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Abstract

We propose a general method for online estimation of the quality of movement from

Kinect skeleton data. A robust non-linear manifold learning technique is used to reduce

the dimensionality of the noisy skeleton data. Then, a statistical model of normal move-

ment is built from observations of healthy subjects, and the level of matching of new

observations with this model is computed on a frame-by-frame basis following Marko-

vian assumptions. The proposed method is validated on the assessment of gait on stairs.

1 Introduction

The analysis of human movement through visual information has attracted huge interest due

to applications in several areas, from assessment of pathologies, rehabilitation, to movement

optimisation in sport [2]. In particular, the discrimination of anomalies has been a strong

focus, as illustrated by the comprehensive survey in [13]. Anomalies are often detected

by comparison against two models of normal and abnormal movements, e.g. as in [17].

Considering that abnormal movements may have highly variant representations, a single

model is unlikely to be sufficient to define and represent them. It is therefore preferable to

detect deviations from a model of normal movements, e.g. as in [9] which uses hierarchical

appearance and action models of normal movements to detect falls from RGB silhouettes,

and [11] which uses binary classifiers of harmonic features to detect abnormalities in stairs

descents from the lower joints of a Kinect skeleton.

The work that is most closely related to that proposed here was presented by Snoek et

al. who used monocular RGB images to detect unusual events during stairs descent using a

single hidden Markov model (HMM) framework [15]. Foot position and velocity, together

c© 2014. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
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Figure 1: RGB-D data and skeletons at bottom, middle, and top of the stairs. Note, only the

skeleton is used in our proposed method.

with optical flow features, were used to build a continuous observation space. Their system

relies on a feet tracker, and thus has a significant risk of failure due to occlusion, possibly

leading to the sequence being wrongly marked as abnormal. Note that although the lower

joints of the body can represent the most discriminating information for walking movement,

the use of all joints may enhance the analysis, e.g. by allowing a better assessment of the

balance of the subject, and it provides vital cues in many other applications.

Although many works have been proposed to detect abnormality in video sequences, the

problem of assessing the quality of human movement has rarely been addressed. Recently,

Wang et al. presented a method for quantitatively evaluating musculoskeletal disorders on

patients who suffer from the Parkinson disease [18]. However, the method is restricted as it

is only designed for periodic movement (walking), and the features used (step size, arms and

postural swing levels, and stepping time) make it difficult to generalise to other applications.

Moreover, the method requires observing a complete gait cycle before being able to classify

it.

Joint positions are commonly used to analyse human movements, e.g. [15], however

their high dimensionality, especially for full body skeleton, and their often high amount of

noise, make it imperative to reduce their dimensionality in a noise-robust fashion. Manifold

learning techniques have become increasingly popular for reducing dimensionality of data

that contain redundant information [7, 8, 19]. Nonetheless, reducing the dimensionality of

noisy data is still a challenging problem. Gerber et al. introduced an extension of Laplacian

Eigenmaps to cope with noisy input data [6], but Eigenmap representation depends on the

density of the points on the manifold, which may not be suitable for non-uniformly sampled

data, such as skeleton data.

The contributions of this work may be summarised as follows. We present a novel,

general approach which not only detects abnormal events, but also provides an assessment

of movement quality, defined as a measure of how much a movement deviates from normal.

Such continuous quantification of abnormality aims at allowing clinicians to better establish

diagnosis and also to assess the evolution of the condition of patients. The proposed method

is based on a continuous statistical representation of the movement, which, contrary to HMM

methods, avoids having to divide the movement into segments whose number would have to

be determined. Further, it can cope well with different types of movements, including both

periodic and non-periodic ones, due to the use of full body skeleton information (see Fig. 1,

for example skeletons). This is made possible by a non-linear manifold learning technique

that can reduce its high dimensionality, for which we use diffusion maps [3] which we adapt

to deal with noise and outliers using the robust extension of Gerber et al. [6]. Both individual

body poses and dynamics are assessed on a frame-by-frame basis which makes the method

suitable for online applications, and allows alerts to be triggered in case of abnormal events

before the end of the movement.
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Figure 2: Overview of the proposed method

2 Methodology

An overview of our proposed method is illustrated in Figure 2. We first use a skeleton

tracker to extract a full body skeleton from Kinect’s depth data [10, 14], from which we

derive normalised features. Their dimensionality is then reduced using a non-linear manifold

technique. Statistical models of normal pose and dynamics are learnt off-line, and new

observations are tested against these models for quality assessment.

2.1 Low level feature description

Skeleton data are view-invariant1 and, in our application, are derived from depth information

which alleviates the effect of human appearance differences and of lighting variations. We

used skeleton trackers from Microsoft Kinect SDK [14] or OpenNI SDK [10], and found

that the choice between these two trackers did not significantly change the results in our

experiments, so we only present results using the OpenNI tracker in Section 3. Since the

skeletons tend to be very noisy, we reduce the noise by applying an averaging filter on the

joint coordinates.

Given a pose Ŝ = [ŝ1 · · · ŝP]
T ∈ R

3J×1 made of the 3D positions ŝi of J joints2, a nor-

malised pose S = g(Ŝ) is computed to compensate for global translation and rotation of the

view point, and for scaling due to varying heights of the subjects. This allows comparison

with the model based on poses that will be described in Section 2.3. We propose two normal-

isation methods for the computation of g(�). When the apparent vertical size of the body does

not change significantly during the movement, standard Procrustes analysis can be used. Al-

ternatively, angles between individual joints and the hip centre may be used instead of scaled

joint positions. The use of both normalisation methods and resulting feature types did not

significantly change the results in our experiments, and in Section 3 we present results using

Procrustes based normalisation. Other features may be used, provided that the associated

normalisation function g(�) solves the aforementioned alignment and scaling issues.

2.2 Robust diffusion maps

We reduce the dimensionality of the features S using manifold learning. We select diffusion

maps [3], which is a graph-based technique with quasi-isometric mapping Φ from original

higher space R
N to a reduced low-dimensional diffusion space R

N′
, where N′ ≪ N. This

method shows advantages over conventional dimensionality reduction methods [3]: it can

deal with non-uniformly sampled data that lie on non-linear manifolds, and it preserves

1Although the skeleton trackers that we use only work well when the subject is facing the camera.
2J is 20 and 15 for skeletons of the Microsoft Kinect SDK and OpenNI SDK respectively.
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the local structure of the data. Given a set of training data with M normalised samples

S = {S1 . . .SM} ∈ R
N , the intrinsic geometry of the data can be found depending on the

similarity of the samples measured by the diffusion distance L = d(Φ(Si),Φ(S j)), where

d(�) is the Euclidean distance in reduced space.

In addition to having a high dimensionality, skeleton data acquired with a Kinect sensor

tend to suffer from a relatively large amount of noise, and contain outliers, especially when

parts of the body are occluded. Our filtering of the skeleton data in Section 2.1 fails to remove

the outliers, thus we propose to modify the original diffusion maps by adding the extension of

[6] for dealing with them. Building a diffusion map as in [3] requires computing a weighted

adjacency matrix W that contains the distances between neighbouring points weighted by a

Gaussian kernel KG:

wi, j = KG (Si,S j) . (1)

We modify the entries of the matrix as

wi j = (1−β )KG(Si,S j)+β I(Si,S j), with I(Si,S j) =

{

1, Si ∈Ni or S j ∈N j

0, otherwise
(2)

I(�) is an indicator function that was introduced in [6] to avoid disconnected components in

Laplacian eigenmaps, thus reducing the influence of outliers. Then, as in the original diffu-

sion map, the optimal mapping Φ is obtained from the eigenvalues λ and the corresponding

eigenvectors ϕ of the Laplace-Beltrami operator P [3],

Φ(Si) 7→ [λ1ϕ1(Si), · · · ,λN′ϕN′(Si)]
T
. (3)

An approximation of P is computed following [4] from the matrix W.

Mapping testing data - The Nyström extension [1] allows to extend the low dimensional

representation computed from a training set to new samples, by computing the mapping of a

new pose S′ as

Φ′(S′) = ∑S j∈S P(S′
,S j)ϕm(S j), ∀m ∈ 1 . . .M (4)

where P(S′,S j) is computed in the same fashion as in [4], but based on our new definition

of wi, j with the added indicator function I(�). We use this mapping Y = Φ′(S′) as our high

level feature for building our statistical model in the next section.

2.3 Statistical model of movement learning

We assess the quality of movements by comparing new pose description vectors Y with a

statistical model of normal movements. We introduce the multivariate random variable Y

that takes as value y our high level pose description vector y = Y. Our model comprises two

components that describe respectively the pose and the dynamics of the skeleton during a

given movement.

The first model represents normal poses by their probability density function (pdf) fY (y).
We obtain this pdf from training data, made up of all the (successive) poses of normal

movements, using a Parzen window estimator implemented with the Python library Scikit-

learn [12].

The second model is a dynamics model, which is required to take into account the tempo-

ral dimension of the data. Thus, we use the conditional pdf fYt (yt |y1, . . . ,yt−1) that considers
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the sequence of poses from the first pose y1 at the beginning of the video sequence to the

pose yt at the current frame t. This provides the likelihood of this sequence of poses being

represented by the dynamics model.

In order to compute this likelihood, we introduce Xt , a random variable that takes values

xt ∈ [0,1] and which represents the proportion of movement completion at frame t. Xt may

be seen as the continuously evolving stage of the movement, and in the case of periodic

movements it is analogous to the movement’s phase. Its value xt increases with t from 0 at

the start of the movement to 1 at the completed movement stage. This increase is steady for

normal movements. For periodic movements, xt increases within one cycle of the movement,

and then returns to 0 in order to analyse the next cycle, while for non-periodic movements xt

simply increases from 0 to 1. An advantage of using this continuous variable is that, contrary

to HMM methods, the movement does not have to be discretised into a number of segments,

and the problem of choosing an optimal segment number becomes irrelevant. The value of

Xt is considered to be known in the training data, where it is set linearly between 0 and 1

from the first to the last frame of the movement or movement cycle. This assumes that each

training movement is performed at a regular speed, although this speed can vary between

training samples. For testing data, the value of Xt will need to be estimated, as described

in Section 2.4. During this estimation, the hypothesis that the movement speed is stable is

not enforced in order to be able to describe the testing data at best, but instead it is used to

detect abnormality. For brevity, we denote {X0, . . . ,Xt} as X
t (X0 is the initial stage of the

movement before the first observation Y1), and {Y1, . . . ,Yt} as Yt . fYt (yt |y1, . . . ,yt−1) may be

computed as

fYt (yt |y1, . . . ,yt−1) =
fYt (y1, . . . ,yt)

f
Yt−1 (y1, . . . ,yt−1)

, (5)

with

fYt (y1, . . . ,yt) =
∫

{x0,...,xt}∈Ω
Xt

fYt ,Xt (y1, . . . ,yt ,x0, . . . ,xt) , (6)

and ΩXt being the domain of the possible values for {x0, . . . ,xt}. We propose to use the two

following Markovian assumptions to compute fYt (yt |y1, . . . ,yt−1):

{

fYt (yt |y1, . . . ,yt−1,x0, . . . ,xt) = fYt (yt |xt) ,

fXt (xt |x0, . . . ,xt−1) = fXt (xt |xt−1) ,
(7)

i.e. an observation at frame t is completely defined by the proportion of movement comple-

tion Xt at that frame, and the proportion of movement completion Xt at frame t depends only

on the proportion of movement completion at the previous frame Xt−1. Then,

fYt ,Xt (y1, . . . ,yt ,x0, . . . ,xt) = fYt (yt |y1, . . . ,yt−1,x0, . . . ,xt) f
Yt−1,Xt (y1, . . . ,yt−1,x0, . . . ,xt)

= fYt (yt |xt) fXt (xt |y1, . . . ,yt−1,x0, . . . ,xt−1)

f
Yt−1,Xt−1 (y1, . . . ,yt−1,x0, . . . ,xt−1)

= fYt (yt |xt) fXt (xt |xt−1) f
Yt−1,Xt−1 (y1, . . . ,yt−1,x0, . . . ,xt−1)

...

= fX0
(x0)

t

∏
i=1

fYi
(yi|xi) fXi

(xi|xi−1) ,

(8)
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and (6) becomes

fYt (y1, . . . ,yt) =
∫

{x0,...,xt}∈Ω
Xt

fX0
(x0)

t

∏
i=1

fYi
(yi|xi) fXi

(xi|xi−1) . (9)

It follows, according to (5), that

fYt (yt |y1, . . . ,yt−1) =

∫

{x0,...,xt}∈Ω
Xt

fX0
(x0)∏

t
i=1 fYi

(yi|xi) fXi
(xi|xi−1)

∫

{x0,...,xt−1}∈Ω
Xt−1

fX0
(x0)∏

t−1
i=1 fYi

(yi|xi) fXi
(xi|xi−1)

. (10)

We denote as κ̂t = {x̂0, . . . , x̂t} the optimal value of Xt that minimises fXt (x0, . . . ,xt |y1, . . . ,yt):

κ̂t = argmax
{x0,...,xt}

fXt (x0, . . . ,xt |y1, . . . ,yt) = argmax
{x0,...,xt}

fYt ,Xt (y1, . . . ,yt ,x0, . . . ,xt)

fYt (y1, . . . ,yt)

= argmax
{x0,...,xt}

fX0
(x0)

t

∏
i=1

fYi
(yi|xi) fXi

(xi|xi−1) .

(11)

The last equivalence of (11) uses (8) and the fact that fYt (y1, . . . ,yt) is a constant for varying

values of Xt . Under the assumption that κ̂t is the only acceptable value for Xt given our

strong constraint that Xt increases steadily during a normal movement, then other values for

X
t have negligible weights in the integrals in (10), and (10) may be simplified as

fYt (yt |y1, . . . ,yt−1)≈
fX0

(x̂0)∏
t
i=1 fYi

(yi|x̂i) fXi
(x̂i|x̂i−1)

fX0
(x̂0)∏

t−1
i=1 fYi

(yi|x̂i) fXi
(x̂i|x̂i−1)

≈ fYt (yt |x̂t) fXt (x̂t |x̂t−1) . (12)

Note that this approximation is a lower bound of fYt (yt |y1, . . . ,yt−1). This is appropriate in

our case, since it is preferable to have false alerts in a health monitoring system when the

likelihood of a sequence to be normal is under-estimated, rather than to miss true alerts.

The dynamics model is built from our training data by estimating fYt (yt |xt) =
fXt ,Yt (xt ,yt )

fXt (xt )

using the same Parzen window estimator as previously. To compute fXt (xt |xt−1), since we

assume a constant speed of the movement, we enforce xt − xt−1 to be proportional to the

elapsed time, i.e. xt −xt−1 = α (τt − τt−1), with τt the time-stamp of frame t and α a propor-

tionality constant. fXt (xt |xt−1) is then modelled as a Gaussian distribution around a perfect

match between xt − xt−1 and α (τt − τt−1):

fXt (xt |xt−1) =
1

σ
√

2π
exp

(

−1

2

(

(xt − xt−1)−α (τt − τt−1)

σ

)2
)

. (13)

σ is the standard deviation of the Gaussian distribution and its choice will be discussed next

in Section 2.4. α is estimated at each new frame. Thus, the dynamics model adapts to

the personal speed of the subject. However, when the speed varies significantly during a

movement, this results in a low likelihood both for Xt and for this movement to be normal

according to (12).

2.4 Movement quality assessment

The quality of a newly observed movement is assessed using two quality measures of pose

and dynamics that are computed from the two models presented in Section 2.3. These mea-

sures represent the likelihoods of the movement to be described by the two models, and they
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are computed on a frame-by-frame basis so that alerts may be triggered as early as possible

when the observed movement drops below a threshold in its level of normality.

For each new frame t of an observation, the pose quality measure is computed for the

new pose yt , regardless of the previous frames, by computing its log-likelihood according to

the pose model:

llhpose = log fY (yt) . (14)

llhpose provides a continuous measure of the level of normality of the pose, distinguished

by a threshold threshpose.

The dynamics quality measure is obtained by computing the log-likelihood of the se-

quence (y1, . . . ,yt−1) of poses from frame 1 to t to follow the dynamics model according to

(12):

llhseq = log fYt (yt |y1, . . . ,yt−1)≈ log( fYi
(yt |x̂t) fXi

(x̂t |x̂t−1)) . (15)

Similarly to llhpose, llhseq provides a continuous measure of the level of normality of the

sequence of poses, i.e. the movement, again distinguished by threshold threshseq. The

computation of llhseq requires estimating the value of Xt first. This may be done, according

to (11), by maximising fYt ,Xt (y1, . . . ,yt ,x0, . . . ,xt). In order to reduce computation time, we

can use the fact that an estimate for {x0, . . . ,xt−1} was already computed at the previous

iteration. We note that, after a few iterations, the estimated value xi at any previous frame i

does not change significantly any more. Thus, we may consider that the optimal value for Xi

has been found and stop re-estimating it. Following this idea, we define a temporal window

of variable size ω that contains all the frames i for which xi has not yet converged:

ω = t − tmin +1 , (16)

with tmin the oldest frame that requires a re-estimation of xtmin
. In our implementation, xi

is considered to have converged when its change is < 10−3 during 2 consecutive iterations.

Thus, ω is set at each iteration. For convenience and efficiency, we limit ω to a maximum of

15 frames, although it rarely goes above 10 frames. All the values of Xi within this window,

denoted as κω = {xtmin
, . . . ,xt}, are estimated by solving the following modification of (11):

κ̂ω = argmax
κω

fXtmin−1
(xtmin−1)

t

∏
i=tmin

fYi
(yi|xi) fXi

(xi|xi−1) . (17)

The estimated values xi may be kept between 0 and 1 by using the modulo operator in the

case of periodic movements such as gait, since under the condition of (13) they would tend

to keep increasing during consecutive cycles together with the time τ .

In (12), κ̂t is considered to be the best and only acceptable value for Xt . In our case,

the value of Xt converges progressively, and at iteration t all its values within the window ω
are re-estimated. Thus, in order to take into account the confidence in the newly estimated

values of Xω and not only in xt , we modify (15) as

llhseq ≈ 1

ω

t

∑
i=tmin

log( fYi
(yi|xi) fXi

(xi|xi−1)) . (18)

For the computation of fXi
(xi|xi−1) in (17) and (18) using (13), the value of α needs to be

estimated. We simply use the average proportionality between xi and τi inside the temporal

window:

α =
1

ω −1

t−1

∑
i=tmin

xi − xi−1

τi − τi−1
. (19)



8 PAIEMENT ET AL.: ONLINE QUALITY ASSESSMENT OF HUMAN MOVEMENT

The value of σ affects the flexibility of the estimation of Xω and should therefore be

chosen with care. A low value for σ enforces a strong stable speed constraint on X
ω that,

in the case of an abnormal movement with significant speed variations, may prevent the

model to match the observed data properly. On the contrary, a higher value for σ would

provide more flexibility to better describe the movement, at the cost of a lesser penalisation

of movements with irregular speeds. As a compromise, we use two distinct values for σ ,

with a relatively high value σestim during the estimation of κ̂ω , and a lower value σassess for

the computation of llhseq.

3 Experimental results

We evaluate our proposed method on walking-up-stairs movement against manual detection

of abnormalities by a physiotherapist. Analysing such gait has obvious relevance for several

clinical applications [5, 16, 18].

We build our model from 17 sequences, using 6 healthy subjects having no injury or

disability, from which we extract 42 gait cycles3. We empirically determined and set β =
0.01, σestim = 7e−3, σassess = 10−3, threshpose =−2.5, and threshseq = 2.

We first prove the ability of the proposed method to generalise to movements of new

subjects by assessing the normal gait of 6 subjects who were not involved in the training

phase. In the majority of the normal sequences, the gaits of the new subjects are judged as

normal by our method, with only one false detection of anomaly in 13 normal sequences4.

Next, we evaluate the ability of our method to generalise to various types of abnormality.

A qualified physiotherapist (who was not included in the model training phase) simulated

three standard scenarios of knee injury that are illustrated in Fig. 3, and labelled the abnormal

frames manually (blue shaded areas in Fig. 3). Five other subjects simulated the same range

of anomalies under his guidance. The top row of Fig. 3 presents the values of the first

dimension of the reduced pose vector Y, which clearly embodies the periodicity of the data.

The second row displays the estimated values of the movement stage xt . The third and bottom

rows present llhpose and llhseq respectively. Superimposed in colour are the decisions of

our system: in green, the frames that are judged sufficiently close to the normal model, while

in red, the frames for which llhpose or llhseq are below the acceptable thresholds threshpose
and threshseq respectively. In orange are refined detections of deviations of the movement

from normal, just before llhseq drops below threshseq and an alert is triggered. These frames

are found by examining the derivative of llhseq and detecting its sudden change. In our

implementation, we simply detect decrease rates of llhseq higher than 0.3. Similarly, in blue

are the refined detections of frames that are back to normal, with increase rate of llhseq
higher than 0.3. This refinement strategy attempts to compensate for the delay in changes of

llhseq that is due to the computation of llhseq over the window w.

In our first two tests, the subjects walk up the stairs always initially using their right leg

(see the "Right leg lead" or RL test in Fig. 3) or left leg ("Left leg lead" or LL test in Fig. 3)

to move to the next upper step. In both cases, the pose of the subjects does not deviate

significantly from the pose model, thus llhpose remains above threshpose. On the contrary,

3Our training and testing sequences, along with the ground-truth, are available on our project webpage at

www.irc-sphere.ac.uk/work-package-2/movement-quality.
4We have not compared against Mihailidis and co-workers [11, 15] - the only works that we know of which

analyse gait on stairs - as their codes and labelled groundtruth data was not available.
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Figure 3: Analysis of abnormal gaits on stairs from three new subjects. For each test: top

row: first dimension of Y, second row: estimated movement stage xt , third row: llhpose,

bottom row: llhseq. Dotted lines: thresholds for normal/abnormal classification. Superim-

posed in colour are the online movement assessment of our system: green: acceptably nor-

mal movement, red: abnormal movement, orange: refined detections of abnormal frames,

blue: refined detection of normal frames. The blue shaded areas are the manual labelling of

anomalous frames. Note, in the right and left leg lead cases, these detections by our method

are delayed due to the method responding to the use of the wrong leg in the cycle rather than

to the early slowing down of the other leg.

Type of event No. of occurrences FP TP FN Proportion missed

RL 25 0 23 2 0.08

LL 21 0 19 2 0.10

Freeze 12 2 12 0 0

All 58 2 54 4 0.07

Table 1: Results on detection of abnormal events

Type of No. frames FP TP FN TN False positive Proportion

event with event frames frames frames frames rate missed

RL 500 144 223 276 363 0.28 0.55

LL 435 117 108 327 263 0.31 0.75

Freeze 658 164 536 122 791 0.17 0.19

All 1593 425 867 725 1417 0.23 0.46

Table 2: Results on classification of frames
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the repeated use of the same leg makes part of each cycle in disagreement with the dynamics

model and is detected in every cycle.

In our last test (right of Fig. 3), the subjects freeze at some stage of the movement. Note

that this type of anomaly deviates more strongly from the normal model, due to variable

Xt not evolving any more, which is in contradiction with the dynamics embodied in (13).

Thus, this triggers a much stronger response from the system as seen in the bottom part of

Fig. 3. When the subject freezes then resumes a normal gait, the freeze is correctly detected

by the system, as well as the return to normality. In Fig. 3, this ability to resume the analysis

after the gait returns to normal allows the system to detect a second freeze that happens

immediately, i.e. within one gait cycle, after the first one.

Table 1 presents the true, false, and missed detections of abnormal events in all the se-

quences, and Table 2 provides similar measures regarding the classifications of individual

frames. The results show all three types of events detected with a rate of 0.93, with only 2

false positive detections out of 58 events. The frame classification is less satisfactory, with

overall false positive rate at 0.23 and proportion of missed abnormal frames at 0.46 . The

frame classification is especially difficult for the RL and LL anomalies, where the detections

are often in phase opposition with the ground-truth, resulting in a high amount of false pos-

itive and false negative classifications. This is mostly due to the alarm being triggered late

by the use of the unexpected leg rather than by the premature stopping of the previous leg.

Indeed, the computation of α over a local window makes the method able to adapt to the

decrease of the movement speed to some extent. Similarly, for the freeze of gait events, the

alarm is frequently delayed until α has changed significantly.

To demonstrate the flexibility of our method, e.g. non-periodic movements, we also ap-

plied it to boxing and sitting-and-standing movements. These results are reported elsewhere

(see last footnote) due to lack of space here.

4 Conclusion

We have presented a method for analysing the quality of movements from skeleton repre-

sentations of the human body. The method makes use of a robust manifold technique to

reduce the dimensionality of the noisy skeleton data, and then compares the resulting fea-

tures with a pose and dynamics model learnt from normal occurrences of a movement. We

tested the method on gait on stairs, and demonstrated its ability to generalise to the move-

ments of unknown subjects and to detect a range of abnormality types. Future work include

further assessment on both periodic and non-periodic movements and comparison against

other methods, as well as evaluating the benefit from the continuous measure of movement

quality that our likelihoods provide, against a binary classification of normal vs. abnormal.
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