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Abstract 

Over the last years, many replica control protocols have 
been developed that take advantage of the ordering and reli- 
abil i5 semantics of group communication primitives to sim- 
p l i b  database system design and to improve pevormance. 
Although current solutions are able to mask site failures ef- 
fectively, many of them are unable to cope with recovey of 
failed sites, merging of partitions, or joining of new sites. 
This paper addresses this important issue. It proposes efJi- 
cient solutions for  online system reconjiguration providing 
new sites with a current state of the database without in- 
terrupting transaction processing in the rest of the system. 
Furtherniore, the paper analyzes the impact of cascading 
reconjigurations, and argues that they can be handled in an 
elegant way by extended forms of group communication. 

1. Introduction and Motivation 

Replicating data across several sites is a well-known 
technique for increasing availability and performance in 
distributed databases but introduces the problem of keep- 
ing all copies consistent. Replica control mechanisms can 
be classified as being either eager, i.e., updates are coordi- 
nated before transactions commit [9], or lazy, i.e., updates 
are propagated only after transactions commit (e.g., [20]). 
Although eager replication can easily guarantee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -copy- 
serializability and can be made fault-tolerant in a straight- 
forward way, we believe i t  is fair to say that eager solutions 
have had very limited practical impact. Database designers 
believe that eager replication is too complex, has poor per- 
formance and does not scale. Instead, commercial database 
systems are based primarily on lazy strategies favoring per- 
formance over correctness: most of their solutions guaran- 
tee neither data consistency nor fault-tolerance [ 1 I ] .  

Motivated by this gap between theory and practice, re- 
cent proposals for replicated databases [ 1, 2, 21, 18, 12, 
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15, 14, 171 propose new approaches that exploit the rich 
semantics of group communication systems [ 10, 191 to im- 
plement an eager-style replica control. Most of these solu- 
tions propagate the updates of the transactions using a total 
order multicast that delivers all messages at all sites in the 
same order. The database uses this order as a pattern to 
follow in the case of conflicts, i.e., conflicting updates are 
serialized in the order that the group communication sys- 
tem delivered them. Several simulation studies [ 18, 15, 121 
and a real implementation [14] have proven the superior 
performance of such an approach compared to traditional 
eager replica control mechanisms. The proposed solutions 
are able to handle effectively site and communication fail- 
ures [2, 151. This is accomplished primarily through the 
virtual synchrony properties of the underlying group com- 
munication system, which notifies about failures in such a 
way that surviving sites receive exactly the same set of mes- 
sages before being informed about the failure. 

What is often missing from the various proposals is how 
failed sites can rejoin the system after recovery, how parti- 
tions can merge after repairs or how new sites can be added 
to a running system. Reconfiguration that is necessary when 
the number of sites increases is a far more complex task 
than that necessary when the number of sites decreases. In 
particular, before a joining site can execute transactions, an 
up-to-date site has to provide the current state of the data to 
the joining site. One possible solution is to require suspend- 
ing transaction processing during this data transfer, an ap- 
proach taken, e.g., by [ 2 ] .  This option, however, may violate 
the availability requirements of many critical systems if the 
amount of data to be copied is extremely large. Instead, all 
reconfigurations should be handled online whereby transac- 
tion processing continues and is interfered as little as pos- 
sible by reconfiguration. We are not aware of any existing 
reconfiguration mechanism that fulfills this requirement. 

This paper proposes efficient and elegant solutions to on- 
line reconfiguration in replicated databases. We discuss var- 
ious alternatives for data transfer to joining sites, all of them 
allowing concurrent transaction processing. Given that it 
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is impractical to perform data transfer as a single “atomic 
step”, we pursue solutions that admit cascaded reconfigura- 
tions during the data transfer itself. An important contribu- 
tion of our approach is a clear separation between the tasks 
of the group communication system and the tasks of the 
database system: while the former is responsible for com- 
munication and group management, the latter is charged 
with handling data transfer and coordination of transactions. 
Such separation is important in practice because i t  simpli- 
fies the integration of existing database technology. 

We present our approach in two steps. First, we pro- 
pose reconfiguration algorithms based on the basic virtual 
synchrony paradigm offered by most group communication 
systems. Within this context, various data transfer strategies 
are discussed, ranging from transferring the entire database 
to more sophisticated schemes admitting piecewise recon- 
figuration. Relying on basic virtual synchrony, however, re- 
sults in complex reconfiguration protocols if further failures 
may occur during the data transfer. For this reason, we show 
in a second step how to modify the previous algorithms us- 
ing an enriched virtual synchrony model, called EVS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. 
The resulting framework enables simpler solutions that ad- 
mit various failure scenarios. 

We note that this paper pursues a database perspective to 
reconfiguration focusing on database issues. As a result, our 
treatment of group communication in general, and virtual 
synchrony in particular, is necessarily abbreviated. 

The paper is structured as follows. The next section pro- 
vides a brief overview of virtual synchrony and replica con- 
trol based on group communication. Section 3 outlines the 
principal problems that need to be solved for online recon- 
figuration. Section 4 presents various alternatives for online 
reconfiguration based on the virtual synchrony model. Sec- 
tion 5 refines the previous solutions by using enriched form 
of virtual synchrony to appropriately encapsulate reconfig- 
uration. Section 6 concludes the paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Basic Concepts 

2.1. Virtual Synchrony 

We assume an asynchronous system where neither mes- 
sage delays nor computing speeds can be bounded with cer- 
tainty. Messages may be lost and sites may fail by crash- 
ing (we exclude Byzantine failures). Crashed sites may 
recover. Sites are equipped with a group communication 
system supporting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvirtuczl synchrony [ I O ,  191. Virtual syn- 
chrony provides applications with the notion of group mem- 
bership and with a reliable multicast communication primi- 
tive (a message is sent to all members of the group). Virtual 
synchrony provides consistent information about the set of 
group members that appear to be currently reachable. This 
information takes the form of views. The system determines 

a new view as a result of crashes, recoveries, network parti- 
tions and merges, or explicit group joins and leaves. 

New views are communicated, to sites through view 
change events. A site that delivers a view change event 
vchy(V) is informed that the new view is V .  In this case 
we say that the site installed V .  We say that an event (e.g., 
the delivery of a message) occurs in view V at a given site i f  
and only i f  the last view to be installed at the site before the 
event was V .  Given two views V and W ,  we say that V and 
bV are consecutive if and only if there is a site for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW 
is the next view to be installed after V .  V and W are con- 
current if and only if there is no site that installed both V 
and W .  Intuitively, concurrent views reflect different per- 
ceptions of the group membership, typically as a result of 
partitions. 

A fundamental property of virtual synchrony is that view 
changes are globally ordered with respect to message deliv- 
eries: given two consecutive views V and W ,  any two sites 
that install both views must have delivered the same set of 
multicast messages in view V .  

We say that any view with a majority of sites is a pri- 
mary view (the number of sites is assumed to be static and 
known to all sites). As clarified in the next sections, our 
algorithms allow transaction processing only at sites in the 
primary view. Extending our discussion to dynamic groups 
or other definitions of primary view (e.g., a view containing 
a majority of the previous primary view) is straightforward. 
We assume that the composition of concurrent views do not 
overlap. If this is not provided by the group communication 
system [ 5 , 6 ] ,  we assume a thin software layer on top of the 
virtual synchrony layer, that hides from the application pri- 
mary views that are not installed by a majority of sites (as, 
e.g., in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 22 ] ) .  

The replica control protocols of the next section use a to- 
tal order multicast: any two sites that deliver two multicast 
messages deliver them in the same order [ I O ,  191. Further- 
more, we shall assume a uniform reliable multicast with the 
following guarantee. Let V and W be two consecutive pri- 
mary views and let SI and S2 be sites that installed V .  If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SI is a member of W but S:! is not (S, crashes or installs 
some non-primary view W’ as the next view after V ) ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S2 delivers message m in V ,  then SI also delivers m before 
installing W .  In other words, messages delivered by Sz in 
V constitute a subset of those delivered by SI in V .  

Note that we do not specify which messages have to be 
delivered in minority views. As we discuss in Section 2.3, 
members of minority views behave as if they had failed by 
ignoring delivered messages and refraining from executing 
transactions. The above adaptation of “uniformity” to par- 
titionable systems happens to suffice for the replica con- 
trol protocols of the next section and can easily be imple- 
mented with minimal changes to existing group communi- 
cation systems (e.g. [ 161). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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2.2. Replica Control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The replicated database system consists of a set of sites. 

Each site runs an instance of the database management sys- 
tem and maintains a copy of the database. Each site is a 
group member. We assume for the time being that all sites 
are in the same view. In the next sections we shall extend 
the discussion to accommodate failures and recoveries. 

We use the transaction model of [9]. A transaction is a 
sequence of read and write operations on objects. As for 
replication, we use the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARead-One- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWrite-All (ROWA) strat- 
egy: a transaction performs read operations on the local 
copy while write operations are applied to all copies. Con- 
current transactions with conflicting operations (accessing 
the same object and at least one of them is a write) must be 
isolated from each other. We use 1 -copy-serializability as 
correctness criteria: all sites execute conflicting operations 
in the same order and there exists a serial execution of the 
transactions with the same order of conflicting operations. 

Various ROWA protocols based on group communica- 
tion primitives have been proposed [ l ,  2, 21, 18, 12, 15, 
14, 171. They vary in the number of messages per trans- 
action, the ordering mechanisms used (FIFO order, total 
order etc.), and their concurrency control. For simplicity, 
we describe reconfiguration in the context of only one of 
these protocols [ I ] .  We have chosen this protocol because 
it is simple to describe and there exist various protocols that 
follow similar execution and communication patterns (only 
one message per transaction using the total order multi- 
cast) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 12, 15, 141, and these protocols have shown good per- 
formance. However, reconfiguration associated with other 
replica or concurrency control schemes will be very similar. 

The replica control protocol that we consider is de- 
scribed in the following. We assume that objects are tagged 
with version numbers. A transaction T is submitted to some 
site S in the system and executed in several phases. For 
now, we assume that either all read operations precede the 
write operations, or all write operations are delayed until all 
read operations have been performed. The first two phases 
are local to S ,  while all other phases are executed at all sites: 

I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALocal Read Phase: For each read operation T ( X )  on ob- 
ject X acquire a shared read lock and execute the opera- 
tion on the local copy. 

I I .  Send Phase: Once all read operations are executed bun- 
dle a single zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransaction message mT containing all write 
operations and the identifiers of the objects read by T 
along with the respective version numbers. Send mT us- 
ing the total order multicast. 

I l l .  Serialization Phase: Upon delivery of a transaction mes- 
sage mT perform in an atomic step: 

1.  Assign global identifier: Assign a globally unique 
identifier g i d ( T )  to T .  g i d ( T )  is the sequence number 
of its transaction message mT, i.e., the position of mT 

in the total order of all delivered transactions. 

2. Version Check: For each object X read by T ,  if the 
local version number of X (after applying all updates 
of transactions delivered before T )  is greater than the 
version number read by T ,  then abort and terminate T .  

3. Lock Phase: Request all write locks for T .  If there is a 
local transaction T' in its local phase with a conflicting 
read lock, abort T'. 

IV. Write Phase: As soon as the lock for a write operation 
w(X)  is granted, perform the corresponding write opera- 
tion. Assign the version number g i d ( T )  to the object X. 

V. Commit Phase: As soon as all write operations have 
been performed, release all locks and commit T .  

Only phase I11 is executed serially for all incoming trans- 
actions. The execution of write operations (phase IV) is 
only serial in the case of conflicts. Non-conflicting opera- 
tions can be executed concurrently and different sites may 
even commit transactions in different orders as long as they 
do not conflict. This is important since processing mes- 
sages serially as assumed for most applications deployed 
over group communication (including, e.g., [ 2 ] )  would re- 
sult in significantly lower throughput rates. Our protocol 
uses the sequence number of the transaction message mT 

as the global identifier gid(T) of T .  This has important ad- 
vantages. First, gid(T) can be determined independently 
at each site. Second, it represents the serialization order of 
transactions. Last, by using the gid for tagging objects, we 
have the guarantee that all sites have the same version num- 
ber for an object at a given logical time point. Notice that 
version numbers are necessary to detect whether read op- 
erations have read stale data. The protocol is serializable 
since read/write conflicts are handled by aborting the read- 
ing transaction, write/write conflicts are ordered in the same 
way at all sites according to the total order of the multicasts, 
and writehead conflicts are handled by traditional 2-phase- 
locking (the read waits until the write releases the lock). 

2.3. Failures 

In [ 151, we have shown that the replica control protocols 
described in the previous section can easily be extended to 
cope with site and communication failures by ( i )  sending 
messages using uniform reliable multicast as defined in Sec- 
tion 2. I and by (ii) restricting transaction processing to the 
sites of the primary view. If a site leaves the primary view 
and installs a non-primary view, it simply stops processing 
transactions and ignores all incoming messages. Members 
of a consecutive primary view simply continue as before. 
They do not need to perform any further coordination to 
handle the failure. We have shown that ( i)  and ( i i )  guaran- 
tee transaction atomicity. That is, whenever a site commits a 
transaction T ,  T will be committed at all sites that are mem- 
ber of a primary view for a sufficiently long time. Moreover, 
no other site aborts T (a site might fail before committing 
T ,  but then, T was still active or had not started executing at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the time of the failure). The corresponding behavior holds 
in the case a site aborts a transaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT .  

With weaker forms of message delivery (e.g., reliable de- 
livery), transaction atomicity can be violated: a failed site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5’ might have committed a transaction T shortly before the 
failure even though m~ was not delivered at the sites that 
continue in a primary view zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1.51. Upon recovery of S ,  T 
must be reconciled (see, e.g., [ 131). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Reconfiguration in Replicated Databases 

Before transaction processing can begin, the system 
“bootstraps” as follows. An initial set of sites that defines a 
majority and that has a copy of the database start by joining 
the group. Transaction processing begins as soon as they 
have installed a view that includes all of them, defining the 
first primary view. At this point other sites may start and 
join the group. These “new” sites may or may not have the 
initial copy of the database. A site that crashes and recovers 
will perform some clean-up on its copy of the database (see 
below) and then will join the group again. 

In the following, we shall describe the actions neces- 
sary to enable joining sites to resume transaction processing 
when they installs a primary view. S, depicts a site that is 
recovering after a failure (S, had crashed or a network par- 
tition had occurred), s, depicts a new site, Sj depicts either 
type of joining site. Furthermore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, denotes a peer site 
transferring the current database state to Sj.  Several tasks 
and issues for online reconfiguration can be identified: 

Single Site Recovery As in centralized systems, S, first 
needs to bring its own database into a consistent state. 
This requires the redoing of updates of committed trans- 
actions that were not yet reflected in the database when 
the failure occurred and the undoing of updates of trans- 
actions that were aborted or still active at the time of 
the failure. For this, each site usually maintains a log 
during normal processing such that for each write op- 
eration on object X the before- and after-images of X 
are appended to the log. Since single site recovery is a 
standard database technology performed before S, re- 
joins the group, we refer to [9] for details. 

Data Transfer A peer site S, of the primary view must 
provide Sj with the current state of the database. The 
simplest solution is to send an entire copy (this is the 
only solution in the case of a new site). Alternatively, 
S, only sends the data that was updated after S, failed. 

Determination of a Synchronization Point: Care has 
to be taken in the case transaction processing is not sus- 
pended during the data transfer. We must guarantee that 
for each transaction in the system, either the updates of 
the transaction are already reflected in the data trans- 
fered to Sj or Sj is able to process the transaction after 
the transfer has successfully terminated. Determining 

the synchronization point depends strongly on the data 
transfer technique that is employed. 

In the following, we shall assume that a primary view al- 
ways exists. In the case the primary view disappears (i.e., a 
total failure), transaction processing may resume only after 
execution of a creation protocol for determining the set of 
all transactions committed in the system and for applying 
the changes of such transactions at all participating sites. 
In the context of the replica control protocols presented in 
section 2.2, the creation protocol, in general, requires the 
involvement of all sites. This is ultimately due to the asyn- 
chrony between the database system and the group com- 
munication system: a site actually commits a transaction T 
some time after the delivery of the transaction message m ~ ;  
during this time the site could install a new view and/or 
fail. For example, suppose there are three sites SI, S2, S3 

all members of the primary view V .  SI sends the transac- 
tion message mT that is delivered in V at all sites. It might 
happen that SI commits T and then fails, whereas both S2 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5’3 first install a new primary view W excluding 5’1, and 
then fail before committing T .  In that case, only the log of 
S1 will contain the commit record of T .  Therefore i t  is nei- 
ther enough that the creation protocol involves a majority 
of sites nor that it involves all sites of the last primary view 
W .  Instead, the logs of all sites in the system have to be 
considered. We omit the details of the creation protocol (it 
merely requires comparing the highest transaction identifier 
g i d s  of transactions applied by each site S). Note that if Sa 
and S3 had not failed they would have committed T guar- 
anteeing that the members of the primary view commit all 
transactions that are committed by any site in the system. 

4. A Suite of Reconfiguration Algorithms 

Efficiency of a given reconfiguration strategy depends on 
a number of parameters: the size of the database, the trans- 
action throughput, the read/write ratio within the workload, 
the system utilization and so on. As a consequence, one 
should be able to adapt the strategy to the specific scenario, 
in particular, with respect to the data transfer task. In the fol- 
lowing we will discuss stepwise redefined transfer strategies 
aiming to solve three issues. First, the data transfer should 
interfere as little as possible with ongoing transaction pro- 
cessing. Second, it should require as little CPU and net- 
work overhead’as possible. And third, the solutions should 
be easy to implement with existing database technology. 

4.1 Data Transfer within the Group Communica- 
tion System 

Some group communication systems are able to perform 
data transfer during the view change (e.g. [ 10, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ,  221). The 
essential aspects of this feature are as follows. Let V and 
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W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe two consecutive primary views and let W be the first 
view including the joining site Sj. The application defines 
the state that has to be transferred to Sj (by providing mar- 
shalling/unmarshalling routines that will be invoked by the 
system when needed). During the view change protocol, the 
group communication system fetches the state from the ap- 
plication layer of some member of V, then incorporates this 
state at the application of Sj and finally delivers the view 
change event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvchg(W). During the view change protocol 
the activity of the application is suspended and the system 
does not deliver application-originated messages. As a re- 
sult, all sites that install W do so with the same state. 

Such an approach has important disadvantages. First, 
the group communication system can only send the entire 
database, because the system does not know which data 
has actually been changed since Sj’s failure. This may be 
unacceptable if Sj is recovering from a short down-time. 
Second, the database would have to remain unchanged for 
the entire data transfer. Considering the enormous size of 
current databases, this can clearly violate the common 24- 
hour/7-day availability requirement. Last, group communi- 
cation systems usually assume that they have control over 
the common group state. The database, however, is con- 
trolled by the database system, and if the group commu- 
nication wants to access the data, it has to do so through 
the traditional interface, i.e., i t  has to submit transactions. 
While this might be feasible, it will be highly inefficient. 
Similar remarks apply to approaches in which the system 
relays to Sj all messages delivered during Sj ’s down-time, 
rather than the application-defined state (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 ] ) .  In this 
case Sj might have to apply thousands of transactions and 
not be able to catch up with the rest of the system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2. Data Transfer within the Database System 

As a result of the previous considerations, we believe 
that the data transfer should be performed by the database 
system using the appropriate database techniques. The 
group communication system should only provide the ap- 
propriate semantics to coordinate the data transfer. 

We shall consider the following framework for all alter- 
natives depicted in the following sections: Let W be the 
primary view installed when Sj joins the group. During the 
view change no database related state is transferred. Upon 
the delivery of vchg(W), sites that were members of the 
previous primary view V elect one of them to act as peer 
site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, for S,. Election can be performed without message 
exchange, based on the compositions of V and W .  Trans- 
action processing continues unhindered at all sites in W ,  
except for S, and Sj. S, transfers the data to Sj and Sj in- 
stalls i t .  The data transfer need not occur through the group 
communication platform but could, e.g., be performed via 
TCP between S, and Sj. For all but the last of the follow- 

ing data transfer strategies, the synchronization point in re- 
gard to concurrent transaction processing will be as follows: 
S, transfers a database state including the updates of all 
transactions which were delivered before the view change 
vchg(W). However, the data does not include the updates 
of transactions delivered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafter vchg(W). Instead, Sj en- 
queues all transaction messages delivered after vchg(W) 
and processes them once the data transfer is completed. Af- 
ter that, Sj can start executing its own transactions. We first 
assume that no further view changes occur during reconfig- 
uration. We relax this requirement in Section 5. 

4.3. Transferring the Entire Database 

A simple option for data transfer is to transfer the entire 
database. This is mandatory for new sites but also attrac- 
tive for recovering sites if the database is small or if most of 
the data has been updated since S, failed. In order to syn- 
chronize with concurrent transactions, S, transfers the data 
within the boundaries of a “data transfer transaction” DT: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I. Lock Phase: Upon delivery of vchg(w), create transaction 

D T  and request in an atomic step read locks for all ob- 
jects in the database. Order these read locks directly after 
all write locks associated with transaction messages deliv- 
ered before vchg(w). Successive transactions requesting 
a write lock for an object locked by D T  must wait until DT 
releases the lock. 

11. Data Transfer Phase: Whenever a lock on object X is 
granted, read X and transfer it to S, (which incorporates 
X into its database and sends an acknowledgment back). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As soon as the acknowledgment is received, release the 
lock and normal processing can continue on X .  Of course, 
both S, and S, can pack multiple objects and acknowledg- 
ments, respectively, in a single message. 

Notice, that read operations can continue unhindered on 
S,. Write operations are only delayed on objects that are 
not yet transferred. Also note that in order to reduce the 
number of locks, DT can request course granularity locks 
(e.g., on relations) instead of fine granularity locks on in- 
dividual objects. The normal transactions can still request 
locks on a per object basis. The most important aspect in 
here is that DT’s read locks must cover the entire database. 

4.4. Checking Version Numbers 

While transferring the entire database is simple to im- 
plement, i t  will often be highly inefficient, e.g., when S, 
has been down for a very short time or when big parts of 
the database are seldomly updated. In such cases it may be 
more efficient to determine which part of the database ac- 
tually needs to be transferred, Le, which objects have been 
changed since Sr’s failure, and to transfer only this part. 

To do so, S, must know up to when S, has executed 
transactions. For this, S,  informs S, about its cover trans- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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action. The cover transaction for a site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is the transac- 
tion with the highest global identifier g idmaxs  such that 
S has successfully terminated all transactions with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgid 5 
g idmaxs .  S, can easily determine g idmaxsv  by scanning 
its single site recovery log (details are omitted for space rea- 
sons). Now recall that: (i) all sites have the same global 
identifiers for transactions (namely the sequence numbers 
of the corresponding transaction messages), and (ii) con- 
flicting transactions are serialized according to their g ids  
at all sites. Accordingly, if S, sends the objects that were 
updated by committed transactions with gid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> g idmaxs - ,  
then S, will receive all changed data. 

Since the replica control protocol of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.2 tags 
each object with the transaction that was the last one to up- 
date it, it is easy to determine the objects that have been 
changed since Tg ldmazs , .  The data transfer phase of the 
protocol of Section 4.3 can be modified as follows: 

I. Data Transfer Phase: Whenever a lock on object X is 
granted, check whether the version is labeled with a trans- 
action T for which g i d ( T )  > g idmaxs, .  If this is the case, 
transfer X as in the previous section, otherwise ignore X 
and release the lock immediately. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.5. Restricting the Set of Objects to Check 

The optimization of the previous section still needs to 
scan the entire database, which may involve a considerable 
overhead. Moreover, an object is locked from the start of 
D T  until i t  is either transferred or considered non-relevant. 
Thus, transaction processing on S, can be delayed for quite 
some time. Finally, not all replica control protocols tag 
objects with version numbers as required by the protocol. 
In this section, we present an alternative that avoids these 
problems: (1) i t  does not rely on the use of version numbers 
as object tags, thus it can be applied to any database sys- 
tem; (ii) it does not require scanning all the objects in the 
database; and (iii) it unlocks non-relevant objects sooner. 

We propose to maintain a reconstruction table RecTable 
at each site keeping information about recently changed 
data. That is, a record of RecTable consists of an object 
identifier i d ( X )  and a global identifier gid indicating that 
Tgid was the last transaction to update X .  RecTable should 
hold a record for each object X updated by transaction T if 
there is at least one site S that might not have yet executed T 
(e.g., S is not in the primary view when T commits). Only 
in the case of a data transfer RecTable must be completely 
up-to-date (see below). Otherwise, it can be maintained by 
a background process whenever the system is idle: 

Registration of updates: Let object X be last updated by 
committed transaction T .  If RecTable has already a record 
for X ,  then set the transaction identifier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof this record to 
g i d ( T ) ,  otherwise insert a new record ( i d ( X ) ,  g i d ( T ) ) .  
Deleting records: Let g i d m a x s  be the global identifier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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of the cover transaction for site S. Let gidma.x,i,, be 
the minimum of all g i d m a z s .  Sites maintain a conser- 
vative estimate of gidmax,i ,  through regular exchange 
of g i d m a x  values (in particular, by using for site S not in 
the primary view the last gidmazs announced by S while 
in the primary view). When a site increases its estimate 
of g idmuxmin ,  it deletes from RecTable each record with 
g i d ( T )  such that g i d ( T )  5 gidmax,,,. 

Based on RecTable, the data transfer protocol of section 
4.3 can be modified by changing the lock phase as follows: 

I. Lock Phase and Determining the Data Transfer Set: Upon 
delivery of v c h g ( w ) ,  create transaction D T ,  request a sin- 
gle read lock on the entire database and wait until all trans- 
actions delivered before vchg(W) have terminated and 
their updates are registered in RecTable.  
Let D I D  = { i d ( X ) l ( i d ( X ) , g i d )  E RecTable and gid > 
gidmax.7,).  Request read locks on objects X ,  with 
i d ( X )  E D I D  and release the lock on the database. At 
this point, proceed with the data transfer phase as usual 
for the objects whose identifiers are in D I D .  

In contrast to the previous protocols we now set only 
a single lock on the entire database. Once the data set 
to be transferred is determined, which can be done easily 
with RecTable,  this lock is replaced by the fine granularity 
locks on the individual objects. Hence, non-relevant data is 
locked for only a very short time. 

RecTable may be implemented as a traditional table 
in a relational database system. In this case, D I D  can 
be constructed with the simple SQL statement “SELECT 
i d ( X )  from RecTable where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgid > g idmaxsp” .  Fast re- 
sponse to this query may be obtained by having an index on 
RecTable with the global identifier being the search key. 
In the same way, an index on the object identifier will fas- 
ten the registration of new updates to RecTable. Notice 
that maintenance of RecTable is mostly asynchronous and 
changes to RecTable do not need to be forced to disk; thus 
we believe that its impact during normal transaction pro- 
cessing be small. Finally, notice that gidmax,i, can only 
increase and that when all sites are up and in the primary 
view records that are no longer needed are continuously 
deleted. In the case of relational databases we estimate the 
maximum additional space overhead to be the same as for 
two additional indices for each relation in the database. 

4.6. Filtering the Log 

So far, S, has had to set read locks to synchronize the 
data transfer with concurrent transaction processing. Al- 
though the previous optimizations, amongst other things, 
shortened the time such locks are set on non-relevant data, 
locks on relevant data are still long. 

We can avoid setting locks on the current database if  the 
database system maintains multiple object versions. In this 



case, transactions can update the objects of the database un- 
hindered while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, will simply transfer the versions of the 
objects that were current when vchg(W) was delivered. No 
data transfer transaction needs to be created and transac- 
tions at S, can access the current database objects unhin- 
dered. Multiple versions are given, for instance, if the log 
maintained for single site recovery stores for each update of 
object X the entire physical after-image of X .  The details 
of such a protocol can be found in [8]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALazy Data Transfer 

All the previous solutions use the view change as a syn- 
chronization point in that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASj enqueues all transaction mes- 
sages delivered after vchg(W) and eventually applies them 
to its local (up-to-date) copy of the database. While this is a 
simple and intuitive approach, i t  has several disadvantages. 
First, the peer node S, has to delay transaction processing 
on data that must be transferred (unless there exist multi- 
ple object versions). Second, if the workload is high and 
the data transfer takes a long time, then the joining site Sj 
might not be able to store all transaction messages deliv- 
ered during the data transfer, or it might not be able to apply 
these transactions fast enough to catch up with the rest of the 
system. Finally, a failure of S, requires Sj to leave and re- 
join the system and to restart the data transfer from scratch: 
since the sites that could take over after S,’s failure have 
continued transaction processing, they might not be able to 
provide Sj with the state of the database that was current 
upon the delivery of wchg(W). These drawbacks can be 
avoided if we decouple the synchronization point from the 
delivery of vchg(W) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 7 ] :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Sj initially discards transaction messages delivered in 
W and S, starts a data transfer as described below. 
When the transfer is nearly completed, S, and Sj will 
determine a specific delimiter transaction T d ,  delivered 
in W .  S, transfers all changes performed by transac- 
tions with gid 5 d. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASj starts enqueueing transaction 
messages with gad such that g i d  > d and will apply 
these transactions once the data transfer is completed. 

0 S, transfers the data in several rounds. Only in the last 
round (when Td is determined), the transfer is synchro- 
nized with concurrent processing by setting appropriate 
locks. The idea is to send in each round the objects that 
were updated during the data transfer of the last round. 
The last round is started either when the number of ob- 
jects that are left to be transferred does not exceed a 
given threshold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,,, or a maximum number R,,, > 1 
of rounds has been reached. 

Before discussing this solution in more detail, we high- 
light its advantages. First, S, has a better control of when 
to perform the data transfer and at which speed. Second, Sj 
has to enqueue and apply far less transactions. Third, the 

approach allows for much better concurrency as transaction 
processing at S, is delayed only in the last round which 
we expect to be fast, since i t  will only transfer little data. 
Finally, failures of S, before reconfiguration is completed 
can be handled more efficiently. As we shall see below, in 
each round i, the updates up to a certain transaction Tgid; 
are transferred. Sj only has to inform the new peer site Sb 
up to which Tgidi it received the updates from S,, and SA 
can continue the data transfer starting from that transaction. 
The actions at S, are as follows: 

Round i, 1 5 i 5 (n - 1) 
1. Determine the delimiter transaction TYtdi of this round: If 

i = 1 then let gidi  be the identifier of the last transac- 
tion delivered before v c h g ( W ) .  Otherwise, let gidi  be the 
identifier of the last transaction that was delivered before 
the round started. Wait until all updates of transactions 
with gid 5 gidi are included in RecTable (i.e., at least the 
updates of all transactions up to Tyidi will be transferred). 

2. Determine the data to be transferred: If i = 1 then let 
gid,t = g i d m a x s j ,  otherwise gadst = gidi-1. Let D I D  = 
{ i d ( X ) l ( i d ( X ) ,  g id )  E RecTable and gid > g idS t }  

3. Data transfer: For each i d ( X )  E D I D  acquire a short 
read lock on X ,  read X ,  release the lock and then trans- 
fer X to S, (the short read lock is only used to guarantee 
that only committed data is read). Furthermore, inform 
S, about gid,  (for fail-over). 

4. Termin. Check I: If i = R,,, - 1 then go to Round n. 

5.  Termin. Check I/: Let D I D n e z t  = { i d ( X ) l ( i d ( X ) ,  g id )  E 
RecTable and gid > gid,}. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#DIDnext  5 k,,, then go 
to Round n. Otherwise, increase i and repeat. 

Round n: 
1. Determine the delimiter transaction Td: Inform S, that 

this is the last round, and wait for a response (upon re- 
ception of this message, S, starts enqueueing transac- 
tions and responds with the identifier gidpropose of the 
first enqueued transaction). Upon reception of the re- 
sponse, let g id ,  be the identifier of the last transaction 
delivered at S, that already requested its write locks: 
d = maa:(gid,,gidpropose - 1). 

2. Final data transfer: The data transfer of the last round is 
performed by a transaction DT ordered as follows: DT 
transfers all changes of transactions with gid 5 d but no 
changes from transactions with gid > d (they will be ap- 
plied by Sj). DT now follows any of the protocols de- 
scribed in the previous sections. For instance: 
a. Lock Phase and Determining the Data Transfer Set: If 

d = gid,, request immediately a read lock on the en- 
tire database. Otherwise, wait until Tgldpropose- has 
requested its write locks and then request the read 
lock on the entire database. Wait until all transactions 
with gid 5 d are included in RecTable.  Let D I D  = 
{ i d ( X ) l ( i d ( X ) ,  g id )  E RecTable and g id  > gid;}. Re- 
quest a read lock for each object X with i d ( X - )  E D I D  
and release the lock on the database. 

b. Data Transfer: As in section 4.3. 
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RdS2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ 
SI 

s2 s2 
s3 s3 s3 s3 

s4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs4 s4 

s3 s3 v2 

v4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1. Example of virtual synchrony 

Note that the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIDnezt constructed within the termi- 
nation check I1 is an estimate of the D I D  that will be con- 
structed in the next round, because transaction processing is 
not suspended. We suggest that in the first round data are 
transferred per data partition (e.g., per relation). In case of 
failures during this round, the new peer site does not need to 
restart but simply continue the transfer for those partitions 
that Sj has not yet received. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Cascading Reconfigurations 

A key problem for all solutions presented so far is that 
further view changes may occur before reconfiguration is 
completed. The problem is that reconfiguration is not an 
atomic step but may take a long time. The possibility of 
view changes during reconfiguration may greatly compli- 
cate the details. As an example, consider Figure 1 (ovals 
indicate views; grey-shaded ovals indicate primary views; 
consecutive views are connected by an arrow). Suppose that 
So acts as peer site when S3 joins the primary view V 3  and 
suppose that So leaves the primary view (V6) before recon- 
figuration has completed. Only S3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo know that re- 
configuration has not yet completed. It follows that SI and 
Sa in V6 do not know whether zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS3 is able to process transac- 
tions or whether one of them has to resume the data transfer. 
Similarly, S4 does not know which of the other sites can act 
as a peer site for its reconfiguration. In fact, S4 cannot even 
tell that there will indeed be an up-to-date peer site: from its 
point of view, it might be the case that no predecessor of this 
primary view was primary. The following example shows 
a further complication: SI and S2 start reconfiguration in 
view V6 for S3 and S4. ‘Then, a partition excludes SI, lead- 
ing to the primary view V8. Finally, S2 partitions and SI 
reenters the new primary view V10. If wchg(V10) is de- 
livered before reconfiguration for S3 and S4 is completed, 
then there would be a primary view in which no member is 
able to process transactions. A further sub-protocol capable 
of discovering this situation is necessary. 

This complexity is induced because a member of a pri- 
mary view is not necessarily an “up-to-date member”. Only 

if the data transfer is done as part of the view change proto- 
col or if the application is able to perform the data transfer 
very quickly, the application-dependent notion of “up-to- 
date member” is essentially the same as “member of the 
primary view”. However, as previously pointed out, such 
forms of data transfer are unsuitable for database systems. 

The next sections outline an extension of the traditional 
group communication abstraction, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAenriched view syn- 
chrony (EVS) [4], and its possible use in the context of 
database applications [7]. EVS will allow us to easily han- 
dle the failure scenarios described in this section. 

5.1. EVS 

EVS replaces the notion of a view by the notion of en- 
riched view, also called e-view. An e-view is a view with 
additional structural information. Sites in an e-view are 
grouped into non-overlapping subviews and subviews are 
grouped into non-overlapping subview-sets. Figure 2 de- 
picts examples where the outer ovals denote views, the 
dashed ovals indicate subview-sets and the inner squares 
denote subviews. As before, a view change notifies about 
a change in the composition of the e-view (sites that ap- 
pear to be reachable) and such changes are performed 
automatically by the system. Additionally, EVS intro- 
duces e-view change events that notify about a change 
in the structure of the e-view in terms of subviews and 
subview-sets (dashed arrows in the figure indicate e-view 
changes). In contrast to view changes, e-view changes are 
requested by the application through dedicated primitives. 
These primitives will allow us to encapsulate reconfigu- 
ration: Subview-SetMerge (subview-set-list) 
creates a new subview-set that is the union of the subview- 
sets given in subview-set-list (e.g., the e-view EV4 is in- 
stalled as a result of a Subview-SetMerge(); note that this 
e-view differs from the previous one in structure but not in 
composition). SubviewMerge (subview-list ) cre- 
ates a new subview that is the union of the subviews given 
in subview-list. The subviews in subview-list must belong 
to the same subview-set and the resulting subview belongs 
to the subview-set containing the input subviews (e.g., the 
e-view EV5 is installed as a result of a Subview-Merge()). 

The characteristics of EVS are summarized as follows: 
The system maintains the structure of e-views across view 
changes (in EV3, S3 and SO, SI, SZ, respectively, are still 
in their own subviews and subview-sets). E-view changes 
between two consecutive view changes are totally ordered 
by all sites in the view. Finally, if a site installs an e-view 
ew and then sends a message m, then any site that delivers 
m delivers it after installing ev. Note, that the original defi- 
nition of EVS [4] does not consider total order and uniform 
delivery. However, accommodating these properties will be 
simple since they are orthogonal to the properties of EVS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof EVS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2. Reconfiguration Using EVS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Transaction processing will be allowed only within a 
“primary subview”, i.e., the subview with a majority of 
sites. Sites whose current subview is not primary do not 
process transactions (but might enqueue transaction mes- 
sages if they are currently in a reconfiguration process). 
Figure 2 illustrates the main idea. At EVO we assume all 
sites to have identical copies of the database, they are in 
the same subview and this subview is a primary subview. 
Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS3 leaves the primary view because of a partition or 
failure and re-enters in EV3. Note that S3 is not a mem- 
ber of the primary subview but remains in its own sub- 
view and subview-set. Reconfiguration is initiated by the 
peer site, say SO, in the primary subview which submits the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Subview-SetMerge message. When the corresponding 
e-view change is delivered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(EV4) ,  each site knows that re- 
configuration has started. So starts transferring data to Ss, 
following any of the solutions presented previously. When 
the transfer is completed and S3 is able to process transac- 
tions autonomously, SO submits the SubviewMerge. The 
delivery of the corresponding e-view change (EV5) ,  which 
includes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS3 in the primary subview, represents the final syn- 
chronization point, i.e., all sites know that Ss has the cor- 
rect database state and executes transactions by itself. In 
other words, reconfiguration is encapsulated within the e- 
view changes EV4 and EV5. 

In short, a primary view is represented differently de- 
pending on whether transaction processing is enabled in 
that view or not, the former being the case only when the 
view contains a primary subview. Moreover, the represen- 
tation indicates which sites can process transactions (those 
in the primary subview) and which sites are being brought 
up-to-date (those whose subview is not primary but whose 
subview-set contains a primary subview). The resulting 
framework enables simpler algorithms with respect to vir- 
tual synchrony as i t  was depicted in Figure 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

A joining node enters the primary view as a result of a 
decision taken by the system, but i t  is the database sys- 
tem that decides when to issue the Subviewset-Merge() 
for starting the data transfer. This can be any time after 
the view change, e.g., when the workload is low. 

When a site joins a primary view, it realizes locally, 
whether there is an operational primary subview or not. 
In the first case, i t  can remain quiet waiting for a peer 
site. In the latter case a creation protocol has to be run. 

When a peer site S, fails (i.e., leaves the primary view 
and primary subview) before the data transfer to a join- 
ing site Sj has completed, the sites remaining in the 
primary subview will realize locally that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASj is not yet 
up-to-date: Sj will be member of the their subview-set 
but not of their subview. 

When a site Sj enters the primary subview, all sites in 
the view know that Sj is up-to-date and operational. 

When a peer site S, fails and the view excluding S, is 
still primary but there is no longer a primary subview, 
all sites in the primary subview realize locally that trans- 
action processing must be suspended. 

The handling of view changes and e-view changes by 
any site S in the primary subview can be summarized 
as follows (Mysubview-Set and Mysubview refer to the 
subview-set and subview of S): 
I. View change excluding or including new sites: 

1. New sites: for each new subview-set sv-s in the view: 
(i) choose deterministically a peer site S, in the primary 
subview (S,  will be the peer site for all sites in sv-s); (ii) if 
S = S,, then issue whenever appropriate a 
Subview-SetMerge(MySubview-Set,sv-s). 

2. Site S, left the view and S, was the peer for a site 
S,: Determine deterministically the new peer site 5’6. 
If S = SL then: If S and S, are in different subview- 
sets, then issue a Subview-SetMerge (Mysubview- 
Set, Subview-Set-of-Sj) when appropriate (S, left 
the primary subview before initiating the merge); other- 
wise, resume the data transfer (S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASj are already in 
the same subview-set but not yet in the same subview). 

3. A site Sj  for which S was the peer site left the view: stop 
the data transfer to S,. 

4. S has left the primary subview (thus the primary view): 
stop processing transactions and stop any data transfer 
to recovering sites for which S is the peer site (this may 
occur as a result of partitions). 

II. E-view change notifying about the merging of subview- 
sets: for each new subview sw in the subview-set of S: 
if S is the peer site S, (determined in step l . l), then start 
data transfer to all sites in sv. 

Ill. E-view change notifying about the merging of subviews: 
Recovery of the merged sites is completed. 

Moreover, when the data transfer for all sites of a subview 
SY for which S acts as peer site is completed, S issues 
Subview-Merge(MySubview,sv). 

The behavior of the joining site Sj depends on the spe- 
cific reconfiguration algorithm. With all proposed options 
except for lazy data transfer, Sj discards transactions until 
it is in the same subview-set as the primary subview (start 
of reconfiguration). Then i t  starts enqueueing transactions 
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and applies them after its database is up-to-date. With lazy 
data transfer, the delimiter transaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT d  will be a trans- 
action delivered between the Subview-SetMerge and the 
SubviewMerge event. The protocol guarantees that join- 
ing sites will receive the current database state and join the 
primary subview as long as there exists a primary subview 
for sufficiently long time (given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  1 ,  1.2,11, and the Sub- 
viewMerge). Also, only sites of the primary subview exe- 
cute transactions and their databases are always up-to-date. 

6. Conclusions 

This paper provides an in-detail discussion of online re- 
configuration in replicated database systems using group 
communication. The focus on the paper is on two impor- 
tant issues: efficient data transfer and fault-tolerance. 

In regard to data transfer we propose several protocols 
with which we depict the main alternatives for a database 
supported data transfer and the most important issues to 
consider: determining the data that must be transferred, ex- 
ploiting information available within the database (e.g., ver- 
sion numbers, log), maintaining additional information to 
fasten recovery, allowing for high concurrency, etc. 

We do not provide a final statement which of the data 
transfer solutions to choose. First, for some of them specific 
characteristics of the underlying database system must be 
given. If these features are not provided they have to be im- 
plemented and integrated into the database system. This can 
be very difficult and might not pay off. But the efficiency 
of the solutions also depends on parameters like the size of 
the database, the percentage of data items updated since the 
recovering site failed, etc. We are planning to explore these 
issues by a real implementation based on Postgres-R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141. 

Making the data transfer a task of the database introduces 
problems in regard to fault-tolerance. Since reconfiguration 
is not an atomic operation, simple virtual synchrony does 
not reflect sufficiently the state of the different sites in the 
system. EVS, in contrast, promotes a programming style 
in which the notion of “up-to-date” member depends on 
the membership of the primary subview, not of the primary 
view. Using EVS we are able to encapsulate the reconfig- 
uration process, and the database system receives a more 
realistic picture of what is happening in the system. 
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