
Online Piece-wise Linear Approximation of Numerical
Streams with Precision Guarantees*

Hazem Elmeleegy#, Ahmed K. Elmagarmid#, Emmanuel Cecchet‡, Walid G. Aref #, Willy
Zwaenepoel§

#
Computer Science Department, Purdue University

{hazem,ake,aref}@cs.purdue.edu
‡
Computer Science Department, University of Massachusetts

cecchet@cs.umass.edu
§
EPFL

willy.zwaenepoel@epfl.ch

ABSTRACT

Continuous “always-on” monitoring is beneficial for a number of

applications, but potentially imposes a high load in terms of

communication, storage and power consumption when a large

number of variables need to be monitored. We introduce two new

filtering techniques, swing filters and slide filters, that represent

within a prescribed precision a time-varying numerical signal by a

piecewise linear function, consisting of connected line segments

for swing filters and (mostly) disconnected line segments for slide

filters. We demonstrate the effectiveness of swing and slide filters

in terms of their compression power by applying them to a real-

life data set plus a variety of synthetic data sets. For nearly all

combinations of signal behavior and precision requirements, the

proposed techniques outperform the earlier approaches for online

filtering in terms of data reduction. The slide filter, in particular,

consistently dominates all other filters, with up to twofold

improvement over the best of the previous techniques.

1. INTRODUCTION

Continuous monitoring in distributed environments is widely

applied in many contexts including sensor networks, moving

objects, stock market, computer networks and distributed systems.

Continuous queries over the incoming data streams are posed

through a central Data Stream Management System (DSMS) to

obtain useful information from the raw data. In addition to the

benefits of online monitoring, it is often desirable to store the

results for later offline analysis.

The number of data streams can get quite large because of the

many objects that may need to be monitored. A high sampling

frequency is desirable as it helps provide a detailed and accurate

model of the monitored signal. For large and complex systems,

where continuous monitoring is most useful, the combination of

these requirements leads to a very large volume of monitoring

data, imposing a substantial burden on the network and the

repository used for storing the monitoring data. Even more

seriously, in sensor network applications, the sensors’ battery

lifetime (and hence the lifetime of the whole sensor network) is

predominantly dependant on the amount of transmitted data [14].

Much work has addressed the problem of compressing time

series data by a given ratio, while attempting to minimize the

approximation error (See [22] for a review of time series

approximations). Less attention, however, has been given to the

dual problem of guaranteeing a given error bound, while

attempting to maximize the compression ratio. For both problems,

piece-wise linear approximation has been one of the most widely

used and accepted methods [22]. We generally refer to the

techniques used to solve the second problem as filtering

techniques. Roughly speaking, the filter predicts future data

values, and if the actual measured value falls within the error

bound around the predicted value, no new recording is made. If

during steady-state operation the data follows a certain pattern,

filtering can substantially reduce the amount of monitoring data

that needs to be transmitted and recorded.

In this paper we present two novel filtering techniques: swing

filters and slide filters. Their compression power exceeds by a

large margin the best of the previous filtering techniques, with up

to twofold improvement for the slide filter. They also impose a

low overhead, which makes them very practical for overhead-

sensitive applications like sensor networks.*

Essentially, the newly proposed filters approximate time-

varying numerical signals by a piecewise linear function,

consisting of connected line segments in the case of the swing

filter, and (mostly) disconnected line segments in the case of the

slide filter. At any point in time, each of the filters maintains a set

of possible line segments, all obeying the invariant that they

represent the data observed so far. As each new data point arrives,

the set is reduced to maintain this invariant.

Swing and slide filters improve over earlier cache and linear

filters in that the latter two only maintain a single line segment at

any given time, while the former two maintain a set of such line

segments. As a result, swing and slide filters can capture more

future data points within their approximation, and thus further

reduce the number of recordings that need to be made. By

allowing disconnected line segments, slide filters can capture an

even larger set of future data points, at the expense of two

recordings per line segment instead of one in the case of the swing

*
 Part of this work was done while the first and third authors were at

INRIA Rhône-Alpes, France. Walid G. Aref's research is partly
supported by NSF under Grant Number IIS-0811954.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

filter, which always produces connected line segments.

While the compression power of our proposed filters comes

from the fact that they postpone their selection of line segments as

long as possible, this postponement also introduces a lag between

the transmitter and receiver. We thus allow applications to set an

upper bound for this lag by limiting the maximum number of data

points a transmitter can process locally before updating the

receiver. In other words, applications can choose the tradeoff

point between the compression ratio and the length of the lag.

In practice, many applications do not consider the timeliness

of data delivery as their top priority. For example, online stock

quotes and foreign exchange rates are usually lagging a few

minutes behind the actual market data. Also, it is very common in

the area of sensor networks to give higher priority to data

reduction (which leads to transmission rate reduction and

ultimately power conservation) over the timeliness of data

delivery (e.g. [9,18,19]).

In our work, we focus on the class of applications which can

tolerate a bounded error and a bounded lag in the received data

points (where both bounds can be set by the application), in return

of a higher compression ratio.

Moreover, we observed that when multiple monitored signals

are correlated, compressing them together as a multi-dimensional

signal is more effective compared to compressing each signal

independently. This was like an extra bonus because our design

for the swing and slide filters was general enough to enable

processing multi-dimensional as well single-dimensional signals.

We have implemented swing and slide filters, in addition to

cache and linear filters, and applied them to a real data set from

the oceanography domain and a wide variety of synthetic data

sets. In summary, the contributions of this paper are:

1. The design and implementation of two new types of filters

for the online piece-wise linear approximation of multi-

dimensional data streams: swing and slide filters.

2. A theoretical analysis including the proofs of correctness

of the two proposed filtering techniques.

3. An extensive experimental study showing the effect of

various combinations of signal behavior and precision

requirements on the effectiveness of the filtering

techniques, using both real and synthetic data sets.

4. The demonstration that slide filters do a better job of data

reduction than swing filters, which in turn generally

outperform previously introduced cache and linear filters.

Because of the slightly lower overhead of the swing filters,

it may be favored over the slide filter for applications that

are extremely overhead-sensitive.

The outline of the rest of this paper is as follows. Section 2

introduces the problem and provides some background on

filtering by piecewise linear functions. Sections 3 and 4 give the

design details of the swing and slide filters, respectively. Section

5 presents the experiments and results. Related work is discussed

in Section 6. Finally, Section 7 concludes the paper.

2. ONLINE COMPRESSION

2.1 Problem Statement and Notations

Given a data signal in the form of an on-line sequence of

discrete data points (tj,Xj), where j∈[1,n] and Xj is a d-dimensional

vector (x1j,x2j,…xdj), we wish to approximate this signal using a

piece-wise linear function, such that the error for each dimension

xi in each of the original data points does not exceed some preset

value εi representing the precision width, i∈[1,d]. The goal is to

record only the successive line segments, and not the individual

data points, thereby reducing the overhead of recording the signal.

Moreover, if the approximated signal is to be sent from a

transmitter to a receiver, the receiver should not be lagging behind

the transmitter by a number of data points more than mmax_lag.

Note that the error constraint we choose (L∞ metric)

guarantees a certain quality level for each data point. This

constraint is commonly used in the literature on online filtering

techniques (e.g. [10,15,16,18,21]).

We assume that K line segments (g1,g2,…gK) will be

generated, where g1 can represent the data points

((t1,X1),(t2,X2),…(tj1
,Xj1

)) and gk, where k∈[2,K], can represent the

data points ((tjk-1+1,Xjk-1+1),(tjk-1+2,Xjk-1+2),…(tjk
,Xjk

)), and hence jK=n.

We denote the value j1 as m1 and the value (jk – jk-1 + 1) as mk (i.e.

mk is the number of data points approximated by gk).

We distinguish between two classes of the piece-wise linear

functions used for approximation. These functions can either be in

the form of connected line segments or disconnected line

segments. In the former case, only one recording needs to be made

per line segment, unlike the latter case, where two recordings are

needed to define each of the segments. Disconnected line

segments have, however, the potential to represent the original

variable with fewer segments, (and thus fewer recordings), since

they have an added degree of flexibility in choosing the starting

location of each line segment.

We refer to the points of the original signal as the data points.

We refer to the endpoints of the line segments as the recordings.

If g(k-1) and gk are disconnected, k∈[2,K], then the recording at the

beginning of gk is denoted by (t(k-1)’,X(k-1)’) and that at the end of gk

is denoted by (tk,Xk). If g(k-1) and gk are connected, then there is

one recording for gk at its end denoted by (tk,Xk). The two

recordings for g1 are denoted by (t0’,X0’) and (t1,X1). When a data

point is not recorded, we say that it is filtered out. We refer to the

interval during which the observed data points can be represented

by a particular line segment as a filtering interval. There are K

filtering intervals, where the kth interval is defined by [t1,tj1
] when

k=1 and [tjk-1+1,tjk
] when k∈[2,K]. Finally, we use the notation

Vd(i,v) to denote a d-dimensional vector whose all dimensions are

zeroes except the xi dimension whose value is v. For example

V4(3,5) = (0,0,5,0), and (9,9,9,9)- V4(3,5) = (9,9,4,9). Figure 1

shows a sample signal and a possible piece-wise linear

approximation illustrating most of the notations described above.

εi

2εi

3εi

4εi

5εi

6εi

7εi

8εi

9εi

g1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
t11 t12 t13 t14 t15

g2

g3 g4

t16

1st filtering
interval (m1=5)

2nd filtering
interval (m2=3)

3rd filtering
interval (m3=4)

4th filtering
interval (m4=4)

x1i

x2i

x3i

x4i

x5i

x6i

x7i

x8i

x9i

x10i

x11i

x12i

x14i

x13i x15i

x16i

connected
line segments

disconnected
line segments

(t0’,X0’)

(t1,X1)

(t2,X2)

(t3,X3)
(t4,X4)

(t2’,X2’)

data point

recording

Figure 1. A sample data signal and its piece-wise linear

approximation (projected on the t-xi plane)

2.2 Earlier Approaches

For piece-wise constant approximation, the simplest solution

is to use a cache filter. A cache filter predicts that the next

incoming data point will have the same values as the previous

one, within the error bound of εi for each dimension i, i∈[1,d]. As

long as the incoming data points satisfy the error constraint, the

prediction is considered valid, and no new recordings are made.

An incoming data point is recorded only if it violates the error

constraint. This approach was the one considered in [21], while

two of its variations were presented in [18], where each generated

horizontal line segment is determined by either the midrange or

the mean of the data points it represents rather than only by the

first of these data points.

For piece-wise linear approximation, the intuitive approach is

to use what we refer to as a linear filter. The idea of the linear

filter was presented in [10,15,16]. Instead of predicting that new

data points have values close to those of the previous ones, a

linear filter predicts that they will always fall in the proximity of a

line segment, which is not necessarily horizontal. The slope of the

line is defined by the first two data points it represents. Whenever

a new data point falls more than εi units away from the predicted

line segment, for any dimension i, i∈[1,d], a new line segment is

started. Linear filters can produce connected or disconnected line

segments. In the connected case, the current line segment is

terminated by the point predicted by that line segment at the time

of the last data point that it approximates, and that point and the

new data point form the next line segment. In the disconnected

case, the current line segment is terminated as before, but the new

line segment is defined by the new data point and the next.

2.3 New Compression Mechanisms

We propose two new types of filters that produce superior

results to cache and linear filters. The two new filtering

algorithms we propose address both classes of approximating

functions. Swing filters generate connected line segments, while

slide filters generate a mixture of connected and disconnected line

segments. The slide filter first attempts to get the benefits of

disconnected line segments, and then, whenever possible, it

generates connected line segments that do not sacrifice any of

those benefits.

Both types of filters maintain a set of candidate line segments

to approximate the current set of data points. The intuition is to

postpone the selection of the line segment that represents these

data points as long as possible. By doing so, the filter increases

the probability that further data points can be represented without

a new recording being necessary.

3. SWING FILTERS

In this section, we show the mechanisms used in the swing

filters for filtering out incoming data points, and for selecting the

best possible points for recording.

3.1 Filtering Mechanism

We explain the intuition behind the filtering mechanism of

swing filters by contrasting them with linear filters.

As mentioned in Section 2.2, the linear filter always maintains

a single line segment to approximate the data points. In contrast,

the swing filter maintains a set of line segments for each filtering

interval k, all starting from the same initial point. Along each

dimension xi, all the line segments lie between an upper

hyperplane ui
k and a lower hyperplane li

k, which are both

perpendicular to the t-xi plane. Therefore, each of the hyperplanes

can be defined using two points only. Each line segment in the set

can represent all the data points observed so far, within the

specified error constraints εi, i∈[1,d]. Each time a new data point

occurs whose xi value lies between ui
k and li

k or at most εi units

above ui
k or below li

k, for every i∈[1,d]; the data point is filtered

out, and the set is reduced to maintain the invariant that all line

segments in the set can represent all data points, including the

new one. If a new data point with an xi value falling outside the

specified region, for any i∈[1,d], a new recording is made and a

new filtering interval is started.

Example 3.1
We consider the first five data points of a signal of the form

(tj,Xj), j∈[1,5]. Since, for each data point, the filtering mechanism

is applied independently for each dimension, we only consider the

xi values of the five data points shown in Figure 2a. We assume,

without loss of generality, that for these data points, xi values are

always the cause for starting a new filtering interval, regardless of

which filter type is used. With the linear filter, after data points

(t1,X1) and (t2,X2) have occurred, the approximating line is

defined. (t3,X3) falls within εi units from the defined line, but

(t4,X4) does not and thus requires a new recording (see Figure 2b).

In contrast, rather than immediately settling on one line when

(t2,X2) arrives, a swing filter maintains a set of lines, bounded by

upper and lower hyperplanes along each dimension (the

hyperplanes for the xi dimension, ui
1 and li

1, appear as lines in the

t-xi plane). ui
1 is defined by the pair of points (t1,X1) and

(t2,X2+Vd(i,εi)), while li
1 is defined by the pair of points (t1,X1) and

(t2,X2-Vd(i,εi)) (see Figure 3a). Any line segment between ui
1 and

li
1 can represent the first two data points in the ith dimension.

When (t3,X3) arrives, in order to maintain the invariant that all

lines within the set can represent all data points so far, li
1 needs to

be “swung up”, and ui
1 needs to be “swung down” --- hence the

name “swing filter”. The new li
1 is defined by the pair of points

(t1,X1) and (t3,X3-Vd(i,εi)) (see Figure 3b). Lines below this new li
1

cannot represent point (t3,X3). Similarly, the new ui
1 connects the

pair of points (t1,X1) and (t3,X3+Vd(i,εi)). Lines above this new ui
1

cannot represent (t3,X3).

While the linear filter of Figure 2b cannot represent (t4,X4),

the swing filter can do so by “swinging down” ui
1 (see Figure 3c),

such that it connects (t1,X1) and (t4,X4+Vd(i,εi)). The lower line li
1

need not be changed to maintain the invariant for (t4,X4). To

complete the example, (t5,X5) cannot be represented by the current

set of lines, and thus a new recording needs to be made. ⁪

(a) (b)

Figure 2. Data points pattern and the linear filter

(a) (b)

(c)

Figure 3. Filtering mechanism in swing filter

3.2 Recording Mechanism

Initially, the swing filter records the first incoming data point.

Any later recording should represent the end point of the current

approximating line segment and the start point of the new one.

Hence, connected line segments are produced. A straightforward

approach would be to simply record the last data point observed in

each filtering interval. Instead, however, we choose a recording

such that the generated line segment, gk, for the just completed kth

filtering interval minimizes the mean square error for the data

points observed in that interval. In that sense, after ensuring that

we satisfied the error constraint and did our best effort in

compression, we attempt to minimize the error further, as a

secondary objective, where compression is the primary objective.

More formally, it is required to find the slope of gk (call it aig
k)

in the t-xi plane, i∈[1,d], such that (i) gk minimizes the mean

square error in the xi dimension for the data points observed in the

kth filtering interval ((tjk-1+1,Xjk-1+1),(tjk-1+2,Xjk-1+2),...(tjk,Xjk
)), (ii) gk

passes through the previous recording (tk-1,Xk-1), and (iii) aig
k

occurs between the slopes of ui
k and li

k (call them aiu
k and ail

k

respectively). Once aig
k is known, and with the knowledge of the

previous recording (tk-1,Xk-1), the new recording (tk,Xk) can be

obtained.

To get aig
k, consider that the equation for gk in the t-xi plane is

(1) ˆ k

ig

k

igi btax +=

Since gk has to pass through (tk-1,Xk-1), then

(2))(ˆ 11 −− +−= k

i

kk

igi xttax

where xi
k-1 is the xi dimension of Xk-1. The mean square error can

be minimized in each dimension independently. For the xi

dimension, it is given by

(3))ˆ(
1

2

1

∑
+= −

−=
k

k

j

jj

ijij

k

i xxE

where ijx̂ is the value of ix̂ at t=tj. Substituting (2) into (3) gives

(4))))(((
1

211

1

∑
+=

−−

−

+−−=
k

k

j

jj

k

i

k

j

k

igij

k

i xttaxE

By differentiating Ei
k w.r.t aig

k and equating to zero, and

considering that aig
k∈[ail

k,aiu
k], we get

(5))),,max(min(
k

il

k

iu

k

ig

k

ig aaAa =

where

(6)

)(

))((

1

21

1

11

1

1

∑

∑

+=

−

+=

−−

−

−

−

−−

=
k

k

k

k

j

jj

k

j

j

jj

k

j

k

iij

k

ig

tt

ttxx

A

Calculating the desired value of xi
k at t=tk which minimizes Ei

k

can now be performed by substituting (5) and (6) into (2). Note

that the two summations in (5) can be calculated incrementally as

each new data point is observed. Thus, there is no need to

maintain the data points themselves; i.e. the space needed is O(1).

By repeating the process for all dimensions, we can find the

optimal recording (tk,Xk).

3.3 Algorithm and Analysis

With the above description of the filtering and recording

mechanisms in the swing filter, the whole algorithm can be now

outlined (Algorithm 1). getNext() is function that reads the next

data point, and returns null when no more data points exist.

The state information that needs to be maintained by the

swing filter is the initial point in the current filtering interval, k;

the last observed data point; and the slopes of ui
k and li

k, i∈[1,d].

In other words, the swing filter algorithm is O(1) in time and

space complexity.

Algorithm 1: Swing Filter
// initialization

1. (t1,X1) = getNext();(t2,X2) = getNext();

2. Make a recording: (t0’,X0’) = (t1,X1);

3. Start a new filtering interval with ui
1 passing through (t1,X1)

and (t2,X2+Vd(i,εi)); and li
1 passing through (t1,X1) and (t2,X2-

Vd(i,εi)), for every dimension xi, i∈[1,d];

4. set k = 1;

//main loop

5. while (true)

6. (tj,Xj) = getNext();

7. if (tj,Xj) is null or (tj,Xj) is more than εi above ui
k or below li

k

in the xi dimension for any i∈[1,d] //recording mechanism

8. Make a new recording: (tk,Xk), such that tk=tj-1, xi
k falls

between ui
k and li

k, and xi
k minimizes Ei

k, for every

dimension xi, i∈[1,d];

9. Start a new filtering interval with ui
(k+1) passing through

(tk,Xk) and (tj,Xj+Vd(i,εi)); and li
(k+1) passing through (tk,xk)

and (tj,Xj-Vd(i,εi));

10. set k = k+1;

11. if (tj,Xj) is null //end of signal

12. return;

13. else //filtering mechanism

14. for each dimension xi, i∈[1,d]

15. if (tj,Xj) falls more than εi above li
k in the xi dimension

16. “Swing up” li
k such that it passes through (tk,xk) and

(tj,Xj-Vd(i,εi));

17. if (tj,Xj) falls more than εi below ui
k in the xi dimension

18. “Swing down” ui
k such that it passes through (tk,xk)

and (tj,Xj+Vd(i,εi));

We note that if the number of data points observed during a

certain filtering interval reaches the maximum allowable value by

the receiver mmax_lag, then the swing filter can simply drop its

maintained set of candidate line segments except for one (e.g. the

line segment minimizing the mean square error). The filter will

then update the receiver with the line segment it kept, and

proceeds as a standard linear filter until the end of the filtering

interval. For the next interval, it will switch back to proceeding as

described in Algorithm 1.

3.4 Proof of Correctness

Theorem 3.1 All the original data points of a signal compressed

using the swing filter occur within the error constraint from the

generated piece-wise linear approximation.

Proof. It is obvious that for every filtering interval k, the first two

data points are within εi from each of ui
k, li

k, and gk (since gk is

guaranteed to occur between ui
k and li

k, as indicated in line 8 in

Algorithm 1) for every dimension xi, i∈[1,d]. If we assume that

the first m data points in the kth filtering interval are within εi from

ui
k, li

k, and gk, then based on the method used to adjust ui
k and li

k

when the (m+1)th data point arrives (lines 14-18 in Algorithm 1),

we can conclude that the new versions of ui
k and li

k will be within

εi from the (m+1)th data point, and will both occur between the old

versions of ui
k and li

k, thereby they will also be within εi from the

first m data points. Consequently, gk will still be guaranteed that it

is within εi from the first m data points. By mathematical

induction, all data points observed in any filtering interval k will

be within εi from gk for every dimension xi, i∈[1,d] . ⁪

4. SLIDE FILTERS

Slide filters are different from swing filters in that they may

generate disconnected line segments as an approximation for the

original data points. This gives them more flexibility when

choosing line segments, at the expense of having to make two

recordings for a single line segment if it is disconnected from its

neighboring segments. In what follows, we explain the filtering

and recording mechanisms used by the slide filters.

4.1 Filtering Mechanism

Similar to the swing filter, the slide filter maintains a set of

lines which occur between an upper hyperplane ui
k and a lower

hyperplane li
k for each dimension xi and filtering interval k. Unlike

the swing filter, the lines need not start from the end point of the

previous line segment. This allows the slide filter to have a larger

set of lines and thus a higher probability to accommodate more

incoming points, without the need for a new recording.

Also similar to the swing filter, a new data point is filtered out

if it occurs between ui
k and li

k, is above ui
k by at most εi, or is

below li
k by at most εi in the xi dimension, for every i∈[1,d].

Otherwise, a recording is made and a new filtering interval is

started. With the arrival of each new data point, ui
k and li

k are

potentially adjusted, i∈[1,d].

The following two lemmas provide the foundation for finding

the new ui
k and li

k when a new data point is observed, i∈[1,d].

Lemma 4.1 Consider a sequence of m data points

((tj1
,Xj1

),(tj2
,Xj2

),...(tjm
,Xjm

)), where there exists a hyperplane that is

perpendicular to the t-xi plane and within εi from all the m data

points in the xi dimension. If ui (li) is a hyperplane with the

following properties

(P1) perpendicular to the t-xi plane

(P2) passing through a pair of points (tjh
,Xjh

-Vd(i,εi)) and

(tjl
,Xjl

+Vd(i,εi)) ((tjh
,Xjh

+Vd(i,εi)) and (tjl
,Xjl

-Vd(i,εi))), such that

tj1
≤tjh

<tjl
≤tjm

(P3) having the minimum (maximum) slope (i.e. dxi/dt) among all

hyperplanes having properties (P1) and (P2)

Then, ui (li) also has the following two properties

(P4) within εi from all m data points in the xi dimension

(P5) higher (lower) than any other hyperplane having properties

(P1) and (P4) in the xi dimension for any t>tjm

Proof. Assume that ui has the properties (P1)-(P3), but not (P4).

Let (tj,Xj) be some data point, where ui is more than εi below or

above it in the xi dimension. If tj<tjl
 and ui is more than εi below

(tj,Xj) in the xi dimension, or tj>tjh
 and ui is more than εi above

(tj,Xj) in the xi dimension, then there exists a hyperplane ui
k’ with

properties (P1) and (P2) that has a smaller slope than that of ui
k. In

particular, ui
k’ will pass through points (tj,Xj-Vd(i,εi)) and

(tjl
,Xjl

+Vd(i,εi)), or (tjh
,Xjh

-Vd(i,εi)) and (tj,Xj+Vd(i,εi)) respectively.

This is a contradiction to property (P3) for ui
k.

If tj<tjh
 and ui

k is more than εi above (tj,Xj) in the xi dimension,

or tj>tjl
 and ui

k is more than εi below (tj,Xj) in the xi dimension,

then there will not exist any hyperplane with property (P1) that is

within εi from data points (th,Xh), (tl,Xl) and (tj,Xj), which is a

contradiction to the description of the m considered data points.

From the previous two contradictions, we conclude that data point

(tj,Xj) does not exist, and ui
k has the property (P4).

Now assume that ui
k has the properties (P1)-(P3), but not (P5).

Then, from the description of the m considered data points, there

has to exist another hyperplane u’
i that has properties (P1) and

(P4) and is higher than any other hyperplane with properties (P1)

and (P4) (including ui) in the xi dimension for some t>tjm
. If u’

i

does not have the property (P2), then we can obtain another

hyperplane u”
i by rotating u’

i counter-clockwise (w.r.t the t-xi

plane) around the t=ti axis, for any ti∈[tj1
,tjm

] such that u”
i does not

pass through any points of the form (tjw
,Xjw

-Vd(i,εi)), where

tj1
≤tjw

<tj≤tjm
, or of the form (tjw

,Xjw
+Vd(i,εi)), where tj1

≤tj<tjw
≤tjm

.

u”
i will have the properties (P1) and (P4) and will be higher than

u’
i in the xi dimension for any t>tjm

, which is a contradiction. Thus,

u’
i must have the property (P2).

Furthermore, since u’
i has the property (P4), then at t=tjh

, u’
i is

higher than or equal to ui in the xi dimension. Since ui has the

minimum slope among hyperplanes having properties (P1) and

(P2), then the slope of u’
i is greater than or equal to that of ui.

Since u’
i is different from ui, then if they have the same slope, u’

i

must be higher than ui at t=tjh
 and t=tjl

 in the xi dimension, which

contradicts the property (P4) for u’
i. Then the slope of u’

i must be

greater than that of ui. However, this implies that u’
i is higher than

ui at t=tjl
 in the xi dimension, which also contradicts the property

(P4) for u’
i. Therefore, u’

i does not exist and ui has the property

(P5). The proof that if li has the properties (P1)-(P3), then it also

has the properties (P4) and (P5) is quite similar. ⁪

Lemma 4.2 Referring to the properties defined in Lemma 4.1,

given a sequence of m data points ((tj1
,Xj1

),(tj2
,Xj2

),...(tjk
,Xjm

)), if

there exists a hyperplane ui (li) with the properties (P1), (P2), and

(P4), then ui (li) also has the properties (P3) and (P5)

Proof. Assume that ui has the properties (P1), (P2), and (P4), but

not (P3). Let u’
i be a hyperplane that has properties (P1) and (P2)

(i.e. it passes through a pair of points (tjh’
,Xjh’

-Vd(i,εi)) and

(tjl’
,Xjl’

+Vd(i,εi)), such that tj1
≤tjh’

<tjl’
≤tjm

), and that the slope of u’
i is

smaller than that of u’
i. Since ui has the property (P4), then it has

to be higher than or equal to u’
i at t=tjh’

 and lower than or equal to

u’
i at t=tjl’

 in the xi dimension. However, this implies that the slope

of ui is smaller than or equal to that of ui, which is a contradiction.

Thus, u’
i does not exist and ui has the property (P3).

Now, assume that ui has the properties (P1), (P2), and (P4), but

not (P5). Let u”
i be a hyperplane that has properties (P1) and (P4),

and is higher than ui for some t>tjm
. Since u”

i has the property

(P4), then u”
i has to be higher than or equal to ui at t=tjh

 and lower

than or equal to ui at t=tjl
 in the xi dimension. However, this

implies that the slope of u”
i is smaller than or equal to that of ui.

Thus, at t>tjm
, u”

i must be lower than or equal to ui, which is a

contradiction. Thus, ui does not exist and ui has the property (P5).

The proof that if li has the properties (P1), (P2), and (P4), then it

also has the properties (P3) and (P5) is quite similar. ⁪

Considering the kth filtering interval, Lemma 4.1 shows how

to limit the search space for ui
k (li

k). In particular, ui
k (li

k) is the

hyperplane with the minimum (maximum) slope (property (P3))

in the set of hyperplanes defined by properties (P1) and (P2). We

will refer to this limited set as Ui
k (Li

k). Lemma 4.2 shows that if

the new data point is within εi in the xi dimension from the

existing ui
k (li

k), then ui
k (li

k) need not be adjusted, and thus the

search in Ui
k (Li

k) is not even needed.

We will shortly show how we can narrow the search space

even further. However, we first explain the details of the filtering

mechanism based on Lemmas 4.1 and 4.2 through an example.

Example 4.1

We again consider the pattern of data points shown in Figure

2a. We also only consider the xi dimension, for the same reasons

explained in Example 3.1.

After the data points (t1,X1) and (t2,X2) arrive, the sets Ui
1 and

Li
1 contain one line each, being ui

1 and li
1 respectively. ui

1 is

defined by the two points (t1,X1-Vd(i,εi)) and (t2,X2+Vd(i,εi)), while

li
1 is defined by (t1,X1+Vd(i,εi)) and (t2,X2-Vd(i,εi)) (see Figure 4a).

After the arrival of (t3,X3), the lines ui1
1 and ui2

1 are added to Ui
1,

where uij
1 connects (tj,Xj-Vd(i,εi)) and (t3,X3+Vd(i,εi)), j∈[1,2].

Based on Lemma 4.1, the new ui
1 is selected as the line with the

minimum slope among ui
1, ui1

1, and ui2
1, which is ui2

1 in this case.

Similarly, the new li
1 is selected as the highest of li

1, li1
1 and li2

1

(constituting the new Li
1), where lij

1 is the line defined by the pair

of points (tj,Xj+Vd(i,εi)) and (t3,X3-Vd(i,εi)), j∈[1,2]. li1
1 is selected

in this case (see Figure 4b). Adjusting the lines ui
1 and li

1 does not

involve rotations around the initial point, and thus they rather

“slide” than “swing” --- hence the name “slide filter”.

The data point (t4,X4), as seen in Figure 4c, can already be

represented by li
1. li

1 has the properties (P1), (P2) and (P4),

thereby, based on Lemma 4.2, it can be directly used as the new

li
1. It is also guaranteed to have the maximum slope among all the

lines in Li
1. ui

1, however, needs to be adjusted to represent (t4,X4).

In the same way as described above, the lines uij
1, j∈[1,3] are

constructed, and then ui2
1, being the lowest of them and ui

1, is

selected as the new ui
1. Finally, (t5,X5) is less than εi below li

1 in

the xi dimension (see Figure 4c), and thus can be represented by it.

Recall that (t5,X5) could not be represented by the swing filter (see

Figure 3c). ⁪

Optimization: The strategy for updating ui
k (li

k) described so far

involves checking all the data points observed in the current

filtering interval, whenever a new data point arrives and

invalidates the current ui
k (li

k). It turns out that we can do much

better. In fact, it is sufficient to check the points on the convex

hull of the observed data points, as will be shown in the following

lemma. The significance of this optimization is that the number of

points on the convex hull can be dramatically smaller than the

total number of data points observed during a filtering interval.

Lemma 4.3 To update ui
k (li

k) during the kth filtering interval of

the slide filter, such that the new ui
k (li

k) satisfies properties (P1),

(P2), and (P3), defined in Lemma 4.1; it is sufficient to check the

points on the convex hull of the data points observed during that

filtering interval along the ith dimension, i∈[1,d].

Proof. We will only prove the lemma for the case when we are

searching for the new ui
k on the arrival of a new data point (tj,Xj)

which invalidates the old ui
k. The proof for the case of li

k should

be similar. According to Lemma 4.1, the new ui
k should be the

minimum-slope hyperplane (P3) chosen from the old ui
k and all

(a) (b)

(c)

Figure 4. Filtering mechanism in slide filter

hyperplanes, which are perpendicular to the t-xi plane (P1) and

passing through (tj’,Xj’-Vd(i,εi)) and (tj,Xj+Vd(i,εi)) (P2), where

(tj’,Xj’) is a data point observed in the current filtering interval.

To see why only the convex hull of the observed data points is

relevant to us, let us first denote that hull in the ith dimension by

Hi, and the convex hulls of the points of the form (tj’,Xj’-Vd(i,εi))

and (tj’,Xj’+Vd(i,εi)) by Hi
- and Hi

+ respectively.

Now, if point (tj’,Xj’) occurs inside Hi, then its corresponding

ui
k (call it uij’

k) which passes through (tj’,Xj’-Vd(i,εi)) and

(tj,Xj+Vd(i,εi)) can always be rotated around (tj,Xj+Vd(i,εi))

clockwise (to decrease its slope) until it touches a vertex in Hi
-

(call it (tj”,Xj”-Vd(i,εi))). The corresponding ui
k (call it uij”

k) has a

smaller slope than uij’
k, thereby overriding it. Thus, there is no

need to check (or maintain) the data points observed inside Hi. ⁪

Following from the proof of the above lemma, we can further

conclude that even across the data points occurring at the vertices

of Hi, we are only interested in one whose corresponding ui
k is

tangent to Hi
-. In particular, the one where that tangent cannot be

rotated clockwise any further.

Hence, the filtering mechanism for the slide filter reduces to

solving two key problems: the incremental maintenance of Hi, and

finding the tangent to Hi
- from an outside point. Both problems

are well-known in the area of computational geometry [3].

The incremental convex hull algorithm can be summarized as

follows. Points on Hi are divided into two lists representing an

upper hull and a lower hull, where the points in each list are

sorted by time. The two lists overlap in their first and last points,

being the first- and last-observed data point in the current filtering

interval. When a new data point arrives, it is inserted at the end of

both lists. Then each list is updated separately.

Updating a list is achieved by examining streaks of three

consecutive points starting with the most recent, and then moving

backwards. If the direction of the “turn” made at the middle point

of the three examined points is opposite to the original turning

direction for the list (it should be clockwise for the upper hull and

anti-clockwise for the lower hull as we move forward in time),

then that middle point is removed from the list. Once a streak of

three points is reached where the middle point is not removed, the

update process stops for that list. For more details about this

algorithm, the reader is referred to [3].

To find the tangent to Hi
-, we can simply scan its vertices until

we find the vertex that minimizes the slope of ui
k. An even more

efficient algorithm can be found in [6].

4.2 Recording Mechanism

For each filtering interval k, the set of candidate line

segments, that can represent all the data points observed in that

interval, are those segments occurring between ui
k and li

k, for

every i∈[1,d]. In other words, a candidate line segment must pass

through the intersection of ui
k and li

k, i∈[1,d]. For the first filtering

interval [t1,tj1
], the generated line segment g1 is chosen such that it

minimizes the mean square error for the data points observed

during that interval along each dimension xi, i∈[1,d]. This is

achieved exactly in the same way described in Section 4.1, where

the slope of g1 is decided independently for each dimension. The

start point of g1 occurs at t=t1, while its end point is only decided

after the second filtering interval [tj1+1,tj2
] ends. By delaying that

decision until the end of the second filtering interval, we might be

able to generate two connected line segments rather than two

disconnected ones. The criteria for generating connected line

segments and the way the connection point is chosen will be

described shortly. If the two line segments (g1 and g2) could not

be connected, then g1 will end at t=tj1
 and g2 will start at t=tj1+1,

such that it minimizes the mean square error of the data points

observed in the second filtering interval. The generated line

segments for the following filtering intervals are chosen in the

same manner, where the end point of gK occurs at t=tjK
=tjn

.

When the kth filtering interval ends at t=tjk
, k∈[2,K], we need

to determine whether gk can be chosen such that it intersects with

g(k-1) or not. By that time, the start point and slope of g(k-1) are

known. For each dimension xi, there can be an interval [αi
(k-1),βi

(k-

1)] where gk can intersect with g(k-1), such that they can represent

all the data points in the (k-1)th and kth filtering intervals within an

error bounded by εi in that dimension. The intersection point can

be chosen at any time t(k-1) in the interval [α(k-1),β(k-1)] (if exists),

which is the intersection of all the intervals [αi
(k-1),βi

(k-1)], i∈[1,d].

The following lemma shows when the interval [αi
(k-1),βi

(k-1)]

exists, and how to calculate it for every dimension xi, i∈[1,d].

Before presenting the lemma, we will define some variables,

which are also illustrated in Figures 5a and 5b. Let (1)

(ti
k,Vd(i,xi

k)) be a point on the intersection of ui
k and li

k, (2) si
(k-1)

and qi
(k-1) be the hyperplanes perpendicular to the t-xi plane,

passing through the intersection of ui
k and li

k, and intersecting

with li
(k-1) and ui

(k-1) respectively at tj(k-1)
, (3) ci

k and ci
k’ be the

intersection times of g(k-1) with ui
k and li

k respectively, (4) di
k and

di
k’ be the intersection times of g(k-1) with si

(k-1) and qi
(k-1)

respectively (5) ei
k and ei

k’ be max(ci
k,di

k’) and max(ci
k’,di

k’)

respectively, and (6) fi
k and fi

k’ be the intersection times of g(k-1)

with li
k and ui

k respectively.

Lemma 4.4 If (ti
k,Vd(i,xi

k)) is below (above) g(k-1), fi
k (fi

k’) is less

than tj(k-1)
, and li

k is above li
(k-1) (ui

k is below ui
(k-1)) at t=tjk-1

 in the xi

dimension, then there exists αi
(k-1)=ei

(k-1) (αi
(k-1)=ei

(k-1)’) and βi
(k-

1)=fi
(k-1) (βi

(k-1)=fi
(k-1)’), such that gk can be chosen to intersect with

g(k-1) at any time t(k-1)∈[αi
(k-1),βi

(k-1)], while g(k-1) is within εi in the

xi dimension from all the data points in the interval [tj(k-2)+1,t
(k-1)]

and gk is within εi in the xi dimension from all the data points in

the interval [t(k-1),tjk
]

Proof. We will only consider the case where (ti
k,Vd(i,xi

k)) is below

g(k-1). The proof for the opposite case is quite similar. Let (t(k-1),X(k-

1)) be the intersection point of g(k-1) and gk, such that t(k-1)∈[ei
(k-

1),fi
(k-1)], and consequently t(k-1)<fi

(k-1)<tj(k-1)
. It follows that g(k-1) is

used to approximate the data points in the interval [tj(k-2)+1,t
(k-1)],

while gk is used to approximate the data points in the interval [t(k-

1),tj(k-1)
] and those in the interval [tj(k-1)+1,tjk

]. By definition, g(k-1) is

within εi in the xi dimension from all the data points in the interval

[tj(k-2)+1,tj(k-1)
], which includes the interval [tj(k-2)+1,t

(k-1)]. Since gk

intersects with g(k-1) at a time (t(k-1)) between the intersection times

of ui
k and li

k with g(k-1) (ci
k and fi

k respectively), and since all of gk,

ui
k and li

k intersect at a later time (ti
k), then gk is guaranteed to

always occur between ui
k and li

k. Therefore, gk is within εi in the xi

dimension from all the data points in the interval [tj(k-1)+1,tjk
]. If t(k-

1)>tj(k-1)
, then the interval [t(k-1),tj(k-1)

] does not exist. Otherwise,

since gk intersects with g(k-1) at t=t(k-1), then gk is between ui
(k-1) and

li
(k-1) at t=t(k-1). Since (ti

k,Vd(i,xi
k)) is below g(k-1) in the xi

dimension, then gk has a smaller slope than those of g(k-1) and ui
(k-

1), and thus is lower than ui
(k-1) in the xi dimension at t=tj(k-1)

. Also,

since t(k-1)>max(ci
k,di

k), then gk is higher than the highest of ui
k and

si
(k-1). But since si

(k-1) intersects with li
(k-1) at t=tj(k-1)

, then gk is

guaranteed to be higher than or equal to li
(k-1) in the xi dimension

at t=tj(k-1)
. Therefore, gk occurs between ui

(k-1) and li
(k-1) in the

interval [t(k-1),tj(k-1)
], and thus is within εi in the xi dimension from

all the data points in that interval. ⁪

Figure 5a shows the xi dimension of a signal where g(k-1) and

gk cannot be connected because (ti
k,Vd(i,xi

k)) is below g(k-1) and

fi
k<tj(k-1)

, but opposite to the requirement of Lemma 4.4, li
k is below

li
(k-1) at t=tj(k-1)

. In contrast, g(k-1) and gk can be connected in Figure

5b, where all the requirements of Lemma 4.4 are met: (ti
k,Vd(i,xi

k))

is below g(k-1), fi
k<tj(k-1)

, and li
k is above li

(k-1) at t=tj(k-1)
.

(a) (b)

Figure 5. Recording mechanism in slide filter

4.3 Algorithm and Analysis

Based on the above discussion, we can now outline the

algorithm of the slide filter (Algorithm 2).

Algorithm 2: Slide Filter

//initialization

1. (t1,X1) = getNext();(t2,X2) = getNext();

2. Start a new filtering interval with ui
1 passing through (t1,X1-

Vd(i,εi)) and (t2,X2+Vd(i,εi)), and li
1 passing through

(t1,X1+Vd(i,εi)) and (t2,X2-Vd(i,εi)), for every i∈[1,d];

3. set k=1;

//main loop

4. while(true)

5. (tj,Xj) = getNext();

6. if (tj,Xj) is null or (tj,Xj) falls more than εi above ui
k or below

li
k in the xi dimension, for any i∈[1,d]; //recording

mechanism

7. if (k>1)

8. Calculate the interval [αi
(k-1),βi

(k-1)] for each dimension

xi, i∈[1,d], as described in Lemma 4.3;

9. Calculate the interval [α(k-1),β(k-1)] as the intersection of

all the intervals [αi
(k-1),βi

(k-1)], i∈[1,d];

10. if the interval [α(k-1),β(k-1)] exists

11. for each dimension xi, i∈[1,d]

12. let zi
k be any point on the intersection of ui

k and

li
k;

13. if zi
k falls below g(k-1)

14. Adjust ui
k and li

k to intersect g(k-1) at t=α(k-1) and

t=β(k-1) respectively, while ui
k and li

k still pass

through zi
k

15. else if zi
k falls above g(k-1)

16. Adjust ui
k and li

k to intersect g(k-1) at t=β(k-1) and

at t=α(k-1), while ui
k and li

k still pass through zi
k;

17. Calculate aig
k (the slope of gk) such that it is between aiu

k

and ail
k and minimizes Ei

k, for every i∈[1,d] ;

18. if (k>1) and the interval [α(k-1),β(k-1)] exists

19. Make a recording: (t(k-1),X(k-1)), which is the

intersection point of gk and g(k-1) ;

20. else if (k>1) and the interval [α(k-1),β (k-1)] does not exist

21. Make two recordings: (t(k-1),X(k-1)), which is the point

on g(k-1) at t=ti(k-1)
 and (t(k-1)’,X(k-1)’), which is the point

on gk at t=tj(k-1)+1;

22. else if (k=1)

23. Make a recording: (t0’,X0’), which is the point on g1 at

t=t1;

24. if (tj,Xj) is null //end of signal

25. Make a recording: (tk,Xk), which is the point on gk at

t=t(j-1);

26. return;

27. else
28. (tj+1,Xj+1) = getNext();

29. Start a new filtering interval with ui
(k+1) passing

through (tj,Xj-Vd(i,εi)) and (tj+1,Xj+1+Vd(i,εi)), and li
(k+1)

passing through (tj,Xj+Vd(i,εi)) and (tj+1,Xj+1-Vd(i,εi)),

for every i∈[1,d];

30. set k=k+1;

31. else //filtering mechanism

32. for each dimension xi, i∈[1,d]

33. Update the convex hull Hi;

34. if (tj,xj) falls more than εi above li
k

35. Construct lij’
k, for every point (tj’,Xj’) that is a vertex

on Hi, such that lij’
k passes through (tj’,Xj’+Vd(i,εi))

and (tj,Xj-Vd(i,εi));

36. Adjust li
k to be the highest of li

k and lij’
k for t>tj, for

every j’, where (tj’,Xj’) is a vertex on Hi;

37. if (tj,xj) falls more than εi below ui
k

38. Construct uij’
k, for every point (tj’,Xj’) that is a vertex

on Hi, such that uij’
k passes through (tj’,Xj’-Vd(i,εi))

and (tj,Xj+Vd(i,εi));

39. Adjust ui
k to be the lowest of ui

k and uij’
k for t>tj, for

every j’, where (tj’,Xj’) is a vertex on Hi;

During each filtering interval, the slide filter needs to

maintain the slopes of ui
k and li

k, in addition to the data points

representing the vertices of the convex hulls of the data points

observed so far in that interval – one convex hull for each

dimension. Our experiments have shown that the number of such

vertices typically remains very small regardless of how many data

points are observed in the same filtering interval. If we denote this

number by mH, then the time and space complexity of the slide

filter are both O(mH) (recall that the incremental update of the

convex hull is linear in its number of vertices).

We note that if the number of data points observed since the

last receiver update reaches the maximum value mmax_lag, then the

slide filter can handle this situation in the same way described for

the swing filter.

4.4 Proof of Correctness

Theorem 4.1 All the original data points of a signal compressed

using the slide filter occur within the error constraint from the

generated piece-wise linear approximation.

Proof. Considering disconnected line segments only, it is obvious

that for every filtering interval k, the first two data points are

within εi from each of ui
k, li

k, and gk (since gk is guaranteed to

occur between ui
k and li

k) for every dimension xi, i∈[1,d]. If we

assume that the first m data points in the kth filtering interval are

within εi from ui
k, li

k, and gk, then based on the method used to

adjust ui
k and li

k (lines 36 and 39 respectively in Algorithm 2) and

Lemmas 4.1-4.3, we can conclude that the first m+1 data points

will also be within εi from ui
k, li

k, and gk. By mathematical

induction, all data points observed in any filtering interval k will

be within εi from gk for every dimension xi, i∈[1,d] . Considering

connected line segments, the slide filter connects the line

segments g(k-1) and gk only when the conditions specified in

Lemma 4.3 are met (lines 8-10 in Algorithm 2), and their

intersection point is selected also as specified in Lemma 4.3 (lines

11-19 in Algorithm 2). Thus, Lemma 4.3 guarantees that all the

data points in the filtering intervals k-1 and k are within εi from

either g(k-1) or gk. ⁪

5. EXPERIMENTS AND RESULTS

5.1 Experimental Setup

In our experimental study, we use both real data and synthetic

data to evaluate the effectiveness of the different filters. The real

data is obtained from the oceanography domain. It consists of

1285 data points for the sea surface temperature sampled at a 10

minutes interval [20]. Moreover, using the synthetic data allowed

us to carefully study the impact of certain properties, which the

data signals may exhibit, on the effectiveness of the filters.

In the experiments, we compare between four different types

of filters: (1) cache filters, (2) linear filters (generating connected

segments), (3) swing filters, and (4) slide filters.

We report the compression ratio achieved by each filter,

which is calculated by dividing the number of recordings needed

when no filtering is used by that when filtering is used. We also

report the average error of the signals generated by each filter.

The average error is computed as the sum of errors for each

sample divided by the number of samples. Finally, we present an

experiment, which shows the processing time needed per data

point when the different types of filters are used.

We studied the effect of several parameters, including (1) the

prescribed precision width, which is measured as a percentage of

the signal’s range (difference between maximum and minimum

values), (2) the signal behaviour (e.g. the degree of monotonicity

and the magnitude of change per data point), and (3) the

dimensionality (e.g. the number of dimensions and the degree of

correlation between the different dimensions). In our graphs, we

generally use a logarithmic scale for the x-axis whenever we wish

to examine a wide range of values for the parameter under study.

The experiments were conducted on a Pentium 4 machine

with a 3 GHz processor and 1GB RAM. In general, we have set

mmax_lag to a large value, to be able to assess the filters’ full

compression power, especially for applications that give higher

priority to compression over timeliness. Still, however, other lag-

sensitive applications can set mmax_lag to any arbitrary value.

5.2 Effect of Precision Width

In this experiment, we show the effect of varying the

precision width on the filters’ compression ratio and average error

for the signal representing the sea surface temperature. Figure 6

shows the original signal. As can be observed, it continuously

goes up and down with no regular pattern.

The results shown in Figure 7 indicate that the slide filter is

superior to the other filters in terms of the compression ratio. Its

improvement over the filter with the lowest compression ratio

(linear filter) ranges from 21% to an astounding 1867% when the

precision width is 10% of the range. The swing filter follows the

slide filter in performance. The cache filter comes next preceding

the linear filter. This is because the value of the sea surface

temperature remains fixed frequently enough to give an advantage

to the cache filter. Note that the compression ratio is always above

1 even though it may not be clear in the figure.

0

10

20

30

40

50

60

70

80

90

0 0.1 0.316 1 3.16 10

Precision width (% of range)

C
o

m
p

re
s
s
io

n
 r

a
ti

o

cache linear

sw ing slide

Figure 7. Compression ratio for the sea surface temperature

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.316 1 3.16 10

Precision width (% of range)

A
v
e
ra

g
e
 e

rr
o

r
(%

 o
f

ra
n

g
e
)

cache linear

sw ing slide

Figure 8. Average error for the sea surface temperature

Figure 8 shows that the average error for the slide, swing, and

cache filters is almost identical, and is a little lower for the linear

filter (which also has the least compression ratio). We further note

that the average error for all the filters is generally far below the

prescribed precision width. For example, when the prescribed

precision width is 10% of the range, the average error for the

swing filter (highest across all filters) is only 4.5% of the range.

5.3 Effect of Signal Behavior

This set of experiments uses synthetic data to show the effect

of varying the signal behavior on the compression ratio when the

20.5

21

21.5

22

22.5

23

23.5

24

24.5

0 2000 4000 6000 8000 10000 12000

Time (minutes)

T
e
m

p
e
ra

tu
re

 (
C

)

Figure 6. Sea surface temperature

different filters are used. We generated the synthetic signals such

that they follow a random-walk-like model. The value for each

data point can be lower than or higher than that of the previous

data point according to the probabilities p and (1-p) respectively.

The magnitude of increase/decrease in the value is given by a

uniform distribution U(0,x), where x is a configurable parameter.

Figure 9 shows the effect of the degree of the signal’s

monotonicity on the compression ratio. The probability p is varied

from 0 to 0.5, while x is set to 400% of the precision width. At the

two extremes of the graph, the signal is either monotonically

increasing or continuously oscillating. The figure clearly shows

that the slide and swing filters achieve higher compression ratios

than the linear and cache filters. The improvement of the slide

filter (best) over the cache filter (worst) ranges from 70% when

p=0.5 to about 200% when p=0. The cache filter is the least

sensitive to the fluctuations in the signal’s value, whereas the

other filters perform better when the value is mostly changing in

the same direction since such behavior is closer to the linear

behavior they expect.

0

1

2

3

4

5

6

7

8

9

10

10 100 1000 10000
Maximum delta (% of precision width)

C
o

m
p

re
s
s
io

n
 r

a
ti

o

 cache linear

 sw ing slide

0.8

1

1.2

1.4

1.6

100 1000 10000

Figure 10. Effect of the magnitude of change per data point

 Figure 10 shows the effect of varying the magnitude of

maximum change per data point (x) from 10% to 10,000% of the

precision width, where p is set to 0.5. This implies that the

variable oscillates up and down with equal probability. As x

increases, it becomes more difficult to represent many data points

using the same line segment, and so the compression ratio

decreases. However, the figure shows that the slide and swing

filters consistently outperform the cache and linear filters. In

terms of improving the compression ratio, the slide filter achieves

an improvement over the linear filter ranging from 266% when

x=10% down to 19.5% when x=10,000%. We note that when x is

less than the precision width (e.g. x=10%), the cache filter

performs better than the linear filter. In this case, the signal can

keep oscillating around the same horizontal line segment without

violating the error constraint, which is good for the cache filter.

Moreover, the reason behind the high resilience of the slide filter

to the sharp fluctuations in the signal’s value (i.e. even when x is

large) compared to the other filters is as follows. Even though the

number of required segments increases with such fluctuations, the

chances of connecting neighboring segments also increase.

5.4 Effect of Dimensionality

In this set of experiments, we study the effect of

dimensionality on the filters’ compression ratio. We also use

synthetic data, where we consider signals having more than one

dimension. The values for each dimension are generated in the

same way as in Section 5.3.

Figure 11 shows that as the number of dimension increases,

the achieved compression ratio decreases. This is expected

because a new line segment has to be generated once the value in

any dimension xi is more than εi above or below the current line

segment. With more dimensions, the likelihood that this event

occurs gets higher (especially when the dimensions are

completely independent as in the case of Figure 11). It is observed

that the slide and swing filters still achieve the highest

compression ratios, even with high dimensionality.

For the experiment reported in Figure 12, we generated a 5-

dimensional signal, and varied the correlation between its five

dimensions from 0.1 to 1. As expected, as the correlation

increases, the dimensions tend to vary in a similar way. Thus, the

likelihood that one of them requires starting a new line segment

and not the others decreases. This results in generating less

number of line segments, and thus a higher compression ratio.

Figure 13 also demonstrates that the slide and swing filters still

consistently outperform their counterparts.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Number of dimensions

C
o

m
p

re
s
s
io

n
 r

a
ti

o

 cache linear

 sw ing slide

Figure 11. Effect of the number of dimensions

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dimensions correlation

C
o

m
p

re
s
s
io

n
 r

a
ti

o

 cache linear

 sw ing slide

Figure 12. Effect of the correlation between dimensions

An interesting question is whether it is more effective to

compress each dimension independently, or to compress the

multiple dimensions together. In fact, it depends on how

correlated they are. For example, from Figure 11, we find that

compressing a single dimension independently using the slide

filter can result in a compression ratio of 2.47. However, since

independent compressions require recording the time information

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5

Probability of decrease in value per data point

C
o

m
p

re
s
s
io

n
 r

a
ti

o

 cache linear

 sw ing slide

Figure 9. Effect of the degree of monotonicity

for the points generated for each dimension. In effect, this reduces

the compression ratio. If we assume that the size of the time field

is equal to the size of the dimension value, xi, then for a d-

dimensional signal, the compression ratio resulting from

independent compressions should be the ratio for a single

dimension multiplied by (d+1)/2d to account for the redundancy

in recording the time information. Thus for a 5-dimensioanl

signal, the compression ratio for independent compressions

should be 2.47×(5+1)/(2×5)=1.48. From Figure 12, we find that

when the correlation is above 0.7, the compression ratio exceeds

1.48; i.e., compressing the multiple dimensions together becomes

more effective than compressing each dimension independently.

5.5 Filtering Overhead

To measure the filtering overhead, we used the sea surface

temperature data, where we loaded all the data points into

memory and then fed them into our filtering system once without

performing any filtering and once for each filter type. In all cases,

the total time for processing all the data points, repeated 10,000

times, is measured. Finally, we subtract the time taken when no

filtering is applied from the time for each filter and divide by the

number of data points processed to get the processing overhead

per data point.

Note that the only parameter that may affect the processing

time per data point is the size of the filtering interval in terms or

how many data points it spans. Hence, to study the overhead, it is

sufficient to run the filters on any signal while varying the

precision width. This way, we will effectively be varying the

average size of the filtering intervals – precisely what we need for

this study. In other words, varying other parameters will not

provide additional information. For example, varying the signal

behavior will also ultimately result in varying the size of the

filtering intervals. Moreover, if the signal is multi-dimensional,

the same amount of work is done for each dimension. Correlated

dimensions can only result in higher compression, which again

implies larger filtering intervals on average.

Figure 13 shows how the processing time per data point

changes by varying the precision width. In addition to showing

the overhead of the four filters studied before, we also show here

the overhead of the non-optimized slide filter (when the convex

hull optimization is not used).

It is observed that all four filters, including swing and slide

(the optimized version), are scalable w.r.t. the number of observed

data points in the filtering interval. This was expected for the

swing filter because its time complexity is O(1). For the slide

filter, however, this is an interesting result because it shows that

the number of vertices of its maintained convex hulls is almost

constant regardless of how many data points are inside the hulls.

It is also worth noting that the overhead does not exceed 4µs

per data point for the cache, linear, and swing filters, and about

8µs per data point for the slide filter. Again, this difference was

expected because of the additional convex hull maintenance work

the slide filter has to do. But more importantly, the two figures are

sufficiently low for overhead-sensitive applications (e.g. sensor

networks or cluster monitoring, where the wasted CPU cycles by

the monitoring service should be minimal). Extremely overhead-

sensitive applications may prefer the lower overhead of the swing

filter over the higher compression power of the slide filter.

The figure also clearly shows the significance of optimizing

the slide filter. In particular, its non-optimized version is not

scalable with respect to the number of observed data points. It has

to process each such data point whenever a new data point arrives,

as opposed to processing the vertices of the convex hull only in

the case of the optimized version.

6. RELATED WORK

The management of data streams resulting from monitoring

and sensor network applications has been an active research area

in the last few years. Much work has been directed towards

finding techniques for data reduction in order to cope with the

large sizes of collected data. Lazaridis et al. [18] propose an

optimal on-line algorithm for constructing a piecewise constant

approximation for a time series, as opposed to the more general

piecewise linear approximation that we construct. The output of

their algorithm corresponds to that of the cache filter presented in

Section 2. Olston et al. [21] consider the problem of

approximating aggregate values over multiple input streams. They

propose an algorithm, which, given a desired precision for the

aggregate value, adaptively adjusts the precision of the underlying

individual input streams, such that the communication overhead is

minimized. They only consider cache filters for filtering the input

streams. Dilman et al. [10] propose two algorithms similar to the

cache and linear filter algorithms for reducing the monitoring

overhead in IP networks. They also study the statistical factors

that affect the amount of savings for each monitored variable. In

[15], Jain et al. propose using Kalman filters for approximating

data streams. Kalman filters are a general framework for

predicting the state of any process represented by the data stream,

taking into consideration the measurement noise and uncertainty

in state propagation. Kalman filters are general enough to model

both the cache and linear filters, and even more complex models

such as sinusoidal models. Choosing the most appropriate model

requires, however, prior knowledge about the behavior of the

monitored variable, which is not normally available. Kalman

filters are also incapable of simulating the swing and slide filters

since each of them maintain multiple prediction models

simultaneously, i.e., the set of candidate line segments. The work

in [23] is based on inserting load shedding operators inside the

query execution plans for querying input data streams in order to

handle peaks in the input data rates that the servers cannot cope

with. They do not provide precision guarantees, but rather protect

the servers from overwhelming data rates. Wu et al. [24] consider

the approximation of financial data streams, where the data

follows a repetitive pattern of waves. Therefore, the piece-wise

linear approximation generated by their algorithm has a zigzag

shape. The output is further pruned to get rid of noise-like line

segments that are irrelevant to the stocks’ general trends. Palpanas

et al. [22] introduced the amnesic approximation of data streams,

which allows arbitrary, user defined reduction of quality with

0

10

20

30

40

50

60

0 0.1 0.316 1 3.16 10 31.6 100

Precision width (% of range)

P
ro

c
e
s

s
in

g
 t

im
e
 (

µµ µµ
s
 /
 d

a
ta

 p
o

in
t)

cache linear
sw ing non-optimized slide
optimized slide

Figure 13. Filtering overhead for the sea surface

temperature signal

time. The work in both [24] and [22] does not provide precision

guarantees either. Keogh et al. [16] proposed the SWAB

algorithm which merges an offline bottom-up technique for time

series segmentation with an online technique similar to the linear

filter. This work is complementary to our work as the swing and

slide filters can replace the linear filter in the SWAB algorithm.

There have been other efforts for data reduction that do not

directly depend on filtering. Deligiannakis et al. [9] attempt to

find correlations between data streams collected from sensors,

construct base signals that carry the important trends in them, and

then only record the base signals and the relation between each

stream and the base signals. The algorithm needs O(n1.5) time and

O(n) space. It is assumed to run periodically after enough

historical data is collected by the sensor. Guha et al [12]

generalize the problem of histogram construction for infinite data

streams. The goal of the histogram construction problem is to

divide a data set into a given number of buckets and then

represent the data set using the mean values of these buckets, such

that the error in the approximation is minimized. The algorithm

they propose is based on using a fixed-length sliding window of

data points. In [4], Buragohain et al. also address the histogram

construction problem. However they represent each bucket by a

line segment rather than a single value. Madden et al. [19]

introduce a new mechanism for in-network aggregation in ad-hoc

sensor networks, where the execution of aggregate queries is

distributed in the network, resulting in less communication

overhead than the obvious centralized approach. The authors then

extend their work to provide wavelet-based lossy compression of

the data collected in sensor networks [14]. Again, the main

difference between the above algorithms and ours is that they do

not provide precision guarantees.

A significant number of Data Stream Management Systems

have been introduced by the database community, including

AURORA [1], COUGAR [25], NiagraCQ [7], NILE [13],

TelegraphCQ [5] and STREAM [2]. Their common goal is to

provide a general-purpose infrastructure for the efficient

management of data streams. Several frameworks have been

developed for system monitoring as well. Among them is

WatchTower [17] which collects Windows performance counter

data, and stores only the statistically interesting counters, or

composite counters that summarize the behavior of many raw

counters. Remos [11] is another system that collects and

distributes resource information in grid environments across

different querying entities. Pinpoint [8] is a monitoring system for

J2EE applications that logs Java exceptions in J2EE application

servers, and tries to derive from that information performance

bottlenecks or component malfunctions. To the best of our

knowledge, none of the currently available systems use techniques

similar to ours for reducing the size of collected data.

7. CONCLUSIONS

We have presented two new filtering mechanisms that

produce a piecewise linear approximation for an input multi-

dimensional data stream with guarantees on both the quality of

each data point and the lag between the transmitter and receiver.

The two new mechanisms, the swing and slide filters, were shown

to outperform previous methods of filtering by piecewise linear

(and constant) approximation. We have evaluated the

performance of these filters using a real data set from the

oceanography domain, in addition to a wide variety of synthetic

data sets to study the effect of the different types of signal

behavior and precision requirements on the compression power of

the proposed techniques. We have studied the effect of monotonic

versus oscillatory behavior, smooth versus sharp fluctuations; and

high-dimensionality versus low-dimensionality. We concluded

that the slide filter provides the highest compression ratios in

almost all the cases. We also showed that compressing highly-

correlated dimensions together can be more effective than

compressing each dimension independently. The overhead

imposed by the filters was found to be minimal: a few

microseconds per data point. Because of the relatively lower

overhead of the swing filter compared to the slide filter, it (swing)

can be more suitable for applications that are extremely overhead-

sensitive. Finally, we have also proved, for both types of filters,

that the error of each data point in the approximated signal is

guaranteed to stay within the prescribed precision.

REFERENCES
[1] D. Abadiand et al. Aurora: A datastream management system

(demonstration). In SIGMOD 2003.
[2] A. Arasu et al. STREAM: The Stanford stream data manager.

IEEE Data Engineering Bulletin, 2003.
[3] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars.

Computational Geometry. 3rd edition, Springer, 2008.
[4] C. Buragohain, N. Shrivastava, S. Suri. Space Efficient Streaming

Algorithms for the Maximum Error Histogram. In ICDE 2007.
[5] Chandrasekaran et al. TelegraphCQ: Continuous Dataflow

Processing for an Uncertain World. In CIDR 2003.
[6] B. Chazelle and D. P. Dobkin. Intersection of convex objects in 2

and 3 dimensions. Journal of the ACM, 34:1-27, 1987.
[7] J. Chen et al. NiagaraCQ: A Scalable Continuous Query System

for Internet Databases. In SIGMOD 2000.
[8] M. Chen et al. Pinpoint: Problem Determination in Large,

Dynamic, Internet Services. In ICDSN (IPDS Track), 2002.
 [9] A. Deligiannakis, Y. Kotidis, N. Roussopoulos. Compressing

Historical Information in Sensor Networks. In SIGMOD 2004.
[10] M. Dilman and D. Raz. Efficient reactive monitoring. In Proc.

IEEE INFOCOM, 2001.
[11] P. Dinda et al. The Architecture of the Remos System. In HPDC

2001.
[12] S. Guha and N. Koudas. Approximating a Data Stream for

Querying and Estimation: Algorithms and Performance
Evaluation. In ICDE 2002.

[13] M. A. Hammad et al. Nile: A Query Processing Engine for Data
Streams (demonstration). In ICDE 2004.

[14] J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond
average: Toward sophisticated sensing with queries. In IPSN
2003.

[15] A. Jain, E. Y. Chang, Y. Wang. Adaptive Stream Resource
Management Using Kalman Filters. In SIGMOD 2004.

[16] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An Online
Algorithm for Segmenting Time Series. In ICDM 2001.

[17] M. Knop, J. Schopf, P. Dinda. Windows Performance
Monitoring and Data Reduction Using WatchTower. In
SHAMAN 2002.

[18] I. Lazaridis and S. Mehrotra. Capturing sensor generated time
series with quality guarantees. In ICDE 2003.

[19] S. Madden, M. Franklin, J. Hellerstein, W. Hong. TAG: A tiny
aggregation service for ad hoc sensor networks. In OSDI 2002.

[20] M. J. McPhaden. Tropical atmosphere ocean project, pacific
marine environmental laboratory.
http://www.pmel.noaa.gov/tao/.

[21] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous
queries over distributed data streams. In SIGMOD 2003.

[22] T. Palpanas et al. Online amnesic approximation of streaming
time series. In ICDE 2004.

[23] N. Tatbul et al. Load shedding in a data stream manager. In
VLDB 2003.

[24] H. Wu, B. Salzberg, D. Zhang. Online Event-driven Subsequence
Matching over Financial Data Streams. In SIGMOD 2004.

[25] Y. Yao and J. Gehrke. Query processing for sensor networks. In
CIDR 2003.

