

Aalborg Universitet

Online Risk Prediction for Indoor Moving Objects

Ahmed, Tanvir; Pedersen, Torben Bach; Calders, Toon; Lu, Hua

Published in:
17th IEEE International Conference on Mobile Data Management

DOI (link to publication from Publisher):
10.1109/MDM.2016.27

Publication date:
2016

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Ahmed, T., Pedersen, T. B., Calders, T., & Lu, H. (2016). Online Risk Prediction for Indoor Moving Objects. In
17th IEEE International Conference on Mobile Data Management (pp. 102-111). IEEE Computer Society Press.
https://doi.org/10.1109/MDM.2016.27

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 26, 2022

https://doi.org/10.1109/MDM.2016.27
https://vbn.aau.dk/en/publications/06eb9c55-f964-4791-9368-aec85e62b850
https://doi.org/10.1109/MDM.2016.27

Online Risk Prediction for Indoor Moving Objects

Tanvir Ahmed§† Torben Bach Pedersen§ Toon Calders† Hua Lu§
§Department of Computer Science, Aalborg University, Aalborg, Denmark

†Department of Computer and Decision Engineering, Université Libre de Bruxelles, Brussels, Belgium

Email: {tanvir, tbp, luhua}@cs.aau.dk, toon.calders@ulb.ac.be

Abstract—Technologies such as RFID and Bluetooth have re-
ceived considerable attention for tracking indoor moving objects.
In a time-critical indoor tracking scenario such as airport bag-
gage handling, a bag has to move through a sequence of locations
until it is loaded into the aircraft. Inefficiency or inaccuracy at
any step can make the bag risky, i.e., the bag may be delayed at
the airport or sent to a wrong airport. In this paper, we propose a
novel probabilistic approach for predicting the risk of an indoor
moving object in real-time. We propose a probabilistic flow graph
(PFG) and an aggregated probabilistic flow graph (APFG) that
capture the historical object transitions and the durations of the
transitions. In the graphs, the probabilistic information is stored
in a set of histograms. Then we use the flow graphs for obtaining
a risk score of an online object and use it for predicting its
riskiness. The paper reports a comprehensive experimental study
with multiple synthetic data sets and a real baggage tracking data
set. The experimental results show that the proposed method can
identify the risky objects very accurately when they approach the
bottleneck locations on their paths and can significantly reduce
the operation cost.

I. INTRODUCTION

Technologies such as RFID and Bluetooth enable a va-

riety of indoor, outdoor, and mixed indoor-outdoor tracking

applications. Examples of such applications include tracking

people’s movement in large indoor spaces (e.g., airport, office

building, and shopping malls), airport baggage tracking, item

movement tracking in supply chains, and package tracking

in logistics systems. During the movement of the objects,

these tracking applications record the symbolic locations of

the objects at different time points. For example, consider

an RFID baggage tracking application where RFID readers

are deployed at the different baggage handling locations such

as check-in, screening, sorter, etc. Each reader has a very

limited tracking range that covers a small portion of the

location. If an object containing an RFID tag moves from the

check-in to the sorter, this produces two consecutive tracking

records of the object location in different places. Due to the

limitations in indoor positioning technologies, the locations

between these two records are not obtained. We call this

type of tracking Symbolic Location Tracking (SLT). An SLT

system can generate a massive volume of tracking data. This

massive tracking data can be very useful for analyses such as

finding risk factors, problem discovery, and decision-making.

For example, in an airport baggage handling system, a bag can

be left behind in the airport (i.e., failed to catch the intended

flight) or can be sent to a wrong airport. In the baggage

tracking system, the baggage tracking data can be used to

extract interesting patterns and find the reasons for baggage

mishandling. In a supply chain system, the item tracking data

can be used for finding the factors that lead to an item being

returned or get rotten. Some work has been carried out for

the efficient management of such tracking data and to analyze

them in the offline scenario [8], [13]. However, using such data

for time-critical online applications, such as online bags risk

prediction in the airports can be very useful for getting real-

time notifications for immediate handling of the risky bags.

Moreover, online items risk discovery in supply chain and

production systems, online item risk prediction in logistics

systems, traffic jam prediction, etc., can also benefit from the

insights obtained from analyzing the online data. An example

of a real-time analysis request can be: "notify the baggage

management team whenever a bag becomes risky during its

processing time at Aalborg airport". Another request can be:

"which are the 5 current bags with the highest risk of not

reaching their plane on time?".

The paper makes several contributions. First, to the best of

our knowledge, this is the first paper to propose a method

for online risk prediction for indoor moving objects. Second,

we propose the concepts of least duration probability (LDP),

aggregated LDP (ALDP), LDP histogram (LDPH), and ALDP

histogram (ALDPH) where the histograms store probabilistic

information about the transition times of the historical objects.

We propose a probabilistic flow graph (PFG) and aggregated

PFG (APFG) that capture the flows of objects from one

symbolic location to another and the edges of the graphs

contain corresponding LDPH and ALDPH, respectively. Third,

an online risk prediction (ORP) algorithm is proposed that uses

the PFG and APFG for obtaining a risk score for an online

indoor moving object. The risk score is used for predicting

the riskiness of the object during its processing. Fourth, as the

total available processing time of an object is an important

factor, we propose an approach for normalizing the available

processing time (e.g., available processing time for a bag

before its flight) with the stay durations of objects at different

locations for obtaining a better risk score. Fifth, we present

a cost model for obtaining the best risk score threshold that

can maximize the overall benefit of identifying and removing

the risky objects. Sixth, the paper reports a comprehensive

experimental study with several synthetic data sets following

different data distributions and a real baggage tracking data

set. The results show that the proposed method can produce

a very accurate risk score and identify the risky objects very

precisely in different types of data distributions.

The remainder of the paper is organized as follows. Sec-

tion II presents the SLT systems and tracking data. Section III

discusses the problem formulation. Section IV presents the

solution and probabilistic flow graph. Section V presents

online risk prediction steps and the algorithm. Section VI

reports the experimental results. Section VII reviews related

work. Section VIII concludes and points to future work.

II. PRELIMINARIES

SLT Systems. In an SLT system, tracking devices are

strategically deployed at different fixed symbolic locations,

such as different doors in an office space, between sections in

an airport, different locations in airport baggage management,

etc. The objects contain tags or devices that can be tracked

by the tracking devices. For example, in the case of RFID

technology, RFID readers and RFID tags are used; in the case

of Bluetooth systems, Bluetooth access points and Bluetooth

devices are used. After deployment of the tracking devices,

the positions are recorded in the database.

Fig. 1 shows an example of airport baggage tracking

scenario. The upper part of the figure shows the top level

path of a bag that travels from Aalborg Airport (AAL) to

Brussels Airport (BRU) via Copenhagen Airport (CPH). The

bag has to go through several baggage processing steps inside

each airport. The bottom part of the figure shows the baggage

processing stages inside AAL. The circles represent the

baggage tracking locations where RFID readers are deployed

for baggage tracking. Before handing over a bag into the

system, an RFID tag with some encoded information about

the bag and the route is attached to the bag. Suppose the bag

is intended for Flight1 and the preplanned path for the bag is:

"check-in→Screening→Sorter1→Gateway1→BeltLoader1".

Mismanagement or inefficiency at any one of these transitions

may result in the bag being mishandled, i.e., the bag might

miss the flight due to delay, or the bag might be sent to a

wrong flight. While passing through the different locations,

the bag enters the activation range of an RFID reader, it is

continuously detected by the reader with a sampling rate, and

it generates raw reading records with the form: 〈Obj, Loc, t〉.
It means that a reader placed at location Loc detects a moving

object Obj in its activation range at time t. An example set

of raw reading records in an SLT system is shown in Table I.

Check-in Desks

l2:Screening

l3:Sorter1

l4:Sorter2 l6:Gateway2

l5:Gateway1

l8:BeltLoader2

l7:BeltLoader1Wagon

Wagon

Wagon

Wagon

Aalborg Airport

(AAL)

Copenhagen Airport

(CPH)

Brussels Airport

(BRU)

Enter
ExitEnter Exit

Enter
Exit

l1: Check-in
Flight1

Flight2

Fig. 1: Example SLT scenario in airport baggage tracking

StayRecords. As seen, the raw readings contain many

redundant records. If an object stays for t time units under

the activation range of a tracking device, it can generate

TABLE I: Raw Reading Data

Obj 〈 Obj, Loc, t 〉
o1 (o1, l1, 1) (o1, l1, 3) (o1, l1, 5) (o1, l2, 12) (o1, l2,

14) (o1, l3, 25) (o1, l3, 27) ...

o1 (o2, l1, 10) (o2, l1, 12) (o2, l2, 26) o2, l3, 32) (o2,

l4, 39) (o2, l4, 41) (o2, l6, 46) (o2, l8, 55) ...

... ...
o1000 ...

t/sampling rate records for that stay. Depending on the ap-

plication scenario, the stay of an object under the activation

range of a reader can vary. For example, in an airport baggage

tracking scenario a bag continuously moves from one location

to another and usually it stays for a very short period under

the activation range. Besides, in a supply chain scenario an

object can stay long (e.g., few hours, days) on a shelf and

can stay for a long period under a reader. However, in any

SLT application, an object moves from one symbolic location

to another, and it is essential to know the total duration

spent by the object between the locations. We create a table

StayRecord〈Obj, Lfrom, Lto, ts, te, Dur〉, which represents

that an object Obj first appeared at location Lfrom at time

ts and then first appeared at the next location Lto at time

te. It took Dur time to go from the reader at Lfrom to the

reader at Lto or in another way it spent Dur time between

Lfrom and Lto. Table II shows an example of StayRecord

table constructed for the raw reading records shown in Table I.

TABLE II: Stay records from Table I

Obj StayRecord〈Obj, Lfrom, Lto, ts, te, Dur〉
o1 (o1, l1, l2, 1, 12, 11) (o1, l2, l3, 12, 25, 13)

o2 (o2, l1, l2, 10, 26, 16) (o2, l2, l3, 26, 32, 6) (o2, l3, l4,

32, 39, 7) (o2, l4, l6, 39, 46, 7) (o2, l6, l8, 46, 55, 9)

... ...

o1000 (o1000, ..., .., ..., ..., ...) ...

III. PROBLEM FORMULATION

We consider an application scenario where an object can be

processed in a single system or multiple subsystems through-

out its journey from the origin to the final destination. In

the case of subsystems, when an object is registered in its

origin, its identifier and the global route are shared within

all the subsystems for further processing. Depending on the

application scenario, an online risk prediction system can

monitor the object throughout its entire journey from origin

to final destination or it can monitor the object individually

within each subsystem between its entry and exit times within

that subsystem. For example, in Fig. 1, the global path of

the object is AAL→CPH→BRU. The overall processing of

the bag should be processed by the three subsystems, i.e.,

first at AAL, second at CPH, and third at BRU. Whenever

the bag is first registered at AAL, its identifier, route and

flight information is shared to CPH and BRU, so that they

can recognize the bag when it appears to their systems. In this

context, each subsystem has its separate online risk prediction

system. Whenever the bag is first detected by an RFID reader

at AAL, the bag becomes online to the local risk prediction

system which starts monitoring the bag until it exits AAL, or

until it is confirmed that the bag misses its flight. Similarly,

when the bag is detected at CPH, it becomes online at CPH

and so on.

Definition 1. Online Object. An object is considered as an

online object to a system/subsystem at time t, if t falls in the

time interval [tenter, texit], where tenter is the first time the

object is tracked in a tracking device in the system/subsystem

and texit is the last time the object is tracked by the last

tracking device in the system/subsystem or the time within

which the object is expected to exit the system/subsystem.

Problem Statement. Given a set of stay records R and a set

of online moving objects O, we are interested in building a

predictive model from R that can predict, as early as possible,

whether an object oi∈O is at risk in real-time.

For example, in baggage tracking, the model should be

able to predict whether a bag going through the baggage

handling stages is at risk of being delayed at the airport and

the prediction should be made as early as it sees the bag is

being abnormally deferred compared to other bags.

IV. SOLUTION

The overall outline of the data collection and risk prediction

steps is shown in Fig. 2. The online object tracking data

stream is passed into two sections. One of them stores the

data offline for future analysis and model building purpose

and another uses it during the online risk prediction (ORP)

process. The offline/historical reading records are processed

and converted into StayRecords. The StayRecords are used for

building the probabilistic model. The model, raw data stream

and the preplanned path of the objects are used by the ORP

for deciding which objects are at risk. Finally, risky objects

are notified by the ORP for special handling.

Online Object

Tracking

Preprocess

Historical Data

Build

Probabilistic

Model

Online Risk

Prediction

Raw Data Stream

Probabilistic

Model

Object

Risk status
Special

Handling for

Risky Objects
Risk Parameters

Raw Reading

Records

StayRecords

Preplanned

Path

Fig. 2: Outline of the overall system

Let, L = {l1, l2, l3, ..., ln} be the set of locations available

in the data set. A set of durations taken by the transitions from

location li to lj be Di,j={d1, d2, d3, ... , dn}.

Definition 2. Least Duration Probability (LDP). A least

duration probability (LDP) for a movement from li to lj with

threshold duration dk∈Di,j is defined as,

LDP (li, lj , d
>

k) =
Count(li, lj , d

>

k)

Count(li, lj)
(1)

In Eq. (1), Count(li, lj , d
>

k) is the total number of objects

that took at least dk duration from li to lj and Count(li, lj)

is the total number of objects that have a transition from li to

lj .

Definition 3. Least Duration Probability Histogram (LDPH).

A least duration probability histogram (LDPH) for transitions

from li to lj is a histogram with transition durations Di,j on

the X-axis, and LDPs for the transitions on the Y-axis.

TABLE III: Transition Summary (C stands for Count)

Transition

tr (li → lj)

Dur

(dk)

C(tr) C(tr, d>
k
) LDP (tr, d>

k
)

13 1000 1
l1 → l2 16 1000 700 0.7

20 300 0.3
28 20 0.02
8 1000 1

l2 → l3 10 1000 580 0.58
17 50 0.05
60 470 1

l3 → l5 70 470 250 0.53
98 50 0.11

l5 → l7 40 460 460 1
50 250 0.54

Table III shows an example summary of transitions for the

path l1 to l7 from the stay records in Table II. Fig 3 shows

the different LDPHs for the transitions shown in Table III. In

Fig. 3a, LDP=0.7 represents that the probability of transition

from l1 to l2 with a duration ≥ 16 is 0.7. The figure also

shows that the LDP for duration 28 is very low (0.02).

1

0.7

0.3

0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

13 16 20 28

L
D
P

Duration

(a) LDPH for l1 → l2

1

0.58

0.05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 10 17

L
D
P

Duration

(b) LDPH for l2 → l3

Fig. 3: LDPHs for the transitions l1→l2 and l2→l3 in Table III

Probabilistic Flow Graph (PFG). We use a probabilistic

flow graph (PFG) for modeling the movement of objects from

one symbolic location to another. The PFG is formally defined

as a labeled directed graph G = (L, E, D, H, lbE), where:

1) L is the set of locations where each location is represented

as a vertex in G.

2) E is the set of directed edges: E = {(li,lj) | li, lj∈L}.

3) D is the set of durations. Di,j ⊆ D represents the set of

durations taken by objects for the transitions from li to lj .

4) H is the set of LDPHs, where an LDPHi,j ∈ H is

computed from the number of transitions from location li
to lj and the durations Di,j ⊆ D.

5) lbE is a function lbE : E→H that labels an edge by an

LDPH, h ∈ H . An edge (li, lj)∈E is labeled by an LDPH

LDPHi,j∈H , where LDPHi,j is the LDPH from li to lj .

Fig. 4 shows the PFG constructed from the transition

summary shown in Table III. Two LDPHs of Fig. 4 is shown

in Fig 3. However, all the data for the rest of the LDPHs are

available in the LDP (tr, d>k) column of Table III.

l2 l3

l4 l6

l5LDPH2,3

LDPH3,4

LDPH3,5

LDPH4,6 LDPH6,8 l8

l7LDPH5,7

l1

LDPH1,2

Fig. 4: Probabilistic flow graph (PFG)

V. ONLINE RISK PREDICTION (ORP)

In an SLT system, the movements of the mishandled

objects are expected to differ from the usual movement. They

can take a wrong transition or can stay longer between planned

locations. As the PFG is learned from the historical data, we

use it for obtaining a probability score of an online object and

use the score for predicting the unusual movements.

We consider a scenario, where the path of a given online

object is predefined. For example, in the case of the bag-

gage tracking, all the bags intended for a particular flight

SK123 should follow the same path sequence starting from

the check-in desk up to the belt loader to the aircraft (e.g.,

l1→l2→l3→l5→l7). If the object does not follow its pre-

planned path, it is triggered as risky. However, an object

following its preplanned path, but taking a unusually longer

duration for a transition can make the object risky. We use

two different thresholds to decide the riskiness of an object.

The method of finding the threshold is discussed at the end

of this section. For each transition li→lj in the PFG, we

use an LDP threshold LDPth(li, lj), that helps to get the

maximum acceptable stay duration (Durmax(li, lj)) of an

object between li and lj . If an object spends equal or more than

Durmax(li, lj) between li and lj , the object is considered at

risk. Another threshold is called risk score threshold (RSth).

After each transition of an object o, its combined duration

probability (CDP) for the so far traversed path is computed by

multiplying the LDPs for the transitions as shown in Eq. (2).

In Eq. (2), n is the total number of transitions of o and LDP ′

i

is the LDP for the stay duration of o obtained from the LDPH

for o’s ith transition. The value of CDP is converted into risk

score (RS) by, RS = 1-CDP. If RS≥RSth, we trigger that o
is at risk. Maintaining the value of RS helps to find the top-k

risky online objects in the system.

CDP (o) =
n∏

i=1

LDP ′

i (2)

Generally, when a PFG is learned from a large data set, the

LDPHs should contain most of the possible stay durations for

the upcoming new objects. However, if a new object o takes d
duration for a transition li→lj and d is not directly available

in LDPH(li,lj), the value of LDP (li, lj , d>) is computed in

one of the following ways:

• If d < dfirst (the first entry of LDPH(li,lj)), then LDP (li,
lj , d>) = LDP(li, lj , d>first).

• If d > dlast (the last entry of LDPH(li,lj)), then LDP (li,
lj , d>) = LDP(li, lj , d>last).

• For the other cases we use linear interpolation to obtain the

value of LDP(li, lj , d>) from LDPH(li,lj).

Furthermore, as the new online object becomes part of the

historical data after its operation, its new duration is included

in the PFG next time when a new model is built. Now coming

to the ORP, if LDPth(li, lj) is not directly available from

LDPH(li, lj), we use linear interpolation for computing the

duration (i.e., the value in X-axis) for that LDPth and use it

as the Durmax for that transition.
For example, consider an object o following a path:

l1
17
−→l2

17
−→l3

60
−→l5

40
−→l7. The labels in the arrows represent the

duration taken for the transitions. Let us consider that the

object followed its preplanned path. As the LDPH(l1,l2) has

no entry for 17, its expected value by linear interpolation is,

LDP (l1,l2,17>) = 0.7-(0.7-0.3)/(20-16)×(17-16) = 0.6. The

full CDP for the object = LDP(l1, l2, 17>) × LDP(l2, l3, 17>)

× LDP(l3, l5, 60>) × LDP(l5, l7, 40>) = 0.6×0.05×1×1

= 0.03. Let us consider that RSth = 0.8 and LDPth for

each of the transitions is 0.2. So, Durmax(l1, l2) by linear

interpolation = ⌈20+ (0.3− 0.2)/(0.3− 0.02)× (28− 20)⌉ =

23. Similarly, Durmax(l2, l3)=15. When o completes its first

transition (i.e., l1
17
−→l2), it passes both of the LDP and RS

checks for that transition as the spent duration 17<Durmax

= 23 and RS = 1-CDP = 1-0.6 = 0.4�RSth=0.8. So, the bag

is not risky until the current state. When o reaches at l3, the

spent duration 17≮Durmax = 15. Furthermore, the CDP of

o up to this location is 0.03 (0.6×0.05). So, RS = 1-0.03 =

0.97≥RSth=0.8. So, o is considered as a risky object after

this transition in terms of both Durmax and RSth.

Start

Wait for a new

reading or a raise in a

time trigger (TT).

New object oi?

Planned

Location?
Change in Location

for oi?

No

Add to Hash Table HT[oi],

Get Preplanned Path

Mark oi as risky due to

wrong transition

Add/update time

trigger TT[oi] for oi

No

Yes

A new reading

Yes

Compute CDP for oi .

CDP=1 for the first

reading of oi .

HT[oi].RS = 1 - CDP

HT[oi].RS ≥ RSth?
Mark oi as risky due to

high risk score
Yes

No

Yes

If raise in a TT
Mark TT.oi as risky

due to long stay

No

Fig. 5: Online risk prediction steps

The overall processing steps of the ORP are shown in Fig. 5.

The process continuously waits for new readings. When a

new reading arrives, it checks whether the object oi in the

reading is new. If oi is new, it is inserted into a hash table

(HT) and its preplanned path is retrieved from the system. If

oi does not follow its preplanned path, it is marked as risky

due to the wrong location. However, if the path is correct, its

CDP is initialized to 1. Based on the LDPth of the current

location lcurr and the planned next location lpnext
, a time

trigger TToi (oi,tstart,temax
) is added with oi, where tstart is

the first reading time of oi at lcurr and temax
=tstart+Durmax.

As mentioned earlier, the value of Durmax is extracted from

the corresponding LDPH. If oi remains between lcurr and

lpnext
until the clock time reaches temax

, the time trigger TToi

is raised and the trigger marks oi as risky. Coming back to the

starting point, if the new reading contains an old object, the

process checks whether the object has changed its location. If

it is in the same location, the process continues waiting for

a new reading and a raise of a time trigger. However, if the

object changes its location, its planned location is checked and

based on that its further processing such as CDP computation,

RS checking, time trigger update, etc., is performed. The time

trigger allows a fast notification about a risky object as the

process does not have to wait to complete the transition.

Algorithm 1 shows the processing of the ORP. It takes a

hash table, RSth, LDPth list, and PFG as the input and updates

the hash table as the result. The algorithm continuously waits

for a new reading or a raise of a time trigger (lines 1-2). If a

new reading arrives, based on the data in the new reading, it

updates the hash table HT . First, it checks whether the object

oi in the new reading is newly arrived in the system (line 5).

If oi is new, it is inserted in HT (line 6), and its preplanned

path is checked (lines 6-9). If oi is in the planned location, it

is initialized to a safe object (lines 11-12). Based on the next

planned location and LDPth, its Durmax is extracted from

the PFG (lines 13-14), maximum clock time threshold temax

is calculated (line 15), and a time trigger is registered for oi
(line 16). If oi is not new, it is checked whether oi has changed

its location (line 17). If oi has not changed its location, the

algorithm continues waiting for a new reading or a raise in a

time trigger. Conversely, if oi changes its location in the new

reading, its planned path is checked (lines 18-21). If it is in

the planned path, oi’s time trigger is updated with the new

information (lines 22-25). After that, oi’s stay duration for

the transition is computed, CDP and RS are calculated, and

the RS is checked with the RSth (lines 26-31). Besides, if

a time trigger is fired, the corresponding object is notified as

risky (lines 33-35).

Recovery Scenario. The PFG cannot capture the possibility

of a recovery of an object from its risky state. For example,

an object might take a long duration between location l1 to

l2 that makes it risky. However, it might be handled very

quickly in its next transition l2 to l3 that recovers the object

from being mishandled. To capture this, we modify the PFG

into aggregate probability flow graph (APFG). Here, we addi-

tionally maintain an aggregate LDPH (ALDPH) for each path

sequence S=lili+1li+3...ln, where li must be the first tracking

location of at least one object in the data set and i<n<=p (the

length of the path sequence). An ALDPH (S) contains all the

aggregate LDPs (ALDP) for S. An ALDP(S,d>) represents

the probability of taking at least a duration of d by an object

for completing the path sequence S. The value of an ALDP

for the path sequence S with a total duration d is computed

by Eq. (3). In Eq. (3), Count(S, d>) is the number of objects

taking at least a d duration to complete the path sequence S
and Count(S) is the number of objects traveling through path

Algorithm 1: ORP(HashTable HT, RSth, LDPThresh-

oldList LDPth, PFG) Result: Hash Table with Risk Status

1 while true do
2 wait for a new reading or a raise in a time trigger;
3 if a new reading rr arrives then
4 oi ← rr.Obj; lcur = rr.Loc;
5 if HT[oi] = NULL then
6 HT.Insert(oi); PP[oi]←PlannedPath(oi);
7 if lcur 6= PP[oi].POP() then
8 HT[oi].status ← "Risky";
9 HT[oi].Reason←"WrongTran"; continue;

10 HT[oi].Loccur ← HT[oi].Locprev ← rr.Loc;
11 HT[oi].ts←rr.t;HT[oi].CDP←1;HT[oi].RS←0;

12 HT[oi].status←HT[oi].Reason←"NotRisky";

13 lpnext
←HT[oi].LocpNext←PP[oi].POP();

14 Durmax←PFG.GetDur(LDPth, lcur, lpnext
));

15 MaxTimeEnd temax
← rr.t+Durmax;

16 TT[oi] ← TimeTrigger(oi, rr.t, temax
);

17 else if HT[oi].Locprev 6= lcur then
18 lpcur

← PP[oi].POP();
19 if lcur 6= lpcur

then
20 HT[oi].status ← "Risky"; HT[oi].RS ← 1;
21 HT[oi].Reason←"WrongTran"; continue;

22 lpnext
←HT[oi].LocpNext←PP[oi].POP();

23 Durmax←PFG.GetDur(LDPth, lcur, lpnext
));

24 MaxTimeEnd temax
← rr.t+Durmax;

25 TT[oi] ← TimeTrigger(oi, rr.t, temax
);

26 SpentDuration dur ← rr.t - HT[oi].ts;
27 HT[oi].Loccur←lcur; HT[oi].ts←rr.t;
28 HT[oi].CDP←HT[oi].CDP×LDP(HT[oi].Locprev ,

lcur , dur>); HT[oi].RS ← 1- HT[oi].CDP ;
29 if HT[oi].RS ≥ RSth then
30 HT[oi].status ← "Risky";
31 HT[oi].Reason ← "High RS";

32 HT[oi].Locprev ← lcur;

33 else if a time trigger is raised for the object oj then
34 HT[oj].status ← "Risky";
35 HT[oj].Reason ← "Long Stay Triggered";

sequence S. Table IV shows the ALDPs and data for ALDPHs

for the path from l1 to l7 in our example scenario.

ALDP (S, d>) =
Count(S, d>)

Count(S)
(3)

The processing of the ORP with the APFG is very similar to

the algorithm discussed above with some additional conditions

and operations. First, after each transition, in addition to the

CDP computation, the ALDP for the traveled path is extracted

from the corresponding ALDPH. If CDP<ALDP , then CDP

is updated with the value of ALDP to make the score less risky.

Also note that for the first transition, the values of ALDP and

LDP are the same. Second, instead of using LDPth for each

transition, we maintain an ALDPth(si) for each path sequence

si for each of the preplanned paths. In our example scenario,

for the path from l1 to l7, there will be ALDP thresholds

for each of the path sequences mentioned in Table IV. Third,

TABLE IV: Path Summary

Path (S) Dur (d) Count(S) Count(S,d>) ALDP(S,d>)

21 600 1
23 500 0.83

l1 → l2 → l3 24 600 300 0.5
30 150 0.25
33 30 0.05
81 470 1
83 415 0.88

l1 → l2 → 84 245 0.52
l3 → l5 94 470 195 0.41

100 120 0.26
121 50 0.11
128 20 0.04
123 460 1
131 290 0.63

l1 → l2 → 134 235 0.51
l3 → l5 → l7 144 460 145 0.32

150 110 0.24
171 40 0.09
178 10 0.02

the concept of Durmax(li, lj) is changed to Durmax(si),
where Durmax represents the maximum allowable duration

for an object to complete the path sequence si. The value

of Durmax(si) can be extracted from the ALDPH(si) based

on the ALDPth(si). Fourth, the concept of the time trigger

is updated with the concept of ALDP and its structure is

changed to TToi (si, lpnext
, tstart, temax

), where si is the so

far completed path sequence by oi, lpnext
is the next planned

location, tstart is the timestamp when oi first tracked in the

system, and temax
=tstart+Durmax(spnext

), where spnext
is the

path sequence up to lpnext
(i.e., si → lpnext

). Then the rest of

the procedure is the same as the above algorithm.

Consider the example discussed above where an object o

followed a path: l1
17
−→l2

17
−→l3

60
−→l5

40
−→l7. In the above exam-

ple, o was marked as risky when it completed the path up

to l3. From Table IV, the ALDP up to l3 is 0.05 (as the

total duration=17+17=34). In terms of both LDP and ALDP,

o is at risk at that point. After the next transition (i.e., up to

l5), the ALDP is 0.41, thus RS = 0.59�RSth=0.8 (as total

duration=17+17+60=94). However, the value of CDP up to l5
is 0.6×0.05×1 = 0.03. The value of CDP either decreases or

remains same while multiplying new LDPs. The new score

shows that the object recovered from its risky state as it was

processed quickly between l3 and l5. So, we update the CDP

with the value of ALDP and mark o as not risky. When o
moves further, the time trigger for o is also updated based on

the traversed path sequence, preplanned path, and ALDPth.

Time Constrained ORP. Generally, a slow processing of

an object at a location makes the object risky. This slow

processing could also result in a dense location or traffic jam

that could hamper the processing of the upcoming objects.

However, there are many applications where an object has

to reach a particular location within a given timestamp. For

example, in the baggage tracking, a bag has to be loaded in the

aircraft before the scheduled flight departure. So, the available

duration before the flight departure is an important factor for

baggage risk prediction. If a bag starts its processing well in

advance before the flight departure, it is less risky, even if it

stays longer for a transition. Conversely, a bag having a short

duration before the flight makes it risky, even it is processed

relatively quickly in its transitions. So, the stay duration should

be normalized with the available processing time and use the

normalized duration for taking the corresponding ALDP to

reflect the actual riskiness of the object.

Let us consider, tenter be the first time an object o detected

in the system and tfinal be the maximum timestamp when

o should reach its final reading point/location. So, the total

available duration for o is da=tfinal-tenter. The expected

average duration of travel of an object is extracted from the

ALDPH for the full preplanned path of the object. Let de
be that expected duration extracted from the ALDPH with

ALDP = 0.5. After each transition of o, its normalized total

stay duration for the so far traversed path is computed by

Eq. (4), where duri is the stay duration of o for its ith
transition. In the equation, the value of offset is computed

initially by subtracting the value of da from de. Then, after

the kth transition of o, its total travel time up to that transition

is added to the offset for obtaining the normalized duration.

So, instead of taking the ALDP directly for the total duration

dt, we take the ALDP for dn. Depending on the value of da
and de, the value of offset as well as dn can be negative. As

discussed earlier about picking the LDP from an LDPH for a

given duration, the value of ALDP for dn is also taken in the

same way from the corresponding ALDPH.

dn(o) = Offset +
k∑

i=1

duri,where offset = (de − da) (4)

For example, consider an object o1 following its pre-

planned path and the stay durations for the transitions are:

l1
17
−→l2

17
−→l3

94
−→l5

50
−→l7. o1 has a total of 200 seconds to reach

l7 from l1. So, da=200 sec. From Table IV, de=134 (as ALDP

for 134 is 0.51). So, offset=134-200 = -66. Now, for the first

transition l1
17
−→l2, dn = -66 + 17 = -49. So, from Table III,

the value of ALDP or LDP for the transition is 1. It shows

that instead of taking the actual LDP for duration 17 (which

was 0.6 as computed earlier), we take the LDP for normalized

duration. As o has plenty of time to reach l7, the normalization

makes the object less risky. After the next transition to l3,

dn = -66+17+17 = -32. So, the ALDP after normalization

is 1. Before the normalization, the ALDP was 0.05. However,

after normalization the score says that the object is completely

safe until that transition. Similarly, when o1 reaches at l7,

the total stay duration is 178 and the normalized duration is

112. Thus, without normalization the ALDP is 0.02 and with

normalization ALDP is 1. It shows that, even o1 takes long

for its transitions, the normalization marks it as a safe object

as it has a long available time to reach its destination.

Adjusting Durmax and Time Trigger. During processing

of the ORP, Durmax(si) is adjusted to the concept of normal-

ization. The normalized maximum allowable duration of an

object o for completing its path sequence si is computed by,

DurmaxN (si, o) = Durmax(si)−offset. As seen, if the value

of offset is negative, then DurmaxN allows more time to

oi. Besides, the higher value of offset will reduce the value

of DurmaxN for adjusting the riskiness of o. Finally, temax

in the corresponding time trigger is computed by, temax
=

tstart+DurmaxN and is used for the risk prediction.

Finding the best thresholds. The optimal threshold de-

pends on the particular goal of the system. We consider

mishandled as a positive class for classification. A prediction

system, giving too many false positives (FP) (i.e., predicting

correctly handled objects as the mishandled objects) or false

negatives (FN) (i.e., predicting mishandled objects as the

correctly handled objects) can make the system useless or not

interesting. So, there should be a defined acceptable metric

for deciding the optimal operational threshold. We define a

benefit function based on the operation cost, where the costs

for the different kinds of errors are used for finding the

threshold that maximizes the benefit. For example, In the case

of baggage tracking, if a bag is predicted as mishandled, it

requires a special manual handling so that the bag can reach

the aircraft before the flight. If an FP occurs, there will be a

waste in the human resource cost for the mistake. However,

if an FN occurs, there will be a significant cost to deliver

the bag to the passenger’s address and insurance and other

operating costs are involved for such mistakes as well. So,

in the baggage tracking scenario, the cost for an FN is much

more compared to that for an FP. During model building and

testing (discussed further in Section VI), we use Eq. (5) for

obtaining the total benefit for each of the generated thresholds

and use the threshold that provides the maximum benefit. In

Eq. (5), x= cost for handling a mishandled object (i.e., positive

case (P)), y=cost for handling a predicted mishandled object

(i.e., TP and FP), and #P is the total number of positive cases

in the data set. So, Eq. (5) can provide an idea how much

money can be saved by using the ORP system.

Benefit(x, y) = x× #P− (x× #FN + y × (#TP + #FP)) (5)

VI. EXPERIMENTAL EVALUATION

The PFG and APFG are implemented using a set of SQL

statements and the prediction is implemented in C#. For all

SQL queries, we use a leading RDBMS. The experiments are

conducted on a laptop with an Intel Core i7 2.7 GHz processor

with 8 GB RAM. The operating system is Windows 7 64 bit.

A. Data Sets Descriptions

We use both synthetic and real data for experimenting the

different aspects of the proposed systems. The real data set

reflects a specific scenario and contains a lot of erroneous

readings, miss readings, and other anomalies. So, only exper-

imenting with such real data cannot provide the other aspects

of the prediction systems. Furthermore, synthetic data can be

generated in different ways to see how the models perform

with different ratios and distributions. During model building

and prediction, it is assumed that the data set is cleaned.
Synthetic data sets. We generate 5 different data sets

for the airport baggage tracking scenario, where bags fol-

low the paths shown in the floor plan in Fig 1. There

are two preplanned paths, P1: l1→l2→l3→l5→l7, and P2:

l1→l2→l3→l4→l6→l8. There are 20 flights a day and each

flight departs after every 30 to 60 minutes. The first flight of

a day starts at 8:00 am. In each of the data sets, there are

a total of 5K flights carrying 100K bags. Each of the flights

has 20 registered bags. Each data set contains approximately

450K stay records. Flight IDs and bag IDs are generated

sequentially and the flight with even IDs are allocated to path

P1 and others to P2. Bags are checked in at the earliest 3

hours and the latest 30 minutes before the flights. For each

possible transition, bags follow a realistic range of duration

with different distributions that will be discussed next. In

our example scenario, the transitions l1→l2 and l2→l3 have

less influence on baggage mishandling, whereas the sorters

(i.e., l3→l5, l3→l4, and l4→l6) have higher influence. So,

we put relatively smaller time intervals for those transitions.

The duration ranges (in seconds) for different paths are,

P1: l1
25−60
−−−−→l2

50−300
−−−−→l3

120−9000
−−−−−−→l5

400−500
−−−−−→l7, and for P2:

l1
25−60
−−−−→l2

50−300
−−−−→l3

120−2500
−−−−−−→l4

120−5400
−−−−−−→l6

400−500
−−−−−→l8.

Varying the distributions of the durations for the transitions

and durations before the flights, we generate 5 different data

sets (DS). Each data set is divided into a training set (TRS) and

a test set (TSS) containing 70K and 30K bags, respectively.

It is also made sure that the bags for the same flight are not

be distributed between training and test set as it might give

a biased estimation due to overfitting. We also use validation

sets from the TRS for cross validation while finding the best

value for RSth that will be discussed later in this section. The

data sets are described below:

• DS1: Transition durations and durations before flights are

uniformly distributed. DS1 contains 53% mishandled bags.

• DS2: Transition durations follow a normal distribution and

durations before flights follow uniform distribution. DS2

can show the effect in the models when the transition

durations are normally distributed compared to the uniform

distribution of DS1. DS2 contains 54% mishandled bags.

• DS3: Transition durations follow a log-normal distribution

and durations before flights follow uniform distribution. As

a log-normal distribution creates long tail, it generates less

mishandled bags compared to DS1 and DS2. This distri-

bution reflects a more realistic scenario of airport baggage

tracking. The data set contains 12% mishandled bags.

• DS4: Transition durations follow a log-normal distribution

with different µ and σ compared to DS3 and durations be-

fore flights follow a normal distribution. The main intention

is to reduce the mishandling rate to below 2%. It also can

expose how good the models are when the mishandling rate

is very low. DS4 contains 1.42% mishandled bags.

• DS5: The distributions of durations are similar to DS4. How-

ever, the bags flow from the opposite direction. So, in DS5,

P1=l7→l5→l3→l2→l1, and P2=l8→l6→l4→l3→l2→l1.

As seen, the change in direction of the path brings the sorter

in the earlier step. In the sorter bags generally spend most

of its operational time and considered as the bottleneck of

the system. The data set can show how bringing bottleneck

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall
PFG-Len3 APFG-Len3
PFG-Len4 APFG-Len4

(a) P1-PFG vs. P1-APFG for DS4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall
PFG-Len1 APFG-Len1
PFG-Len2 APFG-Len2

(b) Pr2-PFG vs. Pr2-APFG, DSR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall
WON-Len3 WON-Len4
WN-Len3 WN-Len4

(c) With vs. without norm., DS1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall
WON-Len1 WON-Len2
WN-Len1 WN-Len2

(d) With vs. without norm., DSR

Fig. 6: PR curves for comparing PFG vs. APFG, and with (WN) vs. without normalization (WON) while using APFG

earlier in the path can affect the models. DS5 contains 1.53%

mishandled bags.

Real data sets (DSR). We use a small real RFID baggage

tracking data set from the departure system of an airport A1.

For the reason of confidentiality, the airports’ names are not

disclosed. The bags are originated from A1 to the destination

airport A2. In A1, there are 6 RFID readers deployed. Four of

them are for departure system that includes Check-in, Sorter,

Gateway1, and BeltLoader and 2 of them for arrival system.

From the data set we derived three different preplanned

paths, Pr1: Check-in→Sorter→Gateway1→BeltLoader,

Pr2: Check-in→Sorter→Gateway1, and Pr3: Check-

in→Sorter→BeltLoader. After removing many noisy records,

we have a total of 20.4K bags for 2.5K different flights. There

are only 75 mishandled (MH) bags which are only 0.35%

of the total bags. The details for the training set are: total

15.9K, MH 29 (0.18%), Pr1-[total 1.5K, MH 7], Pr2-[total

10.1K, MH 4], Pr3-[4.3K, MH 18]. The test set details are:

total 4.6K, MH 43, Pr1-[total 1.5K, MH 20], Pr2-[total 2.6K,

MH 20], Pr3-[total 0.5K, MH 3].

B. Test Cases

We build PFGs and APFGs from all the mentioned data

sets and tested them from various perspectives. The PFGs and

APFGs are built from the combined records (i.e., containing

all the paths in the data sets) called C-PFG, and C-APFG,

respectively. We also separately build PFGs and APFGs with

the records of each different path, e.g., P1-PFG, P1-APFG for

P1 in synthetic data, Pr1-PFG, Pr1-APFG for Pr1 in real data,

etc. The PFGs and APFGs are tested on the test set for the

relevant paths. We test them without normalizing (WON) and

with normalizing (WN) the durations before flights.

We apply the PFGs and APFGs on all the bags of the

TSS and for each bag, we obtain a risk score for each of

its transitions based on their transition duration. For each of

the generated risk scores r, we compute the recall, where re-

call(r)= # of mishandled bags having risk score ≥ r
#of mishandled bags

. Conversely, for

each r, we also compute the precision, where precision(r)=
of mishandled bags having a risk score ≥r

#of bags having a risk score ≥ r
. In our scenario, a per-

fect precision score of 1 means that all the classified mishan-

dled bags are also actually mishandled. However, this precision

score says nothing about whether all mishandled bags are

predicted correctly. Conversely, a perfect recall score of 1

means that all the actually mishandled bags are classified as

mishandled. However, this recall says nothing about how many

correctly handled bags are wrongly predicted as mishandled.

We draw precision-recall (PR) curves that represent how

precision and recall changes with the risk scores. The perfect

point in a PR curve is (1,1) that represents the predictions

for the mishandled bags are perfect and any correctly handled

bags are not predicted as mishandled.
We generate PR curves for the various test cases discussed

above and report only the cases that are interesting to analyze.

For all the test cases we analyze the PR curves for the different

transition lengths, e.g., for path P1 there are 4 different lengths

of transitions l1 to l2 (Len1), l1 to l3 (Len2), ..., and l1 to l7
(Len4). Similarly, P2 has 5 different lengths of transitions.

For the real data, Pr1 has 3 different transitions, Pr2 and Pr3

have 2 different lengths of transitions. The PR curves for the

different test cases are reported in Fig. 6 and 7. The PR curves

are analyzed from the different perspectives and explained

next. The PR curves for DS2 and DS3 are not reported as

they show the same behavior as others.

C. Analyzing the PR Curves

PFGs vs. APFGs. The PR curves for comparing the PFGs

and APFGs are shown in Fig. 6a and 6b. Fig. 6a reports the PR

curves generated by applying P1-PFG and P1-APFG on the

TSS for P1 in DS4. It reports the results for Len3 and Len4.

PFG-Len3 can be compared with APFG-Len3 and so on. The

results show that the APFGs always provide higher precisions

compared to the PFGs. As we found same type behavior for

the other DSs, they are not reported due to space limitation.

Fig. 6b shows the similar experiments with DSR. For Len1

PFG and APFG provide the same score. So, the lines are

overlapped. However, for Len2, the APFG provides relatively

better results. Overall from the experimental results, it is clear

that the APFGs can better capture the riskiness and recovery

of the objects and better differentiate between the correctly

and incorrectly handled bags. In rest of the experiments, we

report only the results with APFG.
With and without normalization. The PR curves for com-

paring the results with and without normalizing the duration

before flights are presented in Fig. 6c and 6d. In Fig. 6c, P2-

APFG is applied on the records for P2 in DS1. In Fig. 6d,

we use the same APFG used for Fig. 6b. In all cases, the

results show that the normalizing boosts the performance. In

all the cases except WN-Len1 (Fig. 6d), we can get almost a

perfect classification, i.e., close to full precision with 100%

recall when normalizing. The results for WN-Len1 can be

understood better in the next paragraph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall
Len1 Len2 Len3 Len4 Len5

(a) C-APFG for DS1 tested on P2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall
Len1 Len2 Len3 Len4 Len5

(b) C-APFG for DS4 tested on P2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall

Len1 Len2 Len3 Len4 Len5

(c) C-APFG for DS5 tested on P2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

Recall

Len1 Len2 Len3

(d) C-APFG, DSR tested on Pr1

Fig. 7: Comparing the effect of path lengths and location types on APFGs while applying with normalization

Influence of path length and location type. Fig. 7 reports

the PR curves for showing the effect of path length on the

classification performance. Overall, the results show that the

performance gets better with increasing the path length. In

the case of DS1 (Fig. 7a) and DS4 (Fig. 7b), Len1 and

Len2 have less influence on a baggage mishandling. These

transitions also take very short durations. As a result, the

performance is poor up to those transitions. However, in the

case of DS5, which contains the same distribution as DS4,

with the direction of the path is reversed, the performances

from Len2 and afterward are close to perfect classification.

The main mishandling occurs in the sorting system as a bag

takes longer for completing its sortation. So, it shows that the

model can classify mishandled bags very accurately when they

come in the bottleneck in their path and the result continues

getting better as objects move forward. The result with DSR

also shows the similar behavior (Fig. 7d).

Combined model vs. specialized model for each path.

Comparing the results of Fig. 6c with Fig. 7a shows that

testing the bags with path P2 by the C-APFGs and P2-

APFGs provides the same result. In all the experimental cases

we found that testing the bags with combined model and

specialized model provide the same results. However, it is

also true that the ALDPHs of a C-APFG become specialized

for the different paths when they start following different

path sequences. In our generated data set, P1 and P2 have

a common path from l1 to l3. After that, they follow different

path sequences. So, it will be best to use only combined model,

instead of building many models for different paths.

Effect of data distribution and mishandle ratio. In gen-

eral, the data distributions do not change the overall behavior

of the models. In DS1, the mishandling rate is balanced.

So, it starts giving very good precision from Len1 (Fig. 7a)

compared to the other cases where the mishandling rate is

extremely low (Fig. 7b to 7d). However, the models built from

all our different data set provide very good results. It also

shows the proposed APFG with normalization can perform

very well in an imbalanced class situation and does not get

affected by the class imbalance problem.

Finding the best RSth. We use DS4 in this experiment.

TRS of DS4 is divided into 10 folds for the standard k-fold

cross validation. Each fold contains 17.4K bags, where almost

half of them belong to P1. It is also made sure that the bags

from the same flight are not distributed to multiple folds. We

do not use DSR to show this experiment as DSR is small

TABLE V: Results based on the selected RSth

Pathlen RS th SBF Bnft-SC1 Bnft-SC2 pred-> P-SC1 N-SC1 P-SC2 N-SC2
Len1 0.998 29.58 168 168 Act-P 3 283 3 283

Act-N 5 14709 5 14709
Len2 0.94 28.23 66 0 Act-P 1 285 0 283

Act-N 1 14713 0 14709
Len3 0.28 28.7 1647 1464 Act-P 22 264 19 264

Act-N 9 14705 5 14704
Len4 0.479 25.3 22518 21141 Act-P 278 3 261 3

Act-N 0 14714 0 14704
Len5 0.498 10.3 4374 0 Act-P 54 11 0 3

Act-N 0 14714 0 14704

and dividing it into multiple folds will make it even smaller

for learning. Iteratively, we learn APFGs from 9 folds and use

the 10th fold for testing. So, finally we have the test results

for 10 APFGs. We use Eq. (5) with x=$96 (according to [1])

and y=$15 (salary of a baggage handler is app. $13/hour) for

obtaining the benefit for the different RSs in the results. For

optimizing the RSth for each path length, we take the average

of the risk scores that provide the highest benefit in each of

the 10 models. Then the average RS is used as the RSth for

predicting the riskiness of the actual test bags. The test results

are analyzed from two different perspectives. In scenario1

(SC1), the predicted mishandled bags are not removed from

the system unless they automatically disappear when they are

really mishandled. It can show the actual benefit at different

path lengths. In scenario2 (SC2), at different path lengths,

the predicted mishandled bags are removed from the system

such that they cannot be seen in the subsequent locations in

their path. It can show the total benefit if bags are saved

whenever it is detected as mishandled. The selected RSths,

benefits, confusion matrices, and how early the bags are saved

before the flight (SBF) for the bags with preplanned path

P2 are reported in Table V. As there are 286 mishandled

bags, the total cost without using the ORP will be $27456.

The benefits with SC1 shows that handling bags only at L4

can save 82% of the total mishandling cost, whereas, in SC2
168+0+1464+21141+0

27456
×100 = 83% of the total cost can be saved.

It also shows that 99% of the mishandled bags are predicted

within Len4 and at least 25 minutes before the flights.

Scalability. We use DS4 for building PFGs and APFGs

for showing the scalability regarding their construction time

and memory use. We use a set of SQL queries with some

DDL and DML operations for building PFGs and APFGs and

they are stored in the database tables. Before prediction, a C#

program loads the PFG and APFG into main memory. The full

PFG and APFG construction and loading times are reported

in Fig. 8a. In the case of SQL query times, we clear the cache

after executing each operation. In all cases, we run the queries

and code 3 times and report the rounded average time. In both

cases, the results show that the construction time increases

almost linearly with the number of bags. We also report the

memory use of LDPHs and ALDPHs for the different numbers

of bags. It shows that the size grows linearly with the number

of bags. It also shows that the total size of ALDPHs is on

average 84% higher than the total size of LDPHs. However,

the total size of the ALDPHs is very small, only 194 KB for

70K bags. So, it is feasible even for a larger data set.

0

2K

4K

6K

8K

10K

12K

14K

10K 20K 30K 40K 50K 60K 70K

C
o

n
st

ru
ct

io
n

 a
n

d
 l

o
a

d
in

g
 t

im
e

(m
s)

No. of Bags

PFG Construction Time PFG Loading Time

APFG Construction Time APFG Loading Time

(a) Construction Time

0

20

40

60

80

100

120

140

160

180

200

10K 20K 30K 40K 50K 60K 70K

M
e

m
o

ry
 U

se
 (

K
B

)

No. of Bags

PFG Memory Use APFG Memory Use

(b) Memory Usage

Fig. 8: PFG and APFG construction times and memory usage.

VII. RELATED WORK

Related work falls into two main categories. One is to

pre-process raw indoor tracking data and another one is to

perform data mining on such tracking data. The RFID data

management challenges and solutions are discussed in [6],

[15]. Data warehousing, mining, and workflow analysis are

proposed for RFID-based item tracking in the supply chain

systems in [8], [9]. The authors convert the raw RFID records

into cleansed record containing the first and last reading times

of an object under the readers activation range. In the present

paper, we use stay records [2], as it can capture the total

stay duration between locations. Graph-based model for indoor

tracking is discussed in [3], [11]. In the present paper, we

extend graph models for capturing the object flows with new

probabilistic concepts such as LDP, ALDP, and histograms.

Data mining is performed on the tracking data for finding

frequent spatio-temporal sequential patterns [5], [10], typical

movements of objects in indoor space [14], frequent trajec-

tory patterns for activity monitoring [12], and frequent walk

in RFID-equipped warehouse [4]. Interesting spatio-temporal

rule mining applications, techniques and issues are discussed

in [7]. The present paper introduces a new perspective which

is for risk prediction in indoor moving object. In [1], RFID

baggage tracking data are analyzed for mining risk factors in

the offline scenario. The present paper focuses on an online

risk prediction scenario that require more fine grained features

such as object transitions at the reader level and duration for

each of the transitions. Further, this paper is more general as

the used features are common in many symbolic indoor and

mixed indoor-outdoor tracking applications.

VIII. CONCLUSION AND FUTURE WORK

We proposed detailed steps and probabilistic models for pre-

dicting the risk of online indoor moving objects. We converted

the historical raw tracking records into stay records and used

them for constructing the probabilistic flow graphs called PFG

and APFG. The graphs capture the probabilistic information

about the transition times by using histograms called least

duration probability histogram LDPH and aggregated LDPH

(ALDPH). The flow graphs are used for obtaining risk score

of an online indoor moving object and for predicting risks. A

comprehensive experiment with synthetic and real data showed

that the proposed risk prediction method can differentiate risky

objects from the correctly handled objects very accurately

when the objects approach the bottleneck locations on their

paths. We also proposed a cost model for object mishandling

and the experiments showed that using APFG with the pro-

posed normalization can significantly save the operation cost.

The result also showed that the risky objects are predicted early

enough such that they can be saved from being mishandled.

In future work, the proposed techniques can be expanded to

more general scenarios such as mixed indoor-outdoor object

tracking. Further, predicting risks for the objects in nondeter-

ministic scenarios, where the paths of the objects are unknown

in advance, can be another future direction.

ACKNOWLEDGMENT

This work is supported by the BagTrack project funded by

the Danish National Advanced Technology Foundation under

grant no. 010-2011-1.

REFERENCES

[1] T. Ahmed, T. Calders, and T. B. Pedersen. Mining risk factors in RFID
baggage tracking data. In MDM (1), pages 235–242, 2015.

[2] T. Ahmed, T. B. Pedersen, and H. Lu. A data warehouse solution for
analyzing RFID-based baggage tracking data. In MDM (1), pages 283–
292, 2013.

[3] T. Ahmed, T. B. Pedersen, and H. Lu. Finding dense locations in indoor
tracking data. In MDM (1), pages 189–194, 2014.

[4] Z. Berenyi and H. Charaf. Utilizing tracking data in RFID-equipped
warehouses. In ICC, pages 169–173, May 2008.

[5] H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent spatio-
temporal sequential patterns. In ICDM, pages 82–89, 2005.

[6] S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. E. Sarma.
Managing RFID data. In VLDB, pages 1189–1195, 2004.

[7] G. Gidófalvi and T. B. Pedersen. Spatio-temporal rule mining: Issues
and techniques. In DaWaK, pages 275–284, 2005.

[8] H. Gonzalez, J. Han, and X. Li. Flowcube: Constructuing RFID
flowcubes for multi-dimensional analysis of commodity flows. In VLDB,
pages 834–845, 2006.

[9] H. Gonzalez, J. Han, and X. Li. Mining compressed commodity
workflows from massive RFID data sets. In CIKM, pages 162–171,
2006.

[10] Y. Huang, L. Zhang, and P. Zhang. A framework for mining sequential
patterns from spatio-temporal event data sets. TKDE, 20(4):433–448,
2008.

[11] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor tracking.
In MDM, pages 122–131, 2009.

[12] Y. Liu, Y. Zhao, L. Chen, J. Pei, and J. Han. Mining frequent trajectory
patterns for activity monitoring using radio frequency tag arrays. TPDS,
23(11):2138–2149, 2012.

[13] H. Lu, C. Guo, B. Yang, and C. S. Jensen. Finding frequently visited
indoor POIs using symbolic indoor tracking data. In EDBT, pages 449–
460, 2016.

[14] L. Radaelli, D. Sabonis, H. Lu, and C. S. Jensen. Identifying typical
movements among indoor objects - concepts and empirical study. In
MDM (1), pages 197–206, 2013.

[15] F. Wang and P. Liu. Temporal management of RFID data. In VLDB,
pages 1128–1139, 2005.

