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ABSTRACT The fifth generation (5G) radio access technology is designed to support highly delay-sensitive

applications, i.e., ultra-reliable and low-latency communications (URLLC). For dynamic time division

duplex (TDD) systems, the real-time optimization of the radio pattern selection becomes of a vital

significance in achieving decent URLLC outage latency. In this study, a dual reinforcement machine

learning (RML) approach is developed for online pattern optimization in 5G new radio TDD deployments.

The proposed solution seeks to minimizing the maximum URLLC tail latency, i.e., min-max problem,

by introducing nested RML instances. The directional and real-time traffic statistics are monitored and given

to the primary RML layer to estimate the sufficient number of downlink (DL) and uplink (UL) symbols

across the upcoming radio pattern. The secondary RML sub-networks determine the DL and UL symbol

structure which best minimizes the URLLC outage latency. The proposed solution is evaluated by extensive

and highly-detailed system level simulations, where our results demonstrate a considerable URLLC outage

latency improvement with the proposed scheme, compared to the state-of-the-art dynamic-TDD proposals.

INDEX TERMS Dynamic-TDD, URLLC, 5G new radio, machine learning, reinforcement learning, Q-

learning, cross link interference (CLI).

I. INTRODUCTION

One of the main drivers of the fifth generation (5G) radio

standardization is the ultra-reliable and low-latency commu-

nications (URLLC) service class [1]. URLLC entail the trans-

mission of sporadically-arriving small-payload packets with

one-way radio latency of 1ms and 99.999% success probabil-

ity [2]. As the early 5G commercial enrollments are foreseen

over the 3.5 GHz unpaired spectrum, due to its wide spectrum

availability [3], time-division duplexing (TDD) technology is

vital for the success of the 5G. With dynamic TDD, base-

stations (BSs) independently utilize either a downlink (DL)

or uplink (UL) transmission opportunity at a time in order to

meet their capacity and latency demands, respectively [4].

Achieving the URLLC targets for dynamic TDD deploy-

ments is highly challenging [5] due to: (i) the non-concurrent

availability of the DL and UL transmission opportuni-

ties, and (ii) the potentially strong cross-link interference

(CLI) between neighboring BSs and user-equipment’s (UEs),

The associate editor coordinating the review of this manuscript and
approving it for publication was Xijun Wang.

adopting opposite transmission directions. The fine selec-

tion of the DL and UL symbol structure during a TDD

radio pattern has been demonstrated to immensely impact the

achievable URLLC outage latency, even under hypothetically

CLI-free conditions [5]. Moreover, the TDD radio pattern

selection is an NP-hard problem for multi-cell multi-UE

deployments, due to the simultaneous requests of conflicting

link directions, and thus, this is the problem addressed in this

work.

A. STATE OF THE ART DYNAMIC TDD STUDIES

The third generation partnership project (3GPP) has recently

standardized a flexible frame structure for dynamic TDD 5G

systems [6]. That is, BSs configure a 10-ms radio frame,

consisting of multiple slot formats, each is composed of

DL [D], UL [U], and flexible [F] symbols, respectively.

The latter indicates the symbol set that can be dynamically

configured, through a dedicated radio signaling from BS to

UEs, either as DL or UL or act as a guard time among

successive DL and UL symbols, respectively. Such design
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offers a highly resilient framework for adapting the radio

patterns to the time-variant offered traffic needs. One simple

way to approach such frame flexibility is to semi-statically

adapt the radio pattern configuration to the current average

traffic conditions [7]. In particular, a common radio pattern

is periodically updated and adopted by all neighboring BSs

in order to meet the average network capacity demands, with

minimal inter-BS signaling overhead.

Recent prior-art proposals seek to utilize the standardized

pattern update flexibility. In [8], [9], a predefined set of radio

frame configurations is adopted, with different possible DL

and UL symbol ratios and pre-determined structures (aka -

a frame-book). Thus, BSs dynamically select those patterns

from the frame-book which best satisfy their individual link

selection criteria, e.g., the currently buffered traffic.

However, as a consequence to the BS-specific pattern

adaptation, neighboringBSsmay simultaneously adopt oppo-

site link directions, resulting in a severe CLI. For instance,

the BS-BS CLI is demonstrated as a fundamental limita-

tion of the achievable UL capacity [5], mainly due to the

larger DL transmit power compared to the victim UL power.

CLI mitigation and coordination schemes have therefore

been widely investigated over recent prior art. In [10]–[12],

coordinated cross-cell beam-forming, UL power control and

cell muting are proposed to limit the residual network

CLI, especially towards the more CLI-sensitive cell-edge

UEs. Joint UL transceiver design [10], [13], [14], based on

inter-cell signaling of the UEs’ spatial signatures, is also

introduced in order to isolate the BS-BS CLI spatial sub-

space from that is of the desired UL transmission. The

drawback of those proposals is mainly the requirement of

a large inter-cell signaling overhead space. Therefore, sim-

pler and less-coordination-overhead demanding opportunis-

tic CLI avoidance schemes [15], [16] have been suggested

to offer attractive capacity and latency merits, where the

BS-BS and UE-UE CLI is pre-averted on a best effort basis.

This encompasses the design of a hybrid TDD pattern with

a slot-aware dynamic UE scheduling. Although those pro-

posals require simpler implementation complexity, they opti-

mize the URLLC performance on a heuristic basis, which

may jeopardize the achievable URLLC reliability and latency

performance.

B. MACHINE LEARNING POTENTIAL IN DYNAMIC TDD

SYSTEMS

Although the quoted TDD studies present clear advancements

and valuable findings, the radio pattern selection procedure is

yet deemed as a challenging problem towards the success of

the 5G TDD deployments. This is particularly relevant for

dynamic URLLC multi-cell multi-user TDD deployments,

where the DL and UL traffic arrivals are highly sporadic

in time, and with strict latency and reliability constraints.

As stated, the problem of selecting the optimum TDD switch-

ing pattern is NP-hard and has so far been addressed by

means of rather simple heuristic solutions. In this study,

we go one step further where our hypothesis is that machine

learning (ML) is a viable solution to be utilized at the BS

nodes to dynamically select the best possible TDD switching

pattern. That is, based on monitoring the past and current

traffic and latency performance per BS, an ML capability

shall learn and predict the best TDD switching pattern for the

next radio frame.

ML techniques have been notably studied with the 5G

wireless radio communications [17] for various radio design

aspects such as interference management [18] and radio

resource management [19]–[23]. Generally, ML can be

divided into three categories [24] as: (1) supervised-ML

(SML), where the input data is a priori known and

well-labeled for model training. The SML model is contin-

uously trained with the right question-answer pairs until it

approaches the optimal model, (2) unsupervised-ML (UML),

where the input data is neither a priori known nor labeled.

Accordingly, data clustering and dimensionality reduction

become necessary to extract the meaningful and independent

feature vectors, and (3) reinforcement-ML (RML), where

unlike SML and UML, it does not require offline model

training. Thus, RML has been widely employed towards the

real-time decision-making applications. RML algorithms are

goal-oriented which consistently in time learn how to achieve

a complex objective, through an iterative; however, simple,

process of action exploration and environment observation,

respectively. The model-free RML algorithms are mainly cat-

egorized to on-policy and off-policy techniques [25], respec-

tively. The former directly learns the optimal policy while

the latter approaches the near-optimal policy through more

conservative exploration. On-policy ML algorithms, such as

state–action–reward–state–action (SARSA) [26], have been

demonstrated particularly attractive for the critical use cases

where the learning agent is critically challenged with a

tight training duration, and over which it cannot employ a

sub-optimal policy, e.g., walking robots over a cliff.

For the latency-critical URLLC traffic, SML and UML are

substantially challenging for practical deployments due to the

required large size of dedicated training samples to reach a

sufficient learning of the target URLLC 10−5 outage prob-

ability. Therefore, SML and UML methods are not adopted

in this study as deemed too demanding for achieving the

required level of model training. We prioritize RML as being

more suitable for the type of system and objectives addressed

in this paper, and hence, this is the focus of this study.

C. PAPER CONTRIBUTION

In this paper, a dual-RML based pattern optimization scheme

is proposed for dynamic TDD 5G systems. The proposed

solution targets minimizing the inflicted URLLC radio

latency on a real-time basis, and accordingly, improving

the achievable URLLC outage performance. The proposed

scheme utilizes nested RML layers, where the primary layer

estimates the number of the DL and UL symbols of the

upcoming radio pattern to satisfy the foreseen offered traffic.

Subsequently, the secondary RML sub-layers determine the

DL and UL symbol structure that achieves the minimum
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possible URLLC radio latency. The proposed algorithm

neither requires inter-cell signaling exchange overhead nor

offline dedicated training, i.e., online and distributed pat-

tern optimization. Performance results show a significant

improvement of theURLLCoutage latencywith the proposed

solution, compared to state-of-the-art dynamic TDD propos-

als. Themajor contributions of this paper are listed as follows:

• We propose a novel dual reinforcement machine

learning (RML) approach for online URLLC outage

optimization for 5G-NR TDD networks.

• Unlike the state-of-the-art relevant TDD solutions

[7]–[18], the proposed solution considers the joint

capacity and latency statistics to optimize the URLLC

outage latency performance. It is fully compliant with

the current 3GPP 5G-NR standard specifications for

dynamic-TDD deployments. The proposed framework

neither requires inter-cell signaling exchange nor high

processing complexity.

• Compared to the state-of-the-art TDD literature, the pro-

posed scheme offers a considerable URLLC latency

and reliability enhancement, under various DL and UL

offered loads. It achieves 70% outage latency reduction

compared to the standard dynamic TDD scheme.

Due to the complexity of the 5G new radio system design

and the addressed problems herein, the proposed solution

has been evaluated by extensive and highly-detailed system

level simulations. Those simulations incorporate the major

functionalities of the 5G new radio protocol stack, e.g.,

dynamic resource allocation and user scheduling, adaptive

modulation and coding schemes (MCS), hybrid automatic

repeat request (HARQ) re-transmissions, and the 3GPP 3D

spatial channel modeling, respectively. Special care is given

to ensure statistically-reliable results.

The paper is organized as follows. Section II presents

the system modeling, while Section III formulates the prob-

lem addressed in this work. Section IV introduces a brief

overview of the Q-reinforcement learning and Section V

presents the detailed description of the proposed solution.

Section VI introduces the state-of-the-art dynamic-TDD

schemes, against which we evaluate the performance of the

proposed solution. The performance evaluation results appear

in Section VII, while conclusions are drawn in Section VIII.

II. SETTING THE SCENE

A. SYSTEM MODEL

We consider a macro 5G dynamic TDD deployment, where

base-stations (BSs) are configured with 3-sector cell setting.

Thus, there are a total of C cells, each is equipped with N

antennas. Each cell serves an average of K = K dl+K ul

uniformly-distributed UEs, each equipped with M antennas,

K dl and K ul denote the average numbers of the DL and UL

UEs per cell. In this study, we assume that UEs are requesting

DL and UL traffic with different DL and UL packet arrival

rates, respectively. We adopt the URLLC-alike FTP3 traffic

modeling with packet sizes of f dl and f ul bits, and a Poisson

Arrival Process, with mean packet arrival rates of λdl and λul,

in the DL and UL directions, respectively [27]. The average

offered load per cell in the DL direction is: Ωdl =K dl×f dl×

λdl, and UL direction: Ωul = K ul×f ul×λul. The total offered

load per cell is given as: Ω = Ωdl+Ωul.

We follow the 3GPP guidelines for the 5G TDD sys-

tem modeling, as shown by Fig. 1. UEs are dynamically

multiplexed using the orthogonal frequency division multi-

ple access (OFDMA). In line with the 3GPP URLLC stud-

ies [27], the SCS is selected to equal 30 kHz as it offers

sufficiently short symbol durations to fulfill the considered

latency requirements, while still having enough cyclic pre-

fix duration to cope with time-dispersion for the considered

macro scenario, with the physical resource block (PRB) of

twelve consecutive SCSs. Furthermore, we assume a short

transmission time interval (TTI) duration of 4 OFDM sym-

bols towards faster URLLC transmissions. Prior to the start

of each radio frame [28], i.e., every 10-ms, the BS decides

the next radio frame pattern based on the proposed RML

solution. In this work, we assume a single guard OFDM

symbol between everyDL andUL symbols in the radio frame,

in order to account for the DL channel delay spread before the

UL transmissions are triggered.

FIGURE 1. System model: dynamic-TDD macro deployment.

Accordingly, when a DL packet arrives at the cell, it is

first processed by the serving cell, and thereafter, is buffered

towards the first available DL transmission opportunity of

the current TDD radio pattern, i.e., TDD pattern switch-

ing delay. The time to prepare a DL transmission block

is taken explicitly into account in line with 3GPP 5G-NR

specifications [29]. Then, the cell scheduler dynamically

multiplexes all pending DL packets using the proportional

fair criterion, where some DL packets can be further queued

to the next DL transmission instant, i.e., scheduling queuing

delay. The HARQ re-transmissions are always prioritized

over new transmissions. Herein, dynamic link adaptation is

also adopted, where the DL transmission MCS is adaptively

selected such that it corresponds to a first-transmission block

error rate (BLER) of 1%. The MCS selection is typically

based on the most recently received channel quality indi-

cation (CQI) report from the UE. The scheduled users are

notified with a scheduling grant (aka DL control infor-

mation – DCI), and the overhead from the corresponding

132924 VOLUME 8, 2020
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physical-layer control signaling is taken explicitly into

account in line with [30]. At the UE-side, DL reception is

subject to processing time for decoding of the DL transmis-

sion. In case the transmitted DL packet is not successfully

decoded by the intended UE, the UE triggers the transmission

of a HARQ negative acknowledgment (NACK) during the

next available UL transmission opportunity of the radio

pattern, where the appropriate radio resources are allocated.

Correspondingly, serving cell re-transmits the respective DL

packet to be soft-combined at the UE.

For UL packet transmissions, we assume configured

grant (CG) transmission (aka grant-free) with fixed MCS per

UE [31], The use of CGmeans that as soon as a packet arrives

at theUE, it is immediately prepared for UL transmission, and

transmitted at the first coming UL TTI opportunity. Each CG

transmission includes a robust preamble, so the receiving BS

is able to detect from which UE the transmission is coming.

The CG parameterization is such that UEs with high path-loss

are transmitting on the full bandwidth with a conservative

MCS corresponding to QPSK rate 1
8
, such that one URLLC

payload of 32 bytes can be transmitted. In line with [31], UEs

with better path-loss conditions are configured to transmit on

one quarter of the carrier bandwidth with MCS QPSK rate 1
2
.

Such UE classification, of high or low path-loss conditions,

is based on a predefined coupling gain threshold ĉ. The UL

transmit power 6 [dBm] is configured to equal

6 [dBm]=min
{

6max, P0+10 log10 (℘)+αð+∇MCS

}

, (1)

where 6max is the max UE transmit power, P0 is the tar-

get power spectral density, ℘ is the number of granted UL

PRBs, α and ð denote the path-loss compensation factor and

path-loss, respectively. ∇MCS is an UL power boost factor

where ∇MCS = 10 dB for QPSK1/2 and ∇MCS = 0

dB for QPSK1/8 in line with [31]. As CG transmissions

from multiple users may occur at the same time on overlap-

ping resources, uplink transmissions from UEs are subject

to potential intra-cell interference, which only to a certain

extent can be combated by the a linear BS multi-antenna

receiver. If the BS fails to correctly decode a CG transmission

from an UL UE, it immediately sends an uplink scheduling

grant for the UE in the next coming DL TTI, issuing an

UL HARQ re-transmission from the UE in the next UL

TTI. The UL HARQ re-transmission is sent using the same

configuration (bandwidth and MCS configurations) as the

original transmission, but with a +3 dB transmission power

boost to enhance the probability of decoding the HARQ

re-transmission at the BS [31].

As an input to the proposed RML algorithm to dynamically

select the radio frame configuration, cells should be aware

of the directional traffic and latency statistics. Hence, in this

work, we assume a realistic knowledge of those statistics

at the cell side. Particularly, the DL traffic size, including

buffered and new packets, is spontaneously known at the

cell stack. However, in the UL direction, new UL packet

transmissions are not a priori known at the cell. Those are

only identified at the cell side when the first UL transmission

attempt is either failed or correctly received. Thus, we only

assume the UL HARQ-buffered traffic size is known at the

cell side.

For capturing the latency statistics of the corresponding

DL/UL buffers, we define the head of line delay (HoLD)

per packet per UE as the time from the moment a DL/UL

packet arrives at the transmitter packet data convergence

protocol (PDCP) layer until it is successfully received at the

receiver end, and forwarded to the PDCP layer. The exact DL

HoLD is known at the cell.

For the UL direction, it is not known at the BS-side when

a packet arrives at the UE-side. The BS only becomes aware

of pending UL transmissions from the UE when it first tries

to transmit those to the BS. The UL HoDL is therefore only

monitored at the BS-side as the time from the first UL trans-

mission attempt until successful decoding, i.e., essentially

corresponding to the effective HARQ retransmission round

trip time. Due to the adaptation of the TDD switching pattern

and presence of both inter-cell and intra-cell interference

from other UEs, as well as the potential BS-BS CLI, the UL

HARQ round trip time is time-variant, and often dominant for

the tail of the UL packet distribution.

Finally, the achievable one-way radio URLLC latency at

the 10−5 outage probability is the main performance met-

ric [5] of this work. It implies the delay from the moment

when a URLLC packet arrives at the packet data conver-

gence protocol layer of the transmitter until it is success-

fully received at the intended receiver, summing the BS and

UE processing delays, buffering delay due to dynamic UE

scheduling, delay to the first DL/UL transmission opportu-

nity, and HARQ re-transmission delay.

B. SIGNAL MODEL

Assume Bdl, Bul, Kdl and Kul as the BS and UE sets with

DL and UL transmissions, respectively. Thus, the DL signal

at the k th UE, where k∈ Kdl, ck∈ Bdl, is given as

ydlk,ck

= Hdl
k,ck

hkxk
︸ ︷︷ ︸

Useful signal

+
∑

i∈Kdl\k

Hdl
k,ci

hixi

︸ ︷︷ ︸

BS to UE interference

+
∑

j∈Kul

Gk,jojxj

︸ ︷︷ ︸

UE to UE interference

+ndlk ,

(2)

whereHdl
k,ci
∈ C

M×N is the DL 3D-UMA fading channel [32]

from the cell serving the ith UE, to the k th UE, hi ∈ C
N×1,

ok ∈ C
M×1 and xk are the zero-forcing precoding vector at

the cthi BS, precoding vector of the k th UE, and the transmitted

data symbol of the k th UE, respectively, while Gk,j ∈ C
M×M

implies the cross-link channel between the k th and jth UEs,

and ndlk represents the additive white Gaussian noise. The UL

signal at the cthk cell, ck∈ Bul from k∈ Kul, is expressed by

yulck ,k

= Hul
ck ,k

okxk
︸ ︷︷ ︸

Useful signal

+
∑

j∈Kul\k

Hul
ck ,j

ojxj

︸ ︷︷ ︸

UE to BS interference

+
∑

i∈Kdl

Pck ,cihixi

︸ ︷︷ ︸

BS to BS interference

+nulck ,

(3)
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where Pck ,ci ∈ C
N×N is the BS-BS channel between the

serving BSs of the k th and ith UEs, k∈ Kul and i ∈ Kdl.

Then, the post-receiver signal-to-interference ratio in the DL

γ dl
k and UL γ ul

ck
directions are expressed by,

γ dl
k =

∥
∥
∥

(

u
dl
k

)H
Hdl
k,ck

hk

∥
∥
∥

2

∑

i∈Kdl\k

∥
∥
∥

(

u
dl
k

)H
Hdl
k,ci

hi

∥
∥
∥

2
+

∑

j∈Kul

∥
∥
∥

(

u
dl
k

)H
Gk,joj

∥
∥
∥

2
,

(4)

γ ul
ck
=

∥
∥
∥

(

u
ul
k

)H
Hul
ck ,k

ok

∥
∥
∥

2

∑

j∈Kul\k

∥
∥
∥

(

u
ul
k

)H
Hul
ck ,j

oj

∥
∥
∥

2
+

∑

i∈Kdl

∥
∥
∥

(

u
ul
k

)H
Pck ,cihi

∥
∥
∥

2
,

(5)

where ‖·‖2 is the second-norm, u
κ
k ∈ C

N/M×1,

X
κ , κ∈{ul, dl}, is the linear minimum mean square error

interference rejection combining (LMMSE-IRC) receiver

vector [33], with (·)H as the Hermitian operation.

III. PROBLEM FORMULATION

The URLLC applications require a stringent radio latency

bound and with a rare per-packet violation probability.

In dynamic TDD systems, the URLLC outage performance

is dominated by the number and the structure of the DL dc
andUL uc symbols across the configured radio pattern. In this

study, our objective is to optimize the radio pattern configura-

tion, i.e., to determine the number and structure of dc and uc,

for a faster and DL-UL balanced traffic transmission, and

thus, an improved URLLC outage latency, as

(
dc

uc

)∗

,

{
d i

ui
:
d i

ui
∈ T

}

, (6.a)

(

ŵc
)∗

,

{

ŵj : ŵj ∈ Ŵ
}

, (6.b)

Subject to :









argmin
c,t

(

Υc,t
)

argmin
k

(

ϕc,k
)

, ∀k ∈ Kul/dl

(6)

where T and Ŵ are the inclusive sets of all possible dc
uc

ratios and structures, respectively. Υc,t denotes the buffered

traffic difference of the cth cell at time t between the amount

of buffered DL and UL traffic volume, and |·| denotes the

absolute value. ϕc,k indicates the achievable one-way radio

latency of the k th UE.

The first constraint (6.a) implies that the selected TDD

pattern at an arbitrary time should contribute to closing the

gap among the buffered DL and UL traffic size over the

pattern duration, regardless of the variant DL and UL PRB

capacity and the offered traffic ratio Ωdl

Ωul . The second con-

straint (6.b) ensures that the UE-specific latency performance

is monotonically optimized.

IV. OVERVIEW OF THE Q REINFORCEMENT MACHINE

LEARNING (Q-RML)

The RML [34], [35] is a vital branch of the machine learning.

It has been widely applied in real-time decision-making prob-

lems such as autonomous driving and robot control. RML

follows the mathematical framework of the Markov deci-

sion process [36], where the learning outcomes are partially

random and tightly related to the environment. Accordingly,

the goal of an RML agent is to obtain an optimal policy

π∗ : S → A, which determines an action a ∈ A under state

s ∈ S, thus, to optimally maximize or minimize a pre-defined

value function V π . The value function is typically expressed

in terms of the expected discounted cumulative reward or

penalty at time epoch t , as

V π (st) = Eπ

[
∞
∑

t=0

γ rt (st , at) |s0 = s

]

, (7)

V π (st) = Eπ

[

rt (st , at)+γ V π (st+1) |s0 = s
]

, (8)

where E (·) implies the statistical mean, rt (st , at) is the

immediate reward or penalty, observed from the environment

after taking an action a under state s at time epoch t, and

γ ∈ [0, 1] is the discount factor on future rewards or penal-

ties. Simple dynamic programming schemes can be utilized to

solve eq. (7), when the state transition probabilities are a pri-

ori known. The RML aims to finding the optimal policy π∗

when the system dynamics are not known through an iterative

process of continuously adjusting its policy. In that sense,

Q-RML is one of the most effective RML techniques. In this

study, we adopt the baseline off-policy Q-learning approach

to rapidly learn the optimal policy during the warm-up time.

Thus, unlike the case with the on-policy RML techniques,

we preserve a sufficiently enough pre-training time in order

for the Q-RML approach to converge to the optimal greedy

policy before impacting the actual inference performance.

A Q-RML agent applies the actions which closes the gap

between the current policyπ and the optimal target policyπ∗,

i.e., π
t
→ π∗, such that the observed reward or penalty from

the environment is monotonically optimized as

V (st) = ̥
[

rt (st , at)+γ V π (st+1)
]

, (9)

where the optimization function ̥ is the optimization func-

tion, which defines the Q-RML learning goal, in terms of the

corresponding value function, as given by

̥ ∼=







argmax (F )
a∈A

,V (s)→ reward

argmin
a∈A

(F ) ,V (s)→ penality
, (10)

where F is the actual environment value function of the

Q-RML instance, defined as a reward or penalty.

V. PROPOSED RML BASED PATTERN OPTIMIZATION

The proposed solution incorporates a dual RML approach for

joint capacity and latency online optimization. We consider

the model-free Q-reinforcement-machine-learning (Q-RML)
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FIGURE 2. Proposed algorithm: pattern-book design.

algorithm [34] for its performance merits and low implemen-

tation complexity under a moderate state-action space size.

As depicted by Fig. 2, a pattern-book is constructed, where

there are L pattern sub-books, each is of a size Card (Al)

radio patterns, where Card (·) denotes the cardinality of a

set, and Al is the set of radio patterns in the l th sub-book,

∀l ∈ L. All radio patterns within a single sub-book share

the same d l/ul symbol ratio; although, with different symbol

structures. The nested pattern book design allows for utilizing

independent Q-RML instances to estimate the DL and UL

symbol ratio as well as the respective symbol structure.

As depicted by Fig. 3, the primary Q-RML network,

i.e., Q−1, estimates the number of the DL dc and UL uc
symbols of the upcoming radio pattern. The Q−1 target is

to select the symbol ratio which contributes into a faster;

though, balanced DL and UL, traffic service over the pattern

duration; however, adopting a default symbol structure. Then,

the secondary Q-RML sub-networks, i.e., Q−2−l, determine

the best possible DL and UL symbol structure, following the

calculated d l

ul
ratio from Q−1, in order to minimize the fil-

tered HoLD statistics, leading to a significantly improved and

DL/UL fair URLLC outage performance. In the following,

we represent the sole operation ofQ−1 layer as Algorithm-1,

and as Algorithm-2 when Q−1 and Q−2−l layers are simul-

taneously incorporated.

A. PRIMARY Q-RML NETWORK FOR BALANCED DL/UL

BUFFERING

In dynamic TDD macro systems, the achievable UL capac-

ity is highly variant from the corresponding DL capacity,

mainly due to the severe BS-BS CLI. For instance, a linear

mapping from Ωdl/Ωul = 1/1 to dc/uc = /1/1 may

not be sufficient. Accordingly, the TDD pattern adaptation

process becomes fully dictated by the residual UL traffic,

i.e., including buffered, and re-transmitted traffic, leading to

a highly degraded DL capacity accordingly due to the subse-

quent starvation of the DL transmission opportunities. Thus,

the Algorithm-1 RML instance seeks a rapid; but; balanced

DL and UL traffic transmission, by estimating the sufficient

dc/uc ratio for a given DL and UL traffic statistic every radio

pattern duration.

In that regard, at the ς th slot of the radio pattern, ς =

1, 2, . . . , ξ , with ξ as the number of slots per the configured

radio pattern, the relative traffic ratio µ[t,c] (̺) of the cth BS

at time epoch t is defined as

µ[t,c] (ς) =
Zdl
[t,c] (ς)

Zdl
[t,c] (ς)+

(
1
ι

)

Zul
[t,c] (ς)

, (11)

where Zdl
[t,c] (ς) and Zul

[t,c] (ς) are the aggregated DL and UL

buffered traffic size of the ς th slot during the current pattern,

and ι is the first-transmission average UL BLER, experienced

at the BS side. As discussed in Section II.A, Zul
c (ς) implies

only the UL HARQ-buffered packets. Accordingly, to ensure

FIGURE 3. Proposed algorithm: nested Q-network design for TDD pattern selection.
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fairness against Zdl
[t,c] (ς), the average ι is incorporated in

eq. (11) such that the term
(
1
ι

)

Zul
[t,c] (ς) reflects the average

total UL offered traffic size at the BS. The instantaneous

traffic ratios µ[t,c] (ς) are linearly averaged over the duration

of the TDD pattern as

µ[t,c] =
1

ξ

ξ
∑

ς=1

µ[t,c] (ς) , (12)

with µ[t,c] as the relative traffic ratio at time epoch t . The

traffic ratio µ[t,c] → [0, 1] reflects the combined buffering

performance of the DL and UL traffic. For instance, µ[t,c] =

0.1 denotes that the buffered UL traffic is 9x times the DL

traffic. Accordingly, a state space S(1) is defined to represent

the DL andUL traffic buffering conditions at an arbitrary time

epoch t , as

S
(1)
t =

{

s
(1)
1,t , s

(1)
2,t , . . . , s

(1)
J1,t

}

, (13)

with J1 as the size of the Q−1 state space. In principal,

the state of the learning agent is determined as a function

of the input performance metric, by an arbitrary mapping

structure. In this work, we adopt a linear mapping of the quan-

tized traffic volume to determine the BS state. Accordingly,

the traffic-to-state mapping is designed as

s
(1)
t =





















s
(1)
1,t , µ[t,c] < µmin

s
(1)
2,t , µmin ≤ µ[t,c] < µmin+σ

s
(1)
3,t , µmin+σ ≤ µ[t,c] < µmin+2σ

...
...

s
(1)
J1,t

, µ[t,c] ≥ µmax,

(14)

where the traffic ratio quantization step σ is given as:

σ =
µmax−µmin

J1−2
, (15)

where µmax and µmin indicate the pre-defined minimum and

maximum allowable levels of the traffic ratio µ[t,c]. In that

sense, s
(1)
1,t indicates a traffic state where the buffered UL

traffic is much larger than of the DL direction. Thus, an inter-

mediate state is the system favorable target state to offer a

balanced DL and UL buffering performance.

The action space A(1) is constructed to represent the set of

all possible Algorithm-1 outcomes as

A
(1)
t =

{

a
(1)
1,t , a

(1)
2,t , . . . , a

(1)
L,t

}

, (16)

where a
(1)
l,t ≡ d l/ul,∀l ∈ L. Particularly, the Algorithm-

1 instance determines the pattern sub-book, and hence,

the corresponding /d l/ul ratio, to be adopted over the upcom-

ing radio pattern. Herein, we assume the immediate envi-

ronment return 2
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

of Algorithm-1 represents

a performance penalty, as

2
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

=
∣
∣
∣µ[t,c]−M

(1)
∣
∣
∣ , ∀i ∈ J1, l ∈ L, (17)

where M
(1) denotes the mean value of the traffic ratio distri-

butionµ[t,c]. The mean value of the buffered traffic ratio M
(1)

is selected as the target of the primary Q-RML learning,

since it allows for selecting the TDD pattern, with a cer-

tain DL-to-UL symbol ratio that is likely to preserve a

balanced downlink and uplink buffered traffic performance.

Specifically, 2
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

indicates the immediate cost,

observed from the environment upon taking an action a
(1)
l,t

under state s
(1)
i,t , and is calculated in terms of how much

deviant the traffic ratio µ[t,c] is from its balanced mean M
(1).

That is, a large 2 implies either unfavorable much buffered

DL or UL traffic. At an arbitrary time epoch, the Algorithm-

1 instance selects the action a
(1)
l,t ≡

d l

ul
which best minimizes

the immediate cost as
(

a
(1)
l,t

)∗
= argmin

al,t∈A
(1)

2
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

. (18)

Furthermore, the ǫ−greedy policy is adopted to trade-off

action exploration versus exploitation. Thus, at each step,

a random number is drawn from a uniform distribution ̺(1) ∈

U (0, 1), and is compared against the pre-defined exploration

probability ǫ(1). If ̺(1) ≤ ǫ(1) is satisfied, a random action

is selected; otherwise, a greedy action according to eq. (18)

is adopted. Finally, the value function entries Q
(1)
[t,c] are itera-

tively updated to reflect the learning experiences as follows:

Q
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

←
(

1−α(1)
)

Q
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

+α(1)

[

2
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

+γ (1) argmin
al∈A

(1)

Q
(1)
[t+1,c]

(

s
(1)
i,t+1, a

(1)
l

)
]

,

(19)

where α(1) → [0, 1] is the learning rate, which spec-

ifies how fast the learning occurs. For instance, if α(1)

is small, the learning rate of Algorithm-1 network shall

exhibit a longer convergence time. γ (1) → [0, 1] implies

the discounted factor, which determines how much signifi-

cance is considered on future penalties. If γ (1) is large, the

Algorithm-1 RML instance is biased towards adopting

actions at time epoch t , which are highly probable to result in

a further favorable state at t+1. The detailed primary RML

network is summarized in Algorithm-1.

B. SECONDARY Q-RML SUB-NETWORKS FOR URLLC

LATENCY MINIMIZATION

After the DL-to-UL symbol ratio d l

ul
is estimated from

Algorithm-1 (layer 1), the corresponding Algorithm-2

sub-network is activated to estimate the best DL and UL

symbol structure ŵc. For that, the DL and UL buffer latency

samples per UE are monitored. Although, having monitored

the latency for all the DL and UL packets for all active

UEs in each cell represents a significant amount of statistics.

Those samples are therefore further compressed into a more

manageable metric that is meaningful for Algorithm-2 to

learn and predict the best DL and UL symbol structure to

minimize the overall cell latency outage performance. In this
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Algorithm 1 Algorithm-1 for Balanced DL/UL Capacity

1: Initialize:

2: for each s(1) ∈ S(1) and a(1) ∈ A(1) do

3: Initialize the Q-value Q
(1)
[t0,c]

(

s
(1)
i,t0

, a
(1)
l,t0

)

4: end for

5: top:

6: At the next pattern update time epoch t:

7: Generate a random number ̺(1) ∈ U (0, 1)

8: if
(

̺(1) ≤ ǫ(1)
)

, then

9: Apply a random action a
(1)
t ∈ A

(1)

10: else

11: Apply the action a
(1)
t ∈ A

(1), accord. to eq. (18)

12: end if

13: Observe DL and UL traffic statistics µ[t,c]

14: Get current cost 2
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

, accord. to eq. (17)

15: Determine system next state s
(1)
t+1, accord. to eq. (14)

16: Update Q-value Q
(1)
[t,c]

(

s
(1)
i,t , a

(1)
l,t

)

, accord. to eq. (19)

17: Move time indexer: t = t+1, s
(1)
t = s

(1)
t+1, goto top.

paper, the adopted method is to separately filter the DL and

UL latency samples using a Kaiser filter. The motivation for

using such a filter is its flexibility to provide higher filter

weights (priorities) to the most critical input latency samples.

This fits in achieving the stringent URLLC performance,

where the achievable overall URLLC outage latency target

is typically dictated by the worst latency samples. Therefore,

a single scalar latency indication for the cell is calculated to

reflect the overall DL and UL latency performance of each

cell, guiding the learning process of Algorithm-2.

The inter-UE DL/UL HoLD samples are filtered using a

non-uniform spatial window. Precisely, the filtering is applied

on the HoLD statistics in order to: (1) prioritize the delay

samples of the UEs with the largest HoLD by assigning

delay-proportional weights, and (2) safeguard Algorithm-2

learning convergence against the sudden changes of the

per-packet HoLD samples. As shown by Fig. 4, we apply

a mirrored Kaiser window 3 [ϑ] over the inter-UE HoLD

statistics [7], where 3 [ϑ] is expressed in the digital domain

FIGURE 4. URLLC outage latency in DL/UL direction (ms).

by

3 [ϑ] =

I0

[

β

√

1−
(
2ϑ
θ
−1

)2
]

I0 [β]
, 1 ≤ ϑ ≤ θ+1, (20)

where I0 implies the zero-ordermodified Bessel function, β is

a shaping factor, and θ+1 denotes the window length, where

3 [K ] > 3 [K−1] > . . . > 3 [1]. Accordingly, the HoLD

ratio τ[t,c] (ς) of the ς th slot is defined as

τ[t,c] (ς) =
τ dl[t,c] (ς)

τ dl[t,c] (ς)+τ ul[t,c] (ς)
, (21)

where τ dl[t,c] (ς) and τ ul[t,c] (ς) are the Kaiser-filtered

cell-specific HoLD samples in the DL and UL directions,

respectively. Then, the average HoLD τ [t,c] across the radio

pattern is then calculated by

τ [t,c] =
1

ξ

ξ
∑

ς=1

τ[t,c] (ς) . (22)

Equivalently toµ[t,c] of Algorithm-1, τ [t,c]→ [0, 1] captures

the directional HoLD performance. For instance, τ [t,c] = 0.8

denotes that the DL HoLD is 4x times the corresponding

UL HoLD. The state space of Algorithm-2 sub-networks is

accordingly defined as

S
(2,l)
t =

{

s
(2,l)
1,t , s

(2,l)
2,t , . . . , s

(2,l)
J2,l ,t

}

, (23)

where J2,l is the state space size of Q−2−l. Then, the corre-

sponding HoLD-to-state mapping is defined as

s
(2,l)
t =





















s
(2,l)
1,t , τ [t,c] < τmin

s
(2,l)
2,t , τmin ≤ τ [t,c] < τmin+ϒl

s
(2,l)
3,t , τmin+ϒl ≤ τ [t,c] < τmin+2ϒl

...
...

s
(2,l)
J2,l ,t

, τ [t,c] ≥ τmax,

(24)

with the HoLD quantization step ϒ given by

ϒl =
τmax−τmin

J2,l−2
, (25)

where τmax and τmin are the pre-defined maximum and

minimum allowable bounds of the HoLD ratio τ [t,c]. The

intermediate s
(2,l)
i,t ,∀i ∈ J2,l states are the favorable state

set of Algorithm-2 RML sub-networks, in order to preserve

the minimum possible; though, balanced DL and UL HoLD

performance.

The action space A(2,l) is built to present all the possible

DL and UL symbol structures of the l th pattern sub-book

as

A
(2,l)
t =

{

a
(2,l)
1,t , a

(2,l)
2,t , . . . , a

(2,l)

Card
(

A(2,l)
)

,t

}

, (26)

where a
(2,l)
j,t ≡ ŵj,∀j ∈ Card

(

A(2,l)
)

, with A(2,l) as the

set of all radio structures in the l th sub-book. Accordingly,
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the immediate environment return 2
(2,l)
[t,c]

(

s
(2,l)
i,t , a

(2,l)
j,t

)

,∀i ∈

J2,l, j ∈ Card
(

A(2,l)
)

is defined by how much average

HoLD τ [t,c] deviation is observed from its balanced mean

M
(2,l) as follows:

2
(2,l)
[t,c]

(

s
(2,l)
i,t , a

(2,l)
j,t

)

=
∣
∣
∣τ [t,c]−M

(2,l)
∣
∣
∣ , (27)

where the mean value of the HoLD ratio M
(2,l) is adopted

as the optimization target of the secondary Q-RML sub-

networks, as it ensures a balanced DL and UL HoLD perfor-

mance. Then, the secondary RML instances adopt the action,

i.e, symbol structure ŵj, which offers the minimum variance

of the relative HoLD performance as given by
(

a
(2,l)
j,t

)∗
= argmin

aj∈A
(2,l)

2
(2,l)
[t,c]

(

s
(2,l)
i,t , a

(2,l)
j,t

)

. (28)

Similarly to eq. (19), the value function entries Q
(2,l)
[t,c] of

Algorithm-2 are iteratively updated to reflect the learning

experiences, as expressed by

Q
(2,l)
[t,c]

(

s
(2,l)
i,t , a

(2,l)
j,t

)

←
(

1−α(2)
)

Q
(2,l)
[t,c]

(

s
(2,l)
i,t , a

(2,l)
j,t

)

+α(2)



2
(2,l)
[t,c]

(

s
(2,l)
i,t ,a

(2,l)
j,t

)

+γ (2)argmin
aj∈A

(2,l)

Q
(2,l)
[t+1,c]

(

s
(2,l)
i,t+1,a

(2,l)
j

)



 ,

(29)

whereα(2) and γ (2) are the learning rate and discount factor of

the secondary sub-network, respectively. The detailed steps

of secondary RML instance is described by Algorithm 2.

Algorithm 2 Algorithm-2 for Outage Latency Minimization

1: Initialize:

2: for each s(2,l) ∈ S(2,l) and a(2,l) ∈ A(2,l) do

3: Initialize the Q-value Q
(2,l)
[t0,c]

(

s
(2,l)
i,t0

, a
(2,l)
j,t0

)

4: end for

5: top:

6: At the next pattern update time epoch t:

7: Activate the Q−2−l, to selected d l

ul
from Q−1

8: Generate a random number ̺(2,l) ∈ U (0, 1)

9: if
(

̺(2,l) ≤ ǫ(2,l)
)

, then

10: Apply a random action a
(2,l)
j,t ∈ A

(2,l)

11: else

12: Apply the action a
(2,l)
j,t ∈ A

(2,l), accord. to eq. (28)

13: end if

14: Observe DL and UL HoLD statistics τ [t,c]

15: Get the cost 2
(2,l)
[t,c]

(

s
(2,l)
i,t , a

(2,l)
j,t

)

, accord. to eq. (27)

16: Determine system next state s
(2,l)
t+1 , accord. to eq. (24)

17: Update Q-value Q
(2,l)
[t,c]

(

s
(2,l)
i,t , a

(2,l)
j,t

)

, accord. to eq. (29)

18: Move time indexer: t = t+1, s
(2,l)
t = s

(2,l)
t+1 , goto top.

VI. STATE-OF-THE-ART DUPLEXING SCHEMES

We compare the performance of the proposed solution against

the most widely adopted duplexing schemes, for different

directional traffic offered loads. The proposed solution

is evaluated under two main variants, i.e., when either

Algorithm-1 learning is solely adopted or both Algorithm-1

and Algorithm-2 are activated. For the former case, a default

DL/UL evenly-distributed pattern structure is employed, fol-

lowing the estimated d
u
from Algorithm-1. The duplexing

deployments under investigation are as follows:

Frequency division duplexing (FDD): for a comprehen-

sive URLLC latency analysis, FDD is considered as the ref-

erence case. The FDD DL and UL bandwidth allocations are

configured equivalently to the TDD cases, such that the total

bandwidth is fixed. That is, the bandwidth allocation for each

of the UL and DL direction is half of the TDD bandwidth.

Dynamic TDD (dTDD) [5]: neighboring BSs indepen-

dently and dynamically in time select the radio patterns which

better satisfy their link selection criteria. Herein, for the sake

of cross-scheme fairness, we adopt the same buffered traffic

criterion of Algorithm-1 as per eq. (12). The structure of the

selected radio pattern, in terms of the placement of the DL

and UL symbols, is presumed to be always evenly distributed,

and with a symbol block size of 4 symbols. For example,

a 14-symbol slot with d
u
= 2

1
is configured as [DDDDFU-

UUUDDDDF]. Such strategy allows for distributed DL and

UL transmission opportunities across the pattern duration.

Herein, no inter-BS coordination is assumed, hence, BS-BS

and UE-UE CLI can be inflicted.

Static TDD (sTDD): a pre-defined global radio pattern is

configured for all neighboring BSs, that meets the average

traffic demands of the cluster. We assume a perfect knowl-

edge of the average offered traffic ratio Ωdl

Ωul , thus, config-

uring the global radio pattern with a perfect-matching d
u
.

Although sTDD requires the simplest implementation com-

plexity, without CLI infliction, it offers no pattern adaptation

to the BS-specific varying traffic and latency demands.

Semi-static TDD (Semi-sTDD) [7]: it is built on top of the

sTDD scheme in order to offer an extended TDD adaptation

flexibility. Basically, Semi-sTDD follows the same setup as

the sTDD scheme; however, the common radio pattern is

periodically updated to meet the varying cross-BS traffic

demands, and accordingly re-used by all coordinated BSs.

In that regard, neighboring BSs continuously exchange indi-

cations to their respective traffic needs over the Xn-interface.

VII. PERFORMANCE EVALUATION

A. SIMULATION METHODOLOGY

We evaluate the performance of the proposed solution using

extensive dynamic system level simulations, where the main

modeling assumptions are listed in Table 1. The simulations

follow the system model described in Section II, and are in

line with agreed 3GPP system level simulation methodology.

The simulated scenario is the Urban Macro (UMa) with three

sector base station sites placed in a regular hexagonal grid

and UEs randomly positioned, following a spatial uniform

distribution. Time-variant dynamic traffic is simulated for

each UE as per the description in Section II.A. Each UE is
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TABLE 1. Simulation setup and major parameters.

served by the cell corresponding to the highest received refer-

ence signal received power. The advanced three-dimensional

3GPP UMa radio propagation model is assumed [37]. The

simulator includes explicit modeling of all the major MAC

and PHY layer functionalities, and related RRM functional-

ities. For each transmission, the per subcarrier symbol SINR

is calculated. Such SINR calculations assume LMMSE-IRC

and include both the effect of the co-channel and potential

CLI into account in line with the SINR calculations in

(4) and (5). Based on all the subcarrier symbols SINR for

the transmission, the combined mean mutual information per

coded bit (MMIB) mapping [38] is applied for calculation of

the effective SINR level. The respective transmission packet

error probability (PEP) is calculated based on look-up tables,

obtained from extensive link level simulations. Based on the

calculated PEP, the corresponding packet is determined as

either successful or failed. During the DL TTIs, DL UEs are

dynamically scheduled based on the proportional fair crite-

rion, assuming also dynamic link adaptation with adaptive

selection of the MCS based on the most recent received CQI

reports, including also outer loop link adaptation. UL UEs

are served using the CG baseline as outlined in Section II.A.

HARQ re-transmissions are always prioritized over new

packet transmissions. For each frame periodicity (10 ms),

the proposed learning framework in Section V runs in a

distributed manner for each cell to determine the next radio

pattern configuration.

The simulator is validated via so-called calibration exer-

cises, where baseline statistics are reported and compared

between 3GPP partners [39]. Simulations are run for a suffi-

ciently long-time period to ensure statistical reliable results,

and thereby a solid basis for drawing mature conclusions.

In line with [30], the default simulation length is 5 million

successfully decoded URLLC payloads. Thus, assuming

that the URLLC packets are fully uncorrelated, the target

99.999% percentile of the URLLC latency distribution is cal-

culated with a maximum error margin of±5%, and therefore,

with a 95% statistical confidence level [40].

Due to the nature of the simulations where the UEs are

created at the start, traffic is dynamic (i.e. payloads are gen-

erated according to Poisson point processes), and the various

control loops (e.g. for link adaptation, TDD frame adaptation,

etc.), we apply a so-called warm-up time. Only after the

warm-up time, the performance statistics are collected from
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the simulations. By default, the warm-up time is configured

to equal 1 second as this is found to be enough time for the

network performance to stabilize.

B. BASELINE PERFORMANCE COMPARISON

Fig. 5 depicts the complementary cumulative distribution

function (CCDF) of the combined DL and UL achievable

latency in ms, under the proposed scheme, FDD, dTDD, and

the sTDD deployments. Clearly, the FDD scheme always

outperforms the dTDD scheme. This is mainly attributed to

the absence of the CLI as well as the concurrent availability

of the DL and UL transmission opportunities. The sTDD is

configured with the assumption of the optimal knowledge

of the directional offered load. Hence, it is configured with

a perfect-matching pattern configuration, i.e., Ωdl/Ωul =

1 → d/u = 1. Looking particularly at the outage URLLC

latency at the 10−5 probability, the proposed Algorithm-2

clearly offers a significant outage latency improvement. That

is, 70% and 53% outage latency reduction compared to dTDD

and sTDD, respectively. Although, it inflicts ∼ 51% outage

latency increase compared to the FDD case. The performance

merits of the proposed solution are mainly due to the suffi-

cient learning gain to compensate for the directional HoLD

in designing the radio pattern configuration. The sTDD, with

the optimal knowledge of /Ωdl/Ωul, offers a slight latency

enhancement than the proposed Algorithm-1, due to the

non-existent CLI. Though, it exhibits a clear performance

loss compared to the proposed Algorithm-2, as the latter

introduces an additional latency-aware RML layer.

FIGURE 5. Achievable latency, with Ω = 1 Mbps, and Ωdl/Ωul
= 1.

Fig. 6 shows the empirical CDF (ECDF) of the traffic

ratio µ for all schemes under evaluation. Clearly, the larger

the µ, the larger the buffered DL traffic compared to that is

of the UL direction. The dTDD scheme obviously inflicts

the lowest µ, with µ = 0.15 at the 50%ile, indicating that

the UL traffic is consistently blocked by the BS-BS CLI,

i.e., the buffered UL traffic is 5.6x times the corresponding

DL traffic, despite the configured Ωdl/Ωul = 1. The sTDD

provides a marginally improved UL buffering performance,

compared to dTDD, due to the CLI-free UL. However, it does

FIGURE 6. Buffering performance, with Ω = 1 Mbps, and Ωdl/Ωul
= 1.

not account for the DL and UL traffic variations. The pro-

posed Algorithm-1 and Algorithm-2 solutions offer a smooth

traffic buffering performance, clearly without the UL traffic

accumulation problem, i.e., µ = 0.57 and 0.71, respectively.

This denotes the buffered UL traffic size is 0.75x and 0.48x

times the buffered DL traffic, respectively. Accordingly,

the proposed learning solution dynamically compensates for

the degraded UL capacity by assigningmore UL transmission

opportunities across the radio pattern, leading to a faster UL

traffic recovery. Though, this comes at the expense of an

additional DL traffic buffering, i.e., 25% more buffered DL

traffic with Algorithm-2.

Fig. 7 shows the CCDF of the achievable URLLC latency

under the proposed algorithm and the Semi-sTDD scheme,

respectively, for both light and high offered load cases. With

Ω = 0.25 Mbps, the proposed learning algorithm clearly

achieves a significant enhancement of the DL/UL URLLC

outage latency, offering 1.06 ms at the 10−5 probability,

with 60% outage latency reduction, compared to Semi-sTDD.

For such a lightly-loaded case, the URLLC outage latency

is dominated by the structure of the DL and UL symbols

across the radio pattern, rather than the CLI intensity. The

proposed learning solution autonomously optimizes the pat-

tern structure to provide a faster and BS-specific DL and

UL link switching design. Though, the Semi-sTDD inflicts a

FIGURE 7. Latency comparison to Semi-sTDD, with Ωdl/Ωul
= 1.
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clear URLLC outage degradation due to the high DL and UL

traffic fluctuations across neighboring BSs, thus, adopting

a common radio pattern offers limited TDD adaptability.

For the high-load region Ω = 1 Mbps, the CLI becomes

vital to control because of the increased DL traffic size, and

thus, the critical BS-BS CLI. The proposed solution therefore

exhibits limited degrees of freedom in designing the sufficient

DL and UL switching structure, in order to control the severe

CLI accordingly. The Semi-sTDD scheme offers 21% latency

reduction, compared the proposed solution, mainly due to the

absence of the CLI. This case, unlike the lightly-loaded setup,

the cross-BS traffic statistics converge to the same average,

hence, the Semi-sTDD with a global radio pattern becomes

more efficient to achieve a decent URLLC outage latency.

C. Q-RML CONVERGENCE PERFORMANCE

Achieving a robust convergence performance of the RL-based

solutions is demonstrated to be a challenging task [25] mainly

due to the sparse reward function observed from surrounding

environment. Furthermore, since the system-model adopted

in this work incorporates time-variant channel conditions

with sporadic and UE-specific packet arrivals, analyzing the

convergence performance of the proposed learning approach

becomes vital. We performed a large set of the system level

simulations with various warm-up periods in order to obtain

the best possible RL settings which offer the best achiev-

able URLLC outage latency. As described in Section VII.A,

the warm-up duration implies the starting period of the simu-

lation until the system gets loaded. We also utilize such time

as the convergence delay of the proposed QRL framework

where the action exploration is prioritized to stabilize all cor-

responding Q-value functions during the warm-up. That is,

we adopted warm-up periods from 0.25 to 1.5 second along-

side with adopting different action exploration-exploitation

probabilities from 0 to 0.7 for both Algorithm 1 and 2, respec-

tively. Therefore, based on our extensive sensitivity analysis,

we adopt ∼1 second of warm-up time over which the action

exploration probability for both the primary and secondary

learning instances is set to ǫ(1) = ǫ(2) = 0.25. During the

actual simulation time, i.e,. QRL inference time, the actions

which offer the lowest possible cost functions are always

utilized, i.e., ǫ(1) = ǫ(2) = 0.0 during inference (no action

exploration). This setting offers the shortest convergence

delay and accordingly, the best achievable URLLC outage

performance for the considered system configurations.

To monitor the actual convergence performance of the

proposedQRL framework, we calculate the learning temporal

difference (TD). The TD reflects how well the Q-learning is

converging towards the optimal policy in time. In particular,

it captures the difference among the current learning samples

and the former learning experiences as

TDQ1
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As depicted by Fig. 8, the TD distribution of both

Algorithm-1 and Algorithm-2 is quite compressed, where

Algorithm-2 tends to experience a faster learning conver-

gence than Algorithm-1, due to the already refined learning

of the symbol ratio d/u. Upon convergence, the new learning

observations do not significantly change the applied actions,

leading to a slower transition rate over the state-action pairs.

That is, at the 50%-ile of the TD distribution, the secondary

learning exhibits a normalized TD of 0.08. This denotes

that, upon convergence, the cost values of the proposed

Algorithm-2 are fluctuating in time by only ±8%, due to the

sufficient learning of the pattern structure. Such convergence

performance is obtained with the baseline system setting

as indicated by Table 1. That is, an offered traffic load of

1Mbps/cell and equal DL and UL traffic load split, where the

action exploration probabilities are set as: ǫ(1) = ǫ(2) = 0.25

during the warm-up time.

FIGURE 8. TD performance, with Ω = 1 Mbps, and Ωdl/Ωul
= 1.

In particular, the modeling of the learning objectives,

i.e., learning targets, learning inputs and outputs are shown

to significantly impact the achievable convergence perfor-

mance. As the main learning objective of the primary Q-RML

is the aggregated buffered traffic, it imposes partial sta-

tionarity due to the several active users at the same time.

That is, an abrupt change of the aggregate buffered traffic

is not highly likely. For the secondary Q-RML networks,

the Kaiser-window filtered delay statistics of the buffered

users are considered instead of the actual latency values,

as the latter could potentially rapidly change, disturbing the

learning convergence. Thus, the convergence of the proposed

approach has a quick time cycle. Furthermore, as the learn-

able action set are the set of all possible TDD radio frame con-

figurations, the complexity of the proposed solution scales

mainly with the number of possible TDD radio patterns.

VOLUME 8, 2020 132933



A. A. Esswie et al.: Online Radio Pattern Optimization Based on Dual Reinforcement-Learning Approach

That is typically limited by couple of hundreds, allowing for

a further quicker convergence delay, i.e., the complexity for

calculating and updating the Q-values of each possible action

(TDD pattern).

D. CROSS LINK INTERFERENCE PERFORMANCE

As a consequence to the achievable radio frame learning

potential, the proposed solution tends to realize an

autonomous trade-off between the DL and UL symbol

switching periodicity versus the subsequent CLI perfor-

mance. In particular, a faster DL and UL switching period-

icity during the radio pattern is favored; though, it is likely

to result in frequent CLI occurrences, due to the higher

probability of adjacent BSs adopting opposite link directions.

Accordingly, the latency merits, obtained from the fast link

switching, are completely wiped out, and reverted into an

outage latency loss due to the severe CLI. Therefore, as shown

by Fig. 9, the proposed solution clearly offers a substantial

reduction of the BS-BS CLI, compared to the dTDD scheme.

FIGURE 9. BS-BS CLI performance, with Ω = 1 Mbps, and Ωdl/Ωul
= 1.

E. PERFORMANCE EVALUATION WITH DIFFERENT

OFFERED TRAFFIC RATIOS

Examining the proposed solution under different offered

load ratios, Fig. 10 presents the achievable latency perfor-

mance with Ω = 3 Mbps, and Ωdl/Ωul = 1/2 and 2/1,

respectively. Particularly, with Ωdl/Ωul = 2/1, the URLLC

outage latency becomes dictated by the severe CLI, and

especially the BS-BS CLI, due to the larger DL traffic por-

tion. The proposed solution dynamically compensates for the

highly-degraded UL PRB capacity by allocating more UL

transmission opportunities, leading to 67%outageUL latency

reduction, compared to dTDD. However, it comes at the

expense of further increased DL traffic buffering, i.e., 49%

outage DL latency increase. With Ωdl/Ωul = 1/2, where

the BS-BS CLI is negligible, proposed solution achieves a

reliable outage latency improvement for both link directions.

To explore how the schemes under evaluation re-act to

the directional traffic variations, we define the symbol ratio

FIGURE 10. Latency performance (ms), with Ω = 3 Mbps, and Ωdl/Ωul.

ηc→ [0, 1] as given by

ηc =
dc

dc+uc
. (32)

Accordingly, Fig. 11 shows the average symbol ratio ηc

of the proposed solution, sTDD, dTDD, and Semi-sTDD

schemes, respectively, for different Ωdl/Ωul ratios. Clearly,

the sTDD scheme always adopts a linear mapping from

Ωdl/Ωul to dc/uc due to the fixed pattern configuration. That

is, ηc = 0.33, 0.5, and 0.66 for Ωdl/Ωul = dc/uc = 1/2,

1/1, and 2/1, respectively. The Semi-sTDD scheme follows

the sTDD in terms of the dynamically configured average

symbol ratio ηc; however, with moderate variations due to

the additional TDD pattern adaptation gain, e.g., adopting

+12% UL symbols on average than the sTDD scheme with

Ωdl/Ωul = 2/1. The dTDD scheme performs quite effi-

ciently under light CLI intensity. That is, with Ωdl/Ωul =

1/2, an almost-balanced DL and UL adaptation is achieved,

where an average ηc = 0.29 is observed. It implies that the

uc = 2.4 dc symbol configuration is favored by the dTDD

pattern adaptation process, to allow for the degraded UL

capacity due to the residual CLI. However, the dTDD scheme

obviously inflicts an UL capacity blocking under high CLI

intensity conditions, i.e., Ωdl/Ωul = 2/1, where ηc = 0.34

FIGURE 11. Symbol configuration, with Ω = 1 Mbps, and Ωdl/Ωul.
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is exhibited. That denotes the uc = 1.9 dc configuration

is adopted on average, and subsequently, the DL capacity

inflicts a starvation of the transmission opportunities across

the configured radio patterns.

Moreover, Fig. 11 shows that the proposed solution pre-

serves a balanced symbol configuration performance under

all considered directional load cases. Unlike the sTDD and

Semi-sTDD schemes, proposed learning solution tends to

bias the pattern configuration towards even more UL trans-

mission opportunities to compensate for the severe BS-BS

CLI. Although, unlike the dTDD solution, proposed solution

does not exhibit the UL capacity blocking issue, even under

severe CLI conditions, i.e., ηc = 0.49 with Ωdl/Ωul = 2
1
.

This is mainly attributed to the well-learned trade-off among

the residual CLI and the link switching periodicity.

Finally, Fig. 12 depicts the achievable per-TTI UL through-

put performance in Mbps of the proposed solution and

dTDD case, respectively. The proposed solution achieves a

considerable capacity improvement due to the faster traffic

transmissions. Obviously, the major capacity gain of the

proposed is realized at the lower percentiles, i.e., BS-edge UL

UEs, since those are the most impacted by the obtained CLI

enhancement and the faster UL transmissions accordingly.

FIGURE 12. Throughput performance, with Ω = 3 Mbps.

VIII. CONCLUDING REMARKS

In this paper, a radio pattern optimization scheme has been

proposed for 5G new radio TDD systems. The proposed

solution encompasses dual reinforcement Q-reinforcement-

learning (QRL) instances for online optimization of the

achievable URLLC outage latency, tackling a min-max

URLLC problem. The primary QRL-network seeks to esti-

mate the number of the DL and UL symbols across the

next radio pattern, which best satisfies a faster; but, balanced

downlink and uplink traffic handling. The secondary QRL-

sub-networks select the corresponding pattern structure to

achieve a decent URLLC outage latency accordingly.

Through extensive system-level simulations, the proposed

solution demonstrates a significant URLLC outage latency

improvement compared to state-of-the-art dynamic TDD pro-

posals. As an example, the URLLC outage latency is reduced

by 70% and 53% compared to the fully dynamic and static

TDD solutions, respectively, when assessed at high offered

loads. The proposed solution achievesURLLCoutage latency

of 1 ms at the modest offered load of 250 kbps, while

the semi-static TDD solution with inter-cell coordination

achieves 2.7 ms latency, i.e. a latency reduction of 60%. Such

impressive gain is achieved while the proposed ML solution

runs independently for each cell. The semi-static TDD solu-

tion utilizes explicit inter-cell coordination. However, at high

offered load, where the outage latency is in orders of magni-

tude higher than the 1 ms URLLC target, the semi-static TDD

with explicit inter-cell coordination to avoid any CLI displays

as good performance as the proposed solution.

The main insights brought by this paper are as follows:

(1) URLLC latency and reliability performance is highly

challenged in dynamic TDD deployments, due to the

non-concurrent downlink and uplink transmission oppor-

tunities, and the additional cross-link interference (CLI),

(2) thus, the real-time optimization of the radio pattern struc-

ture becomes vital towards a decent URLLC outage per-

formance, (3) accordingly, machine learning techniques can

be efficiently utilized to offer a proactive pattern estimation

learning gain, (4) in this regard, reinforcement Q-learning

has been adopted due to its online (real-time) learning capa-

bilities, and simple implementation complexity under the

adopted system model, and (5) proposed solution demon-

strates a flexible and dynamic radio pattern selection strategy

to autonomously trade-off the CLI intensity with the URLLC

outage performance; however, the achievable gain is shown

to be load-dependent. As a future extension of this study,

various learning approaches such as the state-action-reward-

state-action (SARSA) shall be considered in order to learn

and further optimize the selection of TDD radio patterns.

Furthermore, extending the ML-driven solution for TDD pat-

tern optimization to include explicit inter-cell coordination

may offer further performance benefits; including also faster

learning convergence and robustness.
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