. (g) 0.65, no update.
(h) 0.67, no update. (i) 0.23, partial update.

circles, and backgrounds are factored out by occlusion maps

before model update). If tracking returns are off the targets

(Figure 10(g) and (h)), the occlusion rates are high and the

observed image patches are discarded without update.

C. Computational Complexity

The most time consuming part of the evaluated tracking

algorithms is to compute the coefficients using the basis

vectors or templates. Table IV shows the computational

complexity of the step for computing coefficients in the IVT

method [5], ℓ1 tracker [21] and the proposed algorithm. For

the IVT method, the computation involves matrix-vector mul-

tiplication and the complexity is O (dk). The computational

complexity of the ℓ1 tracker for computing the coefficients

using the LASSO algorithm is O
(
d2 + dk

)
. The computa-

tional load of our method is mainly in the step 3 of Table 1 (the

cost of step 4 can be negligible) and the complexity is O (ndk)

where n is the number of iterations (e.g., 5 on average).

While our tracker is much more efficient than the ℓ1 tracker

and slower than the IVT method, it achieves more favorable

results in terms of center location error and overlap rate.

VI. CONCLUSION

This paper presents a robust tracking algorithm via the

proposed sparse prototype representation. In this work, we

explicitly take partial occlusion and motion blur into account

for appearance update and object tracking by exploiting the

strength of subspace model and sparse representation. Exper-

iments on challenging image sequences demonstrate that our

tracking algorithm performs favorably against several state-of-

the-art algorithms. As the proposed algorithm involves solving

ℓ1 minimization problem for each drawn sample with the

proposed model, we plan to explore more efficient algorithms

for real-time applications. We will extend our representation

scheme for other vision problems including object recognition,

and develop other online orthogonal subspace methods (e.g.,

online NMF) with the proposed model. In addition, we plan

to integrate multiple visual cues to better describe objects in

different scenarios and to utilize prior knowledge with online

learning for more effective object tracking.

REFERENCES

[1] D. Comaniciu, V. R. Member, and P. Meer, “Kernel-based object
tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp.
564–575, May 2003.

[2] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based probabilis-
tic tracking,” in Proc. Eur. Conf. Comput. Vision, 2002, pp. 661–675.

[3] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, “Tracking in low
frame rate video: A cascade particle filter with discriminative observers
of different life spans,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 10, pp. 1728–1740, Oct. 2008.

[4] H. Grabner and H. Bischof, “On-line boosting and vision,” in Proc.

IEEE Conf. Comput. Vision Pattern Recogn., Jun. 2006, pp. 260–267.
[5] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for

robust visual tracking,” Int. J. Comput. Vision, vol. 77, nos. 1–3, pp.
125–141, 2008.

[6] S. Avidan, “Ensemble tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 2, pp. 261–271, Feb. 2007.

[7] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online
multiple instance learning,” in Proc. IEEE Conf. Comput. Vision Pattern

Recogn., Jun. 2009, pp. 983–990.
[8] S. Wang, H. Lu, F. Yang, and M.-H. Yang, “Superpixel tracking,” in

Proc. IEEE Int. Conf. Comput. Vision, Nov. 2011, pp. 1323–1330.
[9] X. Jia, H. Lu, and M.-H. Yang, “Visual tracking via adaptive structural

local sparse appearance model,” in Proc. IEEE Conf. Comput. Vision

Pattern Recogn., Jun. 2012, pp. 1822–1829.
[10] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based tracking

using the integral histogram,” in Proc. IEEE Conf. Comput. Vision

Pattern Recogn., Jun. 2006, pp. 798–805.
[11] D. Wang, H. Lu, and Y.-W. Chen, “Incremental MPCA for color

object tracking,” in Proc. IEEE Int. Conf. Pattern Recogn., Aug. 2010,
pp. 1751–1754.



WANG et al.: ONLINE OBJECT TRACKING WITH SPARSE PROTOTYPES 325

[12] W. Hu, X. Li, X. Zhang, X. Shi, S. J. Maybank, and Z. Zhang,
“Incremental tensor subspace learning and its applications to foreground
segmentation and tracking” Int. J. Comput. Vision, vol. 91, no. 3, pp.
303–327, 2011.

[13] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line
boosting for robust tracking,” in Proc. Eur. Conf. Comput. Vision, 2008,
pp. 234–247.

[14] S. Avidan, “Support vector tracking,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 26, no. 8, pp. 1064–1072, Aug. 2004.

[15] F. Tang, S. Brennan, Q. Zhao, and H. Tao, “Co-tracking using semi-
supervised support vector machines,” in Proc. IEEE Int. Conf. Comput.

Vision, 2007, pp. 1–8.

[16] J. A. Lasserre, C. M. Bishop, and T. P. Minka, “Principled hybrids of
generative and discriminative models,” in Proc. IEEE Conf. Comput.

Vision Pattern Recogn., Jun. 2006, pp. 87–94.

[17] A. Y. Ng and M. I. Jordan, “On discriminative versus generative
classifiers: A comparison of logistic regression and naive bayes,” in
Proc. Adv. Neural Inform. Process. Syst., 2001, pp. 438–451.

[18] Q. Yu, T. B. Dinh, and G. G. Medioni, “Online tracking and reacquisition
using co-trained generative and discriminative trackers,” in Proc. Eur.

Conf. Comput. Vision, 2008, pp. 678–691.

[19] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “PROST:
Parallel robust online simple tracking,” in Proc. IEEE Conf. Comput.

Vision Pattern Recogn., Jun. 2010, pp. 723–730.

[20] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity-
based collaborative model,” in Proc. IEEE Conf. Comput. Vision Pattern

Recogn., Jun. 2012, pp. 1838–1845.

[21] X. Mei and H. Ling, “Robust visual tracking using L1 minimization,” in
Proc. IEEE Int. Conf. Comput. Vision, Sep.–Oct. 2009, pp. 1436–1443.

[22] T. Wang, I. Y. H. Gu, and P. Shi, “Object tracking using incremental 2-
D-PCA learning and ml estimation,” in Proc. IEEE Int. Conf. Acoustics

Speech Signal Process., Apr. 2007, pp. 933–936.

[23] G. Li, D. Liang, Q. Huang, S. Jiang, and W. Gao, “Object tracking using
incremental 2-D-LDA learning and bayes inference,” in Proc. IEEE Int.

Conf. Image Process., Oct. 2008, pp. 1568–1571.

[24] P. A. Viola, J. C. Platt, and C. Zhang, “Multiple instance boosting for
object detection,” in Adv. Neural Inform. Process. Syst., 2005, pp. 1681–
1688.

[25] Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N learning: Bootstrapping
binary classifiers by structural constraints,” in Proc. IEEE Conf. Comput.

Vision Pattern Recogn., Jun. 2010, pp. 49–56.

[26] F. Yang, H. Lu, W. Zhang, and Y. Wei Chen, “Visual tracking via bag
of features,” IET Image Process., vol. 6, no. 2, pp. 115–128, 2012.

[27] R. Fergus, F.-F. Li, P. Perona, and A. Zisserman, “Learning object
categories from google’s image search,” in Proc. IEEE Int. Conf.

Comput. Vision, Oct. 2005, pp. 1816–1823.

[28] X. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with
partial occlusion handling,” in Proc. IEEE Int. Conf. Comput. Vision,
Sep.–Oct. 2009, pp. 32–39.

[29] T. B. Dinh and G. G. Medioni, “Co-training framework of generative
and discriminative trackers with partial occlusion handling,” in Proc.

IEEE Workshop Appl. Comput. Vision, Jan. 2011, pp. 642–649.

[30] K. Cannons, “A review of visual tracking,” Dept. Comput. Sci. Eng.,
York Univ., Toronto, Canada, Tech. Rep. CSE-2008-07, 2008.

[31] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[32] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11, pp.
2861–2873, Nov. 2010.

[33] J. Wright, Y. Ma, J. Maral, G. Sapiro, T. Huang, and S. Yan, “Sparse
representation for computer vision and pattern recognition,” Proc. IEEE,
vol. 98, no. 6, pp. 1031–1044, Jun. 2010.

[34] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai, “Minimum error bounded
efficient L1 tracker with occlusion detection,” in Proc. IEEE Conf.

Comput. Vision Pattern Recogn., 2011, pp. 1257–1264.

[35] E. J. Candès, Y. Eldar, D. Needell, and P. Randall, “Compressed sensing
with coherent and redundant dictionaries,” Appl. Comput. Harmonic

Anal., vol. 31, no. 1, pp. 59–73, 2010.

[36] E. T. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for ℓ1-
minimization: Methodology and convergence,” SIAM J. Opt., vol. 19,
no. 3, pp. 1107–1130, 2008.

[37] I. Jolliffe, N. Trendafilov, and M. Uddin, “A modified principal com-
ponent technique based on the LASSO,” J. Comput. Graphical Statist.,
vol. 12, no. 3, pp. 531–547, 2003.

[38] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” J. Comput. Graphical Statist., vol. 15, no. 2, pp. 265–286,
2006.

[39] R. Zass and A. Shashua, “Nonnegative sparse PCA,” in Proc. Adv.

Neural Inform. Process. Syst., 2007, pp. 1561–1568.
[40] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in Proc. IEEE

Conf. Comput. Vision Pattern Recogn., Jun. 2010, pp. 1269–1276.
[41] [Online]. Available: http://groups.inf.ed.ac.uk/vision/

CAVIAR/CAVIARDATA1/
[42] P. N. Belhumeur and D. J. Kriegman, “What is the set of images of

an object under all possible illumination conditions?” Int. J. Comput.

Vision, vol. 28, no. 3, pp. 245–260, 1998.
[43] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-

serman. (2010 ). The PASCAL Visual Object Classes Challenge Results

[Online]. Available: http://pascallin.ecs.soton.ac.uk/challenges/VOC/
[44] A. Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet, “A direct

formulation for sparse pca using semidefinite programming,” SIAM Rev.,
vol. 49, no. 3, pp. 434–448, 2007.

Dong Wang received the B.E. degree from the
Dalian University of Technology (DUT), Dalian,
China, in 2008, where he is currently pursuing the
Ph.D. degree with the School of Information and
Communication Engineering.

His current research interests include face recog-
nition, interactive image segmentation, and object
tracking.

Huchuan Lu (M’06) received the M.Sc. degree
in signal and information processing and the Ph.D.
degree in system engineering from the Dalian Uni-
versity of Technology (DUT), Dalian, China, in 1998
and 2008, respectively.

He has been a Faculty Member, since 1998, and
a Professor, since 2012, with the School of Infor-
mation and Communication Engineering, DUT. He
focuses on visual tracking and segmentation. His
current research interests include computer vision
and pattern recognition.

Dr. Lu was a member of ACM in 2006 and 2010.

Ming-Hsuan Yang (SM’06) received the Ph.D.
degree in computer science from the University of
Illinois at Urbana-Champaign, Urbana, in 2000.

He was a Senior Research Scientist with Honda
Research Institute, working on vision problems
related to humanoid robots. He is an Assistant
Professor with the Department of Electrical Engi-
neering and Computer Science, the University of
California (UC), Merced. He has co-authored the
book Face Detection and Gesture Recognition for

Human-Computer Interaction (Kluwer 2001) and
edited the special issue on face recognition for Computer Vision and Image

Understanding, in 2003.
Dr. Yang was a recipient of the Ray Ozzie fellowship for his research

work in 1999. He received the Natural Science Foundation CAREER
Award in 2012, the Campus Wide Senate Award for Distinguished Early
Career Research at UC in 2011, and the Google Faculty Award in 2009.
He edited a special issue on real world face recognition for the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE.
He serves as an Area Chair for the IEEE International Conference on
Computer Vision in 2011, the IEEE Conference on Computer Vision and
Pattern Recognition in 2008 and 2009, Asian Conference on Computer in
2009, 2010, and 2012. He served as an Associate Editor of the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

from 2007 to 2011, and the Image and Vision Computing. He is a Senior
Member of the ACM.


