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Abstract: State of charge (SOC) estimation is the core of any battery management system.
Most closed-loop SOC estimation algorithms are based on the equivalent circuit model with fixed
parameters. However, the parameters of the equivalent circuit model will change as temperature
or SOC changes, resulting in reduced SOC estimation accuracy. In this paper, two SOC estimation
algorithms with online parameter identification are proposed to solve this problem based on
forgetting factor recursive least squares (FFRLS) and nonlinear Kalman filter. The parameters
of a Thevenin model are constantly updated by FFRLS. The nonlinear Kalman filter is used to
perform the recursive operation to estimate SOC. Experiments in variable temperature environments
verify the effectiveness of the proposed algorithms. A combination of four driving cycles is loaded
on lithium-ion batteries to test the adaptability of the approaches to different working conditions.
Under certain conditions, the average error of the SOC estimation dropped from 5.6% to 1.1% after
adding the online parameters identification, showing that the estimation accuracy of proposed
algorithms is greatly improved. Besides, simulated measurement noise is added to the test data to
prove the robustness of the algorithms.

Keywords: forgetting factor recursive least squares; nonlinear Kalman filter; state of charge
estimation; online parameter identification; lithium-ion battery; variable temperature

1. Introduction

Due to environmental pollution and the energy crisis, electric vehicles are being increasingly
and widely used throughout the world [1]. The battery management system (BMS) is one of the
most important components of an electric car. The functions of the BMS include state of charge
(SOC) estimation, state of health (SOH) estimation, battery equalization control, thermal control, etc.
Among them, SOC estimation, which indicates how much capacity the battery can provide, is the core
function of BMS, but also the basis of other functions [2].

For electric vehicles, SOC represents the distance the car can travel. SOC cannot be measured
directly, and can only be estimated indirectly from some of the physical quantities that can be measured.
These physical quantities include voltage, current, temperature and so on. Due to the working
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characteristics of electric vehicles, SOC estimation accuracy is limited by the sensor accuracy and
real-time requirements of the BMS.

The SOC estimation methods can be roughly divided into model-based and non-model-based
approaches [3]. Generally, model-based approaches usually have higher estimation accuracy than
non-model-based approaches, but they also require a greater amount of computation. In practice, the
model-based approaches are applied more [4]. When a BMS starts working, battery modeling needs
to be implemented first. Common battery models include the electrochemical model and equivalent
circuit model. The equivalent circuit model can accurately simulate the dynamic characteristics of
the battery. Parameter identification is based on the measured data, such as voltage, current and
temperature, to obtain the parameters of the equivalent circuit model. The parameters of the equivalent
circuit model can not only describe the characteristics of the battery, but also are the basis of SOC
estimation. Considering the variation of parameters in the equivalent circuit model, online parameters
identification is necessary to be considered in the design of a BMS.

1.1. Review of the SOC Estimation Approaches

A variety of algorithms have been proposed for SOC estimation in recent years [5,6].
The ampere-hour integral method [7] is based on the definition of capacity. The accuracy depends
primarily on the accuracy of the current measurement. The open-circuit voltage method [8] is used
to estimate SOC based on the relationship between open circuit voltage and SOC. The open-circuit
voltage is difficult to measure in actual conditions. The above two methods do not need a battery
model. As the most common methods of SOC estimation, they are often used in combination.

According to the equivalent circuit model, the working process of the battery can be expressed in
the form of discrete equations. Based on the equivalent circuit model, a variety of nonlinear observers
can be used for SOC estimation, such as the extended Kalman filter (EKF) [9–11], unscented Kalman filter
(UKF) [12,13], cubature Kalman filter (CKF) [14], sliding mode observer (SMO) [15,16], H∞ filter [17,18],
particle filter [19] and so on. Considering that the Kalman filter can handle the measured data with the
noise, which is appropriate to the actual demand of electric vehicles, many other algorithms based on
Kalman filters have been proposed to achieve good results of SOC estimation [20–23]. Other algorithms
also apply to SOC estimation [24–28].

As the parameters of the equivalent circuit model will change during the operation of the battery,
the accuracy of the above methods will be gradually reduced in a variable temperature environment
or after working for a long time. Several algorithms with online parameter identification are proposed
to accommodate temperature changes or long-term conditions. Guo et al. proposed an estimation
method based on Least Squares Method and Kalman Filter Algorithm [29]. A multiple adaptive
forgetting factors recursive least-squares method is used to capture the real-time parameters accurately
by Duong et al. [30]. The estimation technique proposed by Chaoui and Gualous can be used for
parameters identification under temperature effects whose stability is guaranteed by Lyapunov’s
direct method [31]. Li used a UKF for SOC estimation. Parameter estimation is achieved by the
recursive least squares method with fuzzy adaptive forgetting factor [32]. The least squares method
was also studied by Liu for parameter identification, which is combined with the extended fractional
Kalman filter for SOC estimation [33]. In the study of Feng, the recursive extended least squares
(RELS) algorithm is applied to the online parameters identification of the equivalent circuit model [34].
Wei et al. proposed a novel multi-timescale estimator to achieve parameters identification and SOC
estimation [35]. Genetic algorithms (GA) can also be used for parameter identification of battery
equivalent circuit models which is proposed by Chen [36]. These works take into account the changes
of the equivalent circuit model (ECM) parameters, but do not propose a simple enough algorithm to
combine the online parameters identification and SOC estimation. For the actual application of BMS in
electric vehicles, it is necessary to propose a more suitable algorithm for the temperature changes or
long hours of work.
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1.2. Contribution of the Paper

In this article, two joint algorithms with online parameters identification are proposed for SOC
estimation. The Thevenin model is selected as equivalent circuit model to describe the dynamic
characteristics of batteries. The parameters of battery are identified by forgetting factor recursive least
squares (FFRLS) algorithm. Then EKF (or UKF) is introduced to estimate the SOC value. Taking into
account the changes of battery model parameters, FFRLS algorithm can be used to update the battery
parameters in real time. Compared to the general SOC estimation algorithms without parameters
identification, joint algorithms can be more suitable for situations where the temperature changes
drastically or the battery is working for a long time.

1.3. Organization of the Paper

The structure of this paper is organized as follows. Section 2 introduces the Thevenin model
and FFRLS algorithm for battery parameter identification. In Section 3, EKF and UKF are introduced.
Based on Thevenin model, state space equations are established. Then, the FFRLS-EKF algorithm and
FFRLS-UKF algorithm are proposed. Section 4 illustrates the experiment results and detailed analysis.
The conclusions are summarized in Section 5.

2. Identification of Battery Model Parameters

2.1. Building the Battery Modelion

In order to simulate the power battery in an electric vehicle, the electrochemical model and
equivalent circuit model are commonly used as battery models. The electrochemical model simulates
a battery according to real electrochemical reactions. As a result, the electrochemical model is accurate
but complex. It is computationally large and difficult to discretize. The electrochemical model is not
a common model for practical BMS applications. The equivalent circuit model uses the basic circuit
components, including resistors, capacitors and so on, to simulate a battery. A high degree of accuracy
can be achieved if the parameters of the equivalent circuit model are appropriate. In the practical
application of BMS in electric vehicles, equivalent circuit models are applied more often.

Common equivalent circuit models include the Rint model, partnership for a new generation of
vehicle (PNGV) model, general nonlinear (GNL) model, Thevenin model and so on [37]. The Thevenin
model, which is also called first-order resistor-capacitor (RC) equivalent circuit model, is often used for
lithium-ion battery modeling and analysis [38,39]. In this article, the Thevenin model is used as battery
model. As shown in Figure 1, the Thevenin model consists of voltage source, ohmic resistance and a RC
loop circuit. The voltage of the voltage source is considered equal to the open circuit voltage uoc, which
is determined by current SOC value. The resistor R0 represents the ohmic resistance, which increases
with battery aging or decrease of temperature. The link of polarization resistor Rp and polarization
capacitor Cp is used to simulate the dynamic characteristics of the lithium-ion battery.
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Based on Kirchhoff’s law and capacitance characteristics, equations can be deduced as:

uoc = ut + iR0 + up (1)

Cp
dup

dt
+

up

Rp
= i (2)

2.2. Offline Parameters Identification

In order to use the equivalent circuit model to describe the battery characteristics, it is necessary
to identify the model parameters R0, Rp and Cp. In some of the commonly used methods, several
battery tests are done to identify the model parameters. While the BMS works, the parameters remain
unchanged. This method is called offline identification in this article. A commonly used offline
identification method will be introduced [40].

Discharge the battery with constant current (i = I in Figure 1) and then rest for a long time.
When the current i changes from I to 0, the terminal voltage has a step change in ∆u because of the
ohmic resistance R0. R0 can be obtained by Equation (3):

R0 =

∣∣∣∣∆u
I

∣∣∣∣ (3)

In rest period, terminal voltage ut can be measured and recorded. According to Equation (1) and
Equation (2), ut can be deduced as:

ut = uoc − IRpe−t/RpCp (4)

That is, the terminal voltage ut can be expressed by the following exponential function:

f (t) = b1 − b2e−b3t (5)

Based on the measured voltage data, the values of b1, b2 and b3 in Equation (4) can be obtained by
nonlinear fit of exponential function. In this article, it is calculated by Function nlinfit in MATLAB
(R2016b, MathWorks, Natick, MA, USA). Compare Equations (4) and (5), we can get model parameters
Rp and Cp by: {

Rp = b2
I

Cp = 1
b3Rp

(6)

2.3. Online Parameters Identification by Forgetting Factor Recursive Least Squares

The battery model parameters are not actually constant but rather they related to the temperature,
SOC, SOH and so on. As a result, offline identification of model parameters will cause some calculation
error in the BMS work process. A better way is to update the model parameters constantly during the
operation of the battery. This method is called online identification in this article. The forgetting factor
recursive least squares (FFRLS) algorithm can be used to identify the parameters of a single input
single output system. It applies to systems with variable parameters. Next, the principle of FFRLS
algorithm is introduced.

Consider the following system:

A
(

z−1
)

y(k) = B
(

z−1
)

u(k− d) + ξ(k) (7)
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where ξ(k) represents the white noise, na, nb and d are known and:{
A
(
z−1) = 1 + a1z−1 + a2z−2 + · · ·+ ana z−na

B
(
z−1) = b0 + b1z−1 + b2z−2 + · · ·+ bnb z−nb

(8)

The purpose of online parameters identification is to determine the following parameters based
on the measurable inputs and outputs:

a1, a2, · · · , ana ; b0, b1, b2, · · · , bnb

Equation (7) can be written as the least squares form:

y(k) = −a1y(k− 1)− · · · − ana y(k− na) + b0u(k− d) + · · ·+ bnb u(k− d− na) + ξ(k) = ϕT(k)θ + ξ(k) (9)

where ϕ(k) is the data vector, θ is the parameter vector to be evaluated, and:{
ϕ(k) = [−y(k− 1), · · · ,−y(k− na), u(k− d), · · · , u(k− d− na)]

T ∈ R(na+nb+1)×1

θ =
[
a1, · · · , ana , b0, · · · , bnb

]T ∈ R(na+nb+1)×1
(10)

Take performance indicator as:

J =
L

∑
k=1

λL−k
[
y(k)− ϕT(k)θ̂

]2
(11)

where θ̂ is the estimate of θ, λ denotes the forgetting factor (0 < λ ≤ 1).
Calculate the following formulas to obtain the parameter θ̂ so that the value of the objective

function J reaches the minimum:
θ̂(k) = θ̂(k− 1) + K(k)

[
y(k)− ϕT(k)θ̂(k− 1)

]
K(k) = P(k−1)θ(k)

λ+ϕT(k)P(k−1)ϕ(k)

P(k) = 1
λ

[
I − K(k)ϕT(k)

]
P(k− 1)

(12)

In order to identify the parameters of Thevenin model with FFRLS algorithm, it is necessary to
convert Equations (1) and (2) into the corresponding form.

After Laplace transform, Equations (1) and (2) can be converted to:

Uoc(s) = Ut(s) + I(s)R0 + Up(s) (13)

Up(s) =
I(s)Rp

RpCps + 1
. (14)

Combine Equations (13) and (14) to eliminate Up:

(Uoc −Ut)(s) = I(s)R0 +
I(s)Rp

RpCps + 1
(15)

Employ Xs = x(k)−x(k−1)
T to discretize Equation (15), where T is the sampling period.

(
RpCp

T + 1)(Ut −Uoc)(k) =
RpCp

T (Ut −Uoc)(k− 1)− (
R0RpCp

T + R0 + Rp)I(k) + R0RpCp
T I(k− 1) (16)
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Replace the coefficients in Equation (16) with k1, k2 and k3:

(Ut −Uoc)(k) = −k1(Ut −Uoc)(k− 1) + k2 I(k) + k3 I(k− 1) (17)

Equations (9) and (17) are in the same form. FFRLS algorithm can be used to identify k1, k2 and k3.
Then R0, Rp and Cp can be derived by: 

R0 = − k3
k1

Rp = − k2+R0
k1+1

Cp =
( 1

k1+1−1)T
Rp

(18)

As the ambient temperature and SOC changes, the model parameters of the battery will be
constantly changing during battery operation. FFRLS continues to obtain the current parameters.

3. Joint Algorithms of SOC Estimation

3.1. Application of Nonlinear Kalman Filter in Nonlinear System

Consider a nonlinear discrete-time dynamic system that is represented by a process equation
as Equation (19) that describes the state vector and a measurement equation as Equation (20) that
describes the measurement vector:

xk = f (xk−1) + wk−1 (19)

zk = h(xk) + vk (20)

where the state vector xk ∈ Rn is unobservable and zk ∈ Rm is an observable measure vector. f and
h are known nonlinear functions. The process noise wk−1 ∈ Rn and the measurement noise vk ∈ Rm

are independent Gaussian white noise. The mean of wk−1 is zero and the covariance matrix of wk−1 is
Qk−1. The mean of vk is zero and the covariance matrix of vk is Rk.

The Kalman filter is only applicable to linear systems, but in practice, most systems are nonlinear.
The extended Kalman filter and unscented Kalman filter are improved versions of the Kalman filter
that can be applied to nonlinear systems.

In the EKF algorithm, the nonlinear functions in Equations (19) and (20) are approximated to
first-order Taylor polynomials:

f (xk−1) ≈ f
(
_
x k−1

)
+ Fk−1

(
xk−1 −

_
x k−1

)
(21)

h(xk) ≈ h
(
_
x k|k−1

)
+ Hk

(
xk −

_
x k|k−1

)
(22)

where Fk−1 and Hk are Jacobian matrices:

Fk−1 =
∂ f (xk−1)

∂x

∣∣∣∣
x=

_
x k−1

(23)

Hk =
∂h(xk)

∂x

∣∣∣∣
x=

_
x k|k−1

(24)

The nonlinear system can be transformed into a linear state space model approximated by first
order Taylor polynomials as:

xk = Fk−1xk−1 + f
(
_
x k−1

)
− Fk−1

_
x k−1 + wk−1 (25)
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zk = Hkxk + h
(
_
x k|k−1

)
− Hk

_
x k|k−1 + vk (26)

The EKF algorithm can be summarized as follows:

(1) Initialization
x̂0 = E[x0] (27)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(28)

(2) Prediction module
_
x k|k−1 = f

(
_
x k−1

)
(29)

Pk|k−1 = Fk−1Pk−1Fk−1
T + Qk−1 (30)

where Fk−1 =
∂ f (xk−1)

∂x

∣∣∣
x=

_
x k−1

.

(3) Error correction module

Gk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(31)

where Hk =
∂h(xk)

∂x

∣∣∣
x=

_
x k|k−1

.

_
x k =

_
x k|k−1 + Gk

(
zk − h

(
_
x k|k−1

))
(32)

Pk = (I − Gk Hk)Pk|k−1 (33)

Next, UKF will be introduced.
Consider any known nonlinear function z = g(x). The mean x and covariance Px of the random

variable x ∈ Rn are known. UKF uses the following sampling points to approximate the statistical
properties of z: 

ξ0 = x

ξi = x +
(√

(n + λ)Px

)
i
, i = 1, 2, · · · , n

ξi = x−
(√

(n + λ)Px

)
i−n

, i = n + 1, n + 2, · · · , 2n

(34)

where
(√

(n + λ)Px

)
i

represents the i-th column vector of the square root of (n + λ)Px.

λ = α2(n + κ) − n is a scalar parameter. The constant parameter 0.0001 ≤ α ≤ 1 determines
the degree of diffusion of the sampling points near x. κ is another constant parameter, which is usually
set to zero when the state is estimated and set to 3− n when the parameter is estimated.

The mean and covariance of z are calculated by means of weighted averaging:

z =
2n

∑
i=0

w(m)
i g(ξi) (35)

Pz =
2n

∑
i=0

w(c)
i (g(ξi)− z)(g(ξi)− z)T (36)
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where w(m)
i represents the weight required to calculate the mean, and w(c)

i represents the weight
required to calculate the covariance. They are derived as:

w(m)
0 = λ

n+λ

w(c)
0 = λ

n+λ + 1− α2 + β

w(m)
i = w(c)

i = 1
2(n+λ)

, i = 1, 2, · · · , 2n

(37)

β is a parameter that considers the prior information of the random variable x. When x is a
Gaussian distribution, β = 2.

The UKF algorithm can be summarized as follows:

(1) Initialization
x̂0 = E[x0] (38)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(39)

(2) Prediction module

ξk−1 =
[

xk−1, xk−1 +
(√

(n + λ)Pk|k−1

)
, xk−1 −

(√
(n + λ)Pk|k−1

)]
(40)

Xk|k−1 = f (ξk−1) (41)

_
x k|k−1 =

2n

∑
i=0

w(m)
i Xi,k|k−1 (42)

(3) Error correction module

ξk|k−1 =
[
_
x k|k−1,

_
x k|k−1 +

(√
(n + λ)Pk|k−1

)
,
_
x k|k−1 −

(√
(n + λ)Pk|k−1

)]
(43)

_
z k|k−1 =

2n

∑
i=0

w(m)
i h

(
ξi,k|k−1

)
(44)

Pzz,k|k−1 =
2n

∑
i=0

w(c)
i

(
h
(

ξi,k|k−1

)
−_

z k|k−1

)(
h
(

ξi,k|k−1

)
−_

z k|k−1

)T
+ Rk (45)

Pxz,k|k−1 =
2n

∑
i=0

w(c)
i

(
ξi,k|k−1 −

_
x k|k−1

)(
h
(

ξi,k|k−1

)
−_

z k|k−1

)T
(46)

Gk = Pxz,k|k−1P−1
zz,k|k−1 (47)

_
x k =

_
x k|k−1 + Gk

(
zk −

_
z k|k−1

)
(48)

Pk = Pk|k−1 − GkPzz,k|k−1GT
k (49)

3.2. Establishment of State Space Model of Thevenin Model

In order to use EKF algorithm or UKF algorithm for SOC estimation, it is necessary to discretize
Thevenin model and create the state space model.

Set the state vector as:

x(k) =

(
SOC(k)
up(k)

)
(50)

SOC(k) is the unknown to be estimated. up(k) is the voltage of the RC loop circuit.
The terminal voltage ut(k) can be measured, so we set ut(k) as the measurement vector.
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SOC has a variety of definitions, representing the remaining battery capacity. In this paper, SOC is
defined as:

SOC(t) = SOC(t0)−
∫ t

t0
idt

Cn
(51)

where Cn denotes the nominal capacity of the battery.
According to Equations (1), (2) and (51), the state space model of Thevenin model can be

derived as: (
SOC(k)
up(k)

)
=

(
1 0
0 1− T

CpRp

)(
SOC(k− 1)
up(k− 1)

)
+

(
− T

Cn
T

Cp

)
i(k) (52)

ut(k) = f [SOC(k)]− i(k)R0 − up(k) (53)

Equation (52) is the process equation describing the state vector. Equation (53) is the measurement
equation describing the measurement vector. In the BMS work process, the instantaneous value of SOC
can be estimated based on EKF algorithm or UKF algorithm by measuring the values of the current
and terminal voltage constantly.

3.3. Joint Algorithms Based on FFRLS and Nonlinear Kalman Filter

According to the above discussion, the FFRLS algorithm can be used for battery model online
parameter identification and the EKF algorithm (or UKF algorithm) can be used to estimate SOC in the
BMS work process.

FFRLS-EKF algorithm is proposed based on FFRLS and EKF to estimate SOC with online
parameter identification. In the calculation of FFRLS-EKF algorithm, the FFRLS algorithm updates the
battery parameters and the EKF algorithm estimates the SOC value. The FFRLS-EKF algorithm can be
divided into two parts: initialization and loop operations. In the initialization part, the correspondence
between OCV and SOC needs to be obtained from battery tests. The Thevenin model is chosen as
the equivalent circuit model. The FFRLS algorithm and EKF algorithm require initial values before
starting the loop operations. In every cycle, voltage and current are measured. The FFRLS algorithm
runs one step, followed by prediction module and error correction module of EKF. Next, the current
SOC value is output. Finally, increase cycle index k by 1. The loop operations will continue to go on.

For strong nonlinear systems, the UKF algorithm works better than the EKF algorithm. In a
similar way, FFRLS-UKF algorithm is proposed based on FFRLS algorithm and UKF algorithm.

Figure 2 illustrates the steps of FFRLS-EKF algorithm and FFRLS-UKF algorithm. The green
background steps are related to FFRLS algorithm, while the blue background steps are related to EKF
algorithm (or UKF algorithm).

The effect of ambient temperature and SOC is to change the model parameters. Based on the
data of current and terminal voltage, the joint algorithms update the model parameters constantly
without requiring ambient temperature. As a result, there are no variables related to the environmental
temperature in the equations. In addition, the ambient temperature does not need to be measured in
actual use.
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4. Experiments and Discussion

4.1. Experiments

As shown in Figure 3, a test bench is established to verify the effectiveness of the proposed
algorithms. ICR18650-22P batteries (Samsung, Seoul, South Korea) are used as the experimental
subjects. The specifications of test batteries are as follows: nominal capacity 2150 mAh, nominal
voltage 3.6 V, charging end voltage 4.2 V, discharging end voltage 2.75 V and maximum continuous
discharging current 10 A. When charging or discharging, C-rate represents constant current 2.15 A
for these experimental subjects. For example, charge the battery with constant current 1 C means
charge the battery with constant current 2.15 A. A temperature chamber (SC-80-CC-2, Sanwood,
Dongguan, China) provides a variable temperature working environment for batteries. The maximum
temperature range is −40 ◦C~150 ◦C and the accuracy of temperature is ±0.1 ◦C. A battery testing
system (BT-5HC, Arbin, College Station, TX, USA) is used to charge/discharge the batteries within the
range of 0 A~30 A and current voltage 0 V~5 V. The control and measurement accuracies of current and
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voltage are both ±0.02% full scale range. A host computer with MITS Pro (v7.0, Arbin, College Station,
TX, USA) installed controls the battery testing system to load the programmed current profiles on the
batteries and record the data. The algorithms are validated by experimental data in the environment
of MATLAB (R2016b, MathWorks, Natick, MA, USA). In the experiments, the sampling frequency of
current and voltage is once per second.
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As a basis for other experiments, the actual battery capacity of 25 ◦C was measured. First of
all, the testing battery was rested at 25 ◦C constant temperature for 1 h. The battery is fully charged
with constant current and constant voltage (CC-CV) mode. Specific methods are as follows: charge
the battery with a constant current 0.5 C (i.e., 1.075 A) until the battery terminal voltage is 4.2 V
and then charge the battery with constant voltage 4.2 V until the current is less than 0.02 C. At this
point the battery is fully charged. Rest for 1 h and discharge the battery with 0.2 C constant current
until the terminal voltage reaches 2.75 V. The amount of electricity released is considered the actual
capacity of the battery. The average of three measurements is taken as the actual battery capacity
obtained experimentally.

The relationship of open circuit voltage (OCV) and SOC is one of the basic characteristics of
lithium-ion batteries which is also measured in the experiments. The experimental method is to rest
a battery of specific SOC for long enough time (1 h in this experiment), then the terminal voltage is
considered equal to the open circuit voltage. In this experiment, OCV-SOC curve was obtained by
selecting 13 SOC values for measuring OCV and polynomial fitting of the obtained points, as shown in
the Figure 4.
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4.2. Verification of Online Parameters Identification

Taking into account the ohmic resistance of the battery will be affected by temperature and
SOC, joint algorithm should reflect this change. In order to verify the feasibility of the algorithm,
a series of experiments were done. The battery used in the experiment can work at −20 ◦C~60 ◦C.
However, according to the actual test, the battery cannot provide enough current at low temperature
(approximately below 0 ◦C). Therefore, the experimental temperature of the four groups were: 0 ◦C,
20 ◦C, 40 ◦C and 60 ◦C.

The parameters of the battery are related to the temperature and the SOC, so the battery under a
specific temperature and SOC is pulsed to estimate the corresponding offline parameters. Experimental
processes are as follows:

(1) Set the ambient temperature to constant 60 ◦C, rest for 2 h.
(2) Charge the battery fully (SOC = 1).
(3) Discharge at 3 C for 10 s and then rest for 1 h.
(4) 1 C current discharge until SOC = 0.9 and then rest for 1 min.
(5) Discharge at 3 C for 10 s and then rest for 1 h.
(6) Loop through steps 4 and 5.
(7) Adjust the temperature to constant 40 ◦C, 20 ◦C and 0 ◦C, Repeat the above experiment.

The ohmic resistances are estimated when SOC = 1, 0.9, 0.8, ..., 0.1 and 0. The method is similar to
offline parameters identification as proposed in Section 2.2. The results are shown in Table 1.

Table 1. Ohmic resistances by offline parameters identification.

Temp (◦C) SOC 60 40 20 0

1 0.026253 1 0.028764 0.040122 0.080287
0.9 0.026908 0.02919 0.039738 0.076331
0.8 0.026865 0.029109 0.039517 0.075814
0.7 0.02671 0.028947 0.039297 0.074732
0.6 0.026557 0.028694 0.039301 0.076104
0.5 0.026465 0.028752 0.039856 0.081036
0.4 0.026414 0.028857 0.040346 0.088126
0.3 0.026634 0.029149 0.041151 0.104209
0.2 0.026962 0.02964 0.043149 0.128564
0.1 0.027774 0.031417 0.058646
0 0.033193 0.069008

1 The unit of ohmic resistance is Ω.
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As can be seen, on the one hand, the ohmic resistance clearly shows an increasing trend as the
temperature decreases. On the other hand, ohmic resistance tends to stabilize during battery operation
with high SOC. However, when the SOC is close to 0, the ohmic resistance increases significantly.

As the battery capacity is measured at 25 ◦C, the battery will reach the discharging end voltage
without releasing the full capacity, when the temperature is below 25 ◦C. So some of the data in the
table is empty.

In order to get the results of online parameters identification with certain temperature and SOC,
a series of working conditions tests were done. Under 0 ◦C, 20 ◦C, 40 ◦C and 60 ◦C, the New European
Driving Cycle (NEDC) driving cycle was tested to discharge the battery from full charge to discharging
end voltage. The experimental data are processed by the FFRLS-UKF algorithm to obtain the ohmic
resistances by online parameters identification.

In the Figure 5, the curves represent the ohmic resistances identified by online parameters
identification of NEDC driving cycles at different temperatures. Discrete point represents the ohmic
resistances of corresponding temperatures and SOCs identified by offline parameters identification.
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It can be seen from the figure that the results of online parameters identification and the results of
offline parameters identification are consistent. In other words, joint algorithm for online parameters
identification is feasible.

4.3. Estimation Results without Measurement Noise

The joint algorithms above can be used to estimate SOC in case the battery model parameters
change. Generally, the change of the battery model parameters is related to temperature, SOC, SOH,
etc. The battery experiment is done in a variable temperature environment, which makes the change
of battery model parameters more obvious. Taking into account the actual working environment of
electric vehicles, the temperature range is 5 ◦C~45 ◦C in this article. The test temperature starts at
25 ◦C, drops to 5 ◦C and then rises to 45 ◦C until the end.

In order to prove the adaptability of the algorithms, a combination of four driving cycles is
designed as the input current profile of the battery experiment, including Urban Dynamometer
Driving Schedule (UDDS), Dynamic Stress Test (DST), New European Driving Cycle (NEDC) and
Federal Urban Driving Schedule (FUDS). As shown in Figure 6, a combined driving cycle takes 4288 s.
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The results of the battery working condition test are shown in Figure 7. The operating current,
terminal voltage and temperature are illustrated by curves respectively.
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Figure 7. Working condition test.

In the abovementioned experiment, the voltage and current data are recorded to verify the joint
algorithms. The estimation results of the FFRLS-EKF algorithm are compared with that of the standard
EKF algorithm. And the estimation results of the FFRLS-UKF algorithm are compared with that of the
standard UKF algorithm.

When using the nonlinear Kalman filter algorithm, considering the large deviation of SOC
estimation in the initial measurement, it is not conducive to the convergence of FFRLS method, so at
the beginning of the working conditions, we use only the EKF algorithm or UKF algorithm to estimate
SOC. After 100 s, the SOC estimate tends to be stable and we can then begin to use the joint algorithm.

In order to test the estimation effect of the algorithms, it is necessary to compare with the SOC
reference value. The experimental environment uses a high-precision sensor, so the SOC obtained
from the Ampere-hour integral method can be regarded as a SOC reference value.
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The results obtained by processing the condition data with the FFRLS-EKF algorithm are shown
in the Figure 8. The online identification results of parameters k1, k2 and k3 are shown in Figure 8a.
It can be seen that the changes of parameters k2 and k3 are significantly related to temperature, while
the value of k1 is nearly fixed. After conversion, the online identification results of parameters R0,
Rp and Cp are shown in Figure 8b. As the temperature increases, the ohmic resistance of the battery
decreases, which is consistent with the common view.
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In Figure 8c, the red dotted line represents the SOC estimation of FFRLS-EKF algorithm and the
blue dotted line represents the SOC estimation of EKF algorithm. The SOC reference value is indicated
by the black solid line. Similarly, the red solid line and the blue solid line represent the SOC estimation
errors of FFRLS-EKF algorithm and EKF algorithm respectively. It can be seen that the accuracy
of the FFRLS-EKF algorithm is significantly better than that of the EKF algorithm. Similarly, the
data are processed with FFRLS-UKF algorithm and UKF algorithm respectively. The results are
shown in Figure 9. Figure 9a illustrates the online identification results of parameters k1, k2 and k3.
Figure 9b illustrates the online identification results of parameters R0, Rp and Cp. The comparison of
SOC estimation value of FFRLS-UKF algorithm and UKF algorithm is shown in Figure 9c.
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It can be seen that in Figures 8 and 9, the trends of these curves are similar. These algorithms can
meet the requirements of SOC estimation. In order to contrast the characteristics of the algorithms
above, the four indicators are listed in Table 2, namely: average error, max error, RMSE and time.
When plotting Figures 8c and 9c, the errors between the SOC estimate and the SOC reference at each
sampling instant have been calculated. The average error in the table represents the mean of the SOC
errors. The max error in the table represents the maximum value of the SOC errors. The average
error and the max error represent the estimation accuracy of the algorithm. RMSE is an abbreviation
for root mean square error. It is used to measure the deviation between the observed value and the
true value. In this paper, RMSE can represent the stability of the SOC estimate value compared with
the SOC reference value. It can be considered that the smaller the RMSE value, the closer the SOC
estimate value is to the SOC reference value. The time spent in the loop operations of the algorithm is
represented by the time in the table. All arithmetic calculations are done by the same computer. So the
calculation can be evaluated by the computation time. The smaller the amount of calculation, the more
convenient for practical applications.

Table 2. Comparison of Algorithms without measurement noise.

Methods Average Error Max Error RMSE Time (s)

EKF 0.057 0.083 0.063 0.201
FFRLS-EKF 0.013 0.017 0.014 4.085

UKF 0.056 0.083 0.062 0.390
FFRLS-UKF 0.011 0.0144 0.011 0.557

First, we compare the results of the EKF algorithm and the FFRLS-EKF algorithm. The SOC
estimation methods of the EKF algorithm and FFRLS-EKF algorithm are similar. The difference is
that model parameters in the EKF algorithm are fixed, while in the FFRLS-EKF algorithm, the model
parameters change, that is, the so-called online parameter identification. The average error, max
error and RMSE of the SOC estimates obtained by the FFRLS-EKF algorithm are significantly smaller
than those of the SOC estimates obtained by the EKF algorithm. Among them, the average error is
reduced from 5.7% to 1.3% after adding the online parameter identification. The computation time
of the FFRLS-EKF algorithm is significantly longer than that of the EKF algorithm, increasing from
0.201 s to 4.085 s. It can be seen that the FFRLS-EKF algorithm has higher estimation accuracy, but the
computation is increased, compared with the EKF algorithm.

Then, SOC estimation results of the FFRLS-UKF algorithm and the UKF algorithm have a similar
relationship, as can be seen from Table 2. The average error, max error and RMSE of the SOC estimates
obtained by the FFRLS-UKF algorithm are significantly smaller than those of the SOC estimates
obtained by the UKF algorithm. The time of the SOC estimates obtained by the FFRLS-UKF algorithm
is slightly longer than that of the SOC estimates obtained by the UKF algorithm. Finally, from the
table can also be drawn that the UKF algorithm is more accurate than the EKF algorithm and the
FFRLS-UKF algorithm is more accurate than the FFRLS-EKF algorithm.

4.4. Estimation Results with Measurement Noise

Due to the working environment of the power battery, the accuracy of the sensor and other
reasons, the measured value of the current and voltage is not accurate, compared with the true values.
In order to verify the robustness of the algorithm, noise is added to the data to simulate the actual
working environment. Generate Gaussian white noise sequences as measurement noises, which can
simulate actual measurement noises. In this paper, a normal distribution random number series with
mean 0 and variance 10−4 is added to measured current data as current noise and a normal distribution
random number series with mean 0 and variance 10−6 is added to measured voltage data as voltage
noise. The voltage and current data obtained by the battery test in Section 4.1 are added with the noise
to obtain a set of voltage and current data with measurement noise.
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The EKF algorithm and FFRLS-EKF algorithm are used to process the data with measurement
noise respectively. The results are shown in Figure 10. Figure 10a illustrates the online identification
results of parameters k1, k2 and k3 by the FFRLS-EKF algorithm. Figure 10b illustrates the online
identification results of parameters R0, Rp and Cp by the FFRLS-EKF algorithm. The SOC estimation
values of the EKF algorithm and FFRLS-EKF algorithm are shown in Figure 10c.
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Similarly, the data are processed with the UKF algorithm and the FFRLS-UKF algorithm
respectively, as shown in Figure 11. The results of the online parameters identification are shown
in Figure 11a,b. Figure 11c illustrates the SOC estimation values of the UKF algorithm and the
FFRLS-UKF algorithm.
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It can be seen that the above algorithms can still get a good estimate from the noisy data. A further
analysis of the data is shown in Table 3.

Table 3. Comparison of Algorithms with measurement noise.

Methods Average Error Max Error RMSE Time (s)

EKF 0.057 0.083 0.063 0.151
FFRLS-EKF 0.016 0.020 0.015 4.050

UKF 0.056 0.083 0.062 0.401
FFRLS-UKF 0.014 0.018 0.015 0.539

In the case of measurement noise, the algorithms with online parameter identification (FFRLS-EKF
algorithm and FFRLS-UKF algorithm) have a higher estimation accuracy and a larger amount of
computation than algorithms with offline parameter identification (EKF algorithm and UKF algorithm).
Comparing Tables 2 and 3, we can evaluate the robustness of several algorithms in noisy environment.
The SOC estimation accuracy of the EKF algorithm is almost uniform in both a noiseless environment
or a noisy environment. The UKF algorithm also has the same characteristics. For the FFRLS-EKF
algorithm, the error in the noisy environment is greater than that in the noiseless environment.
The FFRLS-UKF algorithm is similar to the FFRLS-EKF algorithm and is also sensitive to noise.

5. Conclusions

In this paper, two joint algorithms are proposed for SOC estimation with online parameter
identification. The Thevenin model is utilized as the equivalent circuit model to derive a state
space model for joint algorithms. The FFRLS-EKF algorithm is based on the FFRLS algorithm for
updating model parameters and the EKF algorithm for updating the state vector and measurement
vector. The FFRLS-UKF algorithm is proposed similarly. By comparing the ohmic resistances of
various temperatures and SOCs obtained by online parameter identification and offline parameter
identification, respectively, the feasibility of the joint algorithms is verified. A combined driving cycle
is designed for battery testing, including UDDS, DST, NEDC and FUDS. The test is performed in a
variable temperature environment between 5 ◦C~45 ◦C. Compared with the nonlinear Kalman filter,
the average error, the maximum error and the RMSE of the estimation results obtained by the joint
algorithms are obviously improved, while the computation time of the joint algorithms is increased.
The accuracy of the joint algorithms is reduced after adding Gaussian white noise as measurement
noise, indicating that joint algorithms are sensitive to measurement noise. Besides, other more complex
but more accurate equivalent circuit models have been tried in the research process, but no good
results have been obtained. When using more complex models, the calculations more easily diverge.
This phenomenon may be due to the forgetting factor being selected as a fixed value. In future studies,
we will continue to examine the optimization of forgetting factors and improve the robustness of the
algorithm. In addition, the working environment in practice for electric vehicles is harsher, including
temperatures below 0 ◦C. In our future work, batteries with better performance at low temperature
will be used as the experimental objects to meet the needs of actual electric vehicles according to the
automotive manufacturers.
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Nomenclature

Cn nominal capacity
Cp polarization capacitor
i current
J performance indicator
k1 intermediate variable of parameters identification
k2 intermediate variable of parameters identification
k3 intermediate variable of parameters identification
R0 ohmic resistance
Rp polarization resistor
T sampling period
uoc open circuit voltage
up voltage of the RC loop circuit
ut terminal voltage
xk state vector
zk measure vector
Greek Letter
λ forgetting factor
ϕ(k) data vector
θ parameter vector
wk−1 Gaussian white noise
vk Gaussian white noise
Acronyms
BMS battery management system
CC-CV constant current and constant voltage
CKF cubature Kalman filter
DST Dynamic Stress Test
ECM equivalent circuit model
EKF extended Kalman filter
FFRLS forgetting factor recursive least squares
FUDS Federal Urban Driving Schedule
GA genetic algorithms
NEDC New European Driving Cycle
OCV open circuit voltage
RELS recursive extended least squares
RMSE root mean square error
SMO sliding mode observer
SOC state of charge
SOH state of health
UDDS Urban Dynamometer Driving Schedule
UKF unscented Kalman filter
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