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Abstract—This paper proposes a Lyapunov optimization-based  online 

distributed (LOOD) algorithmic framework for active distribution 

networks with numerous photovoltaic inverters and invert air condi-

tionings (IACs). In the proposed scheme, ADNs can track an active 

power setpoint reference at the substation in response to transmis-

sion-level requests while concurrently minimizing the utility loss and 

ensuring the security of voltages. In contrast to conventional distrib-

uted optimization methods that employ the setpoints for controllable 

devices only when the algorithm converges, the proposed LOOD can 

carry out the setpoints immediately relying on the current measure-

ments and operation conditions. Notably, the time-coupling con-

straints of IACs are decoupled for online implementation with Lya-

punov optimization technique. An incentive scheme is tailored to 

coordinate the customer-owned assets in lieu of the direct control 

from network operators. Optimality and convergency are character-

ized analytically. Finally, we corroborate the proposed method on a 

modified version of 33-node test feeder.   

Index Terms—Active distribution networks, online distributed opti-

mization, photovoltaic, inverter air conditionings. 

I. INTRODUCTION 

CTIVE distribution networks (ADNs) integrated with high 

penetrations of distributed energy resources (DERs) provide 

increasing flexibility for power systems and accommodate ad-

vanced ancillary services such as automatic generation control, 

fast ramping, and power reserves [1]. However, coordinating nu-

merous DERs to achieve some objectives while considering their 

distinct dynamics and constraints in a time-varying environment is 

extremely challenging. Moreover, since the customer-owned 

DERs are not directly dispatched by the utilities, an incen-

tive-based scheme instead of the direct control from network op-

erators is required. 

There has been extended studies on optimal coordination of 

DERs with the ADN in the literatures. Some works such as [2] 

design a centralized solver for the formulated optimization prob-

lems, which is valid for the small-scale application and utili-

ty-owned assets. Refs. [3]--[5] present distributed optimization 

frameworks, where multiple subproblems need to be solved itera-

tively until the convergence for each time slot. We term such 

scheme as solving the problem in a batch fashion [6]. In this case, 

the system profiles are presumed to be stationary and unchanged 

during the whole iterative procedure. However, if we use a small 

time-slot duration to track the optimal setpoints for DERs in the 
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fast variation environment, the batch fashion will be communica-

tionally costly and rarely feasible to yield the convergency before 

the system profiles change [6]. Additionally, if the batch mode is 

applied to design an incentive scheme, various rounds of bargains 

between ADN operators and customers are required before re-

vealing the optimal price [5], which may be user-unfriendly. 

Alternatively, the online convex optimization (OCO) has 

emerged as a promising paradigm. Unlike conventional batch 

fashion, a limited number of iterations are performed at each time 

slot in OCO. The generated coordination signals or setpoints are 

applied directly without waiting for convergency. Based on this 

computationally affordable online method, DERs can continuous-

ly pursue the trajectory of the time-varying optimizers using a 

small sampling time in the fast variable environment. For instance, 

Enyioha et al. [7] propose an online decentralized algorithm for 

the transmission-level economic dispatch. However, it only con-

siders the active power balancing of large generation units while 

DERs are not involved. Refs. [8] and [9] coordinate the networked 

microgrids and DERs to minimize the system cost and loss, re-

spectively. A unified online feedback-based controller for DERs is 

presented in [6] to pursue a given objective. To provide auxiliary 

services, a primal-dual-based algorithm is proposed in [10] to re-

alize a virtual power plant. Zhou et al. [11] present an incen-

tive-enabled online optimization framework.  

For online ADN optimization, the aforementioned algorithms 

cannot well integrate the energy storage devices with 

time-coupling dynamics. For instance, the inverter air conditioning 

(IAC) is thermal storage devices whose power setpoints can be 

adjusted continuously to provide control flexibility to the ADN 

[12]. The main barrier for integrating IACs is that they feature 

constraints of the states of temperatures, coupling their power set-

points within the entire operating period. OCO refs. [10] and [11] 

avoid DERs with the time-coupling constraints to advocate a fast 

online controller. Li et al. [13] propose an online algorithm for the 

optimization problems considering switching costs but only fo-

cuses on the temporal coupling between two successive time slots 

without considering the whole time span. Model predictive control 

(MPC) is leveraged to coordinate networked battery energy stor-

ages [14]. The predictive-based approach is also tailored in an 

OCO framework in [15]. However, MPC-based framework can 

only employ a limited number of time windows ahead to avoid 

prohibitively high computational complexity with larger predictive 

window sizes. Some researchers leverage stochastic gradi-

ent-based methods to transfer these time-coupling constraints [2], 

[16]. However, [2] is designed in a centralized manner while [16] 

only considers coordinating batteries at the transmission level. 

Furthermore, they are not formulated in an OCO framework. 

This paper investigates a Lyapunov optimization-based online 

distributed (LOOD) algorithmic scheme to achieve an incen-

tive-based DER coordination. In the proposed algorithm, the net-

worked customer-owned DERs are coordinated to provide the 
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active power tracking service at the substation, while simultane-

ously minimizing the utility loss and maintain node voltages 

within an acceptable range. Compared with most existing ADN 

online optimization works, the main innovations of our developed 

method are summarized as follows: 

(1) The proposed method can integrate numerous DERs with 

time-coupling constraints and tailor their distinct attributes to the 

OCO framework. Unlike the greedy decoupling methods and 

MPC-based scheme, the time-coupling constraints are decoupled 

from a long-term vision to each time slot in LOOD. It provides the 

most cost-efficient result since the whole time period is sighted, 

while also advocates the real-time deployment due to the existence 

of the closed-form solution for the IAC.   

(2) We design a proper incentive scheme to coordinate DERs in 

lieu of direct controlling. A first-order filter is applied in the incen-

tive generator to alleviate potential fluctuations of the incentives 

and corresponding responses to smoothen the control and conver-

gence process. 

(3) We conduct a rigorous mathematical analysis to demon-

strate the impact on the optimality and convergence of our algo-

rithm caused by the step size, weight coefficients, and initializa-

tion of virtual queues. In particular, the relaxation for the 

time-coupling constraints is proved to cause no violation in our 

setting. 

The remainder of this paper is organized as follows. Section II 

formulates a mathematical model to coordinate networked DERs. 

In Section III, LOOD is proposed. The performance analysis is 

analytically characterized in Section IV. Case studies and bench-

marks are described in Section V. Concluding remarks are sum-

marized in Section VI.  

Notations:  

We denote the L2-norm of a vector as .  denotes a 

projection operator onto set .    

Definitions:  

1). We define the time-average value  of a variable  as its 

mean over the whole time period, such that  . 

2). A function  is l-Lipschitz continuous on  if 

there is a constant  such that 

   (1) 

3). A function  is -strongly convex if for all  and  in 

the feasible set and some constant , we have 

   (2) 

4). A function  is strongly concave if  is strongly con-

vex.  

II. SYSTEM MODELS 

Consider a distribution network with high penetration of DERs. 

All the control actions are performed in a discrete-time manner 

with a time interval . The time slots are indexed by t in 

. Let  collect all the nodes in the 

network excluding the substation which is denoted by node 0. The 

sets of nodes connected with PV inverters and IACs are denoted 

by and , respectively. In this paper, each node 

 in the distribution system is regarded as a customer.  

A. Node Models 

Two representative types of DERs, i.e., the PV inverter and 

IAC, are modeled through defining their feasible sets and utility 

loss functions. 

1) PV Inverter Model 

The PV is connected to the network through an inverter. Let 

 be the maximal available active power output of PV i at 

time slot t and  be the rated apparent capacity of inverter i. 

The active power output  and reactive power output  

belong to a feasible set  given by: 

   (3) 

If , we have  and  for .  

A quadratic function with coefficient  is designed to penalize 

the active power curtailment of PV. As injecting reactive power is 

not economic for customers, we also penalize the reactive power 

generation/absorbing as a quadratic function with a coefficient  

as follows: 

  (4) 

2) IAC Model 

Unlike the conventional fixed speed ACs, power consumptions 

of IACs can be continuously adjusted by regulating the operating 

frequency of the compressors. Compared with fixed speed air 

conditioners, IACs are more flexible and widespread. We consider 

various IACs may connect to one node, and each IAC is installed 

in an independent room. So, we index the IACs connected to node 

 as , where the cardinality  repre-

sents the number of connected IACs at i. Note that as the operat-

ing power is a linear function of its frequency [12], the operating 

power  of IAC  at time slot t is regarded as the optimi-

zation decision variable. The operating power  is confined in a 

box set . We further define . 

Then with the lower and upper bound vectors and  the 

feasible set for IACs is formulated as the following compact form: 

   (5) 

We consider IAC working in the cool mode. The IAC features 

the indoor temperature  following a given dynamic, which can 

be depicted by the simplified equivalent thermal parameters (ETP) 

model [12]. Let  denote the equivalent thermal capacity 

( ),  be the equivalent thermal resistance ( ), and 

 be the cooling rate (W) of the IAC. Since only one IAC is 

installed in an independent room, the indoor temperature evolves 

as follows: 

(6)

where   is a constant,   is the ambient tem-

perature at time slot t. The cooling rate can be modeled as the 

following linear function of the operating power [12]: 

   (7) 

where  and  are constant coefficients for a given IAC a.  

For further discussion, the ETP model can be equivalently for-

mulated as: 

   (8) 

where  and denote the temperature increase part and de-

crease part from time slot t to t+1, respectively. The increase part 
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is caused by the ambient heat radiation, which can be estimated at 

each time slot. The decrease part is a function of the operating 

power  to be optimized. 

To satisfy the temperature requirements, is restricted by: 

   (9) 

where  and  are the lower and upper temperature limits. 

Note that constraints (9) are temporarily coupled. Therefore, mak-

ing decisions at time slot t will impact the future temperatures and 

decisions. To cope with the time-coupling constraints, we will 

tailor the Lyapunov optimization approach to an online adaptation 

in Section III. 

To better control temperature, we define a utility loss function 

of all IAC of node i at time t as a quadratic function penalizing the 

deviation of the actual temperature from the setpoint: 

   (10) 

where  is a positive cost coefficient and  is the tempera-

ture setpoint defined as the median value of and .  

Here we focus on cool mode of the IAC. Nevertheless, heat 

mode can be modeled similarly and is omitted here.  

3) Aggregate Model for Nodes 

Let  collect all the decision variables 

at node . We can present the feasible set of  as: 

   (11) 

Note that only comprises some simple constraints excluding 

the time-coupling temperature constraints. 

Then, we define the total utility loss of the customer i as the 

accumulation of that of each DER: 

   (12) 

B. Network Model 

For each node in the ADN, the aggregate active power injection 

 and reactive power injection  can be calculated by: 

   (13a) 

   (13b) 

with  and  being the active and reactive power consump-

tion of the inelastic loads of node i, respectively, which are pre-

sumed to be accurately predictable in real-time operations. For 

notational simplicity, we collect all the node active and reactive 

power by vector  and , respectively. Let  denote the volt-

age magnitude of node i at time t, and collect the voltage magni-

tudes of all nodes at time t by a vector . The 

active power at the substation at time slot t is denoted by .  

To develop a computationally affordable controller to advocate 

the online implementation, power flow linearization is leveraged 

to model the AC power flow equations, given by: 

   (14a) 

   (14b) 

where , , , , , 

and  can be obtained by numerous linearization methods 

with high accuracy, such as approaches in [8] -- [10]. To cope with 

the inaccuracy caused by the approximation, the real-time meas-

urements of voltage and active power at the substation, denoted by 

and , respectively, are leveraged as feedback to reduce 

modeling errors, as will be shown later.  

C. Problem Formulation  

The optimization problem can be formulated as a time-average 

utility loss minimizing problem  as follows: 

   (15a) 

   (15b) 

   (15c) 

   (15d) 

   (15e) 

   (15f) 

where the objective function is the time-average value of with 

being the expectation of the summarized utility 

losses of all customers at time slot t. We define a set 

collecting all random varia-

bles in (15). In practice, even though can be accurately esti-

mated or obtained in real time, its realization is unknown in the  

since  is formulated and solved from a long-term view. Thus, 

the expectation  is taken over the vector  for . Constraint 

(15b) confines the voltage to an acceptable range. Constraint (15c) 

tracks the power setpoint reference at the substation  given 

by the transmission-level operator in real time with a permitted 

tracking error .  is a binary indicator to switch on the 

tracking service when it is required. 

III. LOOD ALGORITHM 

A. Virtual Queue-Based Reformulation 

The online implementation requires solving  at each time slot. 

To decouple the time-coupling constraints from a long-term time 

horizon, the technique of virtual queues (see e.g., [2], [17]) is lev-

eraged to reformulate . 

1) Virtual Queue Definition 

By summarizing (8) over time from 1 to T and taking the ex-

pectation of each term, we get: 

   (16) 

Divide both sides of (16) by T and take  to get:  

   (17) 

as and  are both bounded by .  

Remark 1: Constraint Eq. (17) is a relaxed version of (15e). If we 

replace Eq. (15e) in   by (17) and denote the pertinent optimizer 

as , we must have .  

To address the relaxed temperature constraints in (17), we can 

define a virtual queue  for  and  as: 

   (18) 

The arrival rate of the queue is the injected temperature while the 

departure rate is the cooling temperature at time slot t.  Following 

the rate stability theorem [17], we place (17) with: 

   (19) 

In most existing researches such as [2], the initial value of the vir-

tual queue  is set to zero because it handles the 

time-averaging constraints without any relaxation. Differently, the 

original constraints must be satisfied at each time slot in . To 

avoid the violations of constraints due to the relaxation, a hot start 

approach of the virtual queues will be illustrated in the Section 
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III-C. 

2) Lyapunov Optimization 

The constraint (19) still hinders the online deployment as it is 

coupled over a long-term time span. Consequently, the Lyapunov 

optimization presented in [17] is leveraged to transfer them to a 

penalty term attached to the objective function at each time slot 

based on the observation of the current states. 

Let collect all the virtual queues defined for 

of node i. Then, we define a Lyapunov function 

 to measure the size of the queues: 

   (20) 

Then, the conditional one-slot Lyapunov drift can be defined as 

follows to measure the expected queue size growth under observa-

tion of current state : 

   (21) 

To satisfy constraints (19), we minimize the Lyapunov drift to 

push the queues toward a less congested sate. Following the mini-

mizing drift-plus-penalty method in [17], we minimize the 

weighted sum of the drift and cost at each time slot to obtain  

as follows: 

   (22) 

where V is a positive coefficient to achieve a tradeoff between the 

stability of queues and original costs.  

Lemma 1: The drift-plus-penalty function is upper bounded at 

each time slot t by: 

 (23) 

where 

   (24a) 

   (24b) 

with  and .  

Proof: See Appendix A. 

Based on Lemma 1, instead of optimizing the drift-plus-penalty 

function, we will minimize its upper bound alternatively. Follow-

ing the theorem on opportunistically minimizing an expectation in 

[17] (c.f. 1.8 in [17]), the policy for the optimization is to observe 

the current state  and then select the minimizer of 

.  

In practice, can be interpreted as an ad-

ditional utility loss function of the aggregated IACs that carries 

more temporal knowledge than (10). Hence, we reformulate the 

utility loss function of each node as: 

   (25) 

Assumption 1: The utility loss function  is -strongly convex 

and - Lipschitz continuous for . 

Hereafter, the long-term optimization problem  comprising 

the time-coupling constraints can be reformulated as a simple re-

al-time problem to be executed at each time slot without reliance 

on high-complex solvers. The new problem  is given by:	

   (26a) 

   (26b) 

   (26c) 

   (26d) 

   (26e) 

   (26f) 

where the update of virtual queues  follows Eq. (18). 

Let and  col-

lect dual variables associated with constraints (26b) and (26c), 

respectively, while  and  be dual variables for constraint 

(26d) and (26e), respectively. Note that all the dual variables are 

non-negative. For notational simplicity, we denote the objective 

function of  by  and the functional con-

straints (26b) -- (26e) by a compact stacked form, with 

being all the decision variables. Due to the strong 

convexity of , the next result follows naturally. 

Lemma 2: The objective function is -strongly convex.  

Further, because  is a set of linear constraints, the Jaco-

bian of  is bounded by a positive constant  over the fea-

sible set of , such that . Notice that  can be 

characterized according the parameter matrices R, X, M, and N. 

Theorem 1: The difference between time-average value of  

denoted as , and the optimizer of , i.e., is bounded, such 

that .  

Proof: See Appendix B. 

Remark 2:	  provides a time decouple reformulation within 

 of the optimal results of original  together with  

tradeoff in the time-coupling constraints. A large V can decrease 

the optimality gap but also bring about constraint’s violation. In 

Section III-C, the upper limit for V that ensures the constraints is 

demonstrated. 

B. Online Distributed Dual Ascent Algorithm 

To design an online distributed solver for , we consider its 

regularized Lagrangian function defined as follows: 

  (27) 

where collects all the dual varia-

bles, and is a regularization term to ensure the concavity 

of the dual function with a predefined parameter . Such reg-

ulation is widely used in OCO, such as [9]--[11]. The bounded gap 

between the saddle point of the regularized Lagrangian function 

and the original one can be found in [19]. 

We next propose a dual ascent algorithm to find the saddle 

point of (27). To that end, consider the following dual problem: 

   (28) 

where is the dual function calculated from: 

  (29) 

Assumption 2:  is strictly feasible for , i.e., it satisfies the 

Slater’s condition. 

The strong duality of  holds based on Assumption 2 [20]. 

Thus, if is the solver to (28), is the 

optimal solution to . 

We continue to investigate how to solve the problem in a dis-

tributed manner based on incentives. Given the optimal dual vari-
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ables, the primal problem is ready to be divided and equivalently 

solved through N subproblems. Particularly, each subproblem 

only requires the local information and a couple of coordination 

signals composed of the dual variables. The local subproblem 

denoted as  for  and :  

   (30a) 

   (30b) 

In ,  and  are the coordination signals with the vector 

forms being  and , respectively. By [11], [15], we design 

the signals as follows: 

   (31a) 

  (31b) 

Note that according to Theorem 2 in [11], the design of the coor-

dination signals ensures an exact distributed reformulation, i.e., the 

optimal solutions of N subproblems coincide with the central-

ized optimization results of .  

In practice, the coordination signal and play roles as the 

monetary incentive for the active and reactive power for , re-

spectively. The incentive signals comprise two components. The 

first term is the price for voltage regulation to ensure an acceptable 

range. The second term is used to induce customers to regulate the 

DERs for a power tracking service.  

We further define  to compactly denote 

Eq.(31a) and Eq.(31b). From the structure of , we have the 

following results.  

Remark 3： is - Lipschitz continuous. 

Assumption 3: The optimal dual variables between two succes-

sive time slots are bounded by a positive constant , such that 

.  

This assumption is standard in the domain of OCO, such as [15]. 

3) Online Algorithm 

According to our setting,  is required to be online imple-

mented. Concurrently, to reduce the fluctuations of incentives, a 

first-order filter is also applied in this algorithm. To recap, the 

proposed LOOD algorithm is illustrated as: 

LOOD Algorithm 

Initialization:  

Customers choose an initial value for virtual queue  

according to the hot start policy range. See (35a) and (35b). 

ADN operator sets initial dual variables ; sets 

and . (See (35c) and Theorem 2). 

for t = 0, 1, 2, …, T 

[P1] ADN operator sends to each customer. 

[P2] Customer receives and solves  locally. 

[P3] ADN operator measures the node voltage and active 

power at the substation, i.e., and , respectively. 

[P4] ADN operator updates dual variables according to 

(32a)--(32d). 

[P5] ADN operator updates  based on (32e)

--(32h). 

end for 

   (32a) 

   (32b) 

   (32c) 

   (32d) 

   (32e) 

   (32f) 

   (32g) 

   (32h) 

In our algorithm, [P1] and [P3] to [P5] are processed by the 

ADN operator based on measurements and the received setpoint 

reference from transmission-level operators. [P2] is solved by 

customers locally depending on the private information and the 

incentives. It is hard to get the optimal incentives in (31) in a time 

varying conditions since the optimal dual variables can be re-

vealed only after various iterations between the ADN operator and 

customers. However, the environments and customers’ responses 

have changed during the multiple rounds’ bargains. Alternatively, 

based on the OCO framework, we update the incentives only re-

lying on current measurements and conditions. Convergence and 

optimality gaps of this online algorithm will be characterized ana-

lytically in Section IV. 

In this algorithm, the actual incentive signal is tuned by a 

first-order filter, as shown in (32g) and (32h). The motivation of 

this filter is to smooth the incentive signal. In practice, fast fluctua-

tions of the monetary incentive are not user-friendly. More im-

portantly, the fluctuations of incentive signals will be reflected in 

the node power and voltage finally. As the violations are essential 

to power systems’ stability, we smoothen the incentive signals to 

reduce the violation of node power and voltage accordingly. We 

also characterize the discrepancy on the solver of the optimization 

problems after filtering the incentive signals.  

Note that we leverage measurements feedback to cope with the 

accurate AC power flow in the update of dual variables with the 

following assumption to bound the discrepancy between the line-

arization power flow model and the actual measurements. 

Assumption 4: There exists a positive constant e such that: 

   (33) 

C. Solving Local Problems 

In the LOOD algorithm, customers need to solve  locally. 

According to the form of , it is a standard quadratic problem 

that can be solved efficiently. Although there may be hundreds or 

thousands of IACs connecting to one node, they operate inde-

pendently. We can get a closed-form solver for each IAC at time 

slot t as follows: 

 (34) 

where  is a time-invariant constant.  

Lemma 3: The relaxation of the original time-coupled constraints 

in (15e) will not bring about violations if the initialization of the 

virtual queue, denoted by  and weight coefficient V are chosen 

from  and  , respectively.  

The boundaries of  and V are given by: 
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 (35a) 

  (35b) 

   (35c) 

where  and  for all . We 

assume  and can be estimated based on the history data.   

The proof of Lemma 3 is that if , a 

solver  that makes sure  will be obtained based 

on (34). Similarly, if , we will have 

. To recap, the generated solver for the IAC will 

cool the room if the indoor temperature is going to exceed the 

upper limit, while stop cooling the room if the indoor temperature 

outrides the lower limit.  

Remark 4: We only need to estimate the upper and lower limits 

of . Thus, the accuracy requirements are relatively low. In prac-

tice, the ADN operator can also confine the incentive in a prede-

fined range beforehand like many current demand response pro-

grams, which better advocate the estimation.  

IV. PERFORMANCE ANALYSIS 

In this section we analytically characterize the performance of 

the LOOD method. We first introduce the following useful lem-

mas. 

Lemma 4: Under Assumption 1, the inverse function of  

denoted by exists and is -Lipschitz continuous.  

Proof: See Appendix C. 

Lemma 5: The dual function, i.e., , has an  -Lipschitz 

continuous gradient, where  , based on Lem-

ma 2 and the bounded Jacobian of . Furthermore, is 

-strongly concave where .  

The proof can be found in Lemma 2 of [15]. 

Theorem 2: (Convergence of dual variables) If the step size in 

LOOD is chosen according to   , the dis-

crepancy between optimal dual variables of  and the dual varia-

bles generated by LOOD are bounded by: 

   (36) 

where  and . 

Proof: See Appendix D. 

Corollary 1: (Convergence of the incentives) To characterize the 

convergence of the incentives, we first collect  the incentives at 

each node by  with a vector form compactly de-

noting the incentives for all the nodes  . Then, the discrep-

ancy between optimal incentives generated by (31) and the 

online created ones  in LOOD is bounded by: 

   (37) 

Proof: See Appendix E. 

Corollary 2: (Convergence of the primal variables) The discrep-

ancy between optimal solvers of  and the solvers generated by 

LOOD are bounded by: 

   (38) 

where  .  

Proof: See Appendix F. 

Theorem 3: (Main results) If LOOD is used to solve the original 

ADN optimization problem , the difference between the 

LOOD-based time-average optimizer, denoted as , and the 

original optimizer  is upper bounded as : 

   (39) 

where . 

Proof: See Appendix G. 

V.  CASE STUDY 

A. Simulation Setup 

Consider a modified version of 33-node test feeder [21]. We run 

our method from 8:00 to 19:00, while it is divided into 660 time 

slots, i.e., . It is assumed that PV systems with a 

500kVA rating inverter are located at node 2, 3, 10, 12, 16, and 18. 

The PV systems with a 750 kVA rating inverter are connected to 

node 5, 6, 7, 8, 9, 20, 24, 26, 29, 30, and 32. The available active 

power generation profiles of these PV are obtained from Pe-

canstreet [22]. We set  and in the utility loss func-

tions for . The inelastic load profile comes from Open Energy 

Information [23]. All the data are pretreated to have a guaranty of 

1 min sampling rate. As for the IACs, we assume that nodes 2, 9, 

10, 12, 14, 15, and 30 are connected by 300 IACs, while nodes 3, 

6, 7, 17, 21, 25, 28, 31 and 32 are installed with 500 IACs. The 

maximal operating power of IAC is selected in the range of [500, 

800]W. The minimal power is set as 10% of the maximal power. 

The equivalent thermal capacity of the environment is selected in 

the range of [2000, 3000] , The equivalent heat rate is se-

lected in a range of [0.05, 0.08] . The ambient temperature 

is simulated by a function [24], given by: 

   (40) 

where  and . The temperature setpoint 

is set as  with a bandwidth  for all the 

IACs. Without loss of generality, we set ,  and 

 for all the IACs. As for our algorithm, we set the step 

size to 0.1. Some predefine parameters are set as ,  

, , and . 

B. Benchmarks 

We use four different strategies to compare with the proposed 

method. Strategy 1 (S1) operates the ADN without any control. 

PV systems maintain the maximal active power output and IACs 

operate based on the gap between the current indoor temperature 

and the temperature setpoint to maintain a comfortable indoor 

temperature, given by: 

   (41) 

where is the droop coefficient and  is the base operating 

power of a given IAC. 

Strategy 2 (S2) operates the ADN based on a modified droop 

control scheme. In S2, PV inverters use a linear Q-V droop control 

scheme to decide their VAR outputs with a slope coefficient kdroop. 

Note that kdroop may significantly impact the voltage regulation 

performance. To strictly testify our proposed method, kdroop is 

manually adjusted to well perform in this case study. When there is 

no tracking requirement at the substation, i.e, , PV invert-

ers keep the maximal power outputs in their feasible regions and 

IACs operate according to (41). In the presence of power tracking 
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requirements, i.e., , the active power at each node con-

nected with PV inverters or IACs is regulated with a predefined 

droop coefficient : 

   (42) 

In practice, a proper  is crucial to the performance of power 

tracking. However, it is rarely practical to get an optimal . Mul-

tiple values of will be deployed in the following case studies for 

a clear comparison. 

Strategy 3 (S3) is based on the greedy optimization, as shown in 

(43). The main discrepancy between S3 and our proposed method 

is that we consider the temperature constraints for IACs in a 

long-term form. However, S3 directly decouples  to T sub-

problems. The greedy algorithm is shortsighted as it optimizes the 

cost at each time slot without considering the future. To compare 

with our proposed method, the greedy optimization model is run 

in an online distributed form.  

   (43) 

Strategy 4 (S4) runs the online distributed optimization without 

considering IACs. Alternatively, IACs operate according their 

own policy, i.e., (41). This benchmark is used to verify the per-

formance of integrating IACs into the ADN coordination. 

C. Results 

First of all, we test the node voltage under the control of S1, S2, 

and the proposed LOOD method. We illustrate the voltage mag-

nitude at node 10, 12, and 15 in Fig. 1. Following S1, voltage 

magnitudes between 10:00 -- 16:00 exceed the upper limit due to 

lacking any control. S2 is effective for maintaining voltage securi-

ty to some extent, but one oscillation of voltage occurs at 12:00. In 

practice, kdroop and  both impact the performance of S2. We set 

 in this test since it performs relatively better than any 

other settings. Too large coefficients could bring about oscillations 

and even overshoots, while too small ones cannot effectively and 

quickly regulate both the voltage and power. To get an optimal 

coefficient usually calls for the global and detailed information of 

these customer-owned devices. In contrast, the proposed LOOD 

method outperforms both S1 and S2 as the voltage magnitudes 

maintain in an acceptable and relatively smooth region. Notably, 

the flat voltage profiles near to the upper limit are obtained before 

the tracking requirements come (before 12:00) since it is econom-

ically efficient. In the presence of tracking requirements (after 

12:00), the curtailment of PV occurs to support the tracking per-

formance. It can be seen that the voltages decrease accordingly.  

 
Fig. 1.   Node voltage magnitude.  

Fig. 2 shows the active power at the substation. To test the 

power tracking ability of these strategies, a setpoint reference from 

12:00 to 19:00 is applied, including a sudden increasing (12:00 -- 

13:00), fast ramping up or down (13:00 -- 18:00) and keeping flat 

output (12:00 -- 13:00, 18:00 -- 19:00). When there is no tracking 

requirement (8:00 -- 12:00), the power using the LOOD method is 

larger than that using the S2. This is because LOOD can consider 

the whole-time span and raise the power in advance to better track 

the sudden change at 12:00. From 12:00 to 19:00, LOOD can 

guarantee an effective power tracking except for a disturbance that 

is caused by the sudden change of available PV outputs. In prac-

tice, it is hard to reveal this disturbance beforehand, and the sud-

den change will not cause a huge impact to the whole system. 

Conversely, the tracking ability of S2 depends on a proper . As 

illustrated in Fig. 2, when , the tracking performs well. 

However, undershoot (  ), oscillation (  ), and 

overshoot (  ) occur if  is not well set. 

 
Fig. 2.  Active power at the substation. 

As for minimizing the utility loss, we compare the performanc-

es of LOOD, S2 and S3, as shown in Fig. 3. Intuitively, S2 brings 

about the largest utility loss. Although the utility loss gets smaller 

when , the undershoot will occur. S3 is a variant of our 

method, thus it also well assures the voltage constraints and power 

tracking requirement. However, the utility loss caused by S3 is 

obviously larger than the time-average utility loss caused by 

LOOD. Actually, although S3 takes into account the flexibility of 

IAC, the greedy optimization is shortsighted and potential to em-

ploy the flexibility of IACs excessively. When the tracking signal 

keeps for a long time, IACs cannot respond to it sustainably. 

 
Fig. 3.   Time-average utility loss. 

S4 is another variant of LOOD, where IACs are not coordinated 

but operate according their own local controllers. As illustrated in 

Fig. 4, LOOD can reduce the curtailment and reactive power ab-

sorbing of PV inverters obviously than S4. In LOOD, numerous 

IACs are well coordinated with PV inverters, while all the regula-

tion relies on PV inverters in S4. If we increase the comfortable 

temperature bandwidth ( ) and IACs can get more flexibility 

accordingly, the performance of LOOD can be enhanced. Note 

that residents cannot accept too large temperature bandwidths, so 

we need to control the tradeoff in the practical deployment. 

 
Fig. 4.  Curtailment and reactive power generation of PV inverters. 

Fig. 5 shows the dynamics of indoor temperature at node 2 (300 
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IACs) and node 32 (500 IACs). Although the temperature con-

straints are relaxed to a time-average form, it can obey the original 

strict temperature constraints as we set the coefficients  and  

 according to the demonstrated ranges, i.e., (35). Intuitively, 

the temperature dynamics match the regulation requirements. For 

instance, IACs will raise the operating power to cool the rooms 

from 12:00~14:00, where the setpoint reference at substation re-

quires the ADN to increase the actual power consumption. 

 
Fig. 5.  Indoor temperature at Node 2 and Node 32. 

Finally, we discuss the power fluctuation at the substation under 

different . We define: 

   (44) 

to quantify the so-termed power fluctuation from time slot  to . 

We divide the day into 7 fragments according to the power track-

ing signals. As shown in Table I,  is obviously smaller 

when  than  because incentive signals are 

smoothed by a filter and the DERs will not respond to the signals 

too drastically. When we increase to 0.2 and 0.4, continues to 

decrease since the enhanced filtering performances. Nevertheless, 

Corollary 2 has illustrated that will bring a fix discrepancy be-

tween actual solvers and optimal solvers. Thus, a relatively small 

can not only help smooth the power at the substation and also 

ensure the economic efficiency of the algorithm. 
TABLE I 

POWER FLUCTUATION ( ) AT SUBSTATION 

 8~12 12~13 13~14 14~15 15~16 16~18 18~19 

  0.073 0.396 0.438 0.285 16.047 0.166 0.072 

 0.069 0.148 0.405 0.245 13.825 0.068 0.036 

 0.063 0.105 0.366 0.227 12.215 0.062 0.035 

 0.058 0.102 0.319 0.113 11.151 0.060 0.019 

VI. CONCLUSION 

This paper proposes an online distributed optimization algo-

rithmic framework for ADNs to track a setpoint reference at the 

substation while concurrently minimizing the utility loss and as-

suring the security of voltages. Unlike most existing optimization 

methods for ADNs, the proposed LOOD algorithm can generate 

the setpoints for PV inverters and IACs immediately only relying 

on current measurements and environment conditions. Notably, 

the time-coupling constraints for IACs are considered and tackled 

in an online optimization framework by the Lyapunov optimiza-

tion technique. Moreover, an incentive scheme is tailored in the 

proposed method to coordinate customer-owned DERs instead of 

dispatching them directly from ADN operators. Our incentive 

generator also considers a first-order filter to alleviate high fluctu-

ations of incentives and corresponding responses. The theoretical 

analysis demonstrates the bounded gap between the optimizer 

from the proposed algorithm and the ideal global optimizer. Nu-

merical results show the tracking ability, voltage control perfor-

mance, and utility loss in our algorithm outperform those in 

benchmarks.  

In this work, the ADNs are assumed to be three-phase balances. 

Thus, future work will extend our algorithm to a three-phase un-

balanced case. Besides, the parameters of IACs model are pre-

sumed to be estimated beforehand and time-invariant in the opera-

tion. An online modeling-embedded optimization framework for 

networked DERs will be further studied. 
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APPENDIX A 

PROOF OF LEMMA 1 

Proof: According to the definition of the virtual queue and 

Lyapunov drift function, we have: 

  (45) 

Then, we define . Thus, 

we can get Lemma 1. 

APPENDIX B 

PROOF OF THEOREM 1 

With Lemma 1 and theorem 4.8 in [17], we derive 

 if all the random variables in  are inde-

pendent identically distributed (i.i.d.). The result is robust to 

non-i.i.d., nonergodic situations as proved in theorem 4.13 in [17]. 

Concurrently, we have   as illustrated in Remark 1. Thus, 

we can obtain . 

APPENDIX C 

PROOF OF LEMMA 4 

First of all, we recall the definition of the utility loss function  

. The gradient function of  is denoted by 

. Then, we denote the inverse function of 

 by .    

Assume  and are defined in the feasible set of the function 

. Let  and , we have 

  and , where is 

the inverse function of  .  Since  is -strongly convex 

(see Assumption 1), we have: 

   (46) 

By substituting  and  into (46), we will get: 

   (47) 

Following  the Cauchy-Schwartz inequality, (47) is transferred to: 

   (48)

Thus,  is - Lipschitz continuous. 

APPENDIX D 

PROOF OF THEOREM 2  

Before proving the (36), we have the following reasoning: 

  (49) 

 
where  is the measurement-enabled gradient 

that is used in LOOD. The equality (a) comes from the dual varia-

bles update policy; (b) is due to the non-expansiveness property of 

the projection operator; (c) considers Assumption 4. For inequality 

(d), We consider the fact that:  

   (50) 

Eq. (50) holds because  is -strongly concave and its gra-

dient function is - Lipschitz continuous (see  Lemma 5). The 

proof of Eq. (50) can be referred to Theorem 2.1.12 in [20]. 

Then, if holds, the last term of (49) must 

be non-positive. So, we can obtain： 

   (51) 

where . It is readily to obtain that: 

   (52) 

Then, we have: 

   (53) 

In (53), the inequality (a) comes from the dual variables update 

policy in LOOD and the triangle inequality; (b) is based on (51)

and Assumption 3; (c) is resulted from using triangle inequality 

repeatedly. According to (53) the first term of the reasoning result, 

denoted by , is transient that will vanish to be 0 when 

due to the fact that (as shown in Theorem 2). 

The second term denoted by  is fixed. 
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APPENDIX E 

PROOF OF COROLLARY 1 

  (54) 

The inequality (a) uses triangle inequality; (b) is according to 

Lipschitz continuity of the function  (see Remark 3) and The-

orem 2; (c) comes from Assumption 3 and Theorem 2. Similar to 

arguments in Theorem 2, the resultant two terms comprise a tran-

sient term that vanishes when . Thus, we obtain the result 

in (37). 

APPENDIX F 

PROOF OF COROLLARY 2 

Proof: 

Before the proof of this corollary, we rewrite the incentive vec-

tor at node i  i.e., as . 

Then, we have:  

 

 (55) 

In (55), the equality (a) is according to the optimal condition of 

the local problem ; (b) comes from triangle inequality and (c) 

considers Lemma 4; (e) uses the results Corollary 1. The resultant 

two terms also comprise a transient term that will vanish when 

.  

APPENDIX G 

PROOF OF THEOREM 3 

Proof: 

First of all, we can characterize the difference between the two 

optimizers generated by LOOD and  at each time slot: 

   (56) 

Thus, 
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where the equality (a) is based on the definition of time-average of 

a variable; inequality (b) and (c) come from Eq. (56) and Corollary 

2, respectively. Then, due to  Theorem 1 that , we 

have 
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