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Refined Instrumental Variable (RIV) estimation is applied to online identify the parameters of the Equivalent Circuit Model (ECM) for
Lithium-ion (Li-ion) battery in this paper, which enables accurate parameters estimation with the measurement noise. Since the
traditional Recursive Least Squares (RLS) estimation is extremely sensitive to the noise, the parameters in the ECMmay fail to converge
to their true values under themeasurement noise.*e RIV estimation is implemented in a bootstrap form, which alternates between the
estimation in the systemmodel and the noisemodel.*e Box-Jenkinsmodel of the Li-ion battery transformed from the two RC ECM is
selected as the transfer functionmodel for the RIV estimation in this paper.*e errors of the two RC ECM are independently generated
by the residual of high-order Auto Regressive (AR) model estimation. With the benefit of a series of auxiliary models, the data filtering
technology can prefilter the measurement and increase the robustness of the parameters against the noise. Reasonable parameters are
possible to be obtained regardless of the noise in the measurement by RIV. Simulation and experimental tests on a LiFePO4 battery
validate the efficiency of RIV for parameter online identification compared with traditional RLS.

1. Introduction

With the continuous decline of the price and the superior
performance in the energy density, lithium-ion (Li-ion)
battery has become an optimal choice for both the battery
pack in the electric vehicle (EV) and the stationary energy
storage systems in the grid [1–3]. In order to integrate the
renewable energy into the grid, stationary energy storage
system is critical for the inflexibility of balance and the
intermittent power supply. Like the power sources, the
performance of Li-ion battery also affects the acceptance of
the EV produced in the market [4–8]. Especially for the pure
battery-powered EV, the power capability and the energy
capacity of the battery pack are closely related to the drivers’
experience. Battery Management System (BMS) is in charge
of the cell operation in the battery pack, which should ensure
the reliability and safety of the whole pack [9–12]. *e

battery’s states (State of Charge (SOC), State of Health
(SOH), State of Function (SOF), etc) reflect the current
status of each cell in the battery pack, which must be
carefully calculated from the measurement in BMS [13–16].
Although model-based estimation seems to be a practical
solution for estimating the battery states, the accuracy of the
estimation is closely related to the battery model from prior
knowledge [17–19]. *e reliability and accuracy of the
battery model depend on the choice of the parameters.
Moreover, some parameters can directly reflect the battery
states; for example, the internal resistance and the capacity
are always treated as the effective indictors to the infor-
mation of the battery SOH [20–23].

Due to the electrochemical reactions inside the battery
during the charging and discharging process, the parameters
in the battery ECM are always changing with temperature
and SOC [24–27]. Constant parameters of ECM in the
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battery operating process definitely reduce its accuracy.
Look-up table is a possible way to improve the feasibility of
the ECM under various conditions, but huge efforts are
needed to build the look-up table considering the effect of
temperature and SOC. Another factor should not be ignored
here is that the batteries aging during their operation, which
means the constant loop-up table of the parameters from the
new cell may fail to accurately predict the characteristic of an
old cell. *e cells are connected in parallel and series into the
battery pack for providing enough energy to the applications.
*e inconsistency of the cell leads to more workload on
modelling if accurate model of each cell in the battery pack is
needed [28, 29]. *erefore, updating the parameters online is
necessary for modelling accuracy and states estimation
[30, 31]. Recursive Least Squares (RLS) and Kalman filter are
generally applied to identify the parameters of ECM [32–36].
RLS easily fails to converge to the actual value of the pa-
rameters when the measurement contains noise [11]. Kalman
filter related methods usually have a higher computational
complexity than RLS. As explained in [37], the system order
of the Kalman filter-related methods is usually high, which
makes it difficult to tune the algorithm. Extended Kalman
filter (EKF) is applied to identify the parameters of the two RC
ECM, 7× 7 order matrix is calculated and updated in each
step for parameters identification [38]. *e parameters of the
battery ECM with one RC are estimated by the moving
window least square method with AutoRegressive (AR)
model, but the effect of the window width on the accuracy of
identified parameter have not been discussed [35]. Algo-
rithms with more computing complexity, such as, Sigma-
point Kalman filter [39] andH-infinity filter [31] are also used
to online update the parameters of the battery model. Fur-
thermore, the heuristic algorithms including Genetic Algo-
rithm (GA) [40] and Particle SwarmOptimization (PSO) [41]
with amoving window are applied to obtain the parameters in
ECM. However, fewer efforts have focused on dealing with
the effect of the measurement noise on the identified pa-
rameters in ECM. *e noise from sensors has always existed
during the measurement of the battery current and voltage,
which may influence the convergence of the estimated pa-
rameters to the true values in real applications. *erefore,
online parameter identification algorithm with good enough
ability to obtain reasonable parameters under measurement
noise conditions is still needed.

In order to identify reasonable parameters of the battery
ECM considering the effect of the measurement noise, the
Refined Instrumental Variable (RIV) estimation is firstly
applied to identify the parameters of the two RC ECM online
in this paper. RIV focuses on improving the performance of
RLS with the data-filtering technology in a bootstrap form.
*e Box-Jenkins model containing the battery systemmodel
and the AutoRegressive Moving Average (ARMA) noise
model is established for the parameter identification in this
paper. *e parameters of the ARMA noise model are esti-
mated from the auxiliary battery model with parameters in
the previous step. High-order AR model independently
generates the estimation of the input in the noise model. *e
data filtering technology helps the RIV estimation to obtain
reasonable parameters with measurement noise.

*e reminder of this paper is as following. *e Box-
Jenkins battery model is described in Section 2.*e details of
RIV for parameter identification is introduced in Section 3.
*e simulation results of the proposed method are shown in
Section 4. *e RIV estimation is experimentally validated on
the measurements from a LiFePO4 battery in Section 5. *e
conclusions are given in Section 6.

2. Box-Jenkins Model of Lithium-Ion Battery

In order to identify the parameters of the battery model
online with RIV, a suitable battery transfer function has to be
established at first. Describing the output error of the battery
model as an AMRA model, the form of the Box-Jenkins
model is expressed as the following form [42]:

y(k) �
B z− 1( )
A z−1( ) u(k) +

D z− 1( )
C z−1( ) e(k), (1)

where e (k) is the white noise with zero mean and varianceσ2

and u (k) and y (k) are the input and output of the system. If
the noise-free output of the system is defined as x (k), the
Box-Jenkins model of equation (1) can be decomposed into
equations (2)–(4). Among them, equation (3) can be seen as
the system model and equation (4) is the noise model.

y(k) � x(k) + v(k), (2)

x(k) �
B z− 1( )
A z−1( ) u(k), (3)

v(k) �
D z− 1( )
C z−1( ) e(k). (4)

In the above equations, the terms A(z−1), B(z−1), C(z−1),
and D(z−1) are normally defined as follows:

A z− 1( ) � 1 + a1 · z
− 1
+ a2 · z

− 2
+ · · · + ana · z

− na ,

B z− 1( ) � b0 + b1 · z− 1
+ b2 · z

− 2
+ · · · + bnb · z

− nb ,

C z− 1( ) � 1 + c1 · z
− 1
+ c2 · z

− 2
+ · · · + cnc · z

− nc ,

D z− 1( ) � 1 + d1 · z
− 1
+ d2 · z

− 2
+ · · · + dnd · z

− nd .

(5)

It can be seen from the structure of the Box-Jenkins
model that the transfer function of the systemmodel and the
noise model are two independently parametrized rational
functions. *e optimal prefilter for all the related mea-
surement in the battery model is derived from the noise
model in the Box-Jenkin model.

One RC ECM is easy for parameter calculation and is
more stable to uncertainties [43, 44]. Compared with one RC
model, one more RC network is used so that the fast dy-
namic and short dynamic of the battery terminal voltage can
be described, respectively. Of course, more calculation is
needed for two RC ECM. Two RC ECM is popular in Li-ion
battery modelling area because it is a good trade-off between
accuracy and complexity [45].*us, we choose two RC ECM
to show the advantages of the methods in this paper. It
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should be noted that the method in this work is also suitable
for one RC ECM. *e structure of the two RC ECM is il-
lustrated in Figure 1.

*e two RC model consists of resistance, capacitance,
and voltage source to represent the battery characteristics.
*e voltage source stands for the OCV-SOC relationship,
and R0 is the internal resistance. *e expression of the two
RC ECM in Figure 1 is shown as follows:

U
.

1 � −
U1

R1 · C1

+
IL
C1

,

U
.

2 � −
U2

R2 · C2

+
IL
C2

,

Ut � Uoc − U1 − U2 − IL · R0.


(6)

According to equation (6), the discretization form of the
two RC ECM is as follows:

Ut(k) � f(SOC) − IL(k) · R0 − U1(k) − U2(k),

U1(k) � exp
−Ts
τ1

( ) · U1(k − 1) + R1 · 1 − exp
−Ts
τ1

( )( ) · IL(k − 1),

U2(k) � exp
−Ts
τ2

( ) · U2(k − 1) + R2 · 1 − exp
−Ts
τ2

( )( ) · IL(k − 1),


(7)

where Ts is the sampling time, τ1 andτ2 are the two time
constants of the RC networks in the ECM.

Afterwards, let us define z as the shift operator. Equation
(7) can be transformed into the following form:

x0(k) �
B z− 1( )
A z−1( ) · IL(k) � b0 + b1 · z

− 1
+ b2 · z

− 2

1 + a1 · z
−1
+ a2 · z

−2 · IL(k),

(8)

where xo (k) is the deviation of the terminal voltage Ut and
the open circuit voltage f (SOC). *e coefficients a1, a2, b0,
b1, and b2 in equation (8) are expressed as follows:

a1 � − exp
−Ts
τ1

( ) + exp
−Ts
τ2

( )( ),
a2 � exp

−Ts
τ1

( ) + −Ts
τ2

( )( ),
b0 � R0,

b1 � R0 · −exp
−Ts
τ1

( ) − exp
−Ts
τ2

( )( ) + R1 · 1 − exp
−Ts
τ1

( )( ) + R2 · 1 − exp
−Ts
τ2

( )( )( ),

b2 �

R0 · exp
−Ts
τ1

( ) + −Ts
τ2

( )( )( ) + R1 · exp
−Ts
τ2

( ) · exp
−Ts
τ1

( ) − 1( )

+R2 · exp
−Ts
τ1

( ) · exp
−Ts
τ2

( ) − 1( )


.



(9)

R0

Ut

IL
R1

C1

R2

C2

U1 U2

+

–

OCV = f (SOC)

Figure 1: *e structure of two RC ECM.
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*e noise model is selected in AMRA form with one-
order AR model and MA model, which can be expressed as
follows:

v(k) �
1 + d1 · z

− 1

1 + c1 · z
−1 e(k). (10)

According to the battery model in equation (8) and the
noise model in equation (10), the Box-Jenkins model of the
two RC ECM is

y(k) � uo(k) + v(k) �
b0 + b1 · z

− 1
+ b2 · z

− 2

1 + a1 · z
−1
+ a2 · z

−2 · IL(k)

+
1 + d1 · z

− 1

1 + c1 · z
−1 e(k),

(11)
where the parameters in equation (11) are possible to be
identified by RIV, and the noise model can be used as the
prefilter for improving the robustness of RIV against the
measurement noise.

3. RIV Estimation

RIV proposed by [46, 47] has particular advantage in dealing
with the noise in the measurement. Moreover, RIV has
provided a practical solution to the maximum likelihood
function for the Box-Jenkins model [42] and is able to obtain
more reliable results for the stiff dynamic system than the
prediction error minimization method [47]. *e structure of
the RIV estimation is shown in Figure 2. It mainly consists of
two estimation processes: the parameters in the battery
model and the parameters in the noise model.

*e noise model needs to be identified before prefiltering
all the variables related to the battery model. *e error
function of the noise model is defined as

w(k) �
C z− 1( )
D z−1( ) · v(k) − e(k). (12)

As described in Figure 2, the prefilter of the noise model
is

f2 z
− 1( ) � 1

D z− 1( ). (13)

Substitute the prefilter f2(z
− 1) into the error function w

(k); the following equation is obtained:

w(k) � C z− 1( ) · vf2
(k) −D z− 1( ) · ef2(k), (14)

where the vf2
(k) and ef2(k) are the prefiltered variables.

However, v(k) and e (k) are not known in the beginning
of the parameter identification, and the profiler f2(z

− 1) is
also hardly known in advance. Auxiliary models are needed
to calculate these variables in this condition. *e instru-
mental variable v̂(k) is obtained as

v̂(k) � y(k) − x̂(k), (15)

where x̂(k) is calculated from the auxiliary battery model
(Ba(z

− 1)/Aa(z
−1)).

*en, ẽ(k)can be independently calculated from the
residuals of the high-order AR model of v(k). *e unknown
variables in equation (11) are able to be replaced by ẽ(k) and
v̂(k). Afterwards, the parameters in the noise model are able
to be updated as the following recursive process:

ξ̂(k) � ξ̂(k − 1) + Le(k) · ẽf2(k) − ψT(k) · ξ̂(k − 1)( ),
(16)

Le(k) � P̂e(k − 1) · ψ̂(k) · σ2
+ ψT(k) · P̂e(k − 1) · ψ̂(k)[ ]− 1

,

(17)
P̂a(k) � P̂a(k − 1) − La(k) · φ

T
(k) · P̂a(k − 1), (18)

where ξ(k) � 1 c1 d1[ ]T,
ψ(k) � v̂f2(k) v̂f2(k − 1) −ẽf2(k − 1)[ ]T,
ψ̂(k) � v̂f2(k) v̂f2(k − 1) −êf2(k − 1)[ ]T. (19)

*e prefiltered output êf2(k) is calculated from the
auxiliary ARMA noise model as follows:

êf2(k) �
Ca z

− 1( )
Da z

−1( ) · v̂f2(k), (20)

where the parameters in Ca(z
− 1) and Da(z

− 1) are obtained
from the parameters in the previous step.

After calculating the parameters in the noise model,
the prefilter f1(z

− 1) can be used for the variables in the
battery model. *e expression of the prefilter f1(z

− 1) is as
follows:

f1 z
− 1( ) � Ca z

− 1( )
Da z

−1( ) · Aa z−1( ). (21)

IL (k)

IL (k)

e (k)

e (k)

e (k)

y (k)

v (k)

v (k)

v (k)
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Eq.(25)–Eq.(27)
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Figure 2: *e diagram of the RIV estimation.
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Since the noise-free output is still unknown, the fol-
lowing auxiliary battery model is used to solve this problem.

x̂0(k) �
Ba z

− 1( )
Aa z

−1( ) · IL(k), (22)

where the parameters in the auxiliary battery model come
from the estimation results of the previous step.

After the measurement prefiltering process, the pa-
rameters in the battery model are updated as the following
equations:

θ̂(k) � θ̂(k − 1) + La(k) · yf1(k) − φT(k) · θ̂(k − 1)( ),
(23)

La(k) � P̂a(k − 1) · φ̂(k) · σ2 + φT(k) · P̂a(k − 1) · φ̂(k)[ ]− 1
,

(24)
P̂a(k) � P̂a(k − 1) − La(k) · φ

T
(k) · P̂a(k − 1), (25)

where θ(k) � a1 a2 b0 b1 b2[ ]T, φ(k) � −yf1(k − 1)[
−yf1(k − 2) − ILf1(k) − ILf1(k − 1) − ILf1(k − 2)]T,
φ̂(k) � −x̂of1(k − 1) −x̂of1(k − 2) −ILf1(k) −ILf1(k − 1)[
−ILf1(k − 2)]T.

According to the previous steps, the RIV is able to
identify the parameters of the battery model with mea-
surement noise. *e main steps of the RIV estimation are
summarized as follows:

Step 1. Parameters identification of the ARMA noise
model: Prefiltering v(k) and e (k) forms vf2

(k) and
ef2(k). Using auxiliary noise model (equation (19))
to calculate ê(k) and equation (15) for calcu-
latingv̂f2(k). High-order ARmodel of v (k) is selected
to obtain ẽf2(k). Equations (16)–(18) are then applied
to estimate the parameters in the ARMA noise
model.

Step 2. Parameters identification of the battery model:
Prefiltering y (k), xo (k) and IL(k)to receive the vari-
ablesyf1

(k),xof1(k), andILf1(k). *e auxiliary battery
model equation (22) is used to calculate x̂of1(k). Af-
terwards, equations (23)–(25) are used to estimate the
parameters in the battery model.

Step 3. Update the covariance matrix: *e covariance

matrices P̂a and P̂e can be updated according to the

new input φ̂(k) and ψ̂(k), P̂a � σ2·

[∑Ni�1 φ̂(k) · φ̂T(k)]− 1, P̂e � σ2 · [∑Ni�1 ψ̂(k) · ψ̂T(k)]− 1.

4. Simulation Validation

Current pulse profile is used in simulation to validate the
performance of the parameter identification method in this
paper. More specifically, the current pulse is applied to the
ECM in simulation for verifying the advantage of RIV in
parameters identification under measurement noise con-
dition. RIV is compared with traditional RLS to show its
improvement in parameter identification.

For simplifying the parameter identification process, the
voltage source in the ECM is omitted. *e equivalent circuit
in Figure 1 is used for the validation of the parameter
identification method. *e true values of the parameters in
simulation are listed in Table 1. *e two-time constants of
the RC networks are different from each other, which
represent the fast dynamic and slow dynamic, respectively.

White Gaussian noises with specific variances are added
to the battery terminal voltage in simulation. *e standard
deviations of the noise are set to 1mV and 10mV, re-
spectively, in this paper [48]. In order to evaluate the per-
formance of the parameter identification method, Monte
Carlo simulations are carried out for 10 times. *e initial
values of all the parameters are chosen to be zero and the
initial covariance matrix is set to 1105 for both RIV and RLS.
*e order of noise model in the Box-Jenkins model is set to
1. As seen from the Bode plots in Figure 3, the identified
results from traditional RLS have clearly bias error in
Figure 3(a). *e deviation becomes larger in all the fre-
quencies when large standard deviations of noises are added
to the measurement. Even for the lower noise level, the
identified results are still obviously biased from the true
system for RLS. As shown from the results in Figure 3(a),
traditional RLS is quite sensitive to measurement noise. On
the contrary, the results of RIV in Figure 3(b) stay close to
the true transfer function in all frequencies regardless of the
measurement noise, which proves the validation of the
parameter identification method in this paper.

*e simulation results of the traditional RLS and the RIV
are shown in Table 2.*e estimation results from RIV clearly
converge to the true values in the simulation, while the
estimated parameters in RLS converge to the wrong values.
It is clearly seen from the results with the 10mV standard
deviation of the measurement noise. *e estimated pa-
rameters are further transformed into the RC parameters in
Table 3. As shown in Table 3, the RC parameters from RIV
are much closer to the reference than RLS.

5. Experimental Test

To further validate the parameter identification method in
the real battery, the measurement from LiFePO4 battery is
applied to the RIV estimation. As shown in Figure 4, the
experimental tests are carried out on a battery test bench
including a host computer, a MACCOR 4000 series test
station, and a LiFePO4 battery.*e specific current is used to
charge and discharge the battery in the test chamber. *e
measurement data is sent back to the host computer for
further analysis. *e accuracy is ± 0.01%+ 1 digit for the
voltage measurement and ± 0.02%+ 1 digit for the current
measurement. *e nominal capacity of the LiFePO4 battery
used in this paper is 10Ah, and the range of the battery
voltage is between 2.0V and 3.65V.

In order to validate the online parameter identification
method in this paper, New European Driving Cycles
(NEDC) is used to discharge the LiFePO4 battery. *e
ambient temperature is set to 25°C in the test chamber and
the sample time is 1 second for all the tests. A scaled multiple
NEDC driving cycle is used to discharge the battery to its
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cut-off voltage. *e detailed measurement during the NEDC
profile is shown in Figure 5. *e battery terminal voltage
decreases much faster in lower SOC area. *e OCV of the
battery in this experiment is measured with 5% SOC interval
under charge and discharge condition, respectively. *e
average OCV between charge and discharge condition is
used to establish the OCV-SOC relationship, as shown in
Figure 6. We fit an eighth-order polynomial function via
quadratic optimization by using MATLAB “quadprog” for
obtaining the coefficients [49]. After constraints the di-
minishing OCV with the decrease of SOC, the OCV-SOC
function is represented as follows:

OCV � −330.2741 · SOC8
+ 1507.8350 · SOC7

− 2869.7023 · SOC6

+ 2949.8632 · SOC5
− 1773.9467 · SOC4

+ 632.0383 · SOC3
− 128.9882 · SOC2

+ 13.8940 · SOC + 2.6371.

(26)

*e estimated parameters of the two RC ECM during the
calculating process of RLS and RIV are shown in Figures 7
and 8. Although both RLS and RIV are able to accurately
estimate the battery internal resistance, RIV is possible to

Table 1: Parameters of the battery model in simulation.

Parameters R0 R1 C1 R2 C2 τ1 τ2

Value 0.0151 0.0045 1261 0.0099 5987 5.6745 59.2713
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Figure 3: Simulation results of the parameter identification methods with different measurement noise levels. (a) Traditional RLS. (b) RIV.

Table 2: *e direct results of the parameter identification method.

Parameters a0 a1 b0 b1 b2

10mV
RLS 0.0057 0.0135 0.0140 8.2493e− 04 0.0056
RIV −1.8201 0.8229 0.0151 −0.02655 0.01155

1mV
RLS −0.2201 −0.2521 0.0146 −0.0025 −0.0013
RIV −1.8217 0.8244 0.0151 −0.02662 0.01160

True value −1.822 0.8244 0.0151 −0.02661 0.01159
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Table 3: *e identified parameters in the two RC ECM with 0.01mV noise.

Parameters R0 R1 C1 R2 C2 τ1 τ2

RLS 0.0151 0.0011 1820.9 0.0100 2045.8 2.0100 20.5340
RIV 0.0151 0.0045 1260.9 0.0099 5986.7 5.6740 59.2691
True value 0.0151 0.0045 1261 0.0099 5987 5.6745 59.2713

Power
connection Battery test station
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Voltage and
current

measurement

Host computer

Figure 4: Structure of the test bench.
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2.5
0.0 0.1 0.2 0.3 0.4 0.5

SOC

O
C

V
 (

V
)

0.6 0.7 0.8 0.9 1.0

2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

Discharge

Charge

Average OCV

Figure 6: OCV-SOC relationship.
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obtain more reasonable estimation for the rest parameters.
Especially, the estimation results of C1 and C2 in RLS are
oscillated in a wide range in Figure 8, while the variation of
the C1 and C2 in RIV are more reasonable as shown in
Figure 8. In order to validate the performance of the two RC
ECM, the identified parameters from RLS and RIV are
substituted into the two RC ECM. *e prediction of the
battery terminal voltage is shown in Figure 9. *e terminal
voltage from the two algorithms stay close to the mea-
surement, but the details in Figure 9 show that the two RC
ECM using the parameters from RIV is closer to the ref-
erence. *e results are confirmed by Figure 10, which the
absolute errors of the predicted terminal voltage are cal-
culated. As shown in the enlarged figure of Figure 10, the
absolute error of the terminal voltage with the estimated
parameters from RIV is lower than that from RLS. In order

to verify the complexity of the proposed method, the
computing time on a laptop (1.6GHz CPU/64-bit system/
MATLAB 2019b) is calculated. After 10 times evaluation, the
average computing time for each step is only 0.001 s, which
proves the good efficiency of the RIV estimation.

*e mean value of the identified parameters during the
discharging profile and the performance of the two RC ECM
are evaluated in Table 4. *eMean Absolute Error (MAE) of
the terminal voltage using parameters from RIV is 0.0219V,
and it is 0.0287V for RLS.*e RMSE of the RIV is also lower
than using the parameters from RLS. *is is mainly because
the identified time constants in the two RC ECM are more
reasonable in RIV as shown in Table 4. *erefore, combined
with the results from simulation in the previous section, the
advantages of RIV in identifying the parameters under
measurement noise are proved compared with RLS.
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Figure 8: *e identified parameters from RIV.
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6. Conclusion

*is paper firstly uses the RIV to identify the parameters of the
two RC ECM in battery modelling area, which facilities
obtaining more reasonable parameters online with the dis-
turbance in themeasurement noise. Traditional RLS is sensitive
to the noise in the measurement, which is possible to be solved
by the data-filtering technology in the RIV. *e battery Box-
Jenkins model for parameter identification is established at
first. With the benefit of the auxiliary battery model and the
auxiliary noise ARMA model, RIV is able to identify all the
parameters in Box-Jenkins model separately with the prefil-
tered measurement. High-order AR model estimation is ap-
plied to independently generate the input of the noise model.
*e simulation of the equivalent circuit with different noise
level proves the validation of RIV in dealing with the mea-
surement noise. While traditional RLS fails to coverage to the
true value, RIV is still able to accurately estimate the parameters
in simulation. *e measurement from a LiFePO4 battery
further proves the validation of RIV in parameter identifica-
tion.*e predicted terminal voltage of the two RC ECM shows
that using the identified parameters from RIV is more accurate
than from RLS, because the identified time constants from RIV
are more reasonable. Moreover, the variations of the param-
eters (Figures 7 and 8) in the estimation process are more
appropriate for RIV compared with RLS.

Future work is needed for quantitative analysis of the
measurement noise in experimental validation so that the
advantages of RIV can be confirmed.
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