Ann Oper Res manuscript No.
(will be inserted by the editor)

Online Production Planning to Maximize the Number
of On-Time Orders

Nicholas G. Hall - Marc E. Posner -
Chris N. Potts

Received: date / Accepted: date

Abstract We consider a production planning problem with two planning periods.
Detailed planning occurs in the first period, when complete information is known
about a set of orders that are initially available. An additional set of orders becomes
available at the start of the second planning period. The objective is to maximize
the number of on-time orders. We derive an upper bound on the competitive ratio
of any deterministic online algorithm, relative to the performance of an algorithm
with perfect information about the second set of orders. This ratio depends on the
relative lengths of the two planning periods. We also describe an efficient algorithm
that delivers a solution which asymptotically achieves this upper bound ratio as
the number of jobs becomes large.

Keywords Online Planning - Scheduling - Planning Horizon - Competitive
Analysis

1 Introduction

We consider a production planning environment with two planning periods, an
initial short-term period and a future long-term period. Complete information is
known about the orders that are initially available for processing. Consequently,
detailed production planning is performed during the first period. However, the
possibility of new orders arriving at the end of the first period complicates this

Nicholas G. Hall
Fisher College of Business, The Ohio State University, Ohio 43210, United States
E-mail: hall.33@osu.edu

Marc E. Posner

Department of Integrated Systems Engineering, The Ohio State University, Ohio 43210, United
States

E-mail: posner.1@Qosu.edu

Chris N. Potts
School of Mathematical Science, University of Southampton, Southampton SO17 1BJ, UK
E-mail: C.N.Potts@soton.ac.uk

2 Hall, Posner, Potts

planning. Information about new orders becomes available when they arrive at the
start of the long-term planning period.

A producer only accepts and schedules an order that can be completed by
its due date. Thus, the order is rejected if it does not complete on time. Hence,
a natural objective is to find a production plan that maximizes the number of
accepted orders. This is also a standard measure of customer service in make-to-
order manufacturing environments (Pinedo, 2012).

Our work originates from both the planning horizon and online scheduling
literatures. Applications of the related planning horizon literature can be found
in inventory management (Ignall and Veinott, 1969), production planning (Mc-
Clain and Thomas, 1977), and scheduling and sequencing (Bean et al., 1991). The
planning environment that we consider is representative of periodic ordering and
production processes that are widely used in industry (Reid and Sanders, 2005;
Russell and Taylor, 2006). Within such processes, until an order arrives, no de-
tails are known about its properties, specifically its processing time and due date.
Chand et al. (2002) consider multiperiod production planning problems where data
for future periods has a diminishing effect on current decisions. In this situation,
a decision maker can work effectively with a limited set of data from the present
and the near future.

A more specific application of our model occurs when a company uses pre-
orders for their newly developed products. A pre-order is defined as “an order
for an item that has not yet been released” (Zhao and Stecke, 2010). The use
of pre-orders is desirable for customers, because they are assured of receiving a
product, in many cases with personalized customizations. It also benefits the seller
by allowing the demand for a new product to be estimated from preorder sales,
so that an appropriate price can be found (Li and Zhang, 2013). In many cases,
companies limit the number of pre-orders that they accept, so that reasonable cus-
tomer service levels can be provided at and after the release date. The uncertainty
over the amount and variety of regular orders creates difficulty in deciding how
many pre-orders to accept. Thus, focusing on the worst case, as is usual in the
competitive analysis of online algorithms (Pruhs et al., 2004), is an appropriate
approach to this problem for risk-averse manufacturers.

Online planning period scheduling problems, where orders can only arrive at
known future times, are introduced by Hall et al. (2009). For the problem of
minimizing the weighted sum of completion times, they describe a best possible
online algorithm. If all orders are available at the start of the planning horizon,
then the algorithm of Moore (1968) finds an optimal schedule for the number of
on-time orders problem. However, if the orders have different release dates, then
this problem is unary NP-hard (Lenstra et al., 1977). The preemptive version of the
problem with release dates is solved optimally by an efficient algorithm (Lawler,
1983; Baptiste, 1999). A fully online version, where preempted orders must be
restarted, is studied by Hoogeveen et al. (2000). Zheng et al. (2007) and Fung
(2008) consider generalizations where preemption of an order incurs a penalty
cost that is proportional to the order’s value. Special cases of the fully online
problem with equal processing times are discussed by Chrobak et al. (2006) and
Zheng et al. (2008).

We develop an upper bound on the performance of any algorithm for the
online planning period problem. We then describe an efficient online algorithm,

Online Production Planning to Maximize the Number of On-Time Orders 3

and show that it has asymptotically the best possible bound of any deterministic
online algorithm.

This paper is organized as follows. Section 2 provides our notation and a for-
mal description of the problem studied. Section 3 derives an upper bound on the
performance of any online algorithm. In Section 4, we describe an efficient online
scheduling algorithm for the problem. In Section 5, we show that our algorithm
is asymptotically best possible. Finally, Section 6 contains a conclusion and some
suggestions for future research.

2 Preliminaries

In this section, we provide our notation and a formal description of the problem.
We also develop some preliminary results that are used in subsequent sections.

2.1 Notation and problem description

We consider an online planning period scheduling problem in which job orders,
hereafter jobs, are processed nonpreemptively on a single machine. There are two
planning periods defined by the intervals [0,t] and [¢, T], where ¢ and T are known
at time zero, and 0 <t < T.

For problem instance I, a set of jobs Ny(I) is released at time zero. Each
job j € No(I) has a due date dj, where 0 < d; < T. A decision is made about
which jobs from No(I) are scheduled to start before time t. Once started, a job
must be processed to completion, i.e., preemption is not allowed. At time ¢, a new
set of jobs N¢(I) is released. Then, a second decision is made about which jobs
are to be processed by time T'. Each job j € N¢(I) has a due date d; = T. Let
N(I) = No(I) U N¢(I) denote the set of all jobs. Also, each job j € N(I) has a
positive processing time (or size) p;. When clear from the context, we omit “(1)”
from the description.

Let S C N denote the set of on-time jobs in some schedule. The objective is to
maximize the number of jobs that are processed by their due dates. Any job that
is not processed by its due date is rejected and does not appear in the schedule.

For instance I, let Z'A(]) denote the objective function value obtained by us-
ing the schedule generated by some deterministic online Algorithm A. Also, let
2*(I) denote the number of on-time jobs in an optimal offline solution. We refer
to zA(I)/z*(I) as the performance ratio of Algorithm A for instance I. The com-
petitive ratio of Algorithm A, R*(n), is the infimum of 2 /z* over all problem
instances with at least n = | No| jobs, where Ny is a reduced set of jobs that results
from the preprocessing procedure given in Section 2.2. Also, let R*(n) denote the
competitive ratio of a best possible online algorithm with at least n = | No| jobs.

In this paper, some specific job sequences are used. In an SPT sequence (Smith
1956), the jobs appear in nondecreasing processing time order. In an LPT sequence
(Graham 1966), the jobs appear in nonincreasing processing time order. Also, in
an EDD sequence (Jackson 1955), the jobs appear in nondecreasing due date order.
For consistency, we assume that ties are broken by the smaller job index.

4 Hall, Posner, Potts

2.2 Preliminary results

Given an initial set Ny of jobs, the algorithm of Moore (1968) is used to discard
a subset of jobs from Ng. Moore’s algorithm successively appends jobs in EDD
sequence to the current partial schedule, which is initially empty. Whenever there
is a due date violation, a job in the partial schedule with the largest processing
time is discarded from the partial schedule.

Theorem 1 Given any problem instance, there exists an optimal offline schedule
where no job from No(I) that is discarded by Moore’s algorithm is on time.

Proof Moore’s algorithm finds a schedule for the jobs of Ny with a maximum
number of on-time jobs. Let N; denote the jobs of N; that are on time in an
optimal offline schedule o*. Since each job of N; has due date T, without loss of
generality we assume that the jobs of N; are processed after all other jobs in 0. As
a result, if we modify the due date of each job j € Np to be min{d;, T—ZjeN: Dits
then Moore’s algorithm finds an optimal schedule. Further, Moore’s algorithm does
not select a previously discarded job. a

Theorem 1 shows that the jobs discarded by Moore’s algorithm do not affect
the value of z*. Now, suppose that instance I has No = {1}, where p1 = T. If
some Algorithm A discards job 1, then suppose that Ny =) in instance I. This
yields z*/z* = 0/1 = 0. Alternatively, if Algorithm A processes job 1, then let
N; contain identical jobs of size (T — t)/|N¢|. Hence, z/z* = 1/|N;| — 0 as
|N¢| — oo, and R*(1) = 0 for this instance, where |[No| = 1. Extending this
instance by constructing n — 1 duplicates of job 1 shows that if no job of Ny is
processed, then z/z* = 0/1 = 0. Alternatively, if one if these jobs is processed,
then z/2* = 1/|N¢| — 0 as |Nt| = oo. Thus, without any preprocessing of the
set No, we would obtain R*(n) = 0, for n > 1, which does not allow meaningful
competitive analysis to be undertaken. Consequently, we assume that the jobs
of Ng are preprocessed by Moore’s algorithm, and n is the number of jobs that
remain in No after preprocessing. Further, it is reasonable to use n as a baseline
for the number of on-time jobs, since processing more than n jobs of Ny so that
they complete by their due dates is impossible.

For the remainder of this paper, we restrict our attention to problem instances
for which all the jobs of Ny are on time if scheduled in EDD order. For convenience,
we assume that the jobs of No U N; are indexed in EDD order, where i € Ny and
j € N implies that ¢ < j. Also, for 4,5 € Ng or i,j € N¢, if i < j and d; = dj,
then p; < pj.

We use the following notation associated with a schedule ¢ (I) for some arbi-
trary instance I, where /3 is empty for a schedule o(I) found by Moore’s algorithm,
B = A for a schedule o (I) found by some Algorithm A, and 8 = * for an optimal
offline schedule o*(I):

EP(I) = set of jobs of No(I) that start before time ¢ in o (I)

LP(I) = set of jobs of No(I) that start no earlier than time ¢ in o (I)

SB(I) = set of jobs that complete on time in o®.

When there is no ambiguity, we drop “(I)”; for example EA(I) becomes E**. Also,
we define the number of jobs of E(I) that are discarded in schedule o”(I) by

g’(1) = |E()\ B ().

Online Production Planning to Maximize the Number of On-Time Orders 5

In our analysis, we first find an upper bound on the value of R*, the competitive
ratio of a best possible online algorithm for an arbitrarily large value of n = |Np|.
Then, we construct an online algorithm whose competitive ratio approaches this
value from below as n — co. These two results jointly establish that

(1+a)® :
R*:{W’ if T/t <2)
(1+v) ; ’
arrrn HT/t22

where
N 1/2 1/2
a= (—TT t) , and = (%) . (2)

Remark 2 R* > (14 v2)2)/[(1+v2)2+1] = (2+V2)/4.

Proof The first expression for R* in (1) is decreasing in «, while the second ex-
pressing is increasing in . Thus, a minimum value of R* is achieved when T/t = 2.
Substituting v/2 for v in (1) gives the desired result. O

At time ¢, complete information is known. Applying Moore’s algorithm at
time ¢ provides an optimal completion of any selection of E* for Algorithm A.
Consequently, the behavior of A is characterized by g”*(I), the number of jobs
of E that are discarded. If too many jobs are discarded from F, then a worst-
case scenario occurs when Ny = (). Alternatively, if not enough jobs from E are
discarded, then worst-case behavior occurs when a set of new jobs arrive at time
t. By removing more of the longer jobs of E than ¢, and replacing them with
shorter jobs of L, more jobs of N; can potentially be processed by ¢* in the interval
[t,T]. Thus, an effective online algorithm should achieve a suitable balance when
deciding on the jobs of F to discard.

Let

go(n) = go =n(l-R"). ®3)

Since R* = (n — go)/n, the target number of jobs that an online algorithm should
aim to discard from E is given by min{go, |E|}.

3 Upper Bound Analysis

In this section, we provide an upper bound on the competitive ratio of any online
scheduling algorithm. We first describe an upper bound that depends only on n.

Theorem 3 R*(n) < (n—1)/n for any online Algorithm A.

Proof For some small ¢ > 0, consider an instance where p; = (t —¢)/(n — 1) and
dj=tforj=1,....,.n—1,pp, =T —t+eand d, =T. Thus, E={1,...,n} and
L = (). If Algorithm A processes jobs 1,...,n, then no time remains for scheduling
additional jobs. Consider the completion of the partial schedule where N; contains
a large number of short jobs. The result is a performance ratio that is arbitrarily
close to 0. Alternatively, if Algorithm A discards at least one job, then suppose
N; = (). Because the optimal schedule processes all jobs, R*(n) < (n—1)/n. O

6 Hall, Posner, Potts

When T'/t is close to one or large, the competitive ratio (n—1)/n in Theorem 3
is tight. Intuitively, when T'/t is close to one, there is relatively little time in the
second planning period in which the online algorithm can make poor choices. Al-
ternatively, when T'/t is large, complete information becomes available relatively
close to time zero. We next show that, for intermediate values of T'/t, the compet-
itive ratio is smaller than (n —1)/n.

An online algorithm benefits by discarding long jobs of E and replacing them
with short jobs of L. This fills the interval [0,¢] with many short jobs and pro-
vides flexibility to process the jobs of N:. An optimal offline algorithm has two
advantages. First, it does not have to protect against Ny = (). When this occurs, it
does not discard any jobs. Second, when N; # (), the offline algorithm can discard
as many jobs as needed to accommodate the shorter jobs of N;. Consequently, it
does not benefit as much as an online procedure when the job sizes within sets
E, L, and N; vary. Hence, as we establish, there exists a family of dominating
instances where all jobs within each of E, L, and N; have the same size, and the
performance ratio approaches R* as n tends to infinity.

To establish an upper bound on the competitive ratio, we evaluate a particular
set of instances that have the following characteristics.

Property 1: ng long jobs, each released at time zero with size e and due date ¢,
where nge = t.

Property 2: ny, short jobs, each released at time zero with size £ and due date T,
where e > ¢ and npl¢ = min{T, 2t} —t.

Property 3: ny € {0, | (T — t)/£]} short jobs, each released at time t with size ¢
and due date T'.

We refer to instances of this type as (e, £)-instances. To describe a particular (e, £)-
instance, it is necessary to specify a value of n where n = ng + nr, and also how
many jobs of n are assigned to ng and ny. Then, Properties 1 and 2 are used to
find the processing times e and [of the long and short jobs, respectively.

For an (e, {)-instance, an optimal offline schedule, o*, processes without in-
terruption min{ng, |[T — ¢(nr + n¢)]/e]} long jobs starting at time 0. At the
completion of these jobs, all ny, short jobs followed by all n; short jobs are pro-
cessed.

We compare o to a schedule o generated by some online algorithm A where
sg early (long) and sy, late (short) jobs are processed in the interval [0, ¢]. Further,
there is insufficient time to complete any additional jobs in this interval. The
remaining ny — sy, short jobs and as many as possible of the n; short jobs that
are released at time t are processed in the interval [t, T7.

If no additional jobs are released at time ¢, then the performance ratio is

Sg +nr (4)
ng+nr’

Alternatively, if ny = | (T — ¢)/£], then the performance ratio for this scenario is

Sg +sp +nt
max{|[T — l(nr, +n¢)]/e],0} +nr +n¢ (®)

To provide an upper bound on the competitive ratio of any online algorithm,
we consider the two cases T/t < 2 and T/t > 2 separately.

Online Production Planning to Maximize the Number of On-Time Orders 7

Case A: T/t < 2.
Based on the limiting case as n — oo, consider an (e, £)-instance where

ng = [naj, (6)

and where « is defined in (2). The other parameters that we deduce from the
three defining properties of an (e, {)-instance are ng = n — nr, e = t/ng and
L= (T —t)/nr. A straightforward computation shows that the required condition
e > (is satisfied.

Given any choice of sg by the online scheduling algorithm, a corresponding
value of sy, is determined by evaluating the maximum number of shorter jobs that
can fit in the remainder of the interval [0, ¢]. This yields

s = |(t—sge)/l]. (7)
Next, we define
(1+a)
(1+a)2+a?’
where K is the value of R* in (1) when T'/t < 2.

To derive an upper bound on the competitive ratio of any online algorithm for
Case A, we need the following result.

K = (8)

Lemma 4 If ny, = [nal, then

nr + (n?a® —nnp)(K1 —a)/(n —np) +a? < o - na(Ki — a) + o?

n—2na? +ny, n — 2na? + na

Proof

na —na(K1 —a) +a? _np+ (n*a® —nnp) (K1 —a)/(n—np) + o?
n — 2na? 4+ na n —2na? +ng,

_ (np —na)[—(n —2na®) + (K1 — a)n(n+ na — na’® — 2na® + npa)/(n —np) + o’
n (n —2na? + na)(n — 2na? + ny)

(np—na)|—(n—a?)+(1+a)?/[1+a)’*+a?] —a(n+na—na®—2na +npa)/(n—ng)+a?

N (n —2na? + na)(n — 2na? + ny)
_ (np—na)n[(nr—na)(1+3a+a’—5a°—6a*) +n(a+2a?—a® —4a* —2a° +4a5))]
N (n—2na?a)(n —2na? +nr)(n —np)[(1+ «)? + o?]
2
a

+(n —2na? 4+ na)(n — 2na? +nr,)

> 0.
The second equality follows from (8). The inequality follows from n;, = [na] and
a < \/5/2, and from 1+3z+2°—5z°—62* > 0 and z+2x% — 2% —42* —22°+42°% > 0
when = € (0, v/2/2]. O

We now prove the main result for Case A.

8 Hall, Posner, Potts

Lemma 5 If T/t < 2, then

A (1+0a)? 1
R”(n) < (1—|—a)2—|—a2+n

for any online Algorithm A.

Proof Consider the (e, ¢)-instance with parameters defined by equation (6) and
the three properties of an (e, £)-instance. Suppose that Algorithm A chooses sg <
[n(K1—a)]. If ny = 0, then (4) shows that the performance ratio is

sSgp+nr, - n(K1—a)+ 1+ na
ng +nr, n

=K+ 1/n.

The inequality follows from (6) and the assumed upper bound on sg. Because the
competitive ratio is no larger than the performance ratio, the lemma holds for this
choice of sg.

Alternatively, suppose that Algorithm A chooses sg > |[n(K1—a)|+1. If n, =
ny, jobs of size ¢ are released at time ¢, then (5) establishes that the performance
ratio is

SE+SL +nt
max{|[T — (np +n:)l]/e],0} + np + n+

s+ [(t—sge)/t] +ng,
max{ | (T —2ngl)/e], 0} +2ng,
|t/ —sple—0)/t] +ng
T (2t=T)/e+2nz]
< [t/ —sgle—£0)/¢| +nL+1
- (2t —=T)/e+2ng,
< t/l—n(Ki—a)e—0)/l+n,+1
- (2t —T)/e+2nyg,
tnp, /(T —t) —nnp (K1 —a)t/(n—np)(T —t) +n(K1 —a) +np + 1
2t—=T)(n—ng)/t+2ng,
nr(l —a?)/a® —nnp (K1 —a)(1—a?)/((n—np)a?) +n(K1 —a) +np + 1
(n—nr)(1=2a2)/(1—a?)+2ng,
[nr + (n?a® —nnp) (K1 —a)/(n —np) + &?)(1 — o?)
(n—2na?+nr)a?

[na — na(K1 — o) + o?](1 — a?)

<

- (n — 2na? + na)a?

C(1-Ki+a)(l+a) 1+a
(14 2a)a n(1l+ 2«)

< Kqi+ 1/n.

The first equality follows from (7) and the choice nt = ny. The second equality
follows from ¢ = (T' — t)/ny,. The first inequality follows from z/|y| < (z +1)/y

Online Production Planning to Maximize the Number of On-Time Orders 9

for 0 < z < |y]. The second inequality follows from e > ¢ and from the assumed
lower bound on sg. The third equality follows from ¢ = (T'—t)/ny, and e = t/ng.
The fourth equality follows from the definition of «. The third inequality follows
from Lemma 4. O

Case B: T/t > 2.
An asymptotic analysis similar to that for Case A gives an (e, £)-instance with

nr = [n(1+7)/2+)1, (9)

where 7 is defined in (2). The other parameters, as deduced from the three defining
properties of an (e, £)-instance, are ng =n —ny, e =t/ng and ¢ = t/ny. Similar
to Case A, it is straightforward to establish that e > /.

As in Case A, for any choice of sg by the online scheduling algorithm, a
corresponding value of sy, is given by equation (7).

We now establish the main result for Case B.

Lemma 6 If T/t > 2 and n > 5, then

(1+7)* 1
B < e T T

for any online Algorithm A.

Proof Consider the (e, ¢)-instance with parameters defined by equation (9) and
the three properties of an (e, £)-instance. Let

(1+9)?

Ky=-—"1
T A2 +1

Suppose that Algorithm A chooses sg < [n(K2 — (14++)/(2+7))]. If n, =0,

then (4) shows that the performance ratio is

Sg+nr - n(1+7)/24+7)+1+n[Ke—(14+7)/(2+7)]
ng +nr, n

= Ko + l/n.

The inequality follows from (9), the relationship n = ng + nz and the assumed
upper bound on sg. Hence, the lemma holds for this choice of sg.

Alternatively, suppose that Algorithm A chooses sg > [n(K2 — (1 +7)/(2+7))].
If ng = [(T —t)/¢] jobs of size £ are released at time ¢, then from (5), the perfor-
mance ratio is

SE + 8L+t
max{|[T — (nr +n:)l]/e|,0} +np + n+
sg(l—e)/l+t/l+n,
max{|(T — (np +n¢)l)/e|, 0} + np + n¢
sp(l—e)/t+n(l+7)7°/(2+7)
(1 +)7?/(2+7)] -1

< ME2 = (147)/2+ 1= ([n(14)/2+N D/ (n=[n(1+7)/2+7)])]
- [n(1+y)72/(2+7)] -1

10 Hall, Posner, Potts

n(147)7*/(2+)
n(1+7)7?/(2+7)] -1

n[Ko—(1+7)/2+)][1-(n(1+7)/2+7))/(n—n(1+7)/(2+7))]
n(1+7)7?/(2+7)] -1
n(14+7)7*/(2+7)
n(1+7)7?/(2+7)] -1
—n[Kz — (1+7)/Q+ Iy +n1+9)7*/2+7)
[n(1+7)7v2/(2+7)]-1

_ k(P +9%)/(2+7)

n(1+7)7v2/(2+7v)] -1

nkKa(v’ ++4%)/(2+7) +1

n(1+7)7v?/(2+7)

< Ko+ 1/n.

IN

The first inequality follows from (7). The second inequality follows from (9), ny, =
t/l, ny = [(T—t)/¢], and e > £. The third inequality follows from (9), the assumed
lower bound on sg, e =t/(n —nr), and £ = t/nr. The fourth inequality follows
from K2 > (1+7)/(2+ 7). The fifth inequality follows from n > 5 and K> < 1.
The final inequality follows from the fact that v > v/2 implies (2 +v)/(v* +v°)
<1 O

We now provide the main result of this section.

Theorem 7 When n > 5, no online algorithm has a competitive ratio that is as
large as R* + 1/n.

Proof The result follows from Lemmas 5 and 6. a

4 An Online Algorithm

In this section, we propose an online scheduling algorithm called Algorithm Bal-
ance, for the problem of maximizing the number of on-time jobs processed. We
adopt the strategy that no job should be in process at time ¢ because this could
have a detrimental effect on scheduling the jobs that arrive at time Ny.

The input for Algorithm Balance includes the value R*, which is defined in (1).
This value is used to compute g > 0, which represents the target number of jobs of
FE to be discarded. The g longest jobs of E are removed from the schedule that is
created by Moore’s algorithm during preprocessing. These jobs are combined with
those in L to form a new set, while the remaining |E| — g jobs of E are scheduled
within the time interval [0,t]. Jobs of this new set are selected in SPT order to
fill as much idle time as possible in the interval [0,¢]. Then, at time ¢ when full
information is available, the schedule is completed by filling the interval [t, T] with
as many of the available jobs as possible from L U N.

We now present a formal statement of Algorithm Balance.

Algorithm Balance

Online Production Planning to Maximize the Number of On-Time Orders 11

0. Input ¢, T, n, No = EU L, p; and d; for j € Ny, and R*. Compute g =
[n(1—R")].

1. Partition set E into subsets E1 and FEa, where |E2| = g, F1 = E \ E2 and
pi < pj foralli € £y and j € Ea. Set L' =LUE.,.

2. Partition set L’ into subsets L} and L5, where p; < p; for all i € L} and

je€ Ly and t —p; < ZieEluL’l p; <t forall j € Lj.

. Schedule the jobs of E1 U L} in EDD order within the interval [0, ¢].

. Input Ny, and p; for j € Ny.

5. Select a maximal set of unscheduled jobs from (LN L5)U Ny in SPT order that
fit within the interval [¢, 7], and schedule these jobs in EDD order starting at
time ¢.

>~ W

Step 0 of Algorithm Balance selects a value of g such that, if g jobs are discarded
and N; = (), then a performance ratio of R* is asymptotically achieved. Steps 1-3
schedule jobs within the interval [0,¢] by selecting the |E| — g shortest jobs of
E to be on-time. Then, the interval [0,¢] is filled as much as possible with the
shortest remaining jobs of F U L. Steps 4 and 5 schedule jobs within the interval
[t,T] by filling that interval as much as possible with the shortest jobs from those
remaining in L and those in N;.

The running time of Algorithm Balance is O(nlogn + |N¢|) if implemented
using a linear time median finding algorithm (Blum et al., 1972) to select jobs of
(L N L5) U N in Step 5. We use a superscript “B” to refer to the output of this
algorithm. For example, E® is the set of jobs started before time ¢ by Algorithm
Balance. Let ¢%(I(n)) = |E(I(n))\ EB(I(n))|, where I(n) is an instance with n
jobs. Note that ¢®(I(n)) < g, where g is defined in Step 0 of Algorithm Balance.

The competitive analysis of Algorithm Balance that follows in the next sec-
tion considers a continuous version of the original problem, which we denote as
Pc. Specifically, any job can be fractionally processed in Po and an associated
proportional contribution for that job is included in the objective function.

When we consider a schedule for problem Pc, sets E and/or L may contain a
fraction of a job. To describe the cardinality of these sets, we let || € R4 count a
job piece based on the proportion that is selected. For example, if F = {1,3,41},
where 41 is a piece of job 4, then |E| = 2+ pa, /pa.

We now describe an O(nlogn + |N¢|) time algorithm that provides an optimal
solution for Problem Pc.

Algorithm OfflineC

0. Input ¢, T, No = EU L, p; and d; for j € No, and p; for j € Ny.

1. Schedule the jobs of E in EDD order, followed by the jobs of L in EDD order,
followed by the jobs of N; in arbitrary order. Set Nj = No and N; = N;.

2. Remove jobs j of NJUN{ in LPT order by setting Ny = Ng\{;j} or N{ = N{\{j}
until either ZjeN(’)UNt’ pj =min{T, > . n. Un, Pi} OT ZjeN(’) pj = t, whichever
occurs first. It is possible that the last discard is a fractional job.

3. If ZjeN{ pj > T —t, remove jobs j of N/ in LPT order by setting N/ = N/\{j}
until ZjEN’ p;j =T —t. It is possible that the last discard is a fractional job.

4. Process the remaining jobs and job pieces of NjU N/ in EDD order.

Step 2 of Algorithm OfflineC attempts to satisfy the constraint that the total
size of all scheduled jobs is at most T by discarding the longest jobs of N} U

12 Hall, Posner, Potts

N{. However, if Step 2 terminates with > jens Pi = t, then Algorithm OfflineC
0

proceeds to Step 3, which discards the longest jobs in N/ until the total size of all
scheduled jobs of N is at most 7' —t. In both Steps 2 and 3, the last discard may
be a fractional job. The proof of optimality for Algorithm OfflineC is established
by a straightforward exchange argument.

For instance I of problem P, define 0©(I) to be an optimal offline schedule
found by Algorithm OfflineC, mjo (I) to be the fraction of job j that is scheduled
on-time for j € NoU N, and zO(I) to be the objective value of this schedule. More
generally, when describing an output variable associated with an optimal solution
to Pco, we use ©asa superscript.

Finally, we propose online Algorithm BalanceC to solve Problem Pg. This
algorithm is equivalent to Algorithm Balance, except that fractions of jobs can be
processed and corresponding adjustments are made to Steps 1, 2, and 5. The value
of g computed in Step 0 can also be fractional.

Algorithm BalanceC

0. Input ¢, T, n, No = EUL, pj and d; for j € No, and R*. Compute g = n(1—R").

1. Partition set E into subsets E1 and FEs, where |E2| = g, F1 = E \ E2 and
Di Spj for all : € B and j € FEb. Set L' = LUEFE,.

2. Partition set L’ into subsets L] and L5, where p; < p; for all i € L] and
jeE Ly, and t —p;j < ZieE1UL’1 pi; <t forall j € Lj.
If Zz‘eEluLg pi < t, then let k = argminjeL;{pj}. Assign t — Zz‘eEluLg i
units of job k to L}. Assign the remaining px — (t — >) units of job
k to LS.

3. Schedule the jobs of E1 U L} in EDD order within the interval [0, ¢].

. Input N¢, and p; for j € Ny.

5. Select a maximal set of unscheduled jobs from (LN L5)U Ny in SPT order that
fit within the interval [¢,T], and schedule these jobs in EDD order starting at
time t. It is possible that only a fraction of the last job is selected.

ieB,uL, Pi

W

In Step 1 of Algorithm BalanceC, since g may be fractional, |E1| and |F2|
can be fractional. There may be one job k with a fractional part py, € E1 and a
fractional part py, = pr — pr, € E2. Steps 2 and 5 also allow for fractional jobs.
A fractional part k1 of job k contributes px, /pr towards the number of on-time
jobs. Define ¢ (I) as a schedule with value 2 (I) found by Algorithm BalanceC
for instance I of Problem P..

5 Analysis of Algorithm Balance

To establish a lower bound on the competitive ratio of Algorithm Balance, we
examine the two cases when N; = () and when N; # (). For the first case, we
directly show that the lower bound is asymptotically equal to R*. For the second
case, Problem Pc is studied. We show that (e, {)-instances dominate or nearly
dominate other instances. More specifically, they can exceed other instances by at
most 3/n. Then, our analysis shows that the performance of Algorithm BalanceC
exceeds the performance of Algorithm Balance by at most 2/n, for large values

Online Production Planning to Maximize the Number of On-Time Orders 13

of n. Hence, the competitive ratio of Algorithm Balance is asymptotically best
possible.
We begin by considering the case when N; = (.

Theorem 8 If Ny = (), then
lim R® = R*.

n— oo
Proof Suppose N; =). From our assumption that all jobs of Ny satisfy Moore’s Al-
gorithm and from Theorem 1, it follows that z* = n. Because

B >n—[n(1-R)] >nR -1,

RB = 28/2* > R* — 1/n. Therefore, lim,, oo RZ = R*. O

We now consider the case when Ny # (), and establish some results for an
optimal offline schedule.

Lemma 9 For any instance, there exists an optimal offline schedule o* where,
for any on-time job i € N and discarded job j € No, p; < pj. Further, if p; = p;,
then i < j.

Proof Consider two jobs 4 and j in an optimal offline schedule, where p; > p; or
i > j if p; = pj, job i € Np is on-time and job j € Np is discarded. Replace job i
with job j in ¢ to create a new schedule. Schedule the jobs of Ny in EDD order.
Then, schedule the jobs of N; in arbitrary order after those of Ny. Because p; > pj,
the new schedule is feasible and hence optimal. A similar replacement argument
applied to jobs i € N; and j € N in o*, where p; > pj, job 7 is on-time and job j
is discarded, shows that there exists an optimal schedule in which job j is on-time
and job 7 is discarded.

This analysis can be repeated for all other job pairs that violate the lemma. O

Remark 10 There exists an optimal offline schedule where:

a. pj <pi forj € LNE" andi € L\ E*.

b. The jobs of EN E™ are processed first, followed by the jobs of LN E™, followed
by the jobs of L N L*, followed by the jobs of Ny N S*. The jobs in each group
are processed in EDD order.

We henceforth assume that the properties established in Lemma 9 and Re-
mark 10 are satisfied for o*. The next two results restrict the jobs of N;. The first
of these shows that there is no advantage to consider instances in which jobs of
N, are discarded by o*.

Lemma 11 In the competitive analysis of Algorithm Balance, it is sufficient to
consider instances where all jobs of N are on time in some optimal offline schedule

o*.

Proof Suppose that Ny(I)\ S* # () for some instance I. Consider instance I’
that is identical to instance I, except that N:¢(I') = N¢(I) N S*. Because no job
of N¢(I)\ S* is processed in o*, 2*(I") = 2*(I). Since Algorithm Balance has a
smaller set of jobs from which to choose in instance I’, z5(I’) < zB(I). Thus,
B2 (I') < 2B(I1)/2*(I). As a result, instance I is dominated by I’ in the
competitive analysis of Algorithm Balance. a

14 Hall, Posner, Potts

The next result restricts our analysis to instances where all jobs of N; have the
same size and fill the available time in o*.

Lemma 12 In the competitive analysis of Algorithm Balance, it is sufficient to
consider instances for which p; = p*, for j € N¢, where

p' = min{T — Z pi, T —t}/|Nel. (10)
i€ E*UL*

Proof Suppose instance I satisfies Lemma 11, but does not satisfy the current
lemma. Consider a modified instance I’ that is identical to I except that the size
of each job j € Ne(I') is pj = min{T = 3>, o 1)1y Pi» T —1}/INe(I)]. Instance
I’ has a feasible schedule which is identical to o* (I), except that the jobs of N¢(I)
are replaced by those of N¢(I'). Therefore, z*(I") = z*(I).

By construction, schedules ¢ (I) and o®(I’) are identical in the time interval
[0, ¢]. Since S contains the shortest jobs of Ny, the inequality EjESB(I)mNt(I) pj <

ZjeSB(I’)mNt(I’)p; follows. Thus, zB(I') < 2B(I). As a result, z5(I")/2*(I') <

2B(I)/z*(I), and instance I’ dominates I in the competitive analysis of Algo-
rithm Balance. a

The idle time in o? complicates our analysis. To resolve this complication,
we consider the continuous version of the problem, Pc, as described in Section 4,
and the procedure Algorithm BalanceC. We observe that Lemmas 9 — 12 hold for
Pc and Algorithm BalanceC. For the remainder of this section, we restrict our
attention to instances that satisfy the conditions of these three lemmas.

Remark 13 For any instance of problem Pc, there exists an optimal offline sched-
ule 0@ where for any on-time job i or on-time fraction of job i, for i € N, and
discarded job j € No, p; < pj. Further, if p; = pj;, then i < j.

Proof Follows directly from Lemma 9. a

We henceforth assume that an optimal schedule for Po satisfies Remark 13.
The next result shows that if the total size of the jobs discarded by @ is no larger
than by O'C, then, in a competitive instance, no job should be discarded by .

Lemma 14 In the competitive analysis of Algorithm BalanceC' for Pc, it is suf-
ficient to consider instances where Z]EE\SO p;j > ZjeE\SC Dj.

Proof Suppose that some instance I satisfies Lemma 12 and ZjeE\SO pj < ZjeE\SC pj-
Because i p\ g0 Pj < D\ s Pis We have that |ILNSC| < |LNSC|. Also, equa-
tion (10) establishes that Ny C S Since |[LNSP|+|N¢| > |L| and 2 (I)/2°(I) <
L
2O(1) _ |B| = g% + LN SC|+ Ny
Z20(I) |E|—g° +|LN S|+ Nt

|E| —g¢ +|L]
~ B[—g° + L]
n—gC

Y

n

Online Production Planning to Maximize the Number of On-Time Orders 15

Now consider a similar instance I’ where No(I') = No(I) and N¢(I’) = (). Then,

) _n-g®
290(I") n — 200)’

which implies that instance I’ dominates instance I. a

Corollary 15 In the competitive analysis of Algorithm BalanceC' for Pc, it is
sufficient to consider instances where gO > gC.

Proof Since Algorithm BalanceC removes the largest jobs of F, the remark follows
directly from Lemma 14. a

Some of the analysis in the current section alters the sizes of various jobs of
No. Whenever we change these job sizes, we assume that, if needed, the due dates
are modified to ensure that the EDD schedule remains feasible. The next result
restricts the sizes of the jobs in L.

Lemma 16 In the competitive analysis of Algorithm BalanceC' for Pc, it is suf-
ficient to consider instances where all jobs of L U Ny have the same size.

Proof We first restrict the instances to those where all jobs of L N N; have at
most two sizes. Suppose an instance I does not satisfy this condition. Consider an
instance I’ that is identical to I except that

, ZiESOmLpi/|SOﬂL|7 jes°nL
bj = maX{EieSOmLPi”SOﬁLLPt} jerL\s?
Dj, otherwise,

where p’ is defined in equation (10).

Since the total size of the jobs of S N L is unchanged and the jobs of L \ s©
may replace only jobs of equivalent size in 69, 29(I') = 2°(I). Both ¢° and
% select the shortest jobs of L to process. From Lemma 14, S¢nLcCs°nL.
Thus, >, genrn Pi = Yiesens Pir and z(I') < 29(I). Hence, I’ dominates I
in the competitive analysis of Algorithm BalanceC. As a result, we assume that
P =1 = ZiesOmLpi”SO NL| for all i € S° N L, and p, = max{¢,p'} for all
ieL\S°.

The remainder of the analysis is divided into two cases: £ < p*, and £ > p*.
Case 1: £ < p'. Consider an instance I’ that is identical to I’ except that p;-’ =/,
for j € (S \ L) U N;. Then,

ZC(]/) _ |N0| - gC + (T - ZjGSCﬂNQ p;’)/pt
z0(I') |No|l = g9 + (T = X ;cs0nn, P;)/P!
|N0| - gC + (T - ZjeSCﬂNQ p;)/f
~ INol =g + (T =3 jcs0mn, P/
ZC([”)

= S (11)

The inequality follows from the fact that z°(I') < z9(I') and g¢ < ¢© (see
Corollary 15) imply that (T =3, gorn, P5)/(T—> e s0nn, P5) < 29(1')/2°(T).

16 Hall, Posner, Potts

Hence, it is sufficient to consider instance I” that satisfies the conditions of the
lemma in the competitive analysis of Algorithm BalanceC.

Case 2: £ > p'. Then, Ny(I') € LE(I') and N(I') € LO(I'). Thus, increasing
the total size of the jobs in Ny by ¢ — p' > 0, reduces 2¢ by the same amount
as 29. Thus, instance I, which dominates instance I, is itself dominated in the
competitive analysis of Algorithm BalanceC. a

From Lemma 16, we let £ denote the common size of the jobs of LU Ny for the
instances that we consider in our competitive analysis of Algorithm BalanceC.

The next result establishes restrictions on a set of instances that increase the
competitive ratio by a relatively small amount.

Lemma 17 Restricting instances to those where ZjeEpj =tandp; =e=1t/|E]|
for j € E, increases the competitive ratio of Algorithm BalanceC for Pco by less
than 3/n, for n > 3.

Proof Consider an instance I. The mean size of the jobs discarded from E([) in

O'O 1S

5 t_ZjeEﬁSOﬁj (12)
|[E\Se]
where p; = the amount of job j € E that is processed by o9 in the interval [0,¢].
Observe that |E\ S°| is fractional if 0 < p; < p; for some j € E.

Construct the following instance I’ from I. Let E(I’) contain [t/€] identical
jobs j, each with size p} = t/[t/e] and due date d; = t. Also, let L(I") contain
L[E(I)| = |E(I")|] jobs j, each with size pj; = 0 and due date dj = T, and the jobs
of set L. If a fraction of some job r € Ny is processed by o in [0,¢], then we also
construct a job with size) —t and due date T'. Finally, let N(I") = N¢(I).
As a result, n(I') = n(I).

We now construct a feasible schedule, o’(I), for instance I’ based on ¢ (I).
Discard (t — 3~ pngo P5)/[t/[t/€]] jobs of E(I'). As a result, o’ (I’) discards the

same total size of early jobs as @ (I). Moreover, the number of jobs discarded is

[t — ZjeEmSO pj)][t/e] < [t— ZjeEﬂSO pj)l(t/e+1)
t t

t—>". b
:IE\SO|+—Zj€tEnSO :

jEEpj

<|E\S°|+1,

where the equality follows from equation (12). Thus, less than one more job is
discarded in o’ (I’) than in ¢ (I). In o’ (I’), the jobs j € L(I') with p} = 0 are on
time, the job constructed to replace r is on time, and each job j € L U N; is on
time. Since o’ (I') is feasible, z°(I') > 29 (I) — 1.

Algorithm OfflineC discards the longest jobs of E, each of which has size greater
than ¢. From Lemma 14, E\ S¢ C E \ S°. As a result of (12), the average
job size removed by Algorithm BalanceC is no larger for instance I’ than for
instance I. Thus, Algorithm BalanceC has no additional time to schedule the job
corresponding to r and the jobs of L(I') U N¢(I') in instance I’ than it does to
schedule the jobs of {r} U L(I) U N¢(I) in instance I. Note that r is a fractional

Online Production Planning to Maximize the Number of On-Time Orders 17

job in instance I, but the corresponding job in I’ is a complete job. Therefore,
29(I') < 29(I) + 1. Hence,

291 %) +1 - 29(I) 3
20(I') ~ 20(I)—1~ 20(I) " n’

where the second inequality follows from n > 3, which implies 27 (1) > 3. O

The next result restricts the total size of the jobs of L.

Lemma 18 In the competitive analysis of Algorithm BalanceC' for Pc, it is suf-
ficient to consider instances where p; = £ for j € L U Ng, and where Zjeij =
min{T — ¢, t}.

Proof Consider an instance I, where we assume that p; = ¢ for j € L U N; from
Lemma 16.
If ZjeL(I) p; > min{T —t, t}, then analysis similar to that used in (11) shows

that decreasing the size of £ also reduces the value of 2 /2. Hence, I is dominated
by an instance where } ., ;) p; = min{T —¢, t}.

Alternatively, suppose ZjeL(I) p; < min{T — ¢, t}. Create an instance I’ by
adding a suitably small fraction ¢ > 0 of a job n + 1 to L, where py,4+1 = £ and
dn+1 = T. Because e > /, this fraction of job n + 1 replaces a portion of the jobs
of E in optimal schedule o©. Thus, 2°(I') = 2°(I) + e(e — £) /e.

Because, ¢(I) = n(l — R*), ¢9(I') = ¢g°(I) + ¢(1 — R*). Consequently,
29(I') = 29(I) + €(1 — R*)(e — £)/e. As a result,

29(I) _ 29(I) + (1 = R*)ele—) /e _ 2°(I)
29(1") 290()+e(e—4)/e 20(I)’

where the inequality follows from Remark 2. Thus, instance I’ dominates I. a

We now return to the analysis of Algorithm Balance. The next result restricts
the analysis to the (e, £)-instances considered in Section 3.

Lemma 19 Restricting instances to those where ZjeEpj =t pj=eforjekE,
p;j =L for j € LU N, where e > £, and Zjeij = min{T — ¢, t}, increases the
competitive ratio of Algorithm Balance by less than 5/n, for n > 3.

Proof Consider a competitive instance I for Algorithm Balance. A solution to
Pc using Algorithm BalanceC has at most two fractional jobs. Thus, zB(I) >
29(I) — 2. Also, z*(I) < 29(I). Generate instance I’ that satisfies the properties
established in Lemmas 16 — 17 using the constructive approaches that appear in
the proofs of these lemmas. Thus,

2B(I) - 29(1) -2

z=(I) = =29()

29 2

=20() n

where the last inequality follows from Lemma 17. a

18 Hall, Posner, Potts

For the remainder of this section, we assume that an instance satisfies the
conditions of Lemma 19. The analysis separately considers the two cases: T/t < 2
and T/t > 2.

Lemma 20 [fT/t <2 and n > 3, then

RP(n)> —— "~

1+ a)2 5
(1+a)2+a2 n (13)

Proof From Lemma 19, consider the following problem that overestimates the
bound for R®(n) by less than 5/n:

t/e —g® + [T — (t—g®e)]/¢

min R(n) = @t—T)/e+2(T —t)/t (14)
s.t. tle+ (T —t)/t=n (15)
e > >0 (16)

Since e > ¢, all jobs of L replace jobs of E in o*. In 6%, g® jobs of E are replaced
by jobs of L. These substitutions give (14). From (14) — (16),

Ry - U=+ T = (1= g5/t
(2t—=T)/e+2(T —t)/t
tl — gBel + Te — te + gBe?
2Te — 2te +2t0 — TV
HT — t)e — gB(T — t)e? + T(ne — t)e — t(ne — t)e + g®(ne — t)e?
- 2T (ne — t)e — 2t(ne — t)e + 2t(T — t)e — T(T — t)e
ngBe? — TgPe +n(T —t)e

= 17
on(T —t)e—T2+Tt (17)

where the third equality follows from (15). The first order condition from (17) is

dR(n)

7 = 0= (2ne —T)(T — t)(2ng°e — T¢g® + nT — nt)
e

—2n(T — 1) (nQBe2 —TgPe+nTe — nte)
= 2n29562 — 2nTgBe + (TZgB —nT? + nTt).

Thus,
B Tg® +T+/2na2gB — (¢B)2

ne 293

First, suppose ne = [T'g® — T'\/2na2¢B — (¢B)2]/2¢". Since ne < T/2, (15) is
violated. Hence, a minimum feasible value of R(n) is not attained.

Alternatively, suppose ne = [T'g® +T+/2na2gB — (¢B)2]/2¢". Then, R(n) is a
decreasing function of ne for T/2 < ne < [T'g® +T+/2na2¢B — (¢B)2]/2¢%, and an

Online Production Planning to Maximize the Number of On-Time Orders 19

increasing function of ne for ne > [Tg® +T+/2na2¢B — (¢B)2]/2¢". Consequently,
R(n) is minimized when ne = [T'g® + T'\/2na2¢B — (¢8)2]/2¢". Then from (17),
R(n) [TgB+T+/2na2gB—(gB)2]? /ang® + (nTa? —Tg®)(TgP+T+/2na2gB —(¢B)2)/2ng®
n)=
Ta*(TgP +T/2na?gb — (g5)?)/g® — T?a?
_ (Tg® +T+/2ngBa? — (¢P)?)(nTa® + T/2na2gB — (gB)2/2 — Tg"/2)

2nT2a2./2na2gB — (gB)2

B na? + /2na2gB — (gB)2
a 2na? '

Since ¢% = [go] = [na?/[(1+ a)? + ?]] < 2na?,

no + /2na2go — (g0)?

R(n)

- 2na?
2 2 na? na? 2
na” +4 [2na (IFa)2+a? ((1+a)2+a2)
- 2na?
. (1+w)?
T (1+a)2+a
=R".
The statement of the lemma now follows from R® < R(n) +5/n. O
Lemma 21 If T/t > 2 and n > 3, then
1 2
RBm) > 4+ 5 (18)

(I+7)2+1 n

Proof From Lemma 19, consider the following problem that overestimates the
bound for RB(n) by less than 5/n:

_tfe—g® + [T — (t—gPe)]/t

wip) o &
s.t. t/le+t/l=n (20)
e > 0>0. (21)

Since e > ¢, all jobs of E are replaced by jobs of L in ¢*. In 6%, g = ¢® jobs of E
are replaced by jobs of L. These substitutions give (19). From (19) - (21),

:t/e—glg + [T — (t — gBe)) /¢

R(n) T/t
_té—gBe£+Te—te+gBe2
N Te
_ tPe— tgBe? + (ne — t)(Te — te + gBe?)
N T(ne —t)e

2% — 2the +nTe — Tt — nte + n9862
= ; (22)
T(ne —1t)

20 Hall, Posner, Potts

where the third equality follows from (20). The first order condition from (22) is

d]jl(bn) =0= (ne—t)(—ZgBt—i—nT—nt—|—2ngse)—n(2t2—2tgse—|—nTe—Tt—nte—i—ngse2
=n?gBe® — 2ntg®e + (2t2gB — nt2).
Thus,

Tg® £ /T?(n — gP)gP
= ~24B :
First, suppose ne = [Tg® — \/T2(n — ¢B)gB]/7%¢". Since ne < T/4* =t, (20) is

violated. Hence, a minimum feasible value of R(n) is not attained.

Alternatively, suppose ne = [Tg® 4+ /T2(n — ¢B)gB]/7?¢". Then, R(n) is a
decreasing function of ne for T/+* < ne < [¢°T +/T2(n — ¢B)gB]/v*¢">, and an

ne

increasing function of ne for ne > [T'g® + \/T2(n — gB)gB]/7*¢®. Consequently,
R(n) is minimized when ne = [T¢® + \/T2(n — ¢B)g5]/7?¢". Then from (22),
(2t — Tt 4 (T — t)ne — 2tgBe + ngBe?|y? g
T+/T?(n—g")g"®
272 /7! =T?]4* +[Tg"+/gPT?(n—gB)| [y’ nT—nT-Tg"+/¢BT> (n—g")] /ny"'g"]r*¢"
T2 gP)5
_2T%g5 —T%9%¢° + [T9° + \/gBT?(n — gB)|ly*nT — nT — Tg® + /T2 (n — g5)g5]/n

T2(n— g®)g®
_n(7* = 1) +2,/g5(n — &)
ny? ’

gl

R(n)=

Remark 2 shows that n — go > n/2. Since ¢° = [go] > go,

n(v> —1) 4+ 2y/go(n — go)

R(n) > =
__(+9)?
(I4+7v)2+1
=R".
The statement of the lemma now follows from R® < R(n) +5/n. O

A summary of the asymptotic results for Algorithm Balance, which is the main
result of this section, is now provided.

Theorem 22
1+ a)?
ﬁ T/t<2 (23)
lim RB(n) = 14 ~)2
n o0 ’Y

(25)

Online Production Planning to Maximize the Number of On-Time Orders 21

Proof When N; = (), Theorem 8 establishes both equations (23) and (24).

When N; # 0 and T/t < 2, Theorem 7 and Lemma 20 show that R* —5/n <
RB < R* +1/n. This establishes (23). When N; # () and T/t > 2, Theorem 7 and
Lemma 21 show that R* —5/n < R® < R* + 1/n. This establishes (24). O

The results established in Theorems 7 and 22 show that the performance of
Algorithm Balance is asymptotically best possible.

6 Concluding Remarks

In this paper, we consider a two-period planning environment. In the first planning
period, complete information about available jobs is known. However, the possi-
bility that unspecified jobs will arrive at the start of the second period complicates
decision making in the first period. Our contribution is the design and analysis
of an online algorithm that asymptotically achieves the best possible competitive
ratio.

The problem studied here has various features in common with production
planning, planning horizon, and online scheduling problems. Similarities with pro-
duction planning include the unpredictable arrival of future orders, and the need
to reject some orders due to limited capacity (Geunes et al., 2005). There are also
differences. Production planning problems with stochastic future demand typi-
cally use minimization of expected cost as an objective (Ciarallo et al., 1994).
However, since we have no distributional information, we consider the worst case
performance relative to that of an offline algorithm with complete future knowl-
edge. We also assume that future orders can only arrive at one known time, rather
than many possible times. Similarities with planning horizon problems include un-
known future demand (Chand et al., 2002) and evaluation of an algorithm that
has available information for only part of the planning horizon (Modigliani and
Hohn, 1955). Similarities with online scheduling include arbitrary future demand
and order rejection, and the use of competitive ratio as a performance measure
(Pruhs et al., 2004). However, we assume knowledge of a current order set, as is
relevant in many practical situations. Our work also extends the literature of on-
line planning period scheduling problems by considering a different objective (Hall
et al., 2009).

Several related research opportunities are available for future study. First, our
model can be generalized to consider arbitrary due dates for jobs that arrive at the
start of the second period. Second, a variety of objectives other than maximizing
the number of on-time jobs can be considered. Finally, the new topic of online
planning period problems is rich with additional research questions that also have
practical relevance. In conclusion, we hope that our work will encourage further
investigation into these interesting research issues.

Acknowledgements This research is supported in part by National Science Foundation
Grant DMI-0421823, and by the Summer Fellowship Program of the Fisher College of Business,
The Ohio State University, to the first author.

22 Hall, Posner, Potts

References

P. Baptiste, An O(n4) algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Operations Research Letters 24 (1999)
175-180.

J.C. Bean, J.R. Birge, J. Mittenthal, C.E. Noon, Matchup scheduling with multiple
resources, release dates and disruptions. Operations Research 39 (1991) 470-483.

M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for
selection. Journal of Computer and System Sciences 7 (1972) 448-461.

S. Chand, V.N. Hsu, S. Sethi, Forecast, solution and rolling horizons in operations
management problems: A classified bibliography. Manufacturing € Service Op-
erations Management 4 (2002) 25-43.

M. Chrobak, M. Jawor, J. Sgall, T. Tichy, Online scheduling of equal-length jobs:
Randomization and restarts help. SIAM Journal on Computing 36 (2006) 1709—
1728.

F.W. Ciarallo, R. Akella, T.E. Morton, A periodic review, production planning
model with uncertain capacity and uncertain demand - Optimality of extended
myopic policies. Management Science 40(3) (1994) 320-332.

S.P.Y. Fung, Lower bounds on online deadline scheduling with preemption penal-
ties. Information Processing Letters 108 (2008) 214-218.

J. Geunes, Y. Merzifonluoglu, H.E. Romeijn. K. Taaffe, Demand selection and
assignment problems in supply chain planning. Tutorials in Operations Research,
INFORMS (2005) 124-141.

R.L. Graham, Bounds for certain multiprocessor anomalies. Bell System Technical
Journal 45 (1966) 1563-1581.

N.G. Hall, M.E. Posner, C.N. Potts, Online scheduling with known arrival times.
Mathematics of Operations Research 34 (2009) 92-102.

H. Hoogeveen, C.N. Potts, G.J. Woeginger, On-line scheduling on a single machine:
Maximizing the number of early jobs. Operations Research Letters 27 (2000)
193-197.

E. Ignall, A.F. Veinott, Jr., Optimality of myopic inventory policies for several
substitute products. Management Science 16 (1969) 284-304.

J.R. Jackson, Scheduling a production line to minimize maximum tardiness. Re-
search Report 43, Management Science Research Project, University of Califor-
nia, Los Angeles, CA, 1955.

E.L. Lawler, Scheduling a single machine to minimize the number of late jobs.
Technical report, University of California at Berkeley, Berkeley, CA, 1983.

J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker, Complexity of machine scheduling
problems. Annals of Operations Research 1 (1977) 343-362.

C. Li, F. Zhang, Advance demand information, price discrimination, and preorder
strategies. Manufacturing € Service Operations Management 15(1) (2013) 57—
71.

J. McClain, L.J. Thomas, Horizon effects in aggregate production planning with
seasonal demands. Management Science 23 (1977) 728-736.

F. Modigliani, F.E. Hohn, Production planning over time and the nature of the
expectation and planning horizon. Econometrica 23 (1955) 46-66.

J.M. Moore, An n job, one machine sequencing algorithm for minimizing the num-
ber of late jobs. Management Science 15 (1968) 102-109.

Online Production Planning to Maximize the Number of On-Time Orders 23

M.L. Pinedo, 2012. Scheduling: Theory, Algorithms and Systems, fourth ed.,
Springer, 2012.

K. Pruhs, J. Sgall, E. Torng. Online scheduling,in: J.Y.-T. Leung (Ed.), Handbook
of Scheduling: Algorithms, Models and Performance Analysis, CRC Press, Boca
Raton, FL, 2004.

R.D. Reid, N.R. Sanders, Operations Management: an Integrated Approach, second
ed., John Wiley, Hoboken, NJ, 2005.

R.S. Russell, B.W. Taylor, III, Operations Management: Quality and Competitive-
ness in a Global Environment, fifth ed., John Wiley, Hoboken, NJ, 2006.

W.E. Smith, Various optimizers for single stage production. Naval Research Lo-
gistics Quarterly 3 (1956) 59-66.

X. Zhao, K.E. Stecke, Pre-orders for new to-be-released products considering con-
sumer loss aversion. Production and Operations Management 19(2) (2010) 198
215.

F.F. Zheng, Y.F. Xu, E. Zhang, On-line production order scheduling with produc-
tion order penalties. Journal of Combinatorial Optimization 13 (2007) 189-204.

F.F. Zheng, Y.F. Xu, E. Zhang, How much can lookahead help in online single
machine scheduling. Information Processing Letters 106 (2008) 70-74.

