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Abstract—Obstructive Sleep Apnea (OSA) is one of the main
under-diagnosed sleep disorder. It is an aggravating factor for sev-
eral serious cardiovascular diseases, including stroke. There is,
however, a lack of medical devices for long-term ambulatory mon-
itoring of OSA since current systems are rather bulky, expensive,
intrusive, and cannot be used for long-term monitoring in ambula-
tory settings. In this paper, we propose a wearable, accurate, and
energy efficient system for monitoring obstructive sleep apnea on
a long-term basis. As an embedded system for Internet of Things,
it reduces the gap between home health-care and professional su-
pervision. Our approach is based on monitoring the patient using
a single-channel electrocardiogram signal. We develop an efficient
time-domain analysis to meet the stringent resources constraints
of embedded systems to compute the sleep apnea score. Our sys-
tem, for a publicly available database (PhysioNet Apnea-ECG),
has a classification accuracy of up to 88.2% for our new online and
patient-specific analysis, which takes the distinct profile of each
patient into account. While accurate, our approach is also energy
efficient and can achieve a battery lifetime of 46 days for continuous
screening of OSA.

Index Terms—Long-term monitoring, Obstructive Sleep Apnea
(OSA), Online detection, Real-time classification, Wearable sensor.

I. INTRODUCTION AND STATE OF THE ART

O
BSTRUCTIVE Sleep Apnea (OSA) is a common sleep
disorder involving partial or complete obstruction of the

upper airway. In the U.S. alone, Young et al. and Kapur et al.

estimated that 3.8 million people between 30 and 60 years old
are affected by this condition [1], [2]. Depending on the popu-
lation lifestyle, the prevalence of OSA ranges from 3% to 24%
according to Young et al. [3], with an estimated 5% worldwide
by Kim et al. along with Lam et al. [4], [5]. This disorder is
an aggravating factor for multiple health diseases, where Gaisl
et al., Peppard et al. and Yaggi et al. documented cardiovas-
cular ones [6] (high blood pressure [7], stroke [8]). Schröner
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and O’Hara linked OSA with clinical depression [9] while
Durmer et al. showed evidence of decreased memory and cog-
nitive skills [10]. Because of the cardiac misbehaviors, people
with OSA present a higher rate of sudden deaths, as proved by
Gami et al. [11]. While this condition is treatable, Young et al.

estimate that 90% of the subjects go undiagnosed [12]. Hence,
there is a need for accessible obstructive sleep apnea screening.

Despite major progress, there is still a need to develop a non-
intrusive solution for home OSA monitoring, for two reasons.
First, there is low incentive for patients with low to moder-
ate OSA to use external breathing equipment, such as Adap-
tive Servo Ventilation (ASV) [13]. Second, existing solutions
are bulky, time-consuming, expensive and intrusive, as stated
by Shouldice et al., Marcos et al. as well as Koley and Dey
[14]–[16]. Because the population-wide capacity of performing
full OSA diagnosis does not match the recommended capacity
from Flemons et al. [17], OSA testing or screening are only
available in dedicated facilities for the most severe cases: the
patient is required to go to a sleep center or hospital where his or
her sleep will be monitored extensively for two non-consecutive
nights. A full polysomnography (PSG) will be done to record
electrocardiogram (ECG), electromyogram (EMG), electroen-
cephalogram (EEG), eye movements, nasal airflow [18]. Alto-
gether, it requires 22 electrodes plus a respiration mask. This
is an intrusive setup that disturbs the patient’s sleep quality.
Moreover, the acquired data needs to be afterwards analyzed
by a specialist. Given these constraints, Young et al. report that
more than 80% of patients are reluctant to undergo a PSG [12].
Additionally, both the risks associated with an external respira-
tory help and the impracticality of OSA screening leaves most
of the affected population without any kind of monitoring [12],
hence the need for a simple yet efficient Internet of Things
(IoT) solution usable for home screening with a possible doctor
supervision.

In the context of non-intrusive OSA monitoring, previous
studies have shown that it is possible to detect OSA based on
single-lead ECG recordings, which has first been demonstrated
in 1984 by Guilleminault et al. in [19]. The existing wearable
devices for OSA detection, either commercially available or at
the research state, from Bsoul et al., Kelly et al, Jarvis and
Mitra, Raymond et al., De Chazal et al., McNames and Fraser,
Stein and Domitovich, Mietus et al, Shinal et al., Drinnan et al.,
Maier et al., Schrader et al., and Da Silva Pinho et al. [20]–[37],
focus only on signal acquisition. However, the processing and
identification of OSA events comes afterwards, as an additional
offline phase, after downloading the data to a more powerful
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platform. Nonetheless, due to the high rate of sudden death
of people with OSA because of additional cardiac causes, as
shown by Gami et al. [11], there is a clear need for personal
real-time systems. Devices which integrate in the bed cannot
currently access the problem of cardiac monitoring, and are not
working well when two persons are in the same bed. Therefore,
as emphasized by Fan et al. as well as Prathap et al. [38], [39],
non-intrusive personal wearable systems need to be investigated.

In terms of OSA detection techniques and classification ac-
curacy, the best one from a single-lead ECG recording reported
in the literature is by McNames and Fraser, reaching 92.5%
classification accuracy [28]. It is obtained by considering mul-
tiple features extracted from the frequency-domain as well as
the ECG morphology. However, the main drawback of this so-
lution is that the classification is manual and time-consuming.
In fact, as a comparative figure, the accuracy of a manual clas-
sification from an expert using the full polysomnogram sig-
nal is, according to De Chazal et al., 93% [40]. As opposed,
among the fully automatic classification techniques, the ap-
proach proposed by De Chazal et al. [36] achieves the best
results with an accuracy of 90.6%. When using exclusively
time-domain features, non-linear statistics reach an accuracy
of 85.6% along with 72.1% sensitivity and 91.2% specificity,
as demonstrated by Maier et al. [33]. An ”if-then” decision tree
is considered by Fan et al. [38] with a reported accuracy of
93.2%, relying on features derived from the heart-beats. Never-
theless, it has the drawback of using an undefined subset of the
database, so the results cannot be compared as-is to the previous
numbers.

Finally, neural networks have also been considered for OSA
classification by Da Silva Pinho et al. and show a performance
of 82,1%, a sensitivity of 88.4% and a specificity of 72,3% [37],
which is on par with the algorithms mentioned previously. Two
groups, Da Silva Pinho et al., and Pathinarupothi et al. [37], [41]
have considered a similar approach using LSTM-RNN which
report 82.1% up to 100% but they consider only a limited set
of recordings which does not enable us to replicate the results
using the full database.

However, among all the devices and techniques available,
none is a high-accuracy wearable system with real-time and
long-term screening while satisfying the need of cardiac mon-
itoring. In [42], we proposed a low-power wearable system for
real-time OSA screening along with cardiac monitoring. In this
paper, we extend our previous work by improving both the clas-
sification accuracy and battery lifetime. In summary, we design
in this work a wearable system for automatic, energy-efficient,
non-intrusive, yet accurate OSA detection and screening using
a single-channel ECG recording. Our main contributions are:

� We propose an online Obstructive Sleep Apnea detec-
tion technique compatible with cardiac-monitoring as de-
veloped by Sopic et al., as well as De Giovanni et al.

[43]–[45], with a time-complexity of O(n), which is the
theoretical lower bound. This is achieved by developing
our own efficient outlier removal and through performing
sleep apnea assessment in time-domain, which removes
the need for computationally expensive frequency-domain
analysis (see Section IV).

Fig. 1. INYU sensor and prototype. Front: 1: STM32L151RDT6 (ARM
Cortex-M3 MCU, 384 KB Flash, 48 KB RAM), 2: MPU-6000 (6-axis I2 C mo-
tion sensor), 3: nRF8001 (Bluetooth low energy v4.0 radio). Back: 4: ADS1191
(Analog front-end for ECG applications).

� We design an autonomous and energy efficient sleep apnea
screening system with a battery lifetime for continuous
monitoring during 46 days, measured experimentally on
an actual hardware platform (see Section VI-E).

� Our system, while energy efficient, is also comparable
with the state-of-the-art in terms of performance, reaching
88.2% accuracy, 80.0% sensitivity and 93.9% specificity
(F1 = 84.7%) thanks to adopting a patient-specific per-
spective, which takes into account the distinct profile of
each patient (see Section V-B).

The rest of this paper is organized as follows. First, we present
the targeted hardware and software platform in Section II.
Next, in Section III, we explain how features are generated
and evaluated offline for optimizing the results in our online
system. Then, in Section IV, we describe the implementation
and optimization of our energy-efficient sleep apnea detection
technique. In Section V, we define the setup used for testing
our system, and then in Section VI, we evaluate our proposed
system experimentally with respect to energy efficiency and
classification accuracy, along with patient-specific configu-
ration. Finally, in Section VII, we conclude that using our
proposed patient-specific technique, it is possible to achieve
high classification accuracy for OSA detection, while having a
longer battery lifetime than the state-of-the-art systems.

II. SLEEP-APNEA MONITORING SYSTEM

In these sections, we first describe the wearable hardware
platform and then present the software architecture.

A. Target Wearable Platform

We consider the SmartCardia INYU wearable sensor (Fig. 1)
as our target device in this paper. INYU is an energy-efficient
wearable device providing a single-lead ECG recording with a
24-bit ADC operating at a frequency from 250 Hz to 16 kHz.
The ECG is measured using silver-chloride electrodes by
impedance pneumography [46]. The device is equipped with the
STM32L151RDT6 [47], an ultra-low power 32-bit microcon-
troller which can operate at a maximum frequency of 32 MHz.
It features 48 kB of RAM and 384 kB of flash storage, and it is
powered using 710 mAh battery.

Given the internal capabilities and connectivity possibilities,
this device can work as a fully autonomous device for several
days of continuous recording, uploading the recorded and pro-
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Fig. 2. Overview of the processing blocks integrated in the device used for
the online OSA analysis in the proposed system [42]. The ECG is first filtered to
remove the noise, then the fiducial points are extracted. Finally, signal is analyzed
to detect OSA and cardiac pathologies. Raw ECG data is stored compressed on
a memory for further offline analysis by an expert.

cessed data to a base station when one becomes available. For
example, a Bluetooth Low-Energy compliant smartphone can
be used for this purpose, which can afterwards display the data
on-screen or upload it online to a remote medical service in
order to be manually checked by a physician.

B. Software Structure

The overall software structure and flow of our proposed sys-
tem is shown in Fig 2. The ECG is first acquired using medical
electrodes connected to the chest of the patient. Then, an initial
noise filtering is performed to remove artifacts caused, for ex-
ample, by power lines, electrode parasitic motions, or baseline
drift, as recommended by Webster and Huhta [48], [49]. To-
wards this, erosion and dilation morphological filters developed
by Sun et al., as well as Braojos et al. are used [50], [51], which
can be implemented in an efficient way in energy-constrained
wearable systems. After filtering the signal, the ECG delineation
(extraction of fiducial points in the signal related to the physio-
logical behavior) is done based on wavelet transforms following
the method of Boichat et al. [52], relying on the fact that the
different waves are made of different frequency components.
The output of the previous step is then used to run two different
automatic diagnostics. First, the OSA detection, which is the
main focus of this paper and is discussed in Sections III and
IV, but also a cardiac monitoring for additional evaluation of
the patient. In parallel, the raw data is compressed using an al-
gorithm from Mamaghanian et al. [53] and stored for further
offline analysis.

III. OFFLINE FEATURE EXTRACTION AND OSA
LEARNING PHASE

In this section, while keeping in mind the stringent energy-
constraints of a wearable platform, we first identify relevant
features in Subsection III-A and then, using these features,
we describe how to train our classifier for OSA detection in
Subsection III-B.

A. Features Extraction

Given that an autonomous device with online analysis has a
longer battery life than when streaming the sampled data to a
remote device such as a smartphone, provided that the embedded
computations required for signal processing and classification

Fig. 3. ECG morphology with RR-interval and RS-amplitude labeled [59].

are lightweight enough, which has been proven by the works of
Rincón et al., Crepaldi et al., and Basu et al. [54]–[57]. Thus,
we need to carefully select the features we use for the OSA
classification.

To select the most informative features, we evaluate the ones
considered by De Chazal et al. [36]. This is because among the
fully automatic systems relying solely on ECG, it reaches the
highest accuracy (90%). In [36], 52 features are derived from
the ECG morphology and an additional 36 features are derived
from an EDR signal, i.e., a total of 88 features. In addition, we
consider other features generated directly from the ECG, EDR,
RR-intervals series and RS-amplitude series along with their
respective spectrums. Besides statistical features (min, max,

mean, std, rmssd, sdnn), we also consider auto-regressive pro-
cess, i.e., xi = yi −

1
4

∑i−1
j=i−4 yj as a previous study from De

Chazal et al. [27] report an improved performance. Finally, we
extract several features by integrating or deriving parts of the
ECG signal. Therefore, a trade-off exists between the energy
consumed for extracting the features and the classification per-
formance. As our goal is to design an energy-efficient wearable
system, it is essential to significantly reduce the number of fea-
tures extracted and used.

To identify which features are the most relevant for OSA clas-
sification, we first generate all the features we consider from
both the training and testing set. To select the features for the
final system, we run a minute-by-minute classification, where
the classification accuracy identifies how relevant each feature
is for OSA detection. We apply forward feature selection as ex-
plained by Tang et al. [58] until the improvements are minimal:
first, we select the one that gives the best accuracy when used
alone. We then iterate, adding the next feature that, combined
with the previously selected ones, provides the best classifica-
tion accuracy.

As reported by Penzel et al. in a comparison of diffeernt al-
gorithms for apnea detection from ECG recordings, the most
common features are generated from the time series of heart
beats, the ECG morphology, and from the ECG derived respi-
ration (EDR) signal [60]. In particular, during an OSA event,
there is a shift of the signal’s energy towards low frequencies
for two distinct time-series: the series of time intervals between
two heart beats (RR-intervals in Fig. 3) and the series of R-
peak amplitudes with respect to S-amplitudes (RS-amplitude
in Fig. 3). This shift of signal’s energy is illustrated in Fig. 4
with the spectrogram of the RR-intervals series. It shows the
minutely frequency-spectrum of the RR-intervals for a complete
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Fig. 4. Spectrogram of the log-power of the RR-intervals series from the
recording x32 (see Section V-A) with the labeled OSA logic signal on a same
time axis [42].

overnight recording. Frequencies of the signal are displayed on
the y-axis versus the time on the x-axis. As for the background,
the dark red color indicates high energy for that frequency and
minute, whereas the blue is linked to low energy. The manually-
labeled OSA ground truth by the medical expert is shown below.
In these annotations, the HIGH value is linked to OSA events
whereas normal breathing is captured by the LOW value. As
this figure shows, there is a clear correlation between the OSA
events and the signal’s energy in low frequencies. A very sim-
ilar trend is observed for the RS-amplitude series. As a result,
we consider both RR-intervals spectrum and the RS-amplitude
spectrum as both are correlated with OSA.

Computing signal’s spectrum is, however, energy-hungry.
We, therefore, isolate the most relevant frequency-band from
each spectrum (RR-interval and RS-amplitude). Thus, we run
a parameter sweep to optimize the frequency-band bounds of
the signal correlated with OSA events, with respect to classi-
fication accuracy. From an exhaustive exploration of all pos-
sible frequency bands, we obtain a 2D-map of accuracy (see
Fig. 5). It represents the OSA classification accuracy obtained
for each pair of low and high bounds. The apnea frequency-
band bounds are on the axes and the classification accuracy
is linked to the graph color: the brighter the color, the higher
the accuracy. This figure, which is computed for RR-intervals,
shows a clear frequency interval regarding the lower bound of
the band, ranging from 0.010 to 0.020, while the upper bound
has more tolerance, from 0.045 to 0.075, in terms of normalized
frequency. This whole area provides the highest classification
results, reaching 76% when using the raw RR-intervals without
filtering. Therefore, we have a single feature from the spectrum
of RR-intervals for classification, which can be computed in
an energy-efficient way (cf. Section IV-B). Similarly, the best
frequency-band bounds are found for the RS-amplitude time-
series, which leads us to an accuracy of 76%.

B. Features Combination and Learning Phase

Based on the discussion in the previous section, we only use
the relative energy in a specific frequency band for both RR-
intervals and RS-amplitudes time-series, as they are two features

Fig. 5. Classification accuracy (normalized between 0 and 1) for OSA when
varying frequency-band bounds considering the RR-intervals time series. The
circular dot is placed at the position of the best normalized frequency band.

Fig. 6. Distribution of the apnea (yellow) and non-apnea (blue) events from
the training set of recordings for the two features generated from the series of
RR-intervals and RS-amplitudes. The two classes are separated based on linear
SVM classifier.

not correlated to each other. This is illustrated in Fig. 6 where
each sample data is positioned in the RR-RS apnea score plot.
The sample data for OSA events are in yellow and normal sleep
are in blue. The red line (linear combination of RR and RS apnea
scores) separates the two classes by maximizing the margin.

In the literature, several classifiers were considered and the
classification accuracy obtained is in the range between 80% and
90%, relying from the numbers reported by Xie and Minn [61].
Additionally, Xie and Minn show in [61] that Random For-
est [62] has the highest performance in terms of classification
accuracy. In our setup, Random Forest reaches a classification
accuracy of 88.1% at most. On the other hand, when using a Sup-
port Vector Machine (SVM) classifier as defined by Cortes and
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Vapnik [63], we reach 90.1% classification accuracy, whether
we use a linear, Gaussian or polynomial kernel. Therefore,
in terms of classification accuracy, the results obtained using
the SVM classifier are up to 2% better than Random Forest’s
results.

In terms of computational complexity, linear SVM can be
implemented even with limited computational resources. As we
design an energy-constrained system, we use linear SVM in
our OSA detection technique, because of its high classification
performance and high computational efficiency at runtime (see
Section IV-D).

IV. ONLINE SLEEP-APNEA DETECTION TECHNIQUE

In this section, we propose an energy efficient Obstructive
Sleep Apnea detection technique that can directly run on an
energy-constrained wearable device. Previous work and devices
from Jarvis and Mitra, Raymond et al., De Chazal et al., Mc-
Names and Fraser, Stein and Domitovich, Mietus et al., Shinar
et al., Drinnan et al., Maier et al., Schrader et al., Ng et al.,
Da Silva Pinho et al., Kelly et al., and Bsoul et al. [23]–[37]
focused on offline analysis on a computer or cloud system. Con-
versely, we aim to provide an online ECG analysis running on a
wearable system. Therefore, our main goal here is to lower the
energy consumption of the OSA detection, while maintaining
high classification accuracy on the wearable device.

The overall flow of our online sleep apnea analysis, after the
ECG noise filtering and ECG delineation, is shown in Fig. 7.
Our OSA screening method allows different lengths of interval
but in particular in this paper, we use a 60 seconds analysis as
the database we use provides only a minute-by-minute labeling.
From the ECG, we generate RR-intervals and RS-amplitudes
time-series, as they are our most relevant features (see Sec-
tion III). First, we use our own enhanced Thompson-Tau fil-
ter (Section IV-A) to remove the outliers from erroneous beats
caused mostly by motion artifacts and muscle noise, inherent
to ambulant systems. Then, we compute the power in the two
apnea frequency bands of the spectrums in order to obtain the
RR apnea score as well as the RS apnea score (Section IV-B).
Afterwards, we apply a moving average filter to smooth the vari-
ability of both apnea scores (Section IV-C). Finally, according to
the SVM classifier trained in Section III-B, if the linear combi-
nation of the smoothed apnea scores is greater than a threshold,
we label the corresponding minute as apnea.

A. Low-Complexity Outlier Removal

As proved by Clifford and Tarassenko heart-beat outliers
have strong negative effects on frequency analysis [64]. Con-
sequently, detecting and removing these outliers is critical.
Therefore, we apply our own low-complexity version of the
Thompson-Tau filter on the series of RR-intervals before apnea
scoring. The original Thompson-Tau outlier removal algorithm
is provided by Rienzner [65] and its average time complexity
is O(n log (n)), because of sorting the entire input array. How-
ever, we propose faster outlier removal by reducing the average
time complexity down to O(n) (see Algorithm 1). Our algorithm
first starts by computing the initial mean and standard-deviation

Fig. 7. Flowchart of the proposed online OSA screening technique. It is ap-
plied when considering both the RR-intervals and the RS-amplitudes of the
beats. Compared to [42], the higighted blocks feature the use of our optimized
outliers removal, updated apnea-score computation using a time-domain fil-
tering and power estimation, as well as the additional RS-amplitude feature
extraction along with the inclusion of the SVM classifier.

of the series (Lines 3–4). In Lines 5–6, it finds the k-th largest
and the k-th smallest values using the QuickSelect algorithm
documented by Hoare [66], which only sorts the beginning and
ending of the input array. In the subsequent Lines 8 and 13, we
test if the smallest or largest value is conformant to the Student’s-
t distribution [67] of the the input. If not (Lines 9–12 and 14–17),
then we move the start or end indices of the series to exclude
the new outlier and update both the mean and standard-deviation
according to the equations from Welford [68]. We repeat this
process until both the smallest and largest values are conforming
to the distribution (Lines 7–19).

The average complexity of Algorithm 1 is O(n). In the
impossible case where all values are outliers, the complexity
is the same as in the original implementation. However, only a
few values are outliers. Indeed, Fig. 8 shows the classification
accuracy while changing the filter’s tolerance for outliers
detection. As this figure shows, there is a 5% increase of the
classification accuracy if a very tolerant filter is used, thus
discarding the few biggest outliers. It means that removing a
restricted number of the most non-conforming samples brings
significant improvements. We can, therefore, abort sorting
early, thus providing significant energy savings.
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Algorithm 1: Low-Complexity Outlier Removal.

1: function FASTOUTLIERREMOVAL(x, τ, k)
2: N ← LENGTH(x); start ← 1; end ← N ;
3: µ ← COMPUTEMEAN(x);
4: σ ← COMPUTESTD(x);
5: low ← QUICKSELECT(x, k); ⊲ Sorts the

beginning of the array
6: high ← QUICKSELECT(x, N − k); ⊲ Sorts

the ending of the array
7: while x[start] < low or x[end] > high do

8: if low > τ · σ then

9: µ ← UPDATEMEAN(x[start], N, µ);
10: σ ← UPDATESTD(x[start], N, σ, µ);
11: start ← start + 1;
12: N ← N − 1;
13: else if high < τ · σ then

14: µ ← UPDATEMEAN(x[end], N, µ);
15: σ ← UPDATESTD(x[end], N, σ, µ);
16: end ← end − 1;
17: N ← N − 1;
18: end if

19: end while

20: end function

Fig. 8. Evolution of the accuracy depending on the strength of the Thompson
filter. Even a very tolerant (weak) removal significantly improves the classifi-
cation accuracy, which means that only removing the few biggest outliers is
desirable [42].

B. Apnea Scoring

In this subsection, we define two apnea scores and discuss
our time-domain analysis to compute both of them. They are
the features used by the linear SVM for classifying OSA events.

Definition: We define the apnea score S as the relative energy
in the apnea band Eapnea-band compared to the total signal energy
Etotal:

S =
Eapnea-band

Etotal
. (1)

This enables us to consider the apnea score computed on the
series of RR-intervals SRR with the corresponding apnea band
ERR-apnea-band as well as the apnea-score computed on the se-
ries of RS-amplitudes SRS with the corresponding apnea band
ERS-apnea-band. Note that the apnea score is bounded between zero
and one.

To compute the energy in given frequency bands, a Lomb
normalized periodogram is typically used, using the method of
Karakonstantis et al. [69], but the drawback of this approach
is the complexity associated with the generation of the whole
frequency power spectrum at run time. Indeed, the frequency
transform yields as many features as discrete frequencies, which
involves energy-hungry computations. Contrarily, in our case,
to compute an apnea score S, we only need to compute the
energy of a signal in the corresponding apnea band Eapnea-band,
as well as the total energy of the signal Etotal. Therefore, it is
possible to substantially lower the memory and CPU usage and
save energy without sacrificing the classification accuracy.

To compute the the total energy of the signal Etotal, we rely
on Parseval’s Theorem [70], and compute the signal’s energy
Etotal using lightweight time-domain signal processing, instead
of time-domain to frequency-domain transforms:

N −1∑

n=0

|x(n)|2 =
1

N

N −1∑

k=0

|X(k)|2 , (2)

where X(·) is the Discrete Fourier Transform (DFT) of
signal x(·).

For the energy of the signal in the apnea band Eapnea-band

we first design a time-domain band-pass filter to remove the
frequencies outside the apnea band. A first-order digital Butter-
worth band-pass filter [71] has been designed to compute the
coefficients ai and bi of the transfer function:

H(z) =

∑m
i=0 biz

−i

∑k
i=0 aiz−i

. (3)

Using these coefficients, we obtain an energy-efficient time-
domain filter. The time-domain Infinite Impulse Response (IIR)
digital filter is given as follows:

a0y(n) =
m∑

i=0

bix(n − i) −
k∑

i=1

aiy(n − i). (4)

Having filtered the frequencies outside the apnea band, we
can again use Parseval’s Theorem to obtain the apnea band
energy Eapnea-band. Once this is done, apnea score is computed
according to the definition given in Equation 1.

Considering the time-domain energy computation, along with
the time-domain band-pass signal filtering, the apnea-scoring
is more efficient from the energy-consumption point of view
because of the reduced algorithmic complexity, compared to
computing our apnea-score using a frequency domain transform.

C. Apnea-score Low-Pass Filtering

The reference minute-by-minute sleep-apnea labels reveal
that OSA is a signal that changes at low frequencies. In fact, it
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is unlikely to have a single minute containing an apnea event in
a long period of non-apnea sleep and vice-versa. Therefore, we
consider the evolution of the apnea score over several minutes.
Hence, we use a simple unweighted moving average to lower
the raw apnea score variability, as follows:

x(i) =
1

2m + 1

m∑

j=−m

x(i + j). (5)

We optimize the moving average window length by maximiz-
ing the OSA classification on the training set when changing the
window length from zero minutes up to 31 minutes. The clas-
sification accuracy based on the RR apnea score increases by
3–4%, if we consider a window length of 13 ± 4 minutes. Sim-
ilarly, in the case of RS apnea score, the best improvement in
accuracy is achieved for a five minutes window.

D. Online Classification

Once the signal is filtered, the features generated and filtered,
the final step is to actually label the minute as apnea or not.
We classify each minute of signal using a linear Support Vector
Machine (SVM) using the parameters from the offline training
done in Section III. It is especially energy-efficient as it only
requires computing the following condition:

a · SRR + b · SRS ≥ c,

with the parameters a, b and c computed during an offline train-
ing (cf. Section III-B).

V. EXPERIMENTAL SETUP

In this section, we define the database used as well as the
setup for testing the performance of our system.

A. Apnea-ECG Benchmark Recordings

The recordings used for training and testing are publicly avail-
able on Physionet as the apnea-ecg database [72]. They were
made available by Penzel et al. for stimulating research about
non-intrusive OSA detection. We use this database to be able
to compare our proposed system against prior studies, as we
report our results using the same experimental methodology
and metric based on the same signals. The 70 single-lead ECG
recordings were sampled at a frequency of 100 Hz and manu-
ally labeled minute-by-minute by an expert for sleep apnea and
hypopnea events, without distinction between both. The heart-
beat timestamps used to retrieve the RR-intervals are provided
by Physionet using an automatic delineation.

The recordings come from a set of 32 subjects, namely,
healthy and with Obstructive Sleep Apnea. From those subjects,
four subjects contributed to four recordings each, two subjects
contributed to three recordings each, 22 subjects contributed
to two recordings each and four patients contributed to a sin-
gle recording. Then, the dataset is divided in two groups of 35
recordings, one for training and one for testing. In each group,
the number of apnea events represent around 38% of the data.
The total number of recorded minutes is 34313, and we include

17045 of them in the training set and the remaining 17268 in
the testing set.

The duration of the recordings ranges from 6 h 41 min to 9 h
38 min, with an average duration of 8 h 12 min. The normal
breathing time varies between 11 and 535 minutes, whereas
for the problematic breathing, it ranges from 0 to 534 minutes.
Overall, 62% of the minutes in the database are labeled as apnea.
This means that a system classifying everything as apnea would
only reach 62% accuracy. The amount of breathing-disordered
minutes is used to classify the patients in three different groups:
the apnea group A was defined as having 100 or more minutes of
Obstructive Sleep Apnea and the control group C showed less
than 5 minutes of disordered breathing. The remaining cases
belong to group B, classified as borderline, i.e., with between 5
and 99 minutes with apnea during the recording.

B. OSA Classification Performance

To have a performance comparison with prior works, we use
the overall classification accuracy when working on the testing
set recordings. Our OSA monitoring system performs a minute-
by-minute analysis, assigning either the non-apnea minute label
or the apnea minute one. We also provide the specificity and
sensitivity to fully characterize our system. These indicators are
defined as follows:

Sensitivity (or True Positive Rate):

TPR =
TP

TP + FN
=

TP

RP
, (6)

Specificity (or True Negative Rate):

TNR =
TN

FP + TN
=

TN

RN
, (7)

Accuracy:

Acc =
TP + TN

RP + RN
, (8)

where TP is the number of true positives (correctly classified
minute as apnea), TN is the number of true negatives (correctly
classified minute as non-apnea), FP is the number of false
positives (misclassified minute as apnea), FN is the number
of false negatives (misclassified minute as non-apnea), and RP

and RN are, respectively, the number of real positives (apnea
minutes from the ground truth) and real negatives to classify
(non-apnea minutes from the ground truth).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our approach in terms of classifi-
cation performance: The following four subsections report the
classification accuracy under different assumptions.

First, Subsection VI-A reports the performance using exactly
the the same setup than the Physionet Challenge. This enables
an easy comparison with other work using the same database.
The next three subsections rely on the patient-specific group-
ing of recordings. To evaluate our patient-specific approach,
the recordings are grouped by patient using the metadata pro-
vided along the database, using the reported age, sex, height
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TABLE I
GROUPING OF OBSTRUCTIVE SLEEP APNEA RECORDINGS ON

A PER-PATIENT BASIS

and weight, without ambiguity. The results of this grouping are
shown in Table I, sorted in the same order as the original files.
As some patients (patients 10, 23, 26 and 29) contributed to a
single recording, they could not be used for the patient-specific
study and, therefore, have been excluded. This is because we
require one recording for training, and at least another recording
for accessing the classification performance. Our results from
the patient-specific approach are reported in Table II.

A. Physionet Challenge Classification Accuracy

In this work, we consider the exact same setup defined by
Moody et al. for the Physionet Challenge [73]. After the opti-
mization and porting to embedded C, the accuracy we reach is
85.7% while the sensitivity is 81.4% and specificity is 88.4%
(F1 = 81.3%). If we only consider the RR-intervals series, the
accuracy is 82.2%, with 73.3% sensitivity and 87.6% specificity
(F1 = 75.7%). These results are better by 0.1% of the best time-
domain classifiers, by Maier et al [33], and 3 to 5% lower to
the absolute best algorithms, from Da Silva Pinho et al., and
De Chazal et al. [36], [37], with the added benefit of online
energy-efficient analysis on a wearable device.

B. Patient-ideal (P.I.) Classification Accuracy

In order to quantify how much improvement can be expected
from the patient-specific approach, for each patient, training and
testing is done on the same recordings. The overall classification
accuracy achievable with our technique in this ideal case, where
we have full knowledge of the recordings, is 91.3% (specificity
= 92.7%, sensitivity = 89.2%). This is the best achievable
performance in terms of classification accuracy with our OSA
detection technique.

C. Patient-agnostic (P.A.) Classification Accuracy

To compare with a patient-specific approach, we group the
recordings in Table I by patients. We use the first recording
of each patient for training and the remaining recordings for

testing. We leave out four patients as they contributed to only
a single recording. Using this approach, we reach a classifica-
tion accuracy of OSA events of 84.5% (specificity = 88.1%,
sensitivity = 79.2%).

D. Patient-specific (P.S.) Classification Accuracy

Even though the overall classification accuracy of obstruc-
tive sleep-apnea events is high (more than 85%), few patients
present significantly lower classification results (below 70%).
After grouping the recordings per patient, we observe that they
have a distinct apnea profile for the energy distribution in the RR
and RS apnea bands. We, therefore, propose a patient-specific
SVM classifier training in our obstructive sleep apnea screening
system.

In the patient-agnostic situation, we use 35 recordings com-
ing from different patients for training, as per the Physionet
Challenge rules, to have comparable results with the state of the
art. In the patient-specific situation, we use the first overnight
recording from the patient to train the SVM classifier.

With an exhaustive analysis across all the patients, we observe
that, on the one hand, this patient-specific approach is overall
4.4% better than the patient-agnostic setup (specificity = 93.9%,
sensitivity = 80.0%). On the other hand, our patient-specific
OSA detection technique is 3% less accurate than the patient-
ideal approach. Even though in a very few cases the performance
is slightly degraded, this tuning brings significant improvements
for the majority of patients with a very low accuracy in a patient-
agnostic setting (see Table II and Fig. 9). This observation opens
the possibility of a long-term patient screening for a wider range
of patients.

On the other hand, let us consider, as an example, Patient 15
who has contributed to four recordings. Without any patient-
specific training, all four recordings receive a poor classifica-
tion results, as the initial patient-agnostic accuracy is 69.8%.
However, when training using one recording from the patient,
the classification accuracy increases to 88.2% (we avoid data-
dredging by excluding the recording used training). These re-
sults are similar when using any of the recordings for training,
and testing against the other recordings.

Let us now consider Patient 1. The classification accuracy
is poor compared to the majority of patients (below 70% for
both the patient-specific and patient-agnostic cases). To find the
best performance achievable in theory, we both train and test
our technique on the recordings from the patient. This ideal
classification can achieve optimal accuracy as it is based on
data-dredging. The ideal accuracy, under our assumptions, is
76.0%, which is comparable with the classification accuracy
obtained by our patient-specific training (75.4%).

To give more insight about the performance of our system,
we plot the number of used features against the classification
accuracy. As only few publications report the number of used
features, many publications are not in the chart. Apart from
our system, the best performing one with the lowest number of
features is by De Chazal et al. [36], with 87.7% accuracy using
9.7 features (non-integer value because it is the average number
of features used in multiple data splits from a cross-validation
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TABLE II
CLASSIFICATION ACCURACY AND RELATIVE IMPROVEMENTS REPORTED (IN %) ON A PATIENT-SPECIFIC BASIS

This table shows the change of the accuracy when changing from a patient-agnostic (P.A.) classifier to a patient-specific (P.S.) one and then to a ideal patient-specific (P.I.)

classifier.

Fig. 9. Evolution of the OSA classification accuracy in the context of patient-
agnostic, patient-specific and patient-ideal classification. The patients have been
sorted according to the patient-agnostic classification accuracy to better show
the classification accuracy changes with the patient-specific and patient-ideal
cases.

process). That is to say, it has 3% better accuracy at the cost of
more than four times as many features.

E. Energy Consumption Characterization

Targeting an autonomous hardware platform INYU, in ad-
dition to the classification performance, it is important to take
energy consumption into consideration as a design goal. There-
fore, in this section, we evaluate the energy efficiency of our sys-
tem experimentally. We use the commercially available Gecko
EFM32 development board (with the same ARM Cortex-M3
core as in the INYU) with the provided Simplicity Studio soft-
ware as a full energy profiler is integrated.

The detailed energy analysis of the OSA detection algorithm
(Fig. 11) has been performed on a recorded set of data, span-
ning over 12.3 hours, with an average heart-rate of 87 beats per
minute. The total active time is 38.78 seconds, which repre-
sents a duty cycle of 0.085%. The average current drawn by the
microcontroller while active is 10.5 mA.

In the case where the device is only used for OSA detection,
the energy consumption results are reported in Table III. The
ECG measurement is active 100% of the time. Concerning the
software, two main parts are required: the ECG delineation to
detect the heart-beat and the OSA detection. In both cases, the
microcontroller is in its active state, drawing 10.5 mA. When
idle, the CPU is in an energy saving mode, drawing 0.018 mA.
By performing an analysis of the different individual consump-
tions, we get an average current consumption of 0.636 mA.

Fig. 10. Comparison between the the number of features used against the
classification accuracy among the published papers.

Fig. 11. Overview of the energy consumption of the OSA detection algorithm.
Each bar represents the energy consumed by a single function in the C code
running on the energy-profiling board.

TABLE III
CURRENT USED FOR OSA DETECTION ON THE TARGET DEVICE

The currents drawn are based both on the manufacturer’s datasheets and are confirmed

experimentally with measurements. As the duty cycle is data dependent, we determine an

average active time for various ECG windows extracted from the Physionet recordings,

thus reflecting the variability observed for real signals.
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As the battery is rated at 710 mAh, the total lifetime is approxi-
mately 1115 hours (46.5 days). Thus, the obstructive sleep apnea
detection technique in this paper is one order of magnitude more
energy-efficient than our previous work [42], while having better
classification results whether we consider a patient-agnostic or
patient-specific approach. This is mainly due to our fast outliers
removal and time-domain apnea score computation.

VII. CONCLUSION

Obstructive sleep apnea is an aggravating factor for different
health conditions, including cardiovascular diseases. Despite
the high rate of obstructive sleep apnea, only a small fraction
of the population is diagnosed and monitored. Therefore, in
this paper, we designed an online ultra-low power wearable ob-
structive sleep apnea monitoring system. The performance and
energy efficiency of our system are evaluated experimentally,
in a patient-specific setting. Our system has a classification ac-
curacy of 88.2%, for a minute-by-minute classification, with
a battery lifetime of 46.8 days. Thanks to its Bluetooth link,
this wearable sensor can upload its analysis to an online web-
service for a continuous monitoring, tracking the evolution of
the disease.

As for future work, we can envision two main directions.
First, our proposed wearable system can be expanded to provide
a better sleep diagnosis device, with the practical integration of
the cardiac monitoring, using the cardiac analysis results to
refine the OSA analysis. An additional promising evolution is
the automatic disabling of the ECG sampling when a noisy
section is detected, which can be performed by exploring as a
basis the strategy proposed by Orphanidou et al. [78]. Second,
personal activity trackers (fitness trackers and smartwatches)
are getting widespread, and the majority of them feature a pulse
oximeter, yielding a photoplethmogram (PPG) and therefore
an indication of the heart-rate. Hence, it would be interesting
to evaluate the performance of our OSA detection algorithm
relying only on the RR-intervals measured with the PPG, thus
using devices already available on the mass market.
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