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Summary. In this paper, a method of obtaining vehicle hypothesis based on laser
scan data only is proposed. This is implemented on the robotic vehicle, CyCab,
for navigation and mapping of the static car park environment. Laser scanner data
is used to obtain hypothesis on position and orientation of vehicles with Bayesian
Programming. Using the hypothesized vehicle poses as landmarks, CyCab performs
Simultaneous Localization And Mapping (SLAM). A final map consisting of the
vehicle positions in the car park is obtained.

Key words: Vehicle Detection, Bayesian Programming

1 Introduction

In the framework of automatic vehicles in car parks, a 2D map of a car park
is constructed using the autonomous vehicle, CyCab, as the experimental
platform. The map of the car park will contain the positions and orientations
of the different vehicles in the car park. An application of such a map is to
serve as a reference to indicate obstacle positions . Furthermore, it can indicate
the state of the parking lots in the car park, and possibly be used in higher
level applications such as automatic parking.

Several object based representation of the environment were proposed.
Chatila et al. [8] represented the map with a set of lines. More advanced
methods in mapping consists of approximating the environment using small
polygons [3] [4]. Such methods used a variant of the Expectation-Maximization
to generate increasingly accurate 3D maps as more observations are made.
In this paper, a higher level of representation (vehicles in this case) of the
environment is used instead of fundamental geometrical entities.

Currently, the CyCab robotic vehicle localizes itself in a static environemnt
with respect to artificially installed reflective cones. This localization serves to
build a grid map of the environment and has the capability to perform motion
planning with safe navigation as described in [1]. However, reflective cones as
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artifical landmarks is not a very practical approach. An improvement from an
application point of view is to use naturally occuring objects often found in
the car park as landmarks. In this paper, vehicles found in the car park are
used.

The general idea is to use only the laser data without artificial or predefined
landmarks, CyCab will navigate the car park autonomously while generating
a map of its environment.While CyCab is travelling around the car park,
scanning the environment, CyCab continuously reads in odometric and laser
data. At each stage of the iteration, CyCab estimates its own position and
orientation of the form (x, y, θ) and creates a map of the car park in the world
frame of reference. The origin of the world frame of reference is taken from
the initial position of CyCab. The map is then represented as a set of tuples,
each containing the position and orientation of the vehicles detected. CyCab
hypothesizes the configuration of the vehicles in the surrounding based on the
laser scan inputs from laser scanner only.

The advantage of the approach is its ability to map any car park without
installing any external aids. With the set of vehicle poses representing the
map, a compact and semantic representation of the map can be obtained.

2 System Overview

The mechanism of the entire system can be broken down into three funda-
mental components, vehicle detection, the simultaneous localization and map-
ping(slam) and the map construction . CyCab is provided with two types of
raw data, the laser scans and CyCab’s odometric data. Figure 1 shows the
block diagram of the different stages and its interactions:

Data
Laser
Raw

Positions
Vehicle
Relative

Positions
Vehicle

Absolute

Map

Hypothesized

Robot LocalizationVehicle Odometry

Detection
Vehicle

SLAM
Map

Construction

Fig. 1. Overview showing the mapping process

1. Vehicle Detection: With only raw laser scan data, vehicle detection
constructs hypotheses about the positions and orientation of vehicles in
the car park.

2. SLAM: Coupled with information about odometry of CyCab, SLAM
module makes use of the constructed vehicle hypotheses as landmarks
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to localize itself. With its own configuration, SLAM can then calculate
the absolute configuration of the vehicles with respect to real world coor-
dinates.

3. Map Construction: The hypotheses of vehicles have to be checked for
inconsistencies. It is possible for the hypotheses obtained to conflict with
a previous corresponding hypothesis. Furthermore, multiple hypothesis
SLAM methods such as FastSLAM produces a set of hypotheses, a map
construction module is required to merge the information from the differ-
ent hypotheses to obtain the final map.

3 Vehicle Detection

Vehicle detection is the process of forming possible vehicle hypotheses based
on the laser data readings. This problem is addressed in this paper using
bayesian programming[2]. Bayesian programs provides us with a framework
for encoding our a priori knowledge on the vehicle to infer the possible vehicle
poses. In this case, the a priori knowledge consists of the length and width
of vehicles which is assumed to be the same across standard vehicles (cars)
and that the type of vehicles in the car park is of the same class. The subtle
differences in the size of the vehicles can be accomodated for in the bayesian
paradigm and this property renders our assumption practical.

The detection of vehicles takes place in two stages. The first stage is basi-
cally composed of three portions:

1. Clustering and segmentation, to group a set of points indicating ob-
jects, using a distance criterion. Next, segments are obtained using clas-
sical split and merge techniques.

2. Vehicle hypotheses construction using bayesian programming. The
construction of hypotheses by bayesian programming results in a mech-
anism similar to that of hough transform. Peak values in the histogram
indicates the most probable vehicle poses.

With real data, the first stage produces too many false positives. A second
stage of filtering is applied to each vehicle hypothesis obtained after the first
stage as a form of validation gating in order to reduce the number of false
positives. It is broken down into two portions:

1. Edge Filtering is applied to extract the set of line segments that is only
relevant to the vehicle hypothesis in question.

2. Vehicle Support Filtering is based on our proposed metric, vehicle
support, that measures how much of the two adjacent sides of a vehicle
are seen. We try to remove as many false positives as possible using the
vehicle support.
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3.1 Construction of vehicle hypotheses

A bayesian program is used to infer vehicle positions. The formulation of our
bayesian program results in a mechanism similar to that of a hough transform.
We can infer on positions and orientations of vehicles from segments detected
from laser scan data which is analogous to the way line segments are recovered
from an ensemble of points. However our histogram cells are updated in terms
of probability which takes into account the length and the width of vehicles
instead of voting in the case of hough transform.

Briefly, a bayesian program is composed of:

• the list of relavant variables;
• a decomposition of the joint distribution over these variables;
• the parametrical form of each factor of the decomposition;
• the identification of the parameters of these parametrical forms;
• a question in the form of probability distribution inferred from the joint

distribution.

In the construction of the histogram, each line segment is treated inde-
pendently. In doing so, it will be sufficient to simply go through the list of
segments and add necessary information into the histogram for each line seg-
ment. This is achieved by performing data fusion with diagnostic [7]. Inference
of vehicle poses is represented by the bayesian program in fig. 2 and fig. 3. In
this paper, the following variables are adopted:

• V : A boolean value indicating the presence of a vehicle
• Z = (x, y, θ): The pose of a vehicle
• S: Ensemble of extracted line segments
• M ∈ {0, 1}p: Compatibility of segments with vehicle pose
• C ∈ {1, 2}p: A value of 1 or 2 if segment corresponds to the width and

length of a vehicle respectively
• π: A priori knowledge

To represent the absence of specific knowledge on the presence of vehicle
P (V | πf ), the pose of the vehicle P (Z | πf ) and the segments P (S | πf ), they
are represented as a uniform distribution.

The semantic of the question from the bayesian program (fig. 2) is to
find the probability of a vehicle given all segments and the vehicle pose. This
question can be simplified using baye’s rule:

P ([V = 1] | [M = 1] [S] Z πf )

= K
∏

i

P ([Mi = 1] | [V = 1] Z Si πf )

With K constant. The simplification of the question gives the product of the
probability of the contributions of each line segment, which is given by each
sensor sub-model. The local maximas of the function, P ([V = 1]|[M = 1] [S =
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Relevant Variables
V : Boolean, presence of vehicle
Z = (X, Y, Θ) : Pose of vehicle
S : Set of line segments
M ∈ {0, 1}p : Segment compatibility

Decomposition

P (Z V S M | πf ) =

P (V | πf )P (Z | πf )P (S | πf )
∏

i
P (Mi | V Z Si πf )

Parametric Form

P (V | πf ) uniform

P (Z | πf ) uniform

P (S | πf ) uniform

P (Mi | V Z Si πf ) Sensor sub-model
Identification :

None
Question :

P ([V = 1] | [M = 1] [S = (s1, . . . , sn)][Z = (x, y, θ)])

Fig. 2: Detection of vehicles bayesian program

(s1, s2, . . . , sn)] [Z = (x, y, θ)] πf ), gives the possible vehicles hypotheses. For
ease of calculation, the logarithm is applied. The sub-model used in the
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Relevant Variables
V : Boolean, presence of vehicle
Z = (X, Y, Θ) : Pose of vehicle
Si : Si ∈ S

Ci : Ci ∈ C

Mi : Mi ∈ M

Decomposition

P (V Z Si Ci Mi | πf ) =

P (V | πf )P (Z | πf )P (Si | πf )P (Ci | πf )
∏

i
P (Mi | V Z Si πf )

Parametric Form

P (V | πf ) uniform

P (Z | πf ) uniform

P (S | πf ) uniform

P (Mi | Ci V Z Si πf ) pseudo-gaussian
Identification :

None
Question :

P ([Mi = 1] | [V = 1] [Z = (x, y, θ)] [Si = si] πf )

Fig. 3: Sensor Sub-Model bayesian program
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calculation of P (Mi | V Z Si πf ) is described in fig. 3. The question of the
sub-model can be further resolved:

P ([Mi = 1]|[V = 1]ZSiπf )

=
∑

Ci

P (Ci|πf )P ([Mi = 1]|Ci[V = 1]ZSiπf )

The remaining problems lies in expressing P (Ci | πf ), the probability that
a segment corresponds to the length or width of a vehicle, and P ([Mi =
1] |Ci [V = 1] [Z = (x, y, θ)] [Si = si] πf ), the probability that a segment and
its given association to the sides of the vehicles, corresponds to a vehicle at
pose (x, y, θ). For P (Ci | πf ), a simple model is given by:

• P ([Ci = 1]|πf ) = L
l+L

• P ([Ci = 2]|πf ) = l
l+L

Given the length L and the width l of the assumed vehicle size, we consider
the prior probability that the segment belongs to either the length or width
is based on the simple ratio of the side in question against the sum of the two
sides.

P ([Mi = 1] | Ci [V = 1] [Z = (x, y, θ)] [Si = si] πf ) is expressed by a
pseudo-gaussian function G(Sc, si). Where Sc represents the segment of a side
of the hypothesized vehicle position (x, y, θ). The more si is further or have a
different orientation with respect to Sc, the smaller the value of G(Sc, si). In
practice, as most of the values in the histogram are negligable if the histogram
is to be filtered by a threshold, it is sufficient to go through the list of segments
and filling in the histogram values only for the possible vehicle poses (x, y, θ)
that are compatible with the line segments. The vehicle poses can be easily
calculated with simple geometry.

3.2 Edge Filtering

To calculate how well the sides conform to a vehicle hypothesis configuration,
the set of relevant segments around the contours of the hypothesized vehicles
have to be selected. The filtered edges are to provide data for the calculation
of the vehicle support (section 3.3).

Two bounding rectangles are calculated from the vehicle hypothesis con-
figuration with one rectangle a ratio smaller than the original vehicle size and
the other a ratio bigger as illustrated in figure 4. The two bounding rectangles
will then be oriented and positioned in the same manner as the hypothesized
vehicle configuration.

The algorithm begins with the segment that contains the end point nearest
to the origin (where Sick is). Starting from this segment, the algorithm starts
to grow outward by searching for any segments where any of its endpoints
lies sufficiently close to one of the endpoints in the original segment. This
continues till a sufficiently close segment cannot be found.
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Fig. 4: Edge filtering with 2 bounding boxes. Shaded area indicates valid area

3.3 Vehicle Support Calculation

In adopting a conservative approach, both length and width of the vehicle
must be adequately observed. Cases where either its length or width is ver-
ified are rejected as it introduces ambiguities and potentially false positives.
A metric, the vehicle support, based on the sum of the magnitude of cross
products can be used to enforce our conservative approach.

The calculation of vehicle support is given by eqn. 1. Under the ideal
case where there are only two segments perfectly aligned to the edges of the
vehicle, the result is a multiplication of the length and width of the vehicle.
The equation for calculating the support is given by:

support = ∀i, j
∑

i6=j

| Si × Sj | (1)

Intuitively, if a large portion of the length and a small portion of the width is
detected, the support will give a low value and vice versa. Hence it enforces
the verification of both the length and the width of the hypothesized vehicle
before classifying it as a positive vehicle hypothesis. The enforcement of such
rules are all conveniently embodied in a single equation (eqn 1).

4 Map Construction

The SLAM algorithm is independent of the construction of the vehicle hy-
potheses. Hence, a variety of SLAM methods can be used. If multiple hy-
potheses SLAM algorithms are used, the different hypotheses might come up
with conflicting hypotheses caused by association of landmarks. Such con-
flicting associations of landmarks must be resolved in order to obtain a final
consistent map. In such cases, a single observation might be associated with
different landmarks across the various SLAM hypotheses. The most likely
group of hypotheses with the same data association for a given observation
can be combined together to obtain the landmark to be represented in the
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final map while the rest of the hypotheses are ignored. A detailed descrip-
tion and example based on FastSLAM [5] [6], which is used in this paper, is
presented in [9].

The bayesian programs used previously to construct the vehicle pose hy-
potheses gives a set of possible vehicle poses by taking each line segment
extracted from the laser scan independently. It does not consider the pre-
viously made vehicle pose hypotheses. The disadvantage of the vehicle pose
hypotheses construction and conservative gating approach is its inability to
handle occlusion and false positives are obtained as a result. For example in
fig. 5, a wrong hypothesis is constructed due to occlusion. A corner of a build-
ing is mistook as a vehicle pose hypothesis. By making more observations as
CyCab navigates around to obtain a more comprehensive picture of the envi-
ronment and taking into account previous hypotheses, wrongly made vehicle
hypotheses can be removed.

Fig. 5: An example of a wrong hypothesis due to occlusion

All hope is not lost for vehicle hypotheses that failed gating, often due
to occlusion. Hypotheses that failed gating can be checked against previously
accepted hypotheses. A current hypothesis that is very similar in position and
angle with a previously accepted hypotheses can be taken to be a positive
hypothesis by virtue of being previously accepted.

4.1 Considering Previous Hypotheses

The two main criteria for measuring similarity of a current hypothesis and a
previously accepted hypothesis are their position and angle. It will be con-
venient to obtain a similarity measurement function that returns a bounded
value of between 0 and 1. The measurement of difference in position is given
by function f :

f =
2 × Area(P

⋂

Q)

Area(P ) + Area(Q)
(2)



On-Line Reconstruction of Vehicles In A Car Park 9

Where P and Q are both the geometry of the two vehicle hypotheses. A perfect
fit of P and Q gives a value of 1 and a non overlapping P and Q gives a value
of 0. Similarly, a measurement of difference in angle, g:

g = 1 − | sin θ| (3)

The two hypotheses are considered similar as long as min(f, g) > threshold.

5 Experimental Results

5.1 Vehicle Detection

After stage 1 (without gating), the vehicle hypothesis to the left in figure 6 is
accepted even when only either the length of the vehicle is detected. But in
fact, that detected side corresponds to a wall. This example demonstrates the
weakness of using a laser scanner as ambiguous situations renders the system
incapable of inferring correctly if it is vehicle. Additional information from a
camera would be more useful. Such examples are the main motivation for a
gating approach.

Stage 2 (gating) rejects the wrong hypothesis as represented by its in-
ner and outer bounding boxes in fig. 7. Due to the conservative approach
in validating hypotheses in stage 2, some potential hypotheses are inevitably
eliminated in the process (eliminated vehicle hypothesis to the right in fig. 7).

Fig. 6. Accepted vehicle hypothesis
after stage 1 of vehicle detection

Fig. 7. The same configuration as
in figure 6 but with rejected vehicle
hypothesis in their inner and outer
bounding boxes after stage 2 of vehi-
cle detection

Vehicles parked in the car park are often spaced out sufficiently enough to
be able to view its sides from the point of view of the laser scan. However, in
the less likely event of being spaced very close together such that the relevant
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laser impact points cannot be obtained, the relevant hypotheses cannot be
obtained. This is one of the limitations of using only a laser scanner. A fusion
of data with a camera will be desirable.

5.2 Map Construction

Tests were conducted within the context of the car park in INRIA Rhône-
Alpes. The current implementation is a naive and unoptimized version of
FastSLAM that executes with a frequency of between 4-6Hz on a pentium 4.

Figure 8 presents the multiple hypotheses of the position of CyCab and
the other vehicles in the environment. The various CyCab hypotheses are
followed by a curve indicating its mean path taken and the various landmark
hypotheses.

Figures 9 and 10 illustrates final constructed map. It is basically a com-
bined map of all the various hypotheses obtained from FastSLAM. In addition,
the figure is overlaid with the laser impact points from the first laser scan and
the laser scan at CyCab’s current position.

Fig. 8: The various CyCab and landmark hypotheses

6 Conclusion and Further Work

In this paper, the extraction of hypothesized vehicle poses from laser scan
data only is presented. Due to limitations in the laser scan data, gating is
required to remove the false positives. However the conservative vehicle hy-
potheses construction approach is at the cost of eliminating potential vehicle
hypotheses. Vehicle hypotheses construction can be ameliorated by taking into
account previously accepted vehicle hypotheses.
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Fig. 9: Final map obtained by fusion of different hypotheses

Fig. 10: Another mapping example

A more reliable method of vehicle hypotheses construction will be explored
by fusing laser scan information with information from a camera. The current
implementation assumes a static environment where landmarks do not move.
Extensions will be made to handle moving objects.
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