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We discuss the problem of ranking instances. In our framework, each
instance is associated with a rank or a rating, which is an integer in 1 to k.
Our goal is to find a rank-prediction rule that assigns each instance a rank
that is as close as possible to the instance’s true rank. We discuss a group
of closely related online algorithms, analyze their performance in the
mistake-bound model, and prove their correctness. We describe two sets
of experiments, with synthetic data and with the EachMovie data set for
collaborative filtering. In the experiments we performed, our algorithms
outperform online algorithms for regression and classification applied to
ranking.

1 Introduction

The ranking problem we discuss in this article shares common properties
with both classification and regression problems. As in classification prob-
lems, the goal is to assign one of k possible labels to a new instance. Similar to
regression problems, the set of k labels is structured, as there is a total order
relation between the labels. We refer to the labels as ranks and without loss
of generality assume that the ranks constitute the set {1, 2, . . . , k}. Settings in
which it is natural to rank or rate instances rather than classify are common
in tasks such as information retrieval and collaborative filtering. We use the
latter as our running example. In collaborative filtering, the goal is to predict
a user’s rating on new items such as books or movies given the user’s past
ratings of the similar items. The goal is to determine whether a movie fan
will like a new movie and to what degree, which is expressed as a rank. An
example for possible ratings might be, “run-to-see, very-good, good,
only-if-you-must, and do-not-bother.” While the different ratings
carry meaningful semantics, from a learning-theoretic point of view, we
model the ratings as a totally ordered set (whose size is five in the example
above).

The interest in ordering or ranking of objects is by no means new and
is still the source of ongoing research in many fields, such as mathematical
economics, social science, and computer science. For an overview of rank-
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ing problems from a learning-theoretic point of view see Cohen, Schapire,
and Singer (1999). One of the main results underscored in this article is a
complexity gap between classification learning and ranking learning. To
sidestep the inherent intractability problems of ranking learning, several
approaches have been suggested. One possible approach is to cast a rank-
ing problem as a regression problem. Another is to reduce a total order into
a set of preferences over pairs (Freund, Iyer, Schapire, & Singer, 2003; Her-
brich, Graepel, & Obermayer, 2000). The first case imposes a metric on the
set of ranking rules that might not be realistic, while the second approach is
time-consuming since it requires increasing the sample size from n to O(n2).

In this letter, we consider an alternative approach that directly maintains
a totally ordered set via projections. Our starting point is similar to that
of Herbrich et al. (2000) in the sense that we project each instance into the
real numbers. However, our work then deviates and operates directly on
rankings by associating each ranking with distinct subinterval of the real
numbers and adapting the support of each subinterval while learning.

The article is organized as follows. In the next section, we describe a
simple and efficient online algorithm that manipulates concurrently the
direction onto which we project the instances and the division into sub-
intervals. In section 3, we prove the correctness of the algorithm and ana-
lyze its performance in the mistake-bound model on various assumptions.
Section 4 contains the description and analysis of a norm-optimized version
of the basic ranking algorithm. We then shift our attention to a multiplicative
algorithm that is described and analyzed in section 5. We provide empirical
validation of the merits of the various ranking algorithms we devise in sec-
tion 6. This section describes experiments comparing the ranking algorithms
to online classification and regression algorithms. Finally, we conclude with
a brief discussion and mention a few open problems.

Before moving on to the core of the article, we point to a few closely
related articles. First, a preliminary version of this letter appeared at Neural
Information Processing Systems, 2001, under the title “Pranking with Rank-
ing” (Crammer & Singer, 2001a). This article extends the conference version
in numerous directions by providing complete analysis as well as three new
algorithms that were not discussed in the conference version. Second, in a
recent work by Shashua and Levin (2002), an SVM-based algorithm for in-
stance ranking was described. The algorithms of Shashua and Levin share
numerous properties with the algorithms presented in this article. However,
it is designed for batch settings, while our focus is on online algorithms. Last,
we would like to note that Harrington (2003) demonstrated empirically an
improved generalization performance of our algorithm using an “averag-
ing” technique, while preserving the order of the thresholds.

2 The Basic PRank Algorithm

This letter focuses on online algorithms for ranking instances. We are given
a sequence (x̄1, y1), . . . , (x̄t, yt), . . . of instance-rank pairs. For concreteness,
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we assume that each instance x̄t is in R
n, and its corresponding rank yt is

an element from finite set Y with a total order relation. We assume without
loss of generality that Y = {1, 2, . . . , k} with > as the order relation. The
total order over the set Y induces a partial order over the instances in the
following natural sense. We say that x̄t is preferred over x̄s if yt > ys. We
also say that x̄t and x̄s are not comparable if neither yt > ys nor yt < ys. We
denote this case simply as yt = ys. Note that the induced partial order is of a
unique form in that the instances form k equivalence classes that are totally
ordered.1 We stress that although the elements ofY are denoted by integers,
we do not use the fact that the integers also belong to a metric space. We
assume only that the set Y is discrete and its elements are totally ordered.
A ranking rule H is a mapping from the instance space to the set of rank
values, H: R

n → Y . The family of ranking rules we discuss in this article
employs a vector w̄ ∈ R

n and a set of k thresholds b1 ≤ · · · ≤ bk−1 ≤ bk = ∞.
For convenience, we denote by b̄ = (b1, . . . , bk−1) the vector of thresholds,
excluding bk, which is fixed to∞. Given a new instance x̄, the ranking rule
first computes the inner product between w̄ and x̄. The predicted rank is then
defined to be the index of the first (smallest) threshold br for which w̄· x̄ < br.
Such a ranking rule divides the space into parallel, equally ranked regions:
all the instances that satisfy br−1 < w̄ · x̄ < br are assigned the same rank
r. Formally, given a ranking rule defined by w̄ and b̄, the predicted rank of
an instance x̄ is H(x̄) = minr∈{1,...,k}{r : w̄ · x̄ − br < 0}. Note that the above
minimum is always well defined since we set bk = ∞.

The analysis that we use in this letter is based on the mistake-bound
model for online learning. The algorithms we describe work in rounds. On
round t, the learning algorithm gets an instance x̄t. Given x̄t, the algorithm
outputs a rank, ŷt = minr{r : w̄ · x̄t − br < 0}. It then receives the correct
rank yt and updates its ranking rule by modifying w̄ and b̄. We say that
our algorithm made a ranking mistake if ŷt 
= yt and wish to make the pre-
dicted rank as close (in a sense described later in this article) as possible to
the true rank. Formally, the goal of the learning algorithm is to minimize
the ranking loss, which is defined to be the number of thresholds between
the true rank and the predicted rank. Using the representation of ranks as
integers in {1, . . . , k}, the ranking loss after T rounds is equal to the cumu-
lative difference between the predicted rank values and true rank values,∑T

t=1 |ŷt − yt|. The algorithm we describe updates its ranking rule only on
rounds on which the predicted rank value was incorrect. Such algorithms
are called conservative.

We now describe the update rule of the algorithm, which is motivated
by the perceptron algorithm for classification; hence, we call it the PRank
algorithm, shorthand for perceptron ranking. For simplicity, we omit the
index of the round when referring to an input instance rank pair (x̄, y) and
the ranking rule w̄ and b̄. Since b1 ≤ b2 ≤ · · · ≤ bk−1 ≤ bk, the predicted

1 For a discussion of this type of partial orders see Kemeny and Snell (1962).
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rank is correct if w̄·x̄ > br for r = 1, . . . , y−1 and w̄·x̄ < br for r = y, . . . , k−1.
We represent the above inequalities by expanding the rank y into k − 1
virtual variables y1, . . . , yk−1. We set yr = +1 for the case w̄ · x̄ > br and
yr = −1 for w̄ · x̄ < br. Put another way, a rank value y induces the vector
(y1, . . . , yk−1) = (+1, . . . ,+1,−1, . . . ,−1) where the maximal index r for
which yr = +1 is y−1. Thus, the prediction of a ranking rule is correct if
yr(w̄ · x̄− br) > 0 for all r. If the algorithm makes a mistake by ranking x̄ as
ŷ instead of y, then there is at least one threshold, indexed r, for which the
value of w̄ · x̄ is on the wrong side of br, that is, yr(w̄ · x̄−br) ≤ 0. To correct the
mistake, we need to “move” the values of w̄ · x̄ and br toward each other. We
do so by modifying only the values of the br’s for which yr(w̄ · x̄−br) ≤ 0 and
replace them with br − yr. We also replace the value of w̄ with w̄+ (

∑
yr)x̄

where the sum is taken over the indices r for which there was a prediction
error, that is, yr(w̄ · x̄− br) ≤ 0.

An illustration of the update rule is given in Figure 1. In the example,
we used the set Y = {1, . . . , 5}. (Note that b5 = ∞ is omitted from all the
plots in Figure 1.) The correct rank of the instance is y = 4, and thus the
value of w̄ · x̄ should fall in the fourth interval, between b3 and b4. However,
in the illustration, the value of w̄ · x̄ fell below b1 and the predicted rank is
ŷ = 1. The threshold values b1, b2, and b3 are a source of the error since the
value of b1, b2, b3 is higher than w̄ · x̄. To compensate for the mistake, the
algorithm decreases b1, b2, and b3 by a unit value and replaces them with
b1 − 1, b2 − 1, and b3 − 1. It also modifies w̄ to be w̄+ 3x̄ since

∑
r:yr(w̄·x̄−br)≤0

yr = 3.

Thus, the inner product w̄ · x̄ increases by 3‖x̄‖2. This update is illustrated at
the middle plot of Figure 1. The prediction rule after the update is illustrated
on the right-hand side of Figure 1. Note that after the update, the predicted
rank of x̄ is ŷ = 3, which is closer to the true rank y = 4. The pseudocode of
algorithm is given in Figure 2.

To conclude this section, we note that PRank can be straightforwardly
combined with Mercer kernels (Vapnik, 1998) and voting techniques
(Freund & Schapire, 1999) often used for improving the performance of
margin classifiers in batch and online settings (Cristianini & Shawe-Taylor,
2000). To do so, we assume access to an inner-product space X equipped
with a kernel operator K: X × X → R. We now need to replace any inner-
product operation the algorithm performs with an implicit inner-product
operation defined via the kernel operator. We thus keep inner-product oper-
ators rather than explicit vectors. For instance, the update of PRank becomes

K(w̄t+1, ·)← K(w̄t, ·)+
(∑

r
τ t

r

)
K(x̄t, ·),
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Figure 1: An Illustration of the update rule. The ranking rule predicts a rank of
ŷ = 1 instead of y = 4 (top). The update decreases the thresholds b1, b2, b3 by
one unit and replaces w̄ with w̄+ 3x̄ (center), yielding that the predicted rank of
x̄ after the update is ŷ = 3 (bottom).

and thus the inner product w̄T · x̄t becomes

t−1∑
s=1

∑
r

τ t
r K(x̄s, x̄t).

3 Analysis

Before we prove the mistake bound of the algorithm, we first need to show
that it maintains a consistent hypothesis. That is, we need to show that
PRank preserves the correct order of the thresholds; otherwise, it might be
impossible to induce a rank prediction rule. We prove that the consistency of
thresholds is maintained by showing inductively that for any ranking rule
that can be derived by the algorithm along its run, (w̄1, b̄1), . . . , (w̄T+1, b̄T+1)

the set of inequalities bt
r ≤ · · · ≤ bt

k−1 hold for all t. Clearly, since the initial-
ization of the thresholds is such that b1

1 ≤ b1
2 ≤ · · · ≤ b1

k−1, then it suffices
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Initialize: Set w̄1 = 0̄ , b1
1, . . . , b1

k−1 = 0, b1
k = ∞

Loop: For t = 1, 2, . . . , T

• Receive a new instance x̄t ∈ R
n

• Predict:

ŷt = min
r∈{1,...,k}

{r : w̄t · x̄t − bt
r < 0}

• Receive a new rank-value yt

• If ŷt 
= yt update w̄t (otherwise set w̄t+1 = w̄t , ∀r: bt+1
r = bt

r):

1. For r = 1, . . . , k− 1 : If yt ≤ r Then yt
r = −1

Else yt
r = 1

2. For r = 1, . . . , k− 1 : If (w̄t · x̄t − bt
r)y

t
r ≤ 0 Then τ t

r = yt
r

Else τ t
r = 0

3. Update:

w̄t+1 ← w̄t + (∑r τ t
r
)

x̄t

For r = 1, . . . , k− 1 : bt+1
r ← bt

r − τ t
r

Output: H(x̄) = minr∈{1,...,k}{r : w̄T+1 · x̄− bT+1
r < 0}.

Figure 2: The PRank algorithm.

to show that the claim holds inductively. For simplicity of the proof below,
let us write the update rule of PRank in an alternative form. Let [[π ]] be
1 if the predicate π holds and 0 otherwise. We now rewrite the value of
τ t

r (from Figure 2) as τ t
r = yt

r[[(w̄
t · x̄t − bt

r)y
t
r ≤ 0]]. Note also that the val-

ues of bt
r are integers for all r and t since for all r, we initialize b1

r = 0 and
bt+1

r − bt
r ∈ {−1, 0,+1}.

Lemma 1 (order preservation). Let w̄t and b̄t be the current ranking rule, where
bt

1 ≤ · · · ≤ bt
k−1, and let (x̄t, yt) be an instance rank pair fed to PRank on round

t. Denote by w̄t+1 and b̄t+1 the resulting ranking rule after the update of PRank.
Then bt+1

1 ≤ · · · ≤ bt+1
k−1.

Proof. In order to show that PRank preserves a nondecreasing order of the
thresholds, we use the definition of the algorithm for yt

r. We define yt
r = +1

for r < yt and yt
r = −1 for r ≥ yt. To prove that bt+1

r+1 ≥ bt+1
r , we rewrite the

threshold update as

bt+1
r = bt

r − yt
r[[(w̄

t · x̄t − bt
r)y

t
r ≤ 0]]. (3.1)
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In order to prove that bt+1
r+1 ≥ bt+1

r for all feasible r, it is sufficient to show
that

bt
r+1 − bt

r ≥ yt
r+1[[(w̄t · x̄t − bt

r+1)y
t
r+1 ≤ 0]]− yt

r[[(w̄
t · x̄t − bt

r)y
t
r ≤ 0]].(3.2)

Since by our inductive assumption bt
r+1 ≤ bt

r and bt
r , bt

r+1 ∈ Z, we get that
the value of bt

r+1 − bt
r on the left-hand side of equation 3.2 is a nonnegative

integer. Recall also that yt
r = 1 if yt > r and yt

r = −1 otherwise, and therefore
yt

r+1 ≤ yt
r. We now need to analyze two cases. We first consider the case

where yt
r+1 
= yt

r, which implies that yt
r+1 = −1, yt

r = +1. In this case,
the right-hand side of equation 3.2 is at most zero, and the claim trivially
holds. The second case is when yt

r+1 = yt
r. Here we get that the value of the

right-hand side of equation 3.2 cannot exceed 1. If bt
r+1 > bt

r, then since both
values are integers, the bound of 1 on the right-hand side of equation 3.2
implies that the value of bt

r cannot exceed the value of bt
r+1. We are thus left

with the case where bt
r = bt

r+1 and yt
r+1 = yt

r. For this case, we have that
the terms yt

r+1[[(w̄t · x̄t − bt
r+1)y

t
r+1 < 0]] and yt

r[[(w̄
t · x̄t − bt

r)y
t
r < 0]] attain

the same value. Therefore, the right-hand side of equation 3.2 is zero and
bt+1

r = bt+1
r+1. This completes the proof.

We now turn to the mistake-bound analysis of the algorithm. In order to
simplify the analysis of the algorithm, we introduce the following notation.
Given a hyperplane w̄ and a set of k−1 thresholds b̄, we denote by v̄ ∈ R

n+k−1

the vector that is a concatenation of w̄ and b̄, that is, v̄ = (w̄, b̄). For brevity,
we refer to the vector v̄ as a ranking rule. Given two vectors v̄′ = (w̄′, b̄′) and
v̄ = (w̄, b̄), we have v̄′ · v̄ = w̄′ · w̄+ b̄′ · b̄ and ‖v̄‖2 = ‖w̄‖2 + ‖b̄‖2. Note that
a vector v̄ induces a partial order of the vectors R

n.

Theorem 1 (mistake bound). Let (x̄1, y1), . . . , (x̄T, yT) be an input sequence
to PRank where x̄t ∈ R

n and yt ∈ {1, . . . , k}. Denote by R2 = maxt ‖x̄t‖2. If
there exists a ranking rule v̄∗ = (w̄∗, b̄∗) with b∗1 ≤ · · · ≤ b∗k−1 of a unit norm that
classifies the entire sequence correctly with margin γ = minr,t{(w̄∗·x̄t−b∗r )yt

r} > 0,
the ranking loss of the algorithm

∑T
t=1 |ŷt − yt| is at most

(k− 1)
R2 + 1

γ 2 .

Proof. Let us examine an example (x̄t, yt) that the algorithm received on
round t. By definition, the algorithm ranked the example using the ranking
rule v̄t, which is composed of w̄t and the set of thresholds b̄t. Similarly, v̄t+1 is
the ranking rule (w̄t+1, b̄t+1) after round t. Therefore, w̄t+1 = w̄t + (∑r τ t

r
)

x̄t

and bt+1
r = bt

r − τ t
r for r = 1, 2, . . . , k− 1. Let us denote by nt = |ŷt − yt| the
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difference between the true rank and the predicted rank. Since τ t
r is zero for

all the indices r such that sign(w̄t · x̄t − bt
r)y

t
r > 0, then it is straightforward

to verify that nt = ∑r |τ t
r |. Note that if there was not a ranking mistake on

round t, then τ t
r = 0 for r = 1, . . . , k − 1, and thus also nt = 0. To prove

the theorem, we bound
∑

t nt from above by bounding ‖v̄t‖2 from above
and below. First, we derive a lower bound on ‖v̄t‖2 by bounding v̄∗ · v̄t+1.
Substituting the values of w̄t+1 and b̄t+1, we get that

v̄∗ · v̄t+1 = v̄∗ · v̄t +
k−1∑
r=1

τ t
r (w̄
∗ · x̄t − b∗r ). (3.3)

We further bound the term on the right-hand side by considering two cases
corresponding to whether τ t

r is positive or zero. Using the definition of τ t
r

from the pseudocode in Figure 2, we first examine the case where (w̄t ·
x̄t − bt

r)y
t
r ≤ 0 and therefore τ t

r = yt
r. From the assumption that v̄∗ ranks the

examples correctly with a margin of at least γ , we get that τ t
r (w̄
∗ ·x̄t−b∗r ) ≥ γ .

The second case is when (w̄t · x̄t− bt
r)y

t
r > 0. In this case, we have τ t

r = 0 and
thus τ t

r (w̄
∗ · x̄t − b∗r ) = 0. Combining the two cases and summing now over

r, we get

k−1∑
r=1

τ t
r (w̄
∗ · x̄t − b∗r ) ≥

k−1∑
r=1

|τ t
r |γ = ntγ. (3.4)

Combining equations 3.3 and 3.4, we get that v̄∗·v̄t+1 ≥ v̄∗·v̄t+ntγ . Unfolding
the sum, we get that after T rounds, the projection of the vector v̄T+1 on v̄∗
satisfies

v̄∗ · v̄T+1 ≥
∑

t

ntγ = γ
∑

t

nt. (3.5)

Recall that Cauchy-Schwartz inequality implies that

‖v̄T+1‖2‖v̄∗‖2 ≥ (v̄T+1 · v̄∗)2.

Using equation 3.5 with Cauchy-Schwartz inequality and the assumption
that v̄∗ is of a unit norm, we get the following lower bound:

‖v̄T+1‖2 ≥
(∑

t

nt

)2

γ 2. (3.6)

We next bound the norm of v̄T+1 from above. As before, assume that an
example (x̄t, yt) was ranked using the ranking rule v̄t, and denote by v̄t+1
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the ranking rule at the end of round t. We now expand the values of w̄t+1

and b̄t+1 whose sum is the norm of v̄t+1 and get

‖v̄t+1‖2 = ‖w̄t‖2 + ‖b̄t‖2 + 2
∑

r
τ t

r
(
w̄t · x̄t − bt

r
)

+
(∑

r
τ t

r

)2

‖x̄t‖2 +
∑

r
(τ t

r )
2.

Since τ t
r ∈ {−1, 0,+1}, we have that (

∑
r τ t

r )
2 ≤ (nt)2 and

∑
r(τ

t
r )

2 = nt, and
we therefore get

‖v̄t+1‖2 ≤ ‖v̄t‖2 + 2
∑

r
τ t

r
(
w̄t · x̄t − bt

r
)+ (nt)2‖x̄t‖2 + nt. (3.7)

We further develop the second term using the update rule of the algorithm
and get∑

r
τ t

r
(
w̄t · x̄t − bt

r
) =∑

r
[[(w̄t · x̄t − bt

r)y
t
r ≤ 0]]

(
(w̄t · x̄t − bt

r)y
t
r
) ≤ 0. (3.8)

Plugging equation 3.8 into equation 3.7 and using the bound ‖x̄t‖2 ≤ R2,
we get that

‖v̄t+1‖2 ≤ ‖v̄t‖2 + (nt)2R2 + nt.

Thus, the ranking rule we obtain after T rounds of the algorithm is upper
bounded by

‖v̄T+1‖2 ≤ R2
∑

t

(nt)2 +
∑

t

nt. (3.9)

Combining the lower bound ‖v̄T+1‖2 ≥ (
∑

t nt)2γ 2 with the upper bound
of equation 3.9, we have that

(∑
t

nt

)2

γ 2 ≤ ‖v̄T+1‖2 ≤ R2
∑

t

(nt)2 +
∑

t

nt.

Dividing the above equations by γ 2 ∑
t nt, we finally get

∑
t

nt ≤ R2[
∑

t(n
t)2]/[

∑
t nt]+ 1

γ 2 . (3.10)

Since by definition, nt is at most k− 1, it implies that

∑
t

(nt)2 ≤
∑

t

nt(k− 1) = (k− 1)
∑

t

nt.
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Plugging this inequality into equation 3.10, we get the desired bound,

T∑
t=1

|ŷt − yt| =
T∑

t=1

nt ≤ (k− 1)R2 + 1
γ 2 ≤ (k− 1)

R2 + 1
γ 2 .

We now turn our attention to the inseparable case in which there does
not exist a positive margin value γ . To analyze the inseparable case, we use
an analysis technique suggested by Freund and Schapire (1999). (This proof
technique was first informally given by Vapnik, 1998.) To prove a mistake
bound for the inseparable case, each example (x̄t, yt) is augmented with a
slack variable, denoted dt. Informally, for each time step t, the variable dt

designates how much the margin assumption is violated by the example.
Formally, we obtain the following mistake bound for the inseparable case:

Theorem 2 (mistake bound for inseparable case). Let (x̄1, y1), . . . , (x̄T, yT)

be an input sequence for PRank where x̄t ∈ R
n and yt ∈ {1, . . . , k}. Denote

by R2 = maxt ‖x̄t‖2. Let v̄∗ = (w̄∗, b̄∗) be a ranking rule of a unit norm with
b∗1 ≤ · · · ≤ b∗k−1. Let γ > 0 and define

dt = max{0, γ −min
r
{(w̄∗ · x̄t − b∗r )y

t
r}}. (3.11)

Denote by D2 =∑t(d
t)2. Then the ranking loss of the algorithm is bounded above

by

T∑
t=1

|ŷt − yt| ≤ (k− 1)
(D+√R2 + 1)2

γ 2 .

The proof of the theorem is based on the proof technique for theorem 1 and
is given in the appendix.

To conclude this section, we describe and briefly analyze a simplified ver-
sion of PRank. This version shares the same algorithmic skeleton as PRank
and differs only in the way it modifies its ranking rule. Rather than modify-
ing all of the thresholds in the error set, this version chooses a single thresh-
old to modify and update w̄ accordingly. Since a single threshold is modified
on each round, we use the abbreviation Si-PRank to refer to this version.
More formally, we replace step 3 in Figure 2 with the following steps,

3. Define update index:
If ŷt > yt Then r = ŷt − 1 Else r = ŷt

4. Update:

w̄t+1 ← w̄t + τ t
r x̄t

bt+1
r ← bt

r − τ t
r

bt+1
s ← bt

s (s 
= r).
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It is to verify that this choice of a single threshold to update preserves
the overall order of the threshold. The proof is immediate consequence
of the lemma 1. In addition, following exactly the same proof technique of
theorem 1, we get that the mistake bound of PRank also holds for Si-PRank.2

Surprisingly, as we see later in section 6, in practice Si-PRank performs
slightly better than PRank.

4 A Norm-Optimized Version of PRank

The PRank algorithm presented in the previous section performs the same
form of update whenever a ranking error occurs. Furthermore, even when
the projection of xt onto w̄t yields the correct rank value, the value of w̄t · xt

might lie very close to one of the thresholds bt
r. The difference between the

projection of xt and the closest threshold plays a similar role to the notion
of margin in classification problems and was used in theorem 1 to derive a
mistake bound for PRank. In this section, we present a version of PRank that
solves on each round a mini-optimization problem that balances between
two opposing requirements. On one hand, we require that the new ranking
rule v̄t+1 be as similar as possible to the previous ranking rule v̄t, which
encompasses all our knowledge on past examples. On the other hand, we
force the new ranking rule to rank the most recent example x̄t correctly
and with a large enough margin. Formally, assuming that there was a rank
prediction error on round t, then we require that the new rule (w̄t+1, b̄t+1)

would satisfy, minr{(w̄t+1 · x̄t− bt+1
r )yt

r}} ≥ β, where β is a positive constant.
These two requirements yield the following optimization problem:

min
w̄,b̄

1
2
‖(w̄, b̄)− (w̄t, b̄t)‖2

subject to: (w̄ · x̄t − br)yt
r ≥ β for r = 1, . . . , k− 1. (4.1)

We call this version the Norm-Optimized PRank algorithm, or No-PRank
in short. The pseudocode of the algorithm appears in Figure 3.

Before analyzing the algorithm, let us first further develop the optimiza-
tion problem given in equation 4.1 by expanding its Lagrangian function,

L = 1
2
‖(w̄, b̄)− (w̄t, b̄t)‖2 −

k−1∑
r=1

τr[(w̄ · x̄t − br)yt
r − β]. (4.2)

2 In fact, an alternative bound can be given for Si-PRank, which states that the number
of rounds on which an error occurs (indicated by a strictly positive value of the loss) is
upper bounded by

R2 + 1
γ 2

.
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Input: Minimal margin parameter β

Initialize: Set w̄1 = 0̄ , b1
1, . . . , b1

k−1 = 0, b1
k = ∞

Loop: For t = 1, 2, . . . , T

• Receive a new instance x̄t ∈ R
n.

• Predict:

ŷt = min
r∈{1,...,k}

{r : w̄t · x̄t − bt
r < 0}

• Receive a new rank-value yt

• If yt 
= ŷt update w̄t and b̄t: (otherwise set w̄t+1 = w̄t , b̄t+1 = b̄t):

1. For r = 1, . . . , k− 1 : If yt ≤ r Then yt
r = −1

Else yt
r = 1.

2. Update: set (w̄t+1, b̄t+1) ∈ R
n+k−1 to be the minimizer of:

min
w̄,b̄

1
2
‖(w̄, b̄)− (w̄t, b̄t)‖2

subject to: (w̄ · x̄t − br)yt
r ≥ β for r = 1, . . . , k− 1.

Output: H(x̄) = minr∈{1,...,k}{r : w̄T+1 · x̄− bT+1
r < 0}.

Figure 3: The Norm-Optimized PRank algorithm.

Here, τr are nonnegative Lagrange multipliers. Taking the derivative of
equation 4.2 with respect to w̄ and comparing it to zero, we get

∂

∂w̄
L = w̄− w̄t − x̄t

∑
r

τryt
r = 0 ⇒ w̄ = w̄t +

(∑
r

τryt
r

)
x̄t . (4.3)

Repeating the process for br, we get

∂

∂br
L = br − bt

r + τryt
r = 0 ⇒ br = bt

r − τryt
r . (4.4)

Plugging the value of w̄ from equation 4.3 and b from equation 4.4 into
equation 4.2, we get the following dual problem:

min
τ

Qt(τ̄ ) = 1
2
‖x̄t‖2

(∑
r

τryt
r

)2

+ 1
2

∑
r

τ 2
r

+
∑

r
τr
[
yt

r
(
w̄t · x̄t − bt

r
)− β

]
(4.5)

s.t 0 ≤ τr r = 1, . . . , k− 1.
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Before proceeding to discuss the formal properties of the No-PRank algo-
rithm, it is worth noting that the new vector obtained at the end of round t,
w̄t+1 is a linear combination of w̄t and the current instance x̄t. Therefore, it is
rather straightforward to use No-PRank in conjunction with kernel meth-
ods by maintaining w̄t in its dual form as a weighted combination of the
instances x̄1, . . . , x̄t. Note also that the optimization problem of No-PRank
reduces to a simple optimization problem with a quadratic objective func-
tion and nonnegativity constraints and can be solved using standard convex
optimization tools (Fletcher, 1987).

Let us now discuss the formal properties of No-PRank. The following
simple lemma states that No-PRank is a conservative online algorithm as
it modifies its ranking rule if and only if the minimal margin requirements
are not attained for the current instance.

Lemma 2 (conservativeness). Let (x̄t, yt) denote the input to No-PRank on
round t, and let yt

r be −1 if yt ≤ r and +1 otherwise. Then if yt
r
(
w̄t · x̄t − bt

r
) ≥ β

for all r = 1, . . . , k−1 the optimum of No-PRank’s optimization problem is attained
at τr = 0 for all r.

Proof. Consider the dual form of No-PRank’s optimization problem given
by equation 4.5. The objective function Qt(τ̄ ) is composed of three sum-
mands. The first two are clearly nonnegative and attain a value of zero iff
all the multipliers τr are zero. If yt

r(w̄ · x̄−bt
r) ≥ β, then the third summand is

linear in τ̄ with nonnegative coefficients. Thus, its minimum is also attained
when τr is zero for all r.

Next we show that No-PRank preserves the order of the thresholds along
its run and thus can always serve as a valid ranking rule.

Lemma 3 (order preservation). Let w̄t and b̄t be the current ranking rule, where
bt

1 ≤ · · · ≤ bt
k−1, and let (x̄t, yt) be an instance-rank pair fed to No-PRank on round

t. Denote by w̄t+1 and b̄t+1 the resulting ranking rule after the update of No-PRank.
Then bt+1

1 ≤ · · · ≤ bt+1
k−1.

Proof. In order to show that No-PRank maintains a correct (monotonically
increasing) order of the thresholds, we use the variables employed by the
algorithm along its run. Namely, we set yt

r = +1 for r < yt and yt
r = −1 for

r ≥ yt. To prove that bt+1
r+1 ≥ bt+1

r for all r, we expand b̄t+1 and show that

bt
r+1 − bt

r ≥ yt
r+1τ

t
r+1 − yt

rτ
t
r . (4.6)

We need to analyze two different settings. The first setting we analyze is
when yt

r+1 
= yt
r, which implies that yt

r+1 = −1 and yt
r = +1. In this case, the

right-hand side of equation 4.6 is at most zero, while the left-hand side of
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the equation is at least zero. Thus, the claim holds. The other case is when
yt

r+1 = yt
r = y. In this case, equation 4.6 becomes

bt
r+1 − bt

r ≥ y(τ t
r+1 − τ t

r ). (4.7)

Assume by contradiction that the optimal value of equation 4.5 does not
satisfy equation 4.7 for some r. We now construct another feasible set for τ̄

that yields a lower value of the objective function Q. Let us define

τ ′s =



τs − yε s = r+ 1
τs + yε s = r
τs otherwise,

for some value of ε > 0, which is determined below. Informally, the value
of ε is set to be small enough so that the constraint τ ′s ≥ 0 still holds. (This
is possible since τr+1 > 0.) Since τ̄ ′ and τ̄ differ only at their r and r + 1
components, we get

Q(τ̄ ′)−Q(τ̄ ) = 1
2
(τ ′r

2 + τ ′r+1
2
)+ τ ′r[yr(w̄t · x̄t − bt

r)− β]

+ τ ′r+1[yr+1(w̄t · x̄t − bt
r+1)− β]

− 1
2
(τr

2 + τr+1
2)− τr[yr(w̄t · x̄t − bt

r)− β]

− τr+1[yr+1(w̄t · x̄t − bt
r+1)− β].

Expanding τ̄ ′, we now get

Q(τ̄ ′)−Q(τ̄ ) = 1
2
((τr + yε)2 + (τr+1 − yε)2)

+ (τr + yε)[yr(w̄t · x̄t − bt
r)− β]

+ (τr+1 − yε)[yr+1(w̄t · x̄t − bt
r+1)− β]

− 1
2
(τr

2 + τr+1
2)− τr[yr(w̄t · x̄t − bt

r)− β]

− τr+1[yr+1(w̄t · x̄t − bt
r+1)− β]

= (yε)2 + yε(τr − τr+1)

+ yε[yr(w̄t · x̄t − bt
r)− β]

− yε[yr+1(w̄t · x̄t − bt
r+1)− β].

Denoting both yr and yr+1 simply as y and using the fact y ∈ {−1,+1}, we
get

Q(τ̄ ′)−Q(τ̄ ) = (yε)2 + yε(τr − τr+1)− εbr + εbr+1

= ε[ε − (y(τr+1 − τr)− (br+1 − br))].
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Since we assumed by contradiction that y(τr+1 − τr)− (br+1 − br) = A > 0,
we can choose 0 < ε ≤ A/2 and get

Q(τ̄ ′)−Q(τ̄ ) = ε(A/2− A) = −εA/2 < 0,

which contradicts the assumption that τ is the optimal solution of
equation 4.5.

We now turn to the analysis of the performance of No-PRank. We first
bound the sum of the weight employed by the dual program as they accu-
mulate along the run of No-PRank

∑
t
∑

r τ t
r . Based on the bound on the

weights, we then prove a mistake bounds on the number of rounds on which
an error occurred, that is, yt 
= ŷt. As we see shortly, the bound depends on
both the value of the attainable margin γ and the margin parameter, β,
employed by the algorithm.

Theorem 3 (bound on weights). Let (x̄1, y1), . . . , (x̄T, yT) be an input se-
quence to No-PRank where x̄t ∈ R

n and yt ∈ {1, . . . , k}. Let v̄∗ = (w̄∗, b̄∗) be
a ranking rule with b∗1 ≤ · · · ≤ b∗k−1 and ‖w̄∗‖2 +∑r(b

∗
r )

2 = 1. Assume that v̄∗

classifies the entire sequence correctly with a margin value γ = minr,t{(w̄∗ · x̄t −
b∗r )yt

r} > 0. Then the total sum of the weights generated by No-PRank is bounded
by

T∑
t=1

∑
r

τ t
r ≤ 2

β

γ 2 ,

where β is a predefined parameter of the algorithm (see Figure 3).

Proof. Let us concentrate on an example (x̄t, yt) that the algorithm received
on round t. By construction, the algorithm ranked the example using the
ranking rule v̄t, which is composed of w̄t and the thresholds b̄t. Similarly,
we denote by v̄t+1 the updated rule (w̄t+1, b̄t+1) after round t, that is,

w̄t+1 = w̄t +
(∑

r
yt

r τ t
r

)
x̄t and bt+1

r = bt
r − yt

r τ t
r for r = 1, 2, . . . , k− 1.

To bound
∑

t
∑

r τ t
r from above, we derive bounds on ‖v̄t‖2 from both

above and below. First, we derive a lower bound on ‖v̄t‖2 by bounding
v̄∗ · v̄t+1. Substituting the values of w̄t+1 and b̄t+1, we get

v̄∗ · v̄t+1 = v̄∗ · v̄t +
k−1∑
r=1

τ t
r yt

r(w̄
∗ · x̄t − b∗r ).
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Using the assumption that v̄∗ ranks the data correctly with a margin of at
least γ , we get that yt

r(w̄
∗ · x̄t − b∗r ) ≥ γ :

v̄∗ · v̄t+1 ≥ v̄∗ · v̄t +
k−1∑
r=1

τ t
r γ = v̄∗ · v̄t + γ

k−1∑
r=1

τ t
r .

Unfolding the sum, we get that after T rounds, the algorithm satisfies

v̄∗ · v̄T+1 ≥ γ
∑
t,r

τ t
r .

Plugging this result into Cauchy-Schwartz inequality,

‖v̄T+1‖2‖v̄∗‖2 ≥ (v̄T+1 · v̄∗)2,

and using the assumption that v̄∗ is of a unit norm, we get the lower bound,

‖v̄T+1‖2 ≥
(∑

t,r

τ t
r

)2

γ 2. (4.8)

We next bound the norm of v̄T+1 from above. As before, assume that an
example (x̄t, yt) was ranked using the ranking rule v̄t, and denote by v̄t+1

the ranking rule after the round. We now expand the values of w̄t+1 and b̄t+1

in the norm of v̄t+1 and get

‖v̄t+1‖2 = ‖w̄t‖2 + ‖b̄t‖2 + 2
∑

r
τ t

r yt
r(w̄

t · x̄t − bt
r)

+ ‖x̄t‖2
(∑

r
τ t

r yt
r

)2

+
∑

r
(yt

rτ
t
r )

2.

We add and subtract the term 2β
∑

r τ t
r on the right-hand side of the above

equation and get

‖v̄t+1‖2 = ‖w̄t‖2 + ‖b̄t‖2 + 2
∑

r
τ t

r [yt
r(w̄

t · x̄t − bt
r)− β]

+ ‖x̄t‖2
(∑

r
τ t

r yt
r

)2

+
∑

r

(
yt

rτ
t
r
)2 + 2β

∑
r

τ t
r

= ‖w̄t‖2 + ‖b̄t‖2 + 2Q(τ̄ t)+ 2β
∑

r
τ t

r , (4.9)

where we used the definition of Q from equation 4.5 to obtain the last
equality.
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Note that τ̄ = 0 is a feasible solution for the optimization problem posed
in equation 4.5. The value attained by Q for this particular choice of τ̄ is
zero. Since τ̄ t is the minimizer Q(τ̄ ), we must have that

Q(τ̄ t) ≤ 0. (4.10)

Substituting equation 4.10 in equation 4.9, we obtain the following bound
on the norm of v̄t+1 in terms of the norm of v̄t:

‖v̄t+1‖2 ≤ ‖v̄t‖2 + 2β
∑

r
τ t

r . (4.11)

Thus, the ranking rule we obtain after T rounds of the algorithm satisfies
the upper bound:

‖v̄T+1‖2 ≤ 2β
∑
t,r

τ t
r . (4.12)

Combining the lower bound of equation 4.8 with the upper bound of equa-
tion 4.12, we have that

(∑
t,r

τ t
r

)2

γ 2 ≤ ‖v̄T+1‖2 ≤ 2β
∑
t,r

τ t
r .

Dividing both sides by γ 2∑
t,r τ t

r , we finally get

∑
t,r

τ t
r ≤

2β

γ 2 . (4.13)

We now discuss some properties of the algorithm and its corresponding
loss bound. As mentioned above, the algorithm updates its ranking rule
only on rounds on which the margin is less than β, which reflects a minimal
margin requirement. Informally, β can be viewed as a minimal difference
requirement between the projection of the example x̄t onto w̄t and any of the
thresholds bt

r (see Figure 4). Thus, the larger β is, the better is the separation
between the rank levels. Formally, the algorithm attempts to enclose all the
examples in subintervals of the real numbers defined by the thresholds. As
stated above, based on theorem 3, we can derive a mistake bound for No-
PRank. Surprisingly, the dependency on the margin parameterβ cancels out,
and the end result is a mistake bound that depends on only the geometrical
properties of the problem: the normalized margin.

Corollary 1 (mistake bound). Assume the conditions of theorem 3 hold, and
denote by R = maxt ‖x̄t‖. Then the number of rounds for which No-PRank made



162 K. Crammer and Y. Singer
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Figure 4: An illustration of the margin required by the No-PRank algorithm.

a mistake is upper bounded by

2
R2 + 1

γ 2 .

Proof. To prove the corollary, we use theorem 3 and show that whenever
an error occurred on round t, the sum of the dual weights

∑
r τ t

r is at least
β/(R2 + 1). Since w̄t+1 must satisfy the constraints of equation 4.1, we now
show that for r = 1, . . . , k− 1,

(w̄t+1 · x̄t − bt+1
r )yt

r ≥ β.

Substituting w̄t+1 = w̄t + x̄t ∑
r τ t

r yt
r and bt+1

r from equation 4.3 and bt+1
r =

bt
r− τryt

r from equation 4.4, we get that the dual variables τ t
1, . . . , τ

t
k−1 satisfy

β ≤
[(

w̄t + x̄t
∑

s
τ t

s yt
s

)
· x̄t − bt

r + τryt
r

]
yt

r.

Rearranging terms in the above equation, we get

β ≤
[(

w̄t + x̄t
∑

s
τ t

s yt
s

)
· x̄t − bt

r + τryt
r

]
yt

r

= (w̄t · x̄t − bt
r)y

t
r + yt

r‖x̄t‖2
∑

s
τ t

s yt
s + τ t

r (y
t
r)

2. (4.14)

Since a rank prediction error occurred on round t, there exists r such that
(w̄t · x̄t − bt

r)y
t
r ≤ 0. In addition, since yt

r ∈ {−1,+1}, we have that yt
r
∑

s τ t
s yt

s
≤ ∑s τ t

s . Using these two inequalities in equation 4.14 in conjunction with
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the fact that τ t
r ≥ 0, we get

β ≤ 0+ ‖x̄t‖2
∑

r
τ t

r +
∑

r
τ t

r

≤ (R2 + 1)
∑

r
τ t

r .

We have thus shown that if there was a rank prediction error on round t,
then

β

R2 + 1
≤
∑

r
τ t

r . (4.15)

To prove the corollary, we combine theorem 3 with equation 4.15. Denote by
M the number of rounds with prediction errors. We now show that on each
such round, β/(R2 + 1) ≤ ∑r τ t

r , and for the rest of the rounds, we simply
bound the sum

∑
r τ t

r from below by 0. We thus get that

M
β

R2 + 1
≤
∑
t,r

τ t
r .

Applying theorem 3, we get

M
β

R2 + 1
≤ 2

β

γ 2 ⇒ M ≤ 2
R2 + 1

γ 2 .

Note that the mistake bounds of theorem 1 and corollary 1 are identi-
cal up to a multiplicative (k − 1)/2 factor. Furthermore, if we employ the
trivial fact that |yt − ŷt| ≤ k − 1, we can immediately obtain a bound on∑

t |yt − ŷt| from corollary 1 that is a 2 factor of the bound given in theo-
rem 1. However, the bound for No-PRank is more refined, as in addition to
the mistake bound, we can also bound the total sum of the weights

∑
t,r τ t

r .
Unfortunately, since τ t

r may be arbitrarily close to zero, the more refined
analysis does not yield a better mistake bound. One possible direction for
improving the mistake bound itself may be obtained by modifying the min-
imal margin requirement from β to β|yt − ŷt|. Another viable approach is
to replace the fixed margin constraint (w̄t+1 · x̄t − br

t+1)y
t
r ≥ β with a margin

requirement that is dependent on the difference between the correct label yt

and the specific threshold r. Specifically, we define a new set of constraints
(w̄t+1 · x̄t − br

t+1)y
t
r ≥ βar, where ar = yt − r for r < yt and ar = r+ 1− yt for

r ≥ yt. Therefore, the further the threshold r from the interval containing
the projection of the instance on the hyperplane, the larger the margin we
require. We leave these possible extensions to future research.
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5 A Multiplicative Version of PRank

In this section, we give a multiplicative version of PRank that we term Mu-
PRank. This version is analogous to the basic PRank update, but it modifies
w̄ and b̄ in a multiplicative manner. That is, on each round with rank predic-
tion error, the current weight vector w̄t and thresholds b̄t are multiplied by
factors that depend on x̄t. The motivation for this version is the multiplica-
tive updates employed by the work of Warmuth and colleagues on online
prediction (see, e.g., Kivinen & Warmuth, 1997). Mu-PRank maintains a
normalized ranking rule, that is, ‖(w̄t, b̄t)‖1 = 1 for all t. As in PRank, on
round t, Mu-PRank computes the vector τ̄ t, which determines the update
of w̄t and b̄t. It then takes the exponent of the updated ranking rule and
normalizes it so that the �1 norm of (w̄t+1, b̄t+1) will be 1. The pseudocode
of the algorithm is given in Figure 5.

Examining the logarithm of b̄t on each round, it is rather simple to ver-

Input: Learning rate η

Initialize: Set w1
i = 1

n+k−1 i = 1, . . . , n , b1
1, . . . , b1

k−1 = 1
n+k−1 , b1

k = ∞
Loop: For t = 1, 2, . . . , T

• Receive a new instance x̄t ∈ R
n, ‖x̄t‖∞ ≤ 1

• Predict:

ŷt = min
r∈{1,...,k}

{r : w̄t · x̄t − bt
r < 0}

• Receive a new rank-value yt

• If yt 
= ŷt update w̄t and b̄t (otherwise set w̄t+1 = w̄t , b̄t+1 = b̄t):

1. For r = 1, . . . , k− 1 : If yt ≤ r Then yt
r = −1

Else yt
r = 1

2. For r = 1, . . . , k− 1 : If (w̄t · x̄t − bt
r)y

t
r ≤ 0 Then τ t

r = yt
r

Else τ t
r = 0

3. Define:

Z t =
n∑

i=1

wt
ie

ηxt
i

∑
r
τ t

r +
k−1∑
r=1

bt
re
−ητ t

r

4. Update:

For i = 1, . . . , n : wt+1
i ← wt

ie
ηxt

i

∑
r
τ t

r /Z t

For r = 1, . . . , k− 1 : bt+1
r ← bt

re
−ητ t

r /Z t

Output: H(x̄) = minr∈{1,...,k}{r : w̄T+1 · x̄− bT+1
r < 0}

Figure 5: The multiplicative algorithm.
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ify that, like PRank, Mu-PRank preserves the order of the thresholds. The
additional step Mu-PRank employs in its update stage is the normalization
of its ranking rule. However, since this normalization is applied to all the
thresholds, it clearly keeps the order of the thresholds intact. More formally,
log(bt

r) can be written as ηut
r+ log(Ct), where ut

r is an integer and Ct is inde-
pendent of r. Applying exactly the same proof technique used in lemma 1
to ut

r gives the following corollary:

Lemma 4 (order preservation). Let w̄t and b̄t denote the current ranking rule
and assume that bt

1 ≤ · · · ≤ bt
k−1. Then, after (x̄t, yt) is fed to Mu-PRank, the new

rule (w̄t+1, b̄t+1) preserves the order of the thresholds, bt+1
1 ≤ · · · ≤ bt+1

k−1.

Next, we analyze the mistake bound of Mu-PRank. Note that Mu-PRank
employs a learning rate parameter, η. The mistake bound of Mu-PRank
given in the following theorem depends on this value. If an priori lower
bound on the margin γ is known, we can fix the value of η so as to minimize
the loss bound of Mu-PRank. The resulting bound is described in corollary 2,
which follows theorem 4.

Theorem 4 (mistake bound). Let (x̄1, y1), . . . , (x̄T, yT) be an input sequence
to Mu-PRank, where x̄t ∈ R

n, ‖x̄t‖∞ ≤ 1 , and yt ∈ {1, . . . , k}. Assume that there
exists a ranking rule v̄∗ = (w̄∗, b̄∗) with b∗1 ≤ · · · ≤ b∗k−1 and ‖w̄∗, b̄∗‖1 = 1, which
classifies the entire sequence correctly with margin γ = minr,t{(w̄∗·x̄t−b∗r )yt

r} > 0.
Then the ranking loss of Mu-PRank,

∑T
t=1 |ŷt − yt| is, at most,

log
(
k+ n− 1

)
log

(
2

eη(k−1)+e−η(k−1)

)
+ ηγ

.

Proof. As before, let v̄t = (w̄t, b̄t) and v̄t+1 = (w̄t+1, b̄t+1) denote the rank-
ing rules at the beginning and end of round t, respectively. To prove the
theorem, we analyze the decrease in the Kullback-Leibler (KL) divergence
(Cover & Thomas, 1991) between v̄t and v̄∗. The KL divergence of two dis-
crete probability distributions �p, �q is DKL(�p‖�q) = ∑

i pi log(pi/qi). To prove
the theorem, we examine the change of the KL divergence in two consecu-
tive rounds:

�t = DKL(v̄∗‖v̄t+1)−DKL(v̄∗‖v̄t).

We bound
∑

t �t from above and below. We first bound this sum from above.
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As a reminder, we use nt to denote |ŷt − yt|. Using this notation, we get

�t =
n∑

i=1

w∗i log
(

w∗i
wt

i

)
+

k−1∑
r=1

b∗r log
(

b∗r
bt

r

)

=
n∑

i=1

w∗i log
( Z t

eηxt
i

∑
r
τ t

r

)
+

k−1∑
r=1

b∗r log
( Z t

e−ητ t
r

)

=
[

n∑
i=1

w∗i +
k−1∑
r=1

b∗r

]
log

(
Z t)− η

k−1∑
r=1

τ t
r (w̄
∗ · xt − b∗r )

≤ log(Z t)− ηγ

k−1∑
r=1

|τ t
r | = log(Z t)− ηγ nt, (5.1)

where we used the definition of nt and τ t
r in conjunction with the fact that

v̄∗ achieves a margin of γ to obtain the inequality above. We now bound
log(Z t). We need the following inequality,

eηx ≤ a+ x
2a

eηa + a− x
2a

e−ηa, (5.2)

which holds for a, η > 0 and x ∈ [−a, a]. (The proof of this inequality is
an immediate application of the convexity of the exponent function.) Now
recall that

Z t =
n∑

i=1

wt
ie

ηxt
i

∑
r
τ t

r +
k−1∑
r=1

bt
re
−ητ t

r . (5.3)

We bound the left-hand side and the right-hand side of the above sum sep-

arately. For the left-hand side, we bound each term eηxt
i

∑
r
τ t

r . Using equa-
tion 5.2 in conjunction with the fact that |xt

i | ≤ 1 and |∑r τ t
r | ≤ k − 1, we

get

eηxt
i

∑
r
τ t

r ≤ k− 1+ xt
i
∑

r τ t
r

2(k− 1)
eη(k−1) + k− 1− xt

i
∑

r τ t
r

2(k− 1)
e−η(k−1). (5.4)

Similarly, |τ t
r | ≤ 1 ≤ k− 1, and thus

eητ t
r ≤ k− 1+ τ t

r

2(k− 1)
eη(k−1) + k− 1− τ t

r

2(k− 1)
e−η(k−1). (5.5)

Using the bounds from equations 5.4 and 5.5 in 5.3, we get

Z t ≤
∑

i
wt

i

[
k− 1+ xt

i
∑

r τ t
r

2(k− 1)
eη(k−1) + k− 1− xt

i
∑

r τ t
r

2(k− 1)
e−η(k−1)

]
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+
∑

r
bt

r

[
k− 1+ τ t

r

2(k− 1)
eη(k−1) + k− 1− τ t

r

2(k− 1)
e−η(k−1)

]

=
∑

i
wt

i
1
2
(eη(k−1) + e−η(k−1))+

∑
r

bt
r
1
2
(eη(k−1) + e−η(k−1))

+
∑

r
τ t

r (w̄
t · xt − bt

r)
eη(k−1) + e−η(k−1)

2(k− 1)
. (5.6)

The definition of τ t
r implies that τ t

r (w̄
t·xt−bt

r) ≤ 0. (Either there was a ranking
error or τ t

r = 0). In addition, since Mu-PRank normalizes its ranking rule at
the end of each round, we know that ‖(w̄t, b̄t)‖1 =

∑
i wt

i +
∑

r bt
r = 1. Using

these facts in equation 5.6, we get the following bound on Z t:

Z t ≤ 1
2
(eη(k−1) + e−η(k−1)). (5.7)

Using equation 5.7 in equation 5.1, we obtain an upper bound on �t:

�t ≤ log
[

1
2
(eη(k−1) + e−η(k−1))

]
− ηγ nt.

Since a ranking error occurred, we know that nt ≥ 1. In addition, the argu-
ment of the logarithm is at least 1; we can rearrange terms and write

�t ≤ nt
{

log
[

1
2
(eη(k−1) + e−η(k−1))

]
− ηγ

}
. (5.8)

Summing over t, we get

∑
t

�t ≤
{

log
[

1
2

(
eη(k−1) + e−η(k−1)

)]
− ηγ

}∑
t

nt. (5.9)

To bound
∑

�t from below, we unravel the sum and get∑
t

�t =
∑

t

(DKL(v̄∗‖v̄t+1)−DKL(v̄∗‖v̄t))

= DKL(v̄∗‖v̄T+1)−DKL(v̄∗‖v̄1)

≥ −DKL(v̄∗‖v̄1),

where the inequality is due to the fact that the KL divergence is always
nonnegative. Using the value of w̄1, we get that DKL(v̄∗‖v̄1) = log(k−1+n).
Combining the lower bound on

∑
t �t with equation 5.9, we get

log(k− 1+ n) ≥
{

log
(

2
eη(k−1) + e−η(k−1)

)
+ ηγ

}∑
t

nt.
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Rearranging terms, we finally get the desired bound:

∑
t

nt ≤ log
(
k− 1+ n

)
log

(
2

eη(k−1)+e−η(k−1)

)
+ ηγ

.

As discussed above, the bound of theorem 4 depends on the learning
rate η. If γ or a lower bound on γ is known, we can set η to be

η = 1
2(k− 1)

log
(

k− 1+ γ

k− 1− γ

)
.

For this choice of η, we get the following corollary:

Corollary 2. If we run Mu-PRank with

η = 1
2(k− 1)

log
(

k− 1+ γ

k− 1− γ

)
,

then under the assumptions of theorem 4, the cumulative ranking loss obtained by
Mu-PRank is bounded above by

∑
t

nt ≤ (k− 1)2 log
(
n+ k− 1

)
γ 2 .

This corollary implies that the cumulative ranking loss of Mu-PRank is in-
versely proportional to square of the marginγ . Note that a direct comparison
of this bound to the mistake bound of PRank (see theorem 1) is not possible
as the notion of margin here is different. (For PRank, we used the �2 norm
of the instances and the ranking rule to define the margin, while for Mu-
PRank, we tacitly use the �1 norm of the ranking rule in conjunction with the
�∞ of the instances.) This relation between the bounds also holds between
additive and multiplicative online algorithms for classification (Rosenblatt,
1958; Littlestone, 1987, 1988, 1989). Putting these differences in the notion
of margin aside, the two bounds exhibit the same quadratic dependency on
the margin.

6 Experiments

In this section, we describe experiments we performed that compared the
variants of PRank discussed in the previous section with two other on-
line learning algorithms applied to ranking: a multiclass generalization of
the Perceptron algorithm (Crammer & Singer, 2001b), denoted MCP, and
the Widrow-Hoff algorithm (Widrow & Hoff, 1960) for online regression
learning, which we denote by WH. For WH we fixed its learning rate to a
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constant value. The hypotheses that the variants of PRank and the two other
algorithms maintain share similarities but are different in their complexity:
PRank maintains a vector w̄ of dimension n and a vector of k− 1 modifiable
thresholds b̄, totaling n + k − 1 parameters; MCP maintains k prototypes,
which are vectors of dimension n, yielding kn parameters; WH maintains a
single vector w̄ of size n. Therefore, MCP builds the most complex hypoth-
esis, while WH builds the simplest.

We describe two sets of experiments with two different data sets. The
data set used in the first experiment is synthetic and was generated in a
similar way to the data set used by Herbrich et al. (2000). We first gener-
ated points x̄ = (x1, x2) uniformly at random from the unit square [0, 1]2.
Each point was assigned a rank y from the set {1, . . . , 5} according to the
following ranking rule, y = maxr{r : 10((x1−0.5)(x2−0.5))+ ξ > br}where
b̄ = (−∞,−1,−0.1, 0.25, 1) and ξ is a normally distributed noise with a
zero mean and a standard deviation of 0.125. We generated sequences of
instance rank pairs, each of length 8000. We fed the sequences to PRank, Si-
PRank, MCP, and WH. We then obtained predictions for each instance. We
converted the real-valued predictions of WH into ranks by rounding each
prediction to its closest rank value. As in Herbrich et al. (2000), we used a
nonhomogeneous polynomial of degree 2, K(x̄1, x̄2) = ((x̄1 · x̄2)+ 1)2 as the
inner product operation between each input instance and the hyperplanes
that the four additive algorithms maintain. At each time step, we computed
for each algorithm the accumulative ranking loss normalized by the instan-
taneous sequence length. Formally, the time-averaged loss after T rounds is
(1/T)

∑T
t |ŷt − yt|. We computed the loss for each algorithm we tested for

T = 1, . . . , 8000. To increase the statistical significance of the results, we re-
peated the process 100 times, picking a new random instance rank sequence
of length 8000 each time, and then averaged the instantaneous losses across
the 100 runs. The results are depicted on the left-hand side of Figure 6. The
size of the symbols in the plot is larger than 95% confidence intervals for
each result depicted in the figure. In this experiment, the performance of
MCP is constantly worse than the performance of WH and PRank. WH
initially suffers the smallest instantaneous loss, but after about 500 rounds,
both PRank and Si-PRank start to outperform MCP and WH. Eventually
the ranking loss that PRank and Si-PRank suffer is significantly lower than
both WH and MCP.

In the second set of experiments, we used the EachMovie data set (Mc-
Jones, 1997). This data set is used for collaborative filtering tasks and con-
tains ratings of movies provided by 61,265 people. Each person in the
data set viewed a subset of movies from a collection of 1623 titles. Each
viewer rated each movie that she saw using one of six possible ratings:
0, 0.2, 0.4, 0.6, 0.8, 1. We chose subsets of people who viewed a significant
number of movies, extracting for evaluation people who have rated at least
100 movies. There were 7542 such viewers. We chose at random one per-



170 K. Crammer and Y. Singer

0 1000 2000 3000 4000 5000 6000 7000 8000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Round

R
an

k 
Lo

ss

PRank
Si−PRank
WH
MC−Perceptron

Figure 6: Comparison of the time-averaged ranking loss of PRank, Si-PRank,
WH, and MCP on synthetic data.

son among these viewers and set the person’s ratings to be the target rank.
We used the ratings of the other viewers as features. Thus, the goal is to
learn to predict the “taste” of a random user with the user’s past ratings
serving as a feedback and the ratings of fellow viewers as features. The
prediction rule associates a weight with each fellow viewer and therefore
can be seen as learning correlations between the tastes of different viewers.
Next, we subtracted 0.5 from each rating; therefore the possible rating val-
ues are −0.5,−0.3,−0.1, 0.1, 0.3, 0.5. This linear transformation enabled us
to assign a value of zero to movies that have not been rated. We fed each
pair of feature and rank level in an online fashion. Since we chose viewers
who rated at least 100 movies, we were able to perform at least 100 rounds
of online predictions and updates. We repeated this experiment 500 times,
each time choosing a random viewer as the target rank. The results are given
in the left-hand plots of Figure 7. The error bars in the plot indicate 95% con-
fidence levels. We repeated the experiment using viewers who have seen at
least 200 movies. (There were 1802 such viewers.) The results of this experi-
ment are given on the right-hand plots of Figure 7. The plots at the top of the
figure compare the additive algorithms: PRank, Si-PRank, MCP, and WH.
Along the entire run of the algorithms, PRank and Si-PRank are significantly
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Figure 7: Comparison of the time-averaged ranking loss of the variants of
PRank, WH, and MCP on the EachMovie data set using viewers who rated
at least 200 movies (top) and at least 100 movies (bottom).

better than WH and consistently better than the multiclass perceptron algo-
rithm, although the last employs a hypothesis that is substantially bigger.
Comparing the two additive variants of PRank, we see that the ranking loss
of Si-PRank is slightly lower than that of PRank. The plots at the bottom of
the figure compare the best of the additive algorithms, Si-PRank, with the
Mu-PRank run with different learning rates (η = 0.5, 1, 4, 16). One of the
goals of this experiment is to check the dependency of the performance of
Mu-PRank on its learning rate.

It is clear from the two bottom plots of Figure 7 that the performance
of Mu-PRank is sensitive to the choice of the learning rate. Note, though,
that the best learning rate is problem dependent: the best learning rate is
η = 4 for the first partition of EachMovie, while η = 0.5 results in the
smallest ranking loss in the case of the second partition. This type of behavior
is also exhibited by multiplicative algorithms in other problems such as
binary classification (Kivinen & Warmuth, 1997). Nonetheless, Mu-PRank
outperforms most of the other algorithms we compared for a broad range
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of learning rates. Focusing first on the left plot, we observe that after about
60 rounds, Si-PRank achieves the best performance, while at the start of the
training process, its ranking loss is almost inferior to most of the copies of
Mu-PRank. Summing up, both the additive and multiplicative versions of
PRank outperform regression and classification algorithms when evaluated
with respect to the ranking loss. While the superior performance of PRank
is not surprising, it provides an empirical validation of the formal analysis
presented in the previous sections.

7 Conclusion

In this article, we described a family of algorithms for instance ranking. The
roots of the algorithms go back the perceptron algorithm (Rosenblatt, 1958).
One of the major results in the article is the description of a new approach for
solving ranking problems. While most of the previous approaches reduce
the problem of ranking to a classification of pairs, we presented an alterna-
tive approach that builds a connection between rank levels and subintervals
of the reals. An open problem that arises from both the theoretical analysis
and the empirical results is deciding what version of PRank to use. In par-
ticular, PRank and Si-PRank share the same mistake bound, while in our
experiments, Si-PRank performed better than PRank.

All of the versions of PRank presented in this article are online algorithms,
and for their analysis we used the mistake-bound model. An interesting
research direction is the design and analysis of algorithms for batch settings
in which all of the training examples are given at once. As mentioned in
section 1, Shashua and Levin (2002) have described a batch algorithm for
ranking. An interesting question is how the different variants relate to the
algorithm of Shashua and Levin. In addition to continuing our research on
online algorithms for ranking problems, an interesting research direction
is the design and generalization analysis of batch algorithms for various
ranking losses.

Appendix: Technical Proofs

A.1 Proof of Theorem 2. To prove the theorem, we introduce a slight
modification of theorem 1 by relaxing the assumption that v̄∗ is of a unit
norm and adding the norm of v̄∗ to the mistake bound of the basic PRank
algorithm. We thus write the mistake bound of theorem 1 as

T∑
t=1

|ŷt − yt| ≤ (k− 1)
(R2 + 1)‖v̄∗‖2

γ 2 .

Since the case D = 0 reduces to setting of theorem 1, we can assume that
D > 0. We prove the theorem by transforming the inseparable problem into
a separable one. We do so by expanding each original instance x̄t ∈ R

n into
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a vector z̄t ∈ R
n+T as follows. The first n coordinates of z̄t are set to x̄t. The

n+ t coordinate of z̄t is set to �, which is a positive real number whose value
is set below. The rest of the coordinates of z̄t are set to zero. We similarly
extend the ranking rule (w̄∗, b̄∗) to (ū∗, c̄∗) ∈ R

(n+T) × R
k−1 as follows. We

rewrite the value of dt from equation 3.11 as

dt = max
{
γ −min

r≥yt
{(w̄∗ · x̄t − b∗r )y

t
r}, 0, γ −min

r<yt
{(w̄∗ · x̄t − b∗r )y

t
r}
}

, (A.1)

and define st to be the following indicator function:

st =


−1 dt = γ −minr≥yt{(w̄∗ · x̄t − b∗r )yt

r}
0 dt = 0
+1 dt = γ −minr<yt{(w̄∗ · x̄t − b∗r )yt

r}
. (A.2)

Note that if st = −1, then dt = (w̄∗ · x̄t − b∗r )yt
r for some r ≥ yt, and thus

yt
r = −1. Similarly, if st = +1, then dt = (w̄∗ · x̄t − b∗r )yt

r for some r < yt and
yt

r = +1. We set the first n columns ū∗ to be w̄∗, and the n+ t coordinate of
ū∗ is set to be stdt

�
and the rest of the coordinates of ū∗ are set to zero.

We now show that (ū∗, c̄∗) achieves a margin value γ on the expanded
sequence. Using the definition of st and dt, we get

(ū∗ · z̄t − c∗r )y
t
r = (w̄∗ · x̄t + stdt

�
�− b∗r )y

t
r

= (w̄∗ · x̄t − b∗r )y
t
r + stdtyt

r

= (w̄∗ · x̄t − b∗r )y
t
r + dt

≥ (w̄∗ · x̄t − b∗r )y
t
r + γ − (w̄∗ · x̄t − b∗r )y

t
r

= γ. (A.3)

Note that by construction,

‖z̄t‖2 ≤ R2 +�2.

Since the norm of (w̄∗, b̄∗) is 1, we have

‖ū∗‖2 + ‖c̄∗‖2 = ‖w̄∗‖2 + ‖b̄∗‖2 +
∑

t

(
stdt

�

)2

= 1+ D2

�2 .

We now apply the bound of theorem 1 in the form discussed above and get
that

T∑
t=1

|ŷt − yt| ≤ (k− 1)
(R2 +�2 + 1)(1+ D2

�2 )

γ 2 . (A.4)

Setting �2 = D
√

R2 + 1 in the equation above yields the desired bound.
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It remains to show that the predictions of the algorithm on each element
of the original sequence and on the expanded sequences are identical. This
part follows exactly the same line of proof used in theorem 1 from Freund
and Schapire (1998) and is thus omitted.
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