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ABSTRACT 

Continuous “always-on” monitoring is beneficial for a number of 

applications, but potentially imposes a high load in terms of 

communication, storage and power consumption when a large 

number of variables need to be monitored. We introduce two new 

filtering techniques, swing filters and slide filters, that represent 

within a prescribed precision a time-varying numerical signal by a 

piecewise linear function, consisting of connected line segments 

for swing filters and (mostly) disconnected line segments for slide 

filters. We demonstrate the effectiveness of swing and slide filters 

in terms of their compression power by applying them to a real-

life data set plus a variety of synthetic data sets. For nearly all 

combinations of signal behavior and precision requirements, the 

proposed techniques outperform the earlier approaches for online 

filtering in terms of data reduction. The slide filter, in particular, 

consistently dominates all other filters, with up to twofold 

improvement over the best of the previous techniques. 

1.  INTRODUCTION 

Continuous monitoring in distributed environments is widely 

applied in many contexts including sensor networks, moving 

objects, stock market, computer networks and distributed systems. 

Continuous queries over the incoming data streams are posed 

through a central Data Stream Management System (DSMS) to 

obtain useful information from the raw data. In addition to the 

benefits of online monitoring, it is often desirable to store the 

results for later offline analysis.  

The number of data streams can get quite large because of the 

many objects that may need to be monitored. A high sampling 

frequency is desirable as it helps provide a detailed and accurate 

model of the monitored signal. For large and complex systems, 

where continuous monitoring is most useful, the combination of 

these requirements leads to a very large volume of monitoring 

data, imposing a substantial burden on the network and the 

repository used for storing the monitoring data. Even more 

seriously, in sensor network applications, the sensors’ battery 

lifetime (and hence the lifetime of the whole sensor network) is 

predominantly dependant on the amount of transmitted data [14]. 

Much work has addressed the problem of compressing time 

series data by a given ratio, while attempting to minimize the 

approximation error (See [22] for a review of time series 

approximations). Less attention, however, has been given to the 

dual problem of guaranteeing a given error bound, while 

attempting to maximize the compression ratio. For both problems, 

piece-wise linear approximation has been one of the most widely 

used and accepted methods [22]. We generally refer to the 

techniques used to solve the second problem as filtering 

techniques. Roughly speaking, the filter predicts future data 

values, and if the actual measured value falls within the error 

bound around the predicted value, no new recording is made. If 

during steady-state operation the data follows a certain pattern, 

filtering can substantially reduce the amount of monitoring data 

that needs to be transmitted and recorded. 

In this paper we present two novel filtering techniques: swing 

filters and slide filters. Their compression power exceeds by a 

large margin the best of the previous filtering techniques, with up 

to twofold improvement for the slide filter. They also impose a 

low overhead, which makes them very practical for overhead-

sensitive applications like sensor networks.* 

Essentially, the newly proposed filters approximate time-

varying numerical signals by a piecewise linear function, 

consisting of connected line segments in the case of the swing 

filter, and (mostly) disconnected line segments in the case of the 

slide filter. At any point in time, each of the filters maintains a set 

of possible line segments, all obeying the invariant that they 

represent the data observed so far. As each new data point arrives, 

the set is reduced to maintain this invariant. 

Swing and slide filters improve over earlier cache and linear 

filters in that the latter two only maintain a single line segment at 

any given time, while the former two maintain a set of such line 

segments. As a result, swing and slide filters can capture more 

future data points within their approximation, and thus further 

reduce the number of recordings that need to be made. By 

allowing disconnected line segments, slide filters can capture an 

even larger set of future data points, at the expense of two 

recordings per line segment instead of one in the case of the swing 
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filter, which always produces connected line segments. 

While the compression power of our proposed filters comes 

from the fact that they postpone their selection of line segments as 

long as possible, this postponement also introduces a lag between 

the transmitter and receiver. We thus allow applications to set an 

upper bound for this lag by limiting the maximum number of data 

points a transmitter can process locally before updating the 

receiver. In other words, applications can choose the tradeoff 

point between the compression ratio and the length of the lag.  

In practice, many applications do not consider the timeliness 

of data delivery as their top priority. For example, online stock 

quotes and foreign exchange rates are usually lagging a few 

minutes behind the actual market data. Also, it is very common in 

the area of sensor networks to give higher priority to data 

reduction (which leads to transmission rate reduction and 

ultimately power conservation) over the timeliness of data 

delivery (e.g. [9,18,19]).  

In our work, we focus on the class of applications which can 

tolerate a bounded error and a bounded lag in the received data 

points (where both bounds can be set by the application), in return 

of a higher compression ratio. 

Moreover, we observed that when multiple monitored signals 

are correlated, compressing them together as a multi-dimensional 

signal is more effective compared to compressing each signal 

independently. This was like an extra bonus because our design 

for the swing and slide filters was general enough to enable 

processing multi-dimensional as well single-dimensional signals. 

We have implemented swing and slide filters, in addition to 

cache and linear filters, and applied them to a real data set from 

the oceanography domain and a wide variety of synthetic data 

sets. In summary, the contributions of this paper are: 

1. The design and implementation of two new types of filters 

for the online piece-wise linear approximation of multi-

dimensional data streams: swing and slide filters. 

2. A theoretical analysis including the proofs of correctness 

of the two proposed filtering techniques. 

3. An extensive experimental study showing the effect of 

various combinations of signal behavior and precision 

requirements on the effectiveness of the filtering 

techniques, using both real and synthetic data sets. 

4. The demonstration that slide filters do a better job of data 

reduction than swing filters, which in turn generally 

outperform previously introduced cache and linear filters. 

Because of the slightly lower overhead of the swing filters, 

it may be favored over the slide filter for applications that 

are extremely overhead-sensitive. 

The outline of the rest of this paper is as follows. Section 2 

introduces the problem and provides some background on 

filtering by piecewise linear functions. Sections 3 and 4 give the 

design details of the swing and slide filters, respectively. Section 

5 presents the experiments and results. Related work is discussed 

in Section 6. Finally, Section 7 concludes the paper. 

2.  ONLINE COMPRESSION 

2.1 Problem Statement and Notations 

Given a data signal in the form of an on-line sequence of 

discrete data points (tj,Xj), where j∈[1,n] and Xj is a d-dimensional 

vector (x1j,x2j,…xdj), we wish to approximate this signal using a 

piece-wise linear function, such that the error for each dimension 

xi in each of the original data points does not exceed some preset 

value εi representing the precision width, i∈[1,d]. The goal is to 

record only the successive line segments, and not the individual 

data points, thereby reducing the overhead of recording the signal. 

Moreover, if the approximated signal is to be sent from a 

transmitter to a receiver, the receiver should not be lagging behind 

the transmitter by a number of data points more than mmax_lag. 

Note that the error constraint we choose (L∞ metric) 

guarantees a certain quality level for each data point. This 

constraint is commonly used in the literature on online filtering 

techniques (e.g. [10,15,16,18,21]). 

We assume that K line segments (g1,g2,…gK) will be 

generated, where g1 can represent the data points 

((t1,X1),(t2,X2),…(tj1
,Xj1

)) and gk, where k∈[2,K], can represent the 

data points ((tjk-1+1,Xjk-1+1),(tjk-1+2,Xjk-1+2),…(tjk
,Xjk

)), and hence jK=n. 

We denote the value j1 as m1 and the value (jk – jk-1 + 1) as mk (i.e. 

mk is the number of data points approximated by gk). 

We distinguish between two classes of the piece-wise linear 

functions used for approximation. These functions can either be in 

the form of connected line segments or disconnected line 

segments. In the former case, only one recording needs to be made 

per line segment, unlike the latter case, where two recordings are 

needed to define each of the segments. Disconnected line 

segments have, however, the potential to represent the original 

variable with fewer segments, (and thus fewer recordings), since 

they have an added degree of flexibility in choosing the starting 

location of each line segment. 

We refer to the points of the original signal as the data points. 

We refer to the endpoints of the line segments as the recordings. 

If g(k-1) and gk are disconnected, k∈[2,K], then the recording at the 

beginning of gk is denoted by (t(k-1)’,X(k-1)’) and that at the end of gk 

is denoted by (tk,Xk). If g(k-1) and gk are connected, then there is 

one recording for gk at its end denoted by (tk,Xk). The two 

recordings for g1 are denoted by (t0’,X0’) and (t1,X1). When a data 

point is not recorded, we say that it is filtered out. We refer to the 

interval during which the observed data points can be represented 

by a particular line segment as a filtering interval. There are K 

filtering intervals, where the kth interval is defined by [t1,tj1
] when 

k=1 and [tjk-1+1,tjk
] when k∈[2,K]. Finally, we use the notation 

Vd(i,v) to denote a d-dimensional vector whose all dimensions are 

zeroes except the xi dimension whose value is v. For example 

V4(3,5) = (0,0,5,0), and (9,9,9,9)- V4(3,5) = (9,9,4,9). Figure 1 

shows a sample signal and a possible piece-wise linear 

approximation illustrating most of the notations described above. 
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Figure 1. A sample data signal and its piece-wise linear 

approximation (projected on the t-xi plane) 



2.2 Earlier Approaches 

For piece-wise constant approximation, the simplest solution 

is to use a cache filter. A cache filter predicts that the next 

incoming data point will have the same values as the previous 

one, within the error bound of εi for each dimension i, i∈[1,d]. As 

long as the incoming data points satisfy the error constraint, the 

prediction is considered valid, and no new recordings are made. 

An incoming data point is recorded only if it violates the error 

constraint. This approach was the one considered in [21], while 

two of its variations were presented in [18], where each generated 

horizontal line segment is determined by either the midrange or 

the mean of the data points it represents rather than only by the 

first of these data points.  

For piece-wise linear approximation, the intuitive approach is 

to use what we refer to as a linear filter. The idea of the linear 

filter was presented in [10,15,16]. Instead of predicting that new 

data points have values close to those of the previous ones, a 

linear filter predicts that they will always fall in the proximity of a 

line segment, which is not necessarily horizontal. The slope of the 

line is defined by the first two data points it represents. Whenever 

a new data point falls more than εi units away from the predicted 

line segment, for any dimension i, i∈[1,d], a new line segment is 

started. Linear filters can produce connected or disconnected line 

segments. In the connected case, the current line segment is 

terminated by the point predicted by that line segment at the time 

of the last data point that it approximates, and that point and the 

new data point form the next line segment. In the disconnected 

case, the current line segment is terminated as before, but the new 

line segment is defined by the new data point and the next. 

2.3 New Compression Mechanisms 

We propose two new types of filters that produce superior 

results to cache and linear filters. The two new filtering 

algorithms we propose address both classes of approximating 

functions. Swing filters generate connected line segments, while 

slide filters generate a mixture of connected and disconnected line 

segments. The slide filter first attempts to get the benefits of 

disconnected line segments, and then, whenever possible, it 

generates connected line segments that do not sacrifice any of 

those benefits.  

Both types of filters maintain a set of candidate line segments 

to approximate the current set of data points. The intuition is to 

postpone the selection of the line segment that represents these 

data points as long as possible. By doing so, the filter increases 

the probability that further data points can be represented without 

a new recording being necessary.  

3.  SWING FILTERS 

In this section, we show the mechanisms used in the swing 

filters for filtering out incoming data points, and for selecting the 

best possible points for recording. 

3.1 Filtering Mechanism 

We explain the intuition behind the filtering mechanism of 

swing filters by contrasting them with linear filters.  

As mentioned in Section 2.2, the linear filter always maintains 

a single line segment to approximate the data points. In contrast, 

the swing filter maintains a set of line segments for each filtering 

interval k, all starting from the same initial point. Along each 

dimension xi, all the line segments lie between an upper 

hyperplane ui
k and a lower hyperplane li

k, which are both 

perpendicular to the t-xi plane. Therefore, each of the hyperplanes 

can be defined using two points only. Each line segment in the set 

can represent all the data points observed so far, within the 

specified error constraints εi, i∈[1,d]. Each time a new data point 

occurs whose xi value lies between ui
k and li

k or at most εi units 

above ui
k or below li

k, for every i∈[1,d]; the data point is filtered 

out, and the set is reduced to maintain the invariant that all line 

segments in the set can represent all data points, including the 

new one. If a new data point with an xi value falling outside the 

specified region, for any i∈[1,d], a new recording is made and a 

new filtering interval is started.  

Example 3.1 
We consider the first five data points of a signal of the form 

(tj,Xj), j∈[1,5]. Since, for each data point, the filtering mechanism 

is applied independently for each dimension, we only consider the 

xi values of the five data points shown in Figure 2a. We assume, 

without loss of generality, that for these data points, xi values are 

always the cause for starting a new filtering interval, regardless of 

which filter type is used. With the linear filter, after data points 

(t1,X1) and (t2,X2) have occurred, the approximating line is 

defined. (t3,X3) falls within εi units from the defined line, but 

(t4,X4) does not and thus requires a new recording (see Figure 2b). 

In contrast, rather than immediately settling on one line when 

(t2,X2) arrives, a swing filter maintains a set of lines, bounded by 

upper and lower hyperplanes along each dimension (the 

hyperplanes for the xi dimension, ui
1 and li

1, appear as lines in the 

t-xi plane). ui
1 is defined by the pair of points (t1,X1) and 

(t2,X2+Vd(i,εi)), while li
1 is defined by the pair of points (t1,X1) and 

(t2,X2-Vd(i,εi)) (see Figure 3a). Any line segment between ui
1 and 

li
1 can represent the first two data points in the ith dimension.  

When (t3,X3) arrives, in order to maintain the invariant that all 

lines within the set can represent all data points so far, li
1 needs to 

be “swung up”, and ui
1 needs to be “swung down” --- hence the 

name “swing filter”. The new li
1 is defined by the pair of points 

(t1,X1) and (t3,X3-Vd(i,εi)) (see Figure 3b). Lines below this new li
1 

cannot represent point (t3,X3). Similarly, the new ui
1 connects the 

pair of points (t1,X1) and (t3,X3+Vd(i,εi)). Lines above this new ui
1 

cannot represent (t3,X3). 

While the linear filter of Figure 2b cannot represent (t4,X4), 

the swing filter can do so by “swinging down” ui
1 (see Figure 3c), 

such that it connects (t1,X1) and (t4,X4+Vd(i,εi)). The lower line li
1 

need not be changed to maintain the invariant for (t4,X4). To 

complete the example, (t5,X5) cannot be represented by the current 

set of lines, and thus a new recording needs to be made. ⁪ 

  
(a) (b) 

Figure 2. Data points pattern and the linear filter 
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(c) 

Figure 3. Filtering mechanism in swing filter 

3.2 Recording Mechanism 

Initially, the swing filter records the first incoming data point. 

Any later recording should represent the end point of the current 

approximating line segment and the start point of the new one. 

Hence, connected line segments are produced. A straightforward 

approach would be to simply record the last data point observed in 

each filtering interval. Instead, however, we choose a recording 

such that the generated line segment, gk, for the just completed kth 

filtering interval minimizes the mean square error for the data 

points observed in that interval. In that sense, after ensuring that 

we satisfied the error constraint and did our best effort in 

compression, we attempt to minimize the error further, as a 

secondary objective, where compression is the primary objective. 

More formally, it is required to find the slope of gk (call it aig
k) 

in the t-xi plane, i∈[1,d], such that (i) gk minimizes the mean 

square error in the xi dimension for the data points observed in the 

kth filtering interval ((tjk-1+1,Xjk-1+1),(tjk-1+2,Xjk-1+2),...(tjk,Xjk
)), (ii) gk 

passes through the previous recording (tk-1,Xk-1), and (iii) aig
k 

occurs between the slopes of ui
k and li

k (call them aiu
k and ail

k 

respectively). Once aig
k is known, and with the knowledge of the 

previous recording (tk-1,Xk-1), the new recording (tk,Xk) can be 

obtained.  

To get aig
k, consider that the equation for gk in the t-xi plane is  
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where xi
k-1 is the xi dimension of Xk-1. The mean square error can 

be minimized in each dimension independently. For the xi 

dimension, it is given by  
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By differentiating Ei
k w.r.t aig

k and equating to zero, and 

considering that aig
k∈[ail

k,aiu
k], we get 
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Calculating the desired value of xi
k at t=tk which minimizes Ei

k 

can now be performed by substituting (5) and (6) into (2). Note 

that the two summations in (5) can be calculated incrementally as 

each new data point is observed. Thus, there is no need to 

maintain the data points themselves; i.e. the space needed is O(1). 

By repeating the process for all dimensions, we can find the 

optimal recording (tk,Xk). 

3.3 Algorithm and Analysis 

With the above description of the filtering and recording 

mechanisms in the swing filter, the whole algorithm can be now 

outlined (Algorithm 1). getNext() is function that reads the next 

data point, and returns null when no more data points exist. 

The state information that needs to be maintained by the 

swing filter is the initial point in the current filtering interval, k; 

the last observed data point; and the slopes of ui
k and li

k, i∈[1,d]. 

In other words, the swing filter algorithm is O(1) in time and 

space complexity. 
 

Algorithm 1: Swing Filter 
// initialization 
 

1. (t1,X1) = getNext();(t2,X2) = getNext(); 

2. Make a recording: (t0’,X0’) = (t1,X1); 

3. Start a new filtering interval with ui
1 passing through (t1,X1) 

and (t2,X2+Vd(i,εi)); and li
1 passing through (t1,X1) and (t2,X2-

Vd(i,εi)), for every dimension xi, i∈[1,d]; 

4. set k = 1; 
 

//main loop 
 

5. while (true) 

6. (tj,Xj) = getNext(); 

7. if (tj,Xj) is null or (tj,Xj) is more than εi above ui
k or below li

k 

in the xi dimension for any i∈[1,d]    //recording mechanism 

8. Make a new recording: (tk,Xk), such that tk=tj-1, xi
k falls 

between ui
k and li

k, and xi
k minimizes Ei

k, for every 

dimension xi, i∈[1,d]; 

9. Start a new filtering interval with ui
(k+1) passing through 

(tk,Xk) and (tj,Xj+Vd(i,εi)); and li
(k+1) passing through (tk,xk) 

and (tj,Xj-Vd(i,εi)); 

10. set k = k+1; 

11. if (tj,Xj) is null     //end of signal 

12. return; 

13. else    //filtering mechanism 

14. for each dimension xi, i∈[1,d] 



15. if (tj,Xj) falls more than εi above li
k in the xi dimension  

16. “Swing up” li
k such that it passes through (tk,xk) and 

(tj,Xj-Vd(i,εi)); 

17. if (tj,Xj) falls more than εi below ui
k in the xi dimension 

18. “Swing down” ui
k such that it passes through (tk,xk) 

and (tj,Xj+Vd(i,εi)); 
 

We note that if the number of data points observed during a 

certain filtering interval reaches the maximum allowable value by 

the receiver mmax_lag, then the swing filter can simply drop its 

maintained set of candidate line segments except for one (e.g. the 

line segment minimizing the mean square error). The filter will 

then update the receiver with the line segment it kept, and 

proceeds as a standard linear filter until the end of the filtering 

interval. For the next interval, it will switch back to proceeding as 

described in Algorithm 1. 

3.4 Proof of Correctness 

Theorem 3.1 All the original data points of a signal compressed 

using the swing filter occur within the error constraint from the 

generated piece-wise linear approximation. 
 

Proof. It is obvious that for every filtering interval k, the first two 

data points are within εi from each of ui
k, li

k, and gk (since gk is 

guaranteed to occur between ui
k and li

k, as indicated in line 8 in 

Algorithm 1) for every dimension xi, i∈[1,d]. If we assume that 

the first m data points in the kth filtering interval are within εi from 

ui
k, li

k, and gk, then based on the method used to adjust ui
k and li

k 

when the (m+1)th data point arrives (lines 14-18 in Algorithm 1), 

we can conclude that the new versions of ui
k and li

k will be within 

εi from the (m+1)th data point, and will both occur between the old 

versions of ui
k and li

k, thereby they will also be within εi from the 

first m data points. Consequently, gk will still be guaranteed that it 

is within εi from the first m data points. By mathematical 

induction, all data points observed in any filtering interval k will 

be within εi from gk for every dimension xi, i∈[1,d] . ⁪ 

4.  SLIDE FILTERS 

Slide filters are different from swing filters in that they may 

generate disconnected line segments as an approximation for the 

original data points. This gives them more flexibility when 

choosing line segments, at the expense of having to make two 

recordings for a single line segment if it is disconnected from its 

neighboring segments. In what follows, we explain the filtering 

and recording mechanisms used by the slide filters. 

4.1 Filtering Mechanism 

Similar to the swing filter, the slide filter maintains a set of 

lines which occur between an upper hyperplane ui
k and a lower 

hyperplane li
k for each dimension xi and filtering interval k. Unlike 

the swing filter, the lines need not start from the end point of the 

previous line segment. This allows the slide filter to have a larger 

set of lines and thus a higher probability to accommodate more 

incoming points, without the need for a new recording.  

Also similar to the swing filter, a new data point is filtered out 

if it occurs between ui
k and li

k, is above ui
k by at most εi, or is 

below li
k by at most εi in the xi dimension, for every i∈[1,d]. 

Otherwise, a recording is made and a new filtering interval is 

started. With the arrival of each new data point, ui
k and li

k are 

potentially adjusted, i∈[1,d].  

The following two lemmas provide the foundation for finding 

the new ui
k and li

k when a new data point is observed, i∈[1,d]. 
 

Lemma 4.1 Consider a sequence of m data points 

((tj1
,Xj1

),(tj2
,Xj2

),...(tjm
,Xjm

)), where there exists a hyperplane that is 

perpendicular to the t-xi plane and within εi from all the m data 

points in the xi dimension. If ui (li) is a hyperplane with the 

following properties 

(P1) perpendicular to the t-xi plane 

(P2) passing through a pair of points (tjh
,Xjh

-Vd(i,εi)) and 

(tjl
,Xjl

+Vd(i,εi)) ((tjh
,Xjh

+Vd(i,εi)) and (tjl
,Xjl

-Vd(i,εi))), such that 

tj1
≤tjh

<tjl
≤tjm

 

(P3) having the minimum (maximum) slope (i.e. dxi/dt) among all 

hyperplanes having properties (P1) and (P2) 

Then, ui (li) also has the following two properties 

(P4) within εi from all m data points in the xi dimension 

(P5) higher (lower) than any other hyperplane having properties 

(P1) and (P4) in the xi dimension for any t>tjm
 

 

Proof. Assume that ui has the properties (P1)-(P3), but not (P4). 

Let (tj,Xj) be some data point, where ui is more than εi below or 

above it in the xi dimension. If tj<tjl
 and ui is more than εi below 

(tj,Xj) in the xi dimension, or tj>tjh
 and ui is more than εi above 

(tj,Xj) in the xi dimension, then there exists a hyperplane ui
k’ with 

properties (P1) and (P2) that has a smaller slope than that of ui
k. In 

particular, ui
k’ will pass through points (tj,Xj-Vd(i,εi)) and 

(tjl
,Xjl

+Vd(i,εi)), or (tjh
,Xjh

-Vd(i,εi)) and (tj,Xj+Vd(i,εi)) respectively. 

This is a contradiction to property (P3) for ui
k.  

If tj<tjh
 and ui

k is more than εi above (tj,Xj) in the xi dimension, 

or tj>tjl
 and ui

k is more than εi below (tj,Xj) in the xi dimension, 

then there will not exist any hyperplane with property (P1) that is 

within εi from data points (th,Xh), (tl,Xl) and (tj,Xj), which is a 

contradiction to the description of the m considered data points. 

From the previous two contradictions, we conclude that data point 

(tj,Xj) does not exist, and ui
k has the property (P4).  

Now assume that ui
k has the properties (P1)-(P3), but not (P5). 

Then, from the description of the m considered data points, there 

has to exist another hyperplane u’
i that has properties (P1) and 

(P4) and is higher than any other hyperplane with properties (P1) 

and (P4) (including ui) in the xi dimension for some t>tjm
. If u’

i 

does not have the property (P2), then we can obtain another 

hyperplane u”
i by rotating u’

i counter-clockwise (w.r.t the t-xi 

plane) around the t=ti axis, for any ti∈[tj1
,tjm

] such that u”
i does not 

pass through any points of the form (tjw
,Xjw

-Vd(i,εi)), where 

tj1
≤tjw

<tj≤tjm
, or of the form (tjw

,Xjw
+Vd(i,εi)), where tj1

≤tj<tjw
≤tjm

. 

u”
i will have the properties (P1) and (P4) and will be higher than 

u’
i in the xi dimension for any t>tjm

, which is a contradiction. Thus, 

u’
i must have the property (P2).  

Furthermore, since u’
i has the property (P4), then at t=tjh

, u’
i is 

higher than or equal to ui in the xi dimension. Since ui has the 

minimum slope among hyperplanes having properties (P1) and 

(P2), then the slope of u’
i is greater than or equal to that of ui. 

Since u’
i is different from ui, then if they have the same slope, u’

i 

must be higher than ui at t=tjh
 and t=tjl

 in the xi dimension, which 

contradicts the property (P4) for u’
i. Then the slope of u’

i must be 

greater than that of ui. However, this implies that u’
i is higher than 

ui at t=tjl
 in the xi dimension, which also contradicts the property 



(P4) for u’
i. Therefore, u’

i does not exist and ui has the property 

(P5). The proof that if li has the properties (P1)-(P3), then it also 

has the properties (P4) and (P5) is quite similar. ⁪ 
 

Lemma 4.2 Referring to the properties defined in Lemma 4.1, 

given a sequence of m data points ((tj1
,Xj1

),(tj2
,Xj2

),...(tjk
,Xjm

)), if 

there exists a hyperplane ui (li) with the properties (P1), (P2), and 

(P4), then ui (li) also has the properties (P3) and (P5) 
 

Proof. Assume that ui has the properties (P1), (P2), and (P4), but 

not (P3). Let u’
i be a hyperplane that has properties (P1) and (P2) 

(i.e. it passes through a pair of points (tjh’
,Xjh’

-Vd(i,εi)) and 

(tjl’
,Xjl’

+Vd(i,εi)), such that tj1
≤tjh’

<tjl’
≤tjm

), and that the slope of u’
i is 

smaller than that of u’
i. Since ui has the property (P4), then it has 

to be higher than or equal to u’
i at t=tjh’

 and lower than or equal to 

u’
i at t=tjl’

 in the xi dimension. However, this implies that the slope 

of ui is smaller than or equal to that of ui, which is a contradiction. 

Thus, u’
i does not exist and ui has the property (P3).  

Now, assume that ui has the properties (P1), (P2), and (P4), but 

not (P5). Let u”
i be a hyperplane that has properties (P1) and (P4), 

and is higher than ui for some t>tjm
. Since u”

i has the property 

(P4), then u”
i has to be higher than or equal to ui at t=tjh

 and lower 

than or equal to ui at t=tjl
 in the xi dimension. However, this 

implies that the slope of u”
i is smaller than or equal to that of ui. 

Thus, at t>tjm
, u”

i must be lower than or equal to ui, which is a 

contradiction. Thus, ui does not exist and ui has the property (P5). 

The proof that if li has the properties (P1), (P2), and (P4), then it 

also has the properties (P3) and (P5) is quite similar. ⁪ 
 

Considering the kth filtering interval, Lemma 4.1 shows how 

to limit the search space for ui
k (li

k). In particular, ui
k (li

k) is the 

hyperplane with the minimum (maximum) slope (property (P3)) 

in the set of hyperplanes defined by properties (P1) and (P2). We 

will refer to this limited set as Ui
k (Li

k). Lemma 4.2 shows that if 

the new data point is within εi in the xi dimension from the 

existing ui
k (li

k), then ui
k (li

k) need not be adjusted, and thus the 

search in Ui
k (Li

k) is not even needed.  

We will shortly show how we can narrow the search space 

even further. However, we first explain the details of the filtering 

mechanism based on Lemmas 4.1 and 4.2 through an example.  
 

Example 4.1 

We again consider the pattern of data points shown in Figure 

2a. We also only consider the xi dimension, for the same reasons 

explained in Example 3.1.  

After the data points (t1,X1) and (t2,X2) arrive, the sets Ui
1 and 

Li
1 contain one line each, being ui

1 and li
1 respectively. ui

1 is 

defined by the two points (t1,X1-Vd(i,εi)) and (t2,X2+Vd(i,εi)), while 

li
1 is defined by (t1,X1+Vd(i,εi)) and (t2,X2-Vd(i,εi)) (see Figure 4a). 

After the arrival of (t3,X3), the lines ui1
1 and ui2

1 are added to Ui
1, 

where uij
1 connects (tj,Xj-Vd(i,εi)) and (t3,X3+Vd(i,εi)), j∈[1,2]. 

Based on Lemma 4.1, the new ui
1 is selected as the line with the 

minimum slope among ui
1, ui1

1, and ui2
1, which is ui2

1 in this case. 

Similarly, the new li
1 is selected as the highest of li

1, li1
1 and li2

1 

(constituting the new Li
1), where lij

1 is the line defined by the pair 

of points (tj,Xj+Vd(i,εi)) and (t3,X3-Vd(i,εi)), j∈[1,2]. li1
1 is selected 

in this case (see Figure 4b). Adjusting the lines ui
1 and li

1 does not 

involve rotations around the initial point, and thus they rather 

“slide” than “swing” --- hence the name “slide filter”. 

The data point (t4,X4), as seen in Figure 4c, can already be 

represented by li
1. li

1 has the properties (P1), (P2) and (P4), 

thereby, based on Lemma 4.2, it can be directly used as the new 

li
1. It is also guaranteed to have the maximum slope among all the 

lines in Li
1. ui

1, however, needs to be adjusted to represent (t4,X4). 

In the same way as described above, the lines uij
1, j∈[1,3] are 

constructed, and then ui2
1, being the lowest of them and ui

1, is 

selected as the new ui
1. Finally, (t5,X5) is less than εi below li

1 in 

the xi dimension (see Figure 4c), and thus can be represented by it. 

Recall that (t5,X5) could not be represented by the swing filter (see 

Figure 3c). ⁪ 
 

Optimization: The strategy for updating ui
k (li

k) described so far 

involves checking all the data points observed in the current 

filtering interval, whenever a new data point arrives and 

invalidates the current ui
k (li

k). It turns out that we can do much 

better. In fact, it is sufficient to check the points on the convex 

hull of the observed data points, as will be shown in the following 

lemma. The significance of this optimization is that the number of 

points on the convex hull can be dramatically smaller than the 

total number of data points observed during a filtering interval.   
 

Lemma 4.3 To update ui
k (li

k) during the kth filtering interval of 

the slide filter, such that the new ui
k (li

k) satisfies properties (P1), 

(P2), and (P3), defined in Lemma 4.1; it is sufficient to check the 

points on the convex hull of the data points observed during that 

filtering interval along the ith dimension, i∈[1,d]. 
 

Proof. We will only prove the lemma for the case when we are 

searching for the new ui
k on the arrival of a new data point (tj,Xj) 

which invalidates the old ui
k. The proof for the case of li

k should 

be similar. According to Lemma 4.1, the new ui
k should be the 

minimum-slope hyperplane (P3) chosen from the old ui
k and all 
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(c) 

Figure 4. Filtering mechanism in slide filter 



hyperplanes, which are perpendicular to the t-xi plane (P1) and 

passing through (tj’,Xj’-Vd(i,εi)) and (tj,Xj+Vd(i,εi)) (P2), where 

(tj’,Xj’) is a data point observed in the current filtering interval.  

To see why only the convex hull of the observed data points is 

relevant to us, let us first denote that hull in the ith dimension by 

Hi, and the convex hulls of the points of the form (tj’,Xj’-Vd(i,εi)) 

and (tj’,Xj’+Vd(i,εi)) by Hi
- and Hi

+ respectively.  

Now, if point (tj’,Xj’) occurs inside Hi, then its corresponding 

ui
k (call it uij’

k) which passes through (tj’,Xj’-Vd(i,εi)) and 

(tj,Xj+Vd(i,εi)) can always be rotated around (tj,Xj+Vd(i,εi)) 

clockwise (to decrease its slope) until it touches a vertex in Hi
- 

(call it (tj”,Xj”-Vd(i,εi))). The corresponding ui
k (call it uij”

k) has a 

smaller slope than uij’
k, thereby overriding it. Thus, there is no 

need to check (or maintain) the data points observed inside Hi. ⁪ 
 

Following from the proof of the above lemma, we can further 

conclude that even across the data points occurring at the vertices 

of Hi, we are only interested in one whose corresponding ui
k is 

tangent to Hi
-. In particular, the one where that tangent cannot be 

rotated clockwise any further.  

Hence, the filtering mechanism for the slide filter reduces to 

solving two key problems: the incremental maintenance of Hi, and 

finding the tangent to Hi
- from an outside point. Both problems 

are well-known in the area of computational geometry [3].  

The incremental convex hull algorithm can be summarized as 

follows. Points on Hi are divided into two lists representing an 

upper hull and a lower hull, where the points in each list are 

sorted by time. The two lists overlap in their first and last points, 

being the first- and last-observed data point in the current filtering 

interval. When a new data point arrives, it is inserted at the end of 

both lists. Then each list is updated separately.  

Updating a list is achieved by examining streaks of three 

consecutive points starting with the most recent, and then moving 

backwards. If the direction of the “turn” made at the middle point 

of the three examined points is opposite to the original turning 

direction for the list (it should be clockwise for the upper hull and 

anti-clockwise for the lower hull as we move forward in time), 

then that middle point is removed from the list. Once a streak of 

three points is reached where the middle point is not removed, the 

update process stops for that list. For more details about this 

algorithm, the reader is referred to [3].  

To find the tangent to Hi
-, we can simply scan its vertices until 

we find the vertex that minimizes the slope of ui
k. An even more 

efficient algorithm can be found in [6]. 

4.2 Recording Mechanism 

For each filtering interval k, the set of candidate line 

segments, that can represent all the data points observed in that 

interval, are those segments occurring between ui
k and li

k, for 

every i∈[1,d]. In other words, a candidate line segment must pass 

through the intersection of ui
k and li

k, i∈[1,d]. For the first filtering 

interval [t1,tj1
], the generated line segment g1 is chosen such that it 

minimizes the mean square error for the data points observed 

during that interval along each dimension xi, i∈[1,d]. This is 

achieved exactly in the same way described in Section 4.1, where 

the slope of g1 is decided independently for each dimension. The 

start point of g1 occurs at t=t1, while its end point is only decided 

after the second filtering interval [tj1+1,tj2
] ends. By delaying that 

decision until the end of the second filtering interval, we might be 

able to generate two connected line segments rather than two 

disconnected ones. The criteria for generating connected line 

segments and the way the connection point is chosen will be 

described shortly. If the two line segments (g1 and g2) could not 

be connected, then g1 will end at t=tj1
 and g2 will start at t=tj1+1, 

such that it minimizes the mean square error of the data points 

observed in the second filtering interval. The generated line 

segments for the following filtering intervals are chosen in the 

same manner, where the end point of gK occurs at t=tjK
=tjn

. 

When the kth filtering interval ends at t=tjk
, k∈[2,K], we need 

to determine whether gk can be chosen such that it intersects with 

g(k-1) or not. By that time, the start point and slope of g(k-1) are 

known. For each dimension xi, there can be an interval [αi
(k-1),βi

(k-

1)] where gk can intersect with g(k-1), such that they can represent 

all the data points in the (k-1)th and kth filtering intervals within an 

error bounded by εi in that dimension. The intersection point can 

be chosen at any time t(k-1) in the interval [α(k-1),β(k-1)] (if exists), 

which is the intersection of all the intervals [αi
(k-1),βi

(k-1)], i∈[1,d].  

The following lemma shows when the interval [αi
(k-1),βi

(k-1)] 

exists, and how to calculate it for every dimension xi, i∈[1,d]. 

Before presenting the lemma, we will define some variables, 

which are also illustrated in Figures 5a and 5b. Let (1) 

(ti
k,Vd(i,xi

k)) be a point on the intersection of ui
k and li

k, (2) si
(k-1) 

and qi
(k-1) be the hyperplanes perpendicular to the t-xi plane, 

passing through the intersection of ui
k and li

k, and intersecting 

with li
(k-1) and ui

(k-1) respectively at tj(k-1)
, (3) ci

k and ci
k’ be the 

intersection times of g(k-1) with ui
k and li

k respectively, (4) di
k and 

di
k’ be the intersection times of g(k-1) with si

(k-1) and qi
(k-1) 

respectively (5) ei
k and ei

k’ be max(ci
k,di

k’) and max(ci
k’,di

k’) 

respectively, and (6) fi
k and fi

k’ be the intersection times of g(k-1) 

with li
k and ui

k respectively. 
 

Lemma 4.4 If (ti
k,Vd(i,xi

k)) is below (above) g(k-1), fi
k (fi

k’) is less 

than tj(k-1)
, and li

k is above li
(k-1) (ui

k is below ui
(k-1)) at t=tjk-1

 in the xi 

dimension, then there exists αi
(k-1)=ei

(k-1) (αi
(k-1)=ei

(k-1)’) and βi
(k-

1)=fi
(k-1) (βi

(k-1)=fi
(k-1)’),  such that gk can be chosen to intersect with 

g(k-1) at any time t(k-1)∈[αi
(k-1),βi

(k-1)], while g(k-1) is within εi in the 

xi dimension from all the data points in the interval [tj(k-2)+1,t
(k-1)] 

and gk is within εi in the xi dimension from all the data points in 

the interval [t(k-1),tjk
] 

 

Proof. We will only consider the case where (ti
k,Vd(i,xi

k)) is below 

g(k-1). The proof for the opposite case is quite similar. Let (t(k-1),X(k-

1)) be the intersection point of g(k-1) and gk, such that t(k-1)∈[ei
(k-

1),fi
(k-1)], and consequently t(k-1)<fi

(k-1)<tj(k-1)
. It follows that g(k-1) is 

used to approximate the data points in the interval [tj(k-2)+1,t
(k-1)], 

while gk is used to approximate the data points in the interval [t(k-

1),tj(k-1)
] and those in the interval [tj(k-1)+1,tjk

]. By definition, g(k-1) is 

within εi in the xi dimension from all the data points in the interval 

[tj(k-2)+1,tj(k-1)
], which includes the interval [tj(k-2)+1,t

(k-1)]. Since gk 

intersects with g(k-1) at a time (t(k-1)) between the intersection times 

of ui
k and li

k with g(k-1) (ci
k and fi

k respectively), and since all of gk, 

ui
k and li

k intersect at a later time (ti
k), then gk is guaranteed to 

always occur between ui
k and li

k. Therefore, gk is within εi in the xi 

dimension from all the data points in the interval [tj(k-1)+1,tjk
]. If t(k-

1)>tj(k-1)
, then the interval [t(k-1),tj(k-1)

] does not exist. Otherwise, 

since gk intersects with g(k-1) at t=t(k-1), then gk is between ui
(k-1) and 

li
(k-1) at t=t(k-1). Since (ti

k,Vd(i,xi
k)) is below g(k-1) in the xi 

dimension, then gk has a smaller slope than those of g(k-1) and ui
(k-

1), and thus is lower than ui
(k-1) in the xi dimension at t=tj(k-1)

. Also, 

since t(k-1)>max(ci
k,di

k), then gk is higher than the highest of ui
k and 



si
(k-1). But since si

(k-1) intersects with li
(k-1) at t=tj(k-1)

, then gk is 

guaranteed to be higher than or equal to li
(k-1) in the xi dimension 

at t=tj(k-1)
. Therefore, gk occurs between ui

(k-1) and li
(k-1) in the 

interval [t(k-1),tj(k-1)
], and thus is within εi in the xi dimension from 

all the data points in that interval. ⁪  
 

Figure 5a shows the xi dimension of a signal where g(k-1) and 

gk cannot be connected because (ti
k,Vd(i,xi

k)) is below g(k-1) and 

fi
k<tj(k-1)

, but opposite to the requirement of Lemma 4.4, li
k is below 

li
(k-1) at t=tj(k-1)

. In contrast, g(k-1) and gk can be connected in Figure 

5b, where all the requirements of Lemma 4.4 are met: (ti
k,Vd(i,xi

k)) 

is below g(k-1), fi
k<tj(k-1)

, and li
k is above li

(k-1) at t=tj(k-1)
. 

  

(a) (b) 

Figure 5. Recording mechanism in slide filter 

4.3 Algorithm and Analysis 

Based on the above discussion, we can now outline the 

algorithm of the slide filter (Algorithm 2).  

Algorithm 2: Slide Filter 
 

//initialization 
 

1. (t1,X1) = getNext();(t2,X2) = getNext(); 

2. Start a new filtering interval with ui
1 passing through (t1,X1-

Vd(i,εi)) and (t2,X2+Vd(i,εi)), and li
1 passing through 

(t1,X1+Vd(i,εi)) and (t2,X2-Vd(i,εi)), for every i∈[1,d]; 

3. set k=1; 
 

//main loop 
 

4. while(true) 

5. (tj,Xj) = getNext(); 

6. if (tj,Xj) is null or (tj,Xj) falls more than εi above ui
k or below 

li
k in the xi dimension, for any i∈[1,d];       //recording 

mechanism 

7. if (k>1) 

8. Calculate the interval [αi
(k-1),βi

(k-1)] for each dimension 

xi, i∈[1,d], as described in Lemma 4.3; 

9. Calculate the interval [α(k-1),β(k-1)] as the intersection of 

all the intervals [αi
(k-1),βi

(k-1)], i∈[1,d]; 

10. if the interval [α(k-1),β(k-1)] exists 

11. for each dimension xi, i∈[1,d] 

12. let zi
k be any point on the intersection of ui

k and 

li
k; 

13. if zi
k falls below g(k-1) 

14. Adjust ui
k and li

k to intersect g(k-1) at t=α(k-1) and 

t=β(k-1) respectively, while ui
k and li

k still pass 

through zi
k 

15. else if zi
k falls above g(k-1) 

16. Adjust ui
k and li

k to intersect g(k-1) at t=β(k-1) and 

at t=α(k-1), while ui
k and li

k still pass through zi
k; 

17. Calculate aig
k (the slope of gk) such that it is between aiu

k 

and ail
k and minimizes Ei

k, for every i∈[1,d] ; 

18. if (k>1) and the interval [α(k-1),β(k-1)] exists 

19. Make a recording: (t(k-1),X(k-1)), which is the 

intersection point of gk and g(k-1) ; 

20. else if (k>1) and the interval [α(k-1),β (k-1)] does not exist 

21. Make two recordings: (t(k-1),X(k-1)), which is the point 

on g(k-1) at t=ti(k-1)
 and (t(k-1)’,X(k-1)’), which is the point 

on gk at t=tj(k-1)+1; 

22. else if (k=1) 

23. Make a recording: (t0’,X0’), which is the point on g1 at 

t=t1; 

24. if (tj,Xj) is null   //end of signal 

25. Make a recording: (tk,Xk), which is the point on gk at 

t=t(j-1); 

26. return; 

27. else 
28. (tj+1,Xj+1) = getNext(); 

29. Start a new filtering interval with ui
(k+1) passing 

through (tj,Xj-Vd(i,εi)) and (tj+1,Xj+1+Vd(i,εi)), and li
(k+1) 

passing through (tj,Xj+Vd(i,εi)) and (tj+1,Xj+1-Vd(i,εi)), 

for every i∈[1,d]; 

30. set k=k+1; 

31. else     //filtering mechanism 

32. for each dimension xi, i∈[1,d] 

33. Update the convex hull Hi; 

34. if (tj,xj) falls more than εi above li
k 

35. Construct lij’
k, for every point (tj’,Xj’) that is a vertex 

on Hi, such that lij’
k passes through (tj’,Xj’+Vd(i,εi)) 

and (tj,Xj-Vd(i,εi)); 

36. Adjust li
k to be the highest of li

k and lij’
k for t>tj, for 

every j’, where (tj’,Xj’) is a vertex on Hi; 

37. if (tj,xj) falls more than εi below ui
k 

38. Construct uij’
k, for every point (tj’,Xj’) that is a vertex 

on Hi, such that uij’
k passes through (tj’,Xj’-Vd(i,εi)) 

and (tj,Xj+Vd(i,εi)); 

39. Adjust ui
k to be the lowest of ui

k and uij’
k for t>tj, for 

every j’, where (tj’,Xj’) is a vertex on Hi; 
 

During each filtering interval, the slide filter needs to 

maintain the slopes of  ui
k and li

k, in addition to the data points 

representing the vertices of the convex hulls of the data points 

observed so far in that interval – one convex hull for each 

dimension. Our experiments have shown that the number of such 

vertices typically remains very small regardless of how many data 

points are observed in the same filtering interval. If we denote this 

number by mH, then the time and space complexity of the slide 

filter are both O(mH) (recall that the incremental update of the 

convex hull is linear in its number of vertices). 

We note that if the number of data points observed since the 

last receiver update reaches the maximum value mmax_lag, then the 

slide filter can handle this situation in the same way described for 

the swing filter. 

4.4 Proof of Correctness 

Theorem 4.1 All the original data points of a signal compressed 

using the slide filter occur within the error constraint from the 

generated piece-wise linear approximation. 



Proof. Considering disconnected line segments only, it is obvious 

that for every filtering interval k, the first two data points are 

within εi from each of ui
k, li

k, and gk (since gk is guaranteed to 

occur between ui
k and li

k) for every dimension xi, i∈[1,d]. If we 

assume that the first m data points in the kth filtering interval are 

within εi from ui
k, li

k, and gk, then based on the method used to 

adjust ui
k and li

k (lines 36 and 39 respectively in Algorithm 2) and 

Lemmas 4.1-4.3, we can conclude that the first m+1 data points 

will also be within εi from ui
k, li

k, and gk. By mathematical 

induction, all data points observed in any filtering interval k will 

be within εi from gk for every dimension xi, i∈[1,d] . Considering 

connected line segments, the slide filter connects the line 

segments g(k-1) and gk only when the conditions specified in 

Lemma 4.3 are met (lines 8-10 in Algorithm 2), and their 

intersection point is selected also as specified in Lemma 4.3 (lines 

11-19 in Algorithm 2). Thus, Lemma 4.3 guarantees that all the 

data points in the filtering intervals k-1 and k are within εi from 

either g(k-1) or gk. ⁪ 

5.  EXPERIMENTS AND RESULTS 

5.1 Experimental Setup 

In our experimental study, we use both real data and synthetic 

data to evaluate the effectiveness of the different filters. The real 

data is obtained from the oceanography domain. It consists of 

1285 data points for the sea surface temperature sampled at a 10 

minutes interval [20]. Moreover, using the synthetic data allowed 

us to carefully study the impact of certain properties, which the 

data signals may exhibit, on the effectiveness of the filters.  

In the experiments, we compare between four different types 

of filters: (1) cache filters, (2) linear filters (generating connected 

segments), (3) swing filters, and (4) slide filters. 

We report the compression ratio achieved by each filter, 

which is calculated by dividing the number of recordings needed 

when no filtering is used by that when filtering is used. We also 

report the average error of the signals generated by each filter. 

The average error is computed as the sum of errors for each 

sample divided by the number of samples. Finally, we present an 

experiment, which shows the processing time needed per data 

point when the different types of filters are used. 

We studied the effect of several parameters, including (1) the 

prescribed precision width, which is measured as a percentage of 

the signal’s range (difference between maximum and minimum 

values), (2) the signal behaviour (e.g. the degree of monotonicity 

and the magnitude of change per data point), and (3) the 

dimensionality (e.g. the number of dimensions and the degree of 

correlation between the different dimensions). In our graphs, we 

generally use a logarithmic scale for the x-axis whenever we wish 

to examine a wide range of values for the parameter under study. 

The experiments were conducted on a Pentium 4 machine 

with a 3 GHz processor and 1GB RAM. In general, we have set 

mmax_lag to a large value, to be able to assess the filters’ full 

compression power, especially for applications that give higher 

priority to compression over timeliness. Still, however, other lag-

sensitive applications can set mmax_lag to any arbitrary value. 

5.2 Effect of Precision Width 

In this experiment, we show the effect of varying the 

precision width on the filters’ compression ratio and average error 

for the signal representing the sea surface temperature. Figure 6 

shows the original signal. As can be observed, it continuously 

goes up and down with no regular pattern. 

The results shown in Figure 7 indicate that the slide filter is 

superior to the other filters in terms of the compression ratio. Its 

improvement over the filter with the lowest compression ratio 

(linear filter) ranges from 21% to an astounding 1867% when the 

precision width is 10% of the range. The swing filter follows the 

slide filter in performance. The cache filter comes next preceding 

the linear filter. This is because the value of the sea surface 

temperature remains fixed frequently enough to give an advantage 

to the cache filter. Note that the compression ratio is always above 

1 even though it may not be clear in the figure. 
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Figure 7. Compression ratio for the sea surface temperature  
 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.316 1 3.16 10

Precision width (% of range)

A
v
e
ra

g
e
 e

rr
o

r 
(%

 o
f 

ra
n

g
e
)

cache             linear            

sw ing slide

 

Figure 8. Average error for the sea surface temperature  

Figure 8 shows that the average error for the slide, swing, and 

cache filters is almost identical, and is a little lower for the linear 

filter (which also has the least compression ratio). We further note 

that the average error for all the filters is generally far below the 

prescribed precision width. For example, when the prescribed 

precision width is 10% of the range, the average error for the 

swing filter (highest across all filters) is only 4.5% of the range.  

5.3 Effect of Signal Behavior 

This set of experiments uses synthetic data to show the effect 

of varying the signal behavior on the compression ratio when the 
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Figure 6. Sea surface temperature 



different filters are used. We generated the synthetic signals such 

that they follow a random-walk-like model. The value for each 

data point can be lower than or higher than that of the previous 

data point according to the probabilities p and (1-p) respectively. 

The magnitude of increase/decrease in the value is given by a 

uniform distribution U(0,x), where x is a configurable parameter. 

Figure 9 shows the effect of the degree of the signal’s 

monotonicity on the compression ratio. The probability p is varied 

from 0 to 0.5, while x is set to 400% of the precision width. At the 

two extremes of the graph, the signal is either monotonically 

increasing or continuously oscillating. The figure clearly shows 

that the slide and swing filters achieve higher compression ratios 

than the linear and cache filters. The improvement of the slide 

filter (best) over the cache filter (worst) ranges from 70% when 

p=0.5 to about 200% when p=0. The cache filter is the least 

sensitive to the fluctuations in the signal’s value, whereas the 

other filters perform better when the value is mostly changing in 

the same direction since such behavior is closer to the linear 

behavior they expect. 
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Figure 10. Effect of the magnitude of change per data point 

 Figure 10 shows the effect of varying the magnitude of 

maximum change per data point (x) from 10% to 10,000% of the 

precision width, where p is set to 0.5. This implies that the 

variable oscillates up and down with equal probability. As x 

increases, it becomes more difficult to represent many data points 

using the same line segment, and so the compression ratio 

decreases. However, the figure shows that the slide and swing 

filters consistently outperform the cache and linear filters. In 

terms of improving the compression ratio, the slide filter achieves 

an improvement over the linear filter ranging from 266% when 

x=10% down to 19.5% when x=10,000%. We note that when x is 

less than the precision width (e.g. x=10%), the cache filter 

performs better than the linear filter. In this case, the signal can 

keep oscillating around the same horizontal line segment without 

violating the error constraint, which is good for the cache filter. 

Moreover, the reason behind the high resilience of the slide filter 

to the sharp fluctuations in the signal’s value (i.e. even when x is 

large) compared to the other filters is as follows. Even though the 

number of required segments increases with such fluctuations, the 

chances of connecting neighboring segments also increase. 

5.4 Effect of Dimensionality 

In this set of experiments, we study the effect of 

dimensionality on the filters’ compression ratio. We also use 

synthetic data, where we consider signals having more than one 

dimension. The values for each dimension are generated in the 

same way as in Section 5.3.  

Figure 11 shows that as the number of dimension increases, 

the achieved compression ratio decreases. This is expected 

because a new line segment has to be generated once the value in 

any dimension xi is more than εi above or below the current line 

segment. With more dimensions, the likelihood that this event 

occurs gets higher (especially when the dimensions are 

completely independent as in the case of Figure 11). It is observed 

that the slide and swing filters still achieve the highest 

compression ratios, even with high dimensionality. 

For the experiment reported in Figure 12, we generated a 5-

dimensional signal, and varied the correlation between its five 

dimensions from 0.1 to 1. As expected, as the correlation 

increases, the dimensions tend to vary in a similar way. Thus, the 

likelihood that one of them requires starting a new line segment 

and not the others decreases. This results in generating less 

number of line segments, and thus a higher compression ratio. 

Figure 13 also demonstrates that the slide and swing filters still 

consistently outperform their counterparts. 
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Figure 11. Effect of the number of dimensions 
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Figure 12. Effect of the correlation between dimensions 
 

An interesting question is whether it is more effective to 

compress each dimension independently, or to compress the 

multiple dimensions together. In fact, it depends on how 

correlated they are. For example, from Figure 11, we find that 

compressing a single dimension independently using the slide 

filter can result in a compression ratio of 2.47. However, since 

independent compressions require recording the time information 
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Figure 9. Effect of the degree of monotonicity 



for the points generated for each dimension. In effect, this reduces 

the compression ratio. If we assume that the size of the time field 

is equal to the size of the dimension value, xi, then for a d-

dimensional signal, the compression ratio resulting from 

independent compressions should be the ratio for a single 

dimension multiplied by (d+1)/2d to account for the redundancy 

in recording the time information. Thus for a 5-dimensioanl 

signal, the compression ratio for independent compressions 

should be 2.47×(5+1)/(2×5)=1.48. From Figure 12, we find that 

when the correlation is above 0.7, the compression ratio exceeds 

1.48; i.e., compressing the multiple dimensions together becomes 

more effective than compressing each dimension independently. 

5.5 Filtering Overhead 

To measure the filtering overhead, we used the sea surface 

temperature data, where we loaded all the data points into 

memory and then fed them into our filtering system once without 

performing any filtering and once for each filter type. In all cases, 

the total time for processing all the data points, repeated 10,000 

times, is measured. Finally, we subtract the time taken when no 

filtering is applied from the time for each filter and divide by the 

number of data points processed to get the processing overhead 

per data point.  

Note that the only parameter that may affect the processing 

time per data point is the size of the filtering interval in terms or 

how many data points it spans. Hence, to study the overhead, it is 

sufficient to run the filters on any signal while varying the 

precision width. This way, we will effectively be varying the 

average size of the filtering intervals – precisely what we need for 

this study. In other words, varying other parameters will not 

provide additional information. For example, varying the signal 

behavior will also ultimately result in varying the size of the 

filtering intervals. Moreover, if the signal is multi-dimensional, 

the same amount of work is done for each dimension. Correlated 

dimensions can only result in higher compression, which again 

implies larger filtering intervals on average. 

Figure 13 shows how the processing time per data point 

changes by varying the precision width. In addition to showing 

the overhead of the four filters studied before, we also show here 

the overhead of the non-optimized slide filter (when the convex 

hull optimization is not used). 

It is observed that all four filters, including swing and slide 

(the optimized version), are scalable w.r.t. the number of observed 

data points in the filtering interval. This was expected for the 

swing filter because its time complexity is O(1). For the slide 

filter, however, this is an interesting result because it shows that 

the number of vertices of its maintained convex hulls is almost 

constant regardless of how many data points are inside the hulls.  

It is also worth noting that the overhead does not exceed 4µs 

per data point for the cache, linear, and swing filters, and about 

8µs per data point for the slide filter. Again, this difference was 

expected because of the additional convex hull maintenance work 

the slide filter has to do. But more importantly, the two figures are 

sufficiently low for overhead-sensitive applications (e.g. sensor 

networks or cluster monitoring, where the wasted CPU cycles by 

the monitoring service should be minimal). Extremely overhead-

sensitive applications may prefer the lower overhead of the swing 

filter over the higher compression power of the slide filter. 

The figure also clearly shows the significance of optimizing 

the slide filter. In particular, its non-optimized version is not 

scalable with respect to the number of observed data points. It has 

to process each such data point whenever a new data point arrives, 

as opposed to processing the vertices of the convex hull only in 

the case of the optimized version. 

6.  RELATED WORK 

The management of data streams resulting from monitoring 

and sensor network applications has been an active research area 

in the last few years. Much work has been directed towards 

finding techniques for data reduction in order to cope with the 

large sizes of collected data. Lazaridis et al. [18] propose an 

optimal on-line algorithm for constructing a piecewise constant 

approximation for a time series, as opposed to the more general 

piecewise linear approximation that we construct. The output of 

their algorithm corresponds to that of the cache filter presented in 

Section 2. Olston et al. [21] consider the problem of 

approximating aggregate values over multiple input streams. They 

propose an algorithm, which, given a desired precision for the 

aggregate value, adaptively adjusts the precision of the underlying 

individual input streams, such that the communication overhead is 

minimized. They only consider cache filters for filtering the input 

streams. Dilman et al. [10] propose two algorithms similar to the 

cache and linear filter algorithms for reducing the monitoring 

overhead in IP networks. They also study the statistical factors 

that affect the amount of savings for each monitored variable. In 

[15], Jain et al. propose using Kalman filters for approximating 

data streams. Kalman filters are a general framework for 

predicting the state of any process represented by the data stream, 

taking into consideration the measurement noise and uncertainty 

in state propagation. Kalman filters are general enough to model 

both the cache and linear filters, and even more complex models 

such as sinusoidal models. Choosing the most appropriate model 

requires, however, prior knowledge about the behavior of the 

monitored variable, which is not normally available. Kalman 

filters are also incapable of simulating the swing and slide filters 

since each of them maintain multiple prediction models 

simultaneously, i.e., the set of candidate line segments. The work 

in [23] is based on inserting load shedding operators inside the 

query execution plans for querying input data streams in order to 

handle peaks in the input data rates that the servers cannot cope 

with. They do not provide precision guarantees, but rather protect 

the servers from overwhelming data rates. Wu et al. [24] consider 

the approximation of financial data streams, where the data 

follows a repetitive pattern of waves. Therefore, the piece-wise 

linear approximation generated by their algorithm has a zigzag 

shape. The output is further pruned to get rid of noise-like line 

segments that are irrelevant to the stocks’ general trends. Palpanas 

et al. [22] introduced the amnesic approximation of data streams, 

which allows arbitrary, user defined reduction of quality with 
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Figure 13. Filtering overhead for the sea surface 

temperature signal 



time. The work in both [24] and [22] does not provide precision 

guarantees either. Keogh et al. [16] proposed the SWAB 

algorithm which merges an offline bottom-up technique for time 

series segmentation with an online technique similar to the linear 

filter. This work is complementary to our work as the swing and 

slide filters can replace the linear filter in the SWAB algorithm. 

There have been other efforts for data reduction that do not 

directly depend on filtering. Deligiannakis et al. [9] attempt to 

find correlations between data streams collected from sensors, 

construct base signals that carry the important trends in them, and 

then only record the base signals and the relation between each 

stream and the base signals. The algorithm needs O(n1.5) time and 

O(n) space. It is assumed to run periodically after enough 

historical data is collected by the sensor. Guha et al [12] 

generalize the problem of histogram construction for infinite data 

streams. The goal of the histogram construction problem is to 

divide a data set into a given number of buckets and then 

represent the data set using the mean values of these buckets, such 

that the error in the approximation is minimized. The algorithm 

they propose is based on using a fixed-length sliding window of 

data points. In [4], Buragohain et al. also address the histogram 

construction problem. However they represent each bucket by a 

line segment rather than a single value. Madden et al. [19] 

introduce a new mechanism for in-network aggregation in ad-hoc 

sensor networks, where the execution of aggregate queries is 

distributed in the network, resulting in less communication 

overhead than the obvious centralized approach. The authors then 

extend their work to provide wavelet-based lossy compression of 

the data collected in sensor networks [14]. Again, the main 

difference between the above algorithms and ours is that they do 

not provide precision guarantees. 

A significant number of Data Stream Management Systems 

have been introduced by the database community, including 

AURORA [1], COUGAR [25], NiagraCQ [7], NILE [13], 

TelegraphCQ [5] and STREAM [2]. Their common goal is to 

provide a general-purpose infrastructure for the efficient 

management of data streams. Several frameworks have been 

developed for system monitoring as well. Among them is 

WatchTower [17] which collects Windows performance counter 

data, and stores only the statistically interesting counters, or 

composite counters that summarize the behavior of many raw 

counters. Remos [11] is another system that collects and 

distributes resource information in grid environments across 

different querying entities. Pinpoint [8] is a monitoring system for 

J2EE applications that logs Java exceptions in J2EE application 

servers, and tries to derive from that information performance 

bottlenecks or component malfunctions. To the best of our 

knowledge, none of the currently available systems use techniques 

similar to ours for reducing the size of collected data. 

7.  CONCLUSIONS 

We have presented two new filtering mechanisms that 

produce a piecewise linear approximation for an input multi-

dimensional data stream with guarantees on both the quality of 

each data point and the lag between the transmitter and receiver. 

The two new mechanisms, the swing and slide filters, were shown 

to outperform previous methods of filtering by piecewise linear 

(and constant) approximation. We have evaluated the 

performance of these filters using a real data set from the 

oceanography domain, in addition to a wide variety of synthetic 

data sets to study the effect of the different types of signal 

behavior and precision requirements on the compression power of 

the proposed techniques. We have studied the effect of monotonic 

versus oscillatory behavior, smooth versus sharp fluctuations; and 

high-dimensionality versus low-dimensionality. We concluded 

that the slide filter provides the highest compression ratios in 

almost all the cases. We also showed that compressing highly-

correlated dimensions together can be more effective than 

compressing each dimension independently. The overhead 

imposed by the filters was found to be minimal: a few 

microseconds per data point. Because of the relatively lower 

overhead of the swing filter compared to the slide filter, it (swing) 

can be more suitable for applications that are extremely overhead-

sensitive. Finally, we have also proved, for both types of filters, 

that the error of each data point in the approximated signal is 

guaranteed to stay within the prescribed precision. 
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