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Abstract

We study how to allocate and route search-and-rescue (SAR) teams to areas with trapped victims in a

coordinated manner after a disaster. We propose two online strategies for these time-critical decisions

considering the uncertainty about the operation times required to rescue the victims and the condition of

the roads that may delay the operations. First, we follow the theoretical competitive analysis approach that

takes a worst-case perspective and prove lower bounds on the competitive ratio of the two variants of the

defined online problem with makespan and weighted latency objectives. Then, we test the proposed online

strategies and observe their good performance against the offline optimal solutions on randomly generated

instances.

Keywords: Disaster logistics, search-and-rescue, online optimization, makespan, latency, multiple teams,

edge blockage

1. Introduction

Search-and-rescue (SAR) in a disaster situation, either natural or man-made, involves time-critical ac-

tivities to locate a large number of victims, as well as saving them from entrapment. SAR operations go

in stages. In the assessment stage facts are gathered and target areas are determined. Once areas where

people are entrapped have been identified by means of various technology (see Ganz et al. (2015)), search5

operations involving multiple teams should be put into action in a coordinated way, following a well-designed

action plan that should be prepared as soon as possible. Next, the teams are dispatched to reach the victims

under dire conditions such as blocked roads. Via systematic search techniques and rescue operations, trapped

victims are secured and provided medical aid as necessary. SAR teams not only include trained personnel

with specialized skills and equipment, but also other supporting personnel such as paramedics, policemen10

and firemen. Furthermore, the teams have the ability to communicate with each other, e.g. through a mobile

ad hoc network (Anjum et al., 2015).

Among the factors that prolong SAR operations, the mobilization and dispatching of the rescue teams

play an important role (Statheropoulos et al., 2015). As stated in Poteyeva et al. (2007), according to

Wenger (1990) and the literature therein, there is consensus that in general SAR operations are hampered15

by problems of timely access. In fact, it is claimed that 80% to 90% of entrapped victims who survive are
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recovered in the first 48 hours after the disaster impact, and that many more entrapped victims could survive

with timely delivery of appropriate medical care (Poteyeva et al., 2007).

Research on disaster preparedness and response has focused mostly on pre-positioning of emergency

supplies, emergency response facility location, design of relief supply networks, distribution of relief aid,20

emergency transportation, resource allocation and evacuation (Tang et al., 2018), and neglected optimization

of SAR operations largely. In this paper, we optimize dispatching of heterogeneous SAR teams differing in

their SAR operation capacity, that involves both their allocation to areas with trapped victims and designing

their routes to reach the victim locations. Sheu (2007) cited handling the operational uncertainties as one of

the most important challenges of emergency logistics management. We propose online strategies for the SAR25

teams considering the uncertainty about the operation times required to rescue the victims and the condition

of the roads. We define an online optimization problem on a network where the locations with trapped victims

are nodes to be reached and processed, and the road connections between them are edges in this network,

which might be blocked. We consider two versions of the problem with two objectives, namely, minimizing

the completion time of the SAR operations (makespan) and minimizing the total weighted latency until30

victims are rescued, where latency of each victim location (node) is weighted by the percentage of victims

trapped there. The second objective aims to minimize the overall waiting time of the people until they get

rescued.

In theoretical analysis of online strategies, the quality of the strategies is evaluated by the competitive

analysis approach. That is, the performance of the strategy that operates under incomplete information,35

i.e. the online strategy, is compared with the performance of the optimal strategy that operates in presence

of complete information, i.e. the offline strategy. This type of analysis was first suggested in (Sleator &

Tarjan, 1985) and later called competitive analysis in (Karlin et al., 1988). To evaluate the performance

of online strategies, the notion of competitive ratio has been introduced by Sleator & Tarjan (1985) and

adopted by many researchers. For a deterministic online strategy, the competitive ratio is the maximum40

ratio of the cost of the online strategy to the cost of the offline strategy over all instances of the problem.

For a randomized online strategy, the expected competitive ratio is the maximum ratio of the expected

cost of the online strategy to the cost of the offline strategy over all instances of the problem. For our two

online problems with makespan and weighted latency objectives, we analyze how small competitive ratio a

deterministic online strategy may achieve. By finding lower bounds on the competitive ratio for the two45

problems, we show that any deterministic online strategy cannot get closer to the offline optimum than the

corresponding lower bound. This result shows the value of having complete information at the moment the

problem is solved.

Our contributions can be summarized as follows. We analyze an online optimization approach for the

search and rescue problem with multiple teams for the first time. With the aim of optimizing the SAR50

operations in a mass casualty incident, we introduce a new problem to the online optimization literature. We

derive theoretical lower bounds on the competitive ratio of the two variants of the proposed problem with

different objectives. We introduce two alternative novel online strategies that are shown to run in very short

time on realistic-sized instances.

The remainder of the paper is organized as follows. In the next section, we provide a review of relevant55
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research. In Section 3, we introduce two online optimization problems. We provide mixed integer program-

ming (MIP) models for the offline versions of these problems in Section 4. In Section 5, we derive lower

bounds on the competitive ratio of deterministic strategies for our proposed online problems. We present

two deterministic online strategies for our problems in Section 6. We provide our computational study in

Section 7. Finally, we conclude in Section 8.60

2. Literature review

Since our study focuses on online optimization of routing and allocation decisions for rescue units in

disaster response, our primary focus in this section will be on studies in three areas. First, we discuss articles

on online routing problems with edge blockages. Next, we review the work related to the scheduling of rescue

units in the disaster response phase. Finally, we give an overview of articles on disaster relief routing.65

2.1. Routing problems with online blocked edges

Analyzing routing problems with online blocked edges in networks has a rich background. These problems

involve one or more traveling agents on a road network modelled by a graph. An online blocked edge is not

known to the traveling agents initially and is revealed whenever one of its end-nodes is visited by at least

one of the agents. Typically, it is assumed that there exists a known number of blocked edges but their70

locations are not known. Our problem also tackles edge blockages but in addition considers uncertainty in

search times as well.

2.1.1. Single-agent problems

Using online blocked edges to model traffic uncertainties was introduced for the Canadian Traveler Prob-

lem (CTP) in Papadimitriou & Yannakakis (1991). The CTP is essentially a variation of the shortest path75

problem on graphs that are partially observable and contain online blocked edges. It is proven that devising

an online strategy with a bounded competitive ratio is PSPACE-complete for the CTP (Papadimitriou &

Yannakakis (1991)). Several variations of the CTP are considered in Bar-Noy & Schieber (1991). The k-CTP,

the version of CTP where an upper bound k on the number of blocked edges is given as input, is defined in

Bar-Noy & Schieber (1991) for the sake of computational ease. Furthermore, it is shown that for arbitrary k,80

the problem of designing an online strategy that guarantees the minimum travel cost is PSPACE-complete.

Traffic uncertainties have been taken into consideration for the Traveling Salesman Problem (TSP) as

well, and modelled with online blocked edges. A variation of the TSP that involves finding a shortest tour

including all nodes on a complete edge-weighted graph where there are k online blocked edges in the graph,

is investigated in Liao & Huang (2014). Since the problem has the same type of uncertainty as of the85

uncertainty in the CTP, this problem is called the online Covering Canadian Traveler Problem (CCTP). The

online CCTP is analyzed from the (worst-case) competitive ratio perspective. An efficient touring strategy

is given within an o(
√
k)−competitive ratio.

Another related problem is the online Steiner TSP (STSP) in which a salesman is required to visit only a

certain subset of the vertices in presence of k online blocked edges. This problem is investigated in Zhang et al.90

(2015) where a tight lower bound on the competitive ratio of deterministic online strategies is proven together
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with an exponential-time optimal deterministic online strategy. A polynomial-time asymptotically optimal

deterministic online strategy is also proposed. The performance of this polynomial-time online strategy is

tested on sparse randomly generated networks with k randomly generated online blocked edges in Zhang et al.

(2015). The STSP with k online advanced blocked edges, where the salesman receives blockage messages95

when he is at a certain distance to the respective blocked edges is studied in Zhang et al. (2016). Such road

blockages are referred to as advanced blocked edges. In that study a lower bound on the competitive ratio

of deterministic online strategies is proven. In addition, a polynomial-time deterministic online strategy is

proposed and tested on sparse randomly generated networks.

In addition to the above discussed problems, the minimum latency problem with k online blocked edges100

has been recently investigated in Zhang et al. (2019), where a lower bound on the competitive ratio of

deterministic online strategies is proven. Moreover, two efficient deterministic online strategies are proposed

and evaluated on randomly generated networks.

Here we emphasize that our problem is a multi-agent problem with multiple origin and destination

nodes. We conduct a competitive ratio analysis and in addition, investigate the performance of our proposed105

strategies by computational tests.

2.1.2. Multi-agent problems

A generalization of the k-CTP with multiple agents, which is called the online multi-agent k-CTP, has

also been investigated in the literature. The online multi-agent k-CTP with different levels of communication

between agents is studied in Zhang et al. (2013). Lower bounds on the competitive ratio of deterministic110

online strategies are proven. Also, two deterministic online strategies for special graphs which contain

several O-D edge-disjoint paths are proposed. In Shiri & Salman (2017), improved lower bounds on the

competitive ratio of deterministic online strategies for the online multi-agent k-CTP are given. An optimal

deterministic online strategy for O-D edge-disjoint graphs is provided as well. Randomized online strategies

for the online multi-agent k-CTP with different levels of communication between agents are proposed in115

Shiri & Salman (2019a). Lower bounds on the expected competitive ratio of randomized online strategies

are provided together with an optimal randomized strategy for O-D edge-disjoint graphs. The multi-agent

k-CTP is investigated from a computational point of view in Shiri & Salman (2019b). An efficient heuristic

deterministic online strategy is proposed and tested on real city road networks as well as randomly generated

networks.120

We would like to stress that in all of the articles which investigate the online multi-agent k-CTP, com-

petitive ratios of deterministic (or randomized) online strategies have been only proven for O-D edge-disjoint

graphs or graphs which contain a high number of O-D edge-disjoint paths. To the best of our knowledge, the

online multi-agent k-CTP is the only multi-agent problem in the literature which uses online blocked edges

to model traffic uncertainties. In none of the related studies discussed here, a multi-origin, multi-destination125

and multi-agent problem has been analyzed.

2.2. Scheduling rescue units in disaster response

In disaster operations management, a challenging task for rescue organizations is to assign and schedule

the rescue units to emergency incidents under time pressure in order to reduce the overall resulting harm. The
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scheduling of collaborative rescue units is investigated in Rolland et al. (2010), where a resource-constrained130

project scheduling problem is proposed and two meta-heuristics are presented for its solution. A quadratic

binary programming model and a heuristic are developed for scheduling collaborative rescue units in Wex

et al. (2013). Scheduling and allocation of rescue units to incidents are addressed in Wex et al. (2014) and a

mixed integer non-linear programming model is developed. A rather sophisticated heuristic is developed in

Schryen et al. (2015) for the joint allocation of rescue units and the scheduling of incidents under different135

conditions of collaboration, based on scheduling theory. The proposed heuristic is benchmarked against

a heuristic best-practice behavior and against lower bounds from a quadratic programming relaxation. a

MIP model is developed in Bodaghi & Ekambaram (2016) to minimize the relief operation completion times

required for all incidents by optimally assigning and scheduling various teams. For a small case study with

four rescue units, an optimal solution is obtained using a commercial solver. Although the model could140

account for it, the case study does not involve multi-capability rescue units. In Rauchecker & Schryen

(2019), scheduling rescue units during disaster response is optimized such that each rescue unit may offer

different capabilities and each incident may require multiple capabilities. Weights are assigned to an incident

according to its severity level and the total weighted completion time is minimized. For the related binary

linear programming problem, a branch-and-price algorithm which can serve as both an exact algorithm and145

a heuristic solution procedure under limited time is developed.

Departing from the above work, dynamic nature of the post-disaster conditions is modeled in Chen &

Miller-Hooks (2012) for the problem of deploying SAR teams to disaster sites. In this problem, assistance

requirements arrive dynamically, and the objective is to maximize the total expected number of people that

can be saved. Decisions are taken dynamically as more information is obtained while survival likelihood of150

people decreases by time. A multi-stage stochastic program is developed and solved by means of solving a

series of interrelated two-stage stochastic programs with recourse.

Previous work on this topic does not address the routing of the rescue units on a graph so far, whereas

we address routing decisions in addition to allocating the SAR teams to the rescue tasks. Furthermore, in

none of the above studies availability of incomplete information has been considered, while our current study155

aims to find online strategies under uncertainty of connections between the locations and rescue times for

the tasks.

2.3. Routing in disaster response

Relief routing literature mainly focuses on relief item distribution, which aims to find an efficient, effec-

tive and equitable distribution of pre-positioned relief items to people in need. Several studies approached160

optimization problems on this topic via deterministic models. In Yan & Shih (2009), a multi-objective and

multi-commodity network flow problem is defined for joint roadway repair and relief distribution, with the

objective of minimizing the total completion time of these activities. Minimization of total delivery time

or the latest arrival time of a vehicle is studied under a deterministic setting in Campbell et al. (2008) and

Ozkapici et al. (2016). A fuzzy multi-objective linear programming model is proposed in Tzeng et al. (2007)165

for designing relief delivery systems. The objective is to minimize total relief costs of primary and secondary

disasters. Another routing problem that involves routing teams is aimed at assessment of needs and damage
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following a disaster (Huang et al. (2013)). The objective is to minimize the sum of arrival times to beneficia-

ries, that is, total latency. Last mile distribution with multiple deliveries under multiple criteria is addressed

in Ferrer et al. (2018), where a model is developed to find the optimal routes for transporting aid from the170

supply nodes to the demand nodes, as well as the required vehicle fleet size.

Models addressing uncertainty in relief aid distribution are discussed next. In Hoyos et al. (2015), a

review of models with stochastic components in disaster operations management is provided and several

articles on relief distribution are discussed. In addition to the relevant studies that can be found therein,

recent studies on the subject include Alem et al. (2016), Zhang et al. (2012), Elci et al. (2018), Wang & Nie175

(2019) and Hu et al. (2019). In Alem et al. (2016), distribution of multiple types of relief aid commodities

via heterogeneous vehicles over multiple time periods and multiple scenarios is optimized. In the proposed

two-stage model, uncertainty of supply and demand amounts, and functionality of edges (edge blockage)

are represented by discrete scenarios. The first stage decisions are pre-positioning of supplies, while second

stage decisions involve distribution (without forming tours encompassing demand points). A fix and solve180

type of heuristic is provided. A local search heuristic together with an exact model for the multiple-disaster

multiple-response emergency team allocation problem is studied in Zhang et al. (2012), while considering

the stochastic occurrence of a secondary disaster. Addressing post-disaster uncertainty in demands and

transportation network conditions, a stochastic last mile relief network design problem is defined and a

stochastic optimization model that addresses accessibility and equity is developed in Elci et al. (2018). In185

Wang & Nie (2019), traffic congestion effects are incorporated into the problem that addresses relief aid pre-

positioning and its post-disaster transportation. A mixed integer nonlinear programming model is developed

and the generalized Benders decomposition algorithm is employed for its solution. A multi-stage stochastic

programming model for disaster relief distribution with consideration of uncertain and dynamic road capacity

is solved in Hu et al. (2019). The authors propose a solution methodology based on the progressive hedging190

algorithm. Uncertainty of demand, incoming supplies, and route availability are addressed via a set of

discrete scenarios and they are incorporated into a two-stage stochastic program that optimizes location,

transportation and fleet sizing decisions in Moreno et al. (2018). Three heuristics are developed for the

solution of the model.

Another approach used to address routing and distribution in disaster response under uncertainty is195

robust optimization. A robust bi-level optimization model is developed in Safaei et al. (2018) for a relief

network design problem under uncertainty of demand and supply parameters. The Capacitated Vehicle

Routing Problem and the Split Delivery Vehicle Routing Problem with uncertain travel times and demands

are studied in Li & Chung (2019) for planning vehicle routes with the purpose of delivering critical supplies

from a robust optimization perspective. Five objective functions are considered. A rolling horizon-based200

prediction and optimization framework, based on the so-called robust model predictive control approach,

is proposed in Lu et al. (2016). The goal is to obtain robust relief distribution plans and adjust them in

accordance with updated real-time information.

Several articles consider post-disaster relief routing, alone or mostly together with other decisions such as

pre-disaster facility location or supply chain design, under network link disruptions that cause inaccessibility205

or increased travel times (Bruni et al. (2018), Diabat et al. (2019), Ahmadi et al. (2015), Aslan & Celik
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(2019)). These studies are closer to ours compared to the above ones in terms of the type of uncertainty. A

routing problem with multiple vehicles traveling in a damaged transportation network, and limited knowledge

on the road travel times is defined and a heuristic algorithm is developed in Bruni et al. (2018). In Diabat

et al. (2019), supply chain network design is addressed, where facilities and routes between them are subject210

to disruptions and the network might become inaccessible after a disaster. A bi-objective robust optimization

model is provided to hedge against disruptions and a solution approach via Lagrangean relaxation is devel-

oped. A multi-depot location-routing problem is studied in Ahmadi et al. (2015), considering road closure

within a two-stage stochastic programming framework. The design of a humanitarian relief supply network,

subject to uncertainties in relief item demand and vulnerability of roads and facilities in the post-disaster215

stage is provided in Aslan & Celik (2019). A two-stage stochastic program is formulated and sample average

approximation is used in its solution.

Differing from the above discussed studies, we analyze a routing problem from on an online optimization

perspective. Hence, our methodology differs significantly from the work existing in the literature.

3. Problem description220

We consider a mass casualty incident, such as an earthquake, flooding, wildfire, etc., in which several

people have been trapped throughout a set of locations, which we call critical locations. It is not known a

priori how many people are trapped in each critical location and how much time is required to rescue the

people there. A mission is launched to rescue the victims throughout the area in shortest time. In a disaster

situation, the urgent SAR operations are hindered by inaccessible roads as some road segments may easily be225

damaged or blocked, and rendered non-traversable. If information about which roads are blocked and how

much time it takes to conduct a SAR operation at each critical location is available, the routes of the SAR

teams can be planned at the beginning of the operation and executed according to this static plan. However,

gathering the aforementioned information may take considerable time and rather than waiting for complete

information, dispatching the teams under incomplete information, and adjusting their routes as information230

is revealed over the course of the operations saves time. Developing a routing and SAR strategy in such a

case falls into the realm of online problems. In online problems information is revealed incrementally, while

taking actions, and decisions must be made before all information is available. In such problems, the goal

is to come up with a strategy that performs well over all possible data instances, compared to the optimal

solution found assuming that all of the data is available a priori. The latter is called the offline optimal.235

We next define an online optimization problem for the SAR setting described above. In this problem,

we represent the road network in the disaster struck area by an undirected graph G = (V,E), where V is

the node set and E is the edge set. In an emergency situation, roads can be used in both directions so that

the traveling time for each direction is symmetric. Also, this assumption is standard as most online routing

problems in the literature are defined on undirected graphs (e.g., see (Zhang et al., 2019), (Zhang et al.,240

2015), (Shiri & Salman, 2019b), and (Shiri & Salman, 2017)). Let S = {v1, v2, ..., vn} (S ⊂ V ) denote the

set of critical nodes. The non-critical nodes are not only depots, but they may be junction points that can

be used as intermediate nodes as well. For example, two end-nodes of a blocked edge can be two non-critical

nodes. We note that in our problem, the criterion is to reach the victims in minimum time (rather than
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minimizing the time span of each tour). Therefore, the return times of the teams to the depots are irrelevant245

in this case and can be omitted in computing the objectives.

There are L heterogeneous SAR teams T1, T2, ..., TL in the graph who can communicate, meaning that

once one of the unknown parameters is known to one of the teams, the information can be transferred to

other SAR teams immediately. Team Tl (l ∈ {1, 2, ..., L}) is at a given (depot) node dl in V \ S at time zero

and has a SAR operation rate rl, where rl denotes the amount of SAR operation that the team can perform250

in one unit of time. We assume that at most one SAR team can be assigned to a critical node. Given that

the teams have different capacities, if a node requires more search time, a team with a higher capacity should

be assigned to it.

An edge e = (i, j) ∈ E is associated with a non-negative traveling time tij . There are k blocked edges in

the graph, but these edges are not known to the teams at time zero. A blocked edge is learned online when255

at least one of the teams arrives at one of its end-nodes. This information is immediately communicated to

the other teams. As a result, the routes of the teams may change as blockage information is obtained.

Let Ns be a positive integer number which represents the number of victims at critical node vs (s ∈
{1, 2, ..., n}) and hs be the required amount of SAR operation at this node to rescue all of the victims there.

Both of these numbers are not known to the teams at time zero and their values are revealed online to the260

teams when exactly one of the teams performs the required operation. We assume that all of the victims at

a critical node will be found and rescued when the required amount of SAR operation is performed at the

node. The offline problem is different from the well-known m-TSP (Bektas, 2006) since we consider search

times at the nodes and some nodes can be bypassed without searching them.

We investigate this problem with two different objectives. The first objective is to devise an online strategy265

such that the teams find and rescue all of the victims in minimum time (makespan minimization). We call

the online problem under the makespan minimization objective PM . For a critical node vs (s ∈ {1, 2, ..., n}),
let latencys represent the time taken from time zero until the completion of the hs amount of SAR operation

at vs. In PM , the objective is to devise an online strategy such that the teams rescue all of the victims

in minimum time. That is, maxvs∈S latencys is minimized. The second objective is to design an online270

strategy such that the teams find and rescue all of the victims and the total weighted latency of the critical

nodes containing victims is minimized. The weight of a critical node is taken as the ratio of the number of

victims in the critical node to the total number of victims in the graph. We call the online problem under

this objective PWL. In PWL,
∑n

s=1
Ns∑

n

s=1
Ns

latencys is minimized. We list the notation of the parameters in

Table 1.275

Remark 3.1. The main focus of the problem is to handle the online uncertainties in a critical disaster

situation. For an online optimization problem, offline solution approaches cannot be applied. This is because,

once a piece of information is revealed, we cannot reset the problem to its initial setting. Instead, we should

use the revealed information to make a decision from that point onward. We believe that the online solu-

tion approach is applicable in disaster response, where information uncertainty is prevalent and probabilistic280

knowledge about the uncertain information is hardly available. In this paper, we define an online optimization

problem to study how to allocate and route SAR teams to areas with trapped victims in a coordinated manner

after a disaster. We obtained expert opinion emphasizing the uncertainties about the operation times required
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to rescue the victims and the condition of the roads that may delay the operations. We propose online solution

strategies for two variants of the defined online problem with makespan and weighted latency objectives.285

Table 1: Table of notations for the input parameters

Notation Description

G = (V,E) undirected graph G, node set V , edge set E

S = {v1, v2, ..., vn} ⊂ V set of critical nodes

hs (s ∈ {1, 2, ..., n}) required amount of rescue effort at critical node vs (unknown)

Ns (s ∈ {1, 2, ..., n}) number of victims at critical node vs (unknown)

tij traveling time of edge e = (i, j) ∈ E

B = {e1, e2, ..., ek} set of blocked edges (unknown)

I = E −B set of intact edges

Tl (l ∈ {1, 2, ..., L}) SAR team l

rl (l ∈ {1, 2, ..., L}) SAR operation rate of team l, i.e. effort/time

D = {d1, d2, ..., dz} ⊂ V − S (z ≤ m) set of depot nodes

Λ = V − S −D set of intermediate nodes

4. The offline problem

In the offline problem, all input data, including the set of blocked edges, the number of people at each

critical node and the amount of SAR operation required at each critical node, are known from the beginning.

The problem is to find the routes of the SAR teams and determine when the victims at each critical node290

are rescued (i.e. their latency). The route of a SAR team starts from its initial node (depot), includes one or

more critical nodes, as well as possibly other intermediate non-critical nodes between the critical nodes, and

ends at a critical node. The offline problem with either of the objectives, namely the offline versions of PM

and PWL, are both NP-hard. The minimum makespan problem is NP-hard because its single team special

case generalizes the Steiner Traveling Salesman Problem (Cornuéjols et al. (1985), Letchford et al. (2013)).295

The total weighted latency problem is also NP-hard since the special case with a single team and uniform

weights is the minimum latency problem, which is also called as the Traveling Repairman Problem (Bulhoes

et al. (2018)). Therefore, for the solution of these problems, we resort to their MIP formulations.

We note that in the offline problem the set of blocked edges B ⊂ E are known and it is assumed that the

graph formed after the incident by the set of nodes V and the intact edges I = E \B is still connected. We300

show this graph by G′ = (V, I).

4.1. MIP models for makespan and weighted latency minimization problems

In this section, we formulate MIP models for the offline problems with makespan and weighted latency

objective functions. In order to formulate the MIP models for these two problems, we adapt the approach

proposed in Angel-Bello et al. (2017), which was shown computationally to lead to a strong formulation305
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for the minimum latency problem with a single vehicle. Our problems differ in several aspects. Since the

problem in Angel-Bello et al. (2017) involves only a single vehicle, it does not consider the coordination of the

teams. It also does not involve search and rescue operations, and hence does not consider the edge blockage

situation.

To formulate the problems, we define a multi-level network with N + 1 levels, where N = |S| − L + 1.310

The value of N equals the maximum number of critical nodes that can be assigned to a single SAR team.

In this multi-level network, level N + 1 has L nodes including the depot of each SAR team. We note that

we assume multiple teams might be pre-positioned in the same depot but we create a node for the depot of

each of the SAR teams separately. Each of the levels from 2 to N has L + |S| nodes, including the depots

from level N + 1 and all the critical nodes. Finally, level 1 has |S| nodes including all the critical nodes. An315

illustration of this network is shown in Figure 1.

The first set of edges in this graph include the links between each of the depots from level r to each of the

critical nodes in level r − 1 (r = 2, ..., N + 1). Since in the transformed multi-level network, the depots and

the critical nodes are copied in the levels, there is a direct link between each pair of nodes and the critical

nodes are only visited to be served and not as intermediate nodes. As a result, the optimal solution to this320

problem gives disjoint paths. Moreover, we assume that the travel time between depot dl and the critical

node s ∈ {1, ..., |S|} is the time required to go from node dl to s plus the required service time from SAR

team l in node s to finish the SAR operations. As a result, if we denote these costs by πl
dls

∀l ∈ {1, ..., L}
and s ∈ {1, ..., |S|}, we can see that πl

dls
= cdls +

hs

rl
, where cij shows the shortest path distance from node

i to node j in graph G′ and
hs

rl
gives the required time for team l to fulfill the SAR operations at node s.325

The second set of edges in this graph are the links between the critical nodes from level r to critical nodes

in level r − 1, (r = 2, ..., N). Similar to above, since the optimal paths are disjoint, we can say that once a

team visits a critical node, it fulfills its SAR operations and then leaves it. Moreover, for each pair of critical

nodes, there are L paths with corresponding costs for each of the teams. As a result, we define parameters

πl
ss′ ∀l ∈ {1, ..., L} and s, s′ ∈ {1, ..., |S|}, s 6= s′, where πl

ss′ shows the travel time from critical node s to330

critical node s′ plus the required SAR operation time for team l at critical node s′ (πl
ss′ = css′ +

hs′

rl
). In

Figure 1, only one of such edges between each pair of critical nodes is shown.

Using the multi-level network that we described above and illustrated in Figure 1, we generate MIP

models for the offline problems. In the following, first we give the model for the makespan minimization

problem, PM and then present the model developed for the latency minimization problem, PWL.335

4.1.1. MIP model of the offline makespan minimization problem

In the makespan minimization problem, the objective is to minimize the time at which all the critical

nodes are served. This corresponds to the time of serving the last critical node. In the following we first give

the model and then describe the decision variables and constraints.
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Level�N+1 Level�N �Level�N−1 ���� �Level�3 �Level�2 Level�1

1 1 ��� 1 1 1

2 2 ��� 2 2 2

��� ��� ��� ��� ��� ���

|S| |S| ��� |S| |S| |S|

d1 d1 d1 ��� d1 d1

d2 d2 d2 ��� d2 d2

��� ��� ��� ��� ��� ���

dL dL dL ��� dL dL

Figure 1: Multi-level network for offline problems

Minimize W (1)

S.t.

|S|∑

s=1

πl
dls

yrldls
+

|S|∑

s=1

|S|∑

s′=1,s′ 6=s

πl
ss′y

rl
ss′ ≤ W, l = {1, ..., L} (2)

L∑

l=1

N∑

r=1

xrl
s = 1, s = {1, ..., |S|} (3)

|S|∑

s=1

x1l
s = 1, l = {1, ..., L} (4)

N∑

r=1

S∑

s=1

yrldls
= 1, l = {1, ..., L} (5)

|S|∑

s′=1, 6=s

yrlss′ = xr+1l
s , l = {1, ..., L}, s = {1, ..., |S|}, r = {1, ..., N − 1} (6)

yrldls′
+

|S|∑

s=1, 6=s′

yrlss′ = xrl
s′ l = {1, ..., L}, s′ = {1, ..., |S|}, r = {1, ..., N − 1} (7)

yNl
dls

= xNl
s s = {1, ..., |S|}, l = {1, ..., L} (8)
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xrl
s ∈ {0, 1} s ∈ {1, ..., |S|}, l ∈ {1, 2, ..., L}, r ∈ {1, ..., N} (9)

yrlss′ ∈ {0, 1} s ∈ {1, ..., |S|}, s′ ∈ {1, ..., |S|} \ s, l ∈ {1, 2, ..., L}, r ∈ {1, ..., N} (10)

W ∈ R (11)

In the given model for the makespan minimization problem, there are two main set of variables: xrl
s340

shows if node s is served by SAR team l in level r or not and yrlss′ shows if SAR team l goes from node s

to in level r + 1 to node s′ in level r or not. Since the objective is to minimize the maximum latency (the

makespan), the total time spent by SAR team l for both routing and servicing the critical nodes can be

calculated by
∑|S|

s=1 π
l
dls

yrldls
+

∑|S|
s=1

∑|S|
s′=1,s′ 6=s π

l
ss′y

rl
ss′ . Hence, the objective function and Constraints (2)

set this criterion.345

According to Constraints (3), each of the critical nodes should be visited with exactly one SAR team and

only in one of the levels. Constraints (4) provide that since each team should service at least one critical

node, at level 1, each of the teams should visit one of the critical nodes. Constraints (5) ensure all the

teams leave their depot to service a critical node. They can leave the depot in any of the levels from 2 to

N + 1. Constraints (6) link the y and x variables and the levels for outgoing edges from a critical node to350

other critical nodes. Constraints (7) link the y and x variables and the levels for the incoming edges to a

critical node either from the depot or other critical nodes. When there is an active node in level N of team

l, Constraints (8) ensure that the corresponding SAR team visits it directly from the depot.

4.1.2. MIP model for the offline weighted latency minimization problem

In the offline weighted latency minimization problem, the weighted latency of a critical node is calculated355

as the time taken from time zero until the end of the SAR operation at that node multiplied by the ratio of

the number of victims at the node to the total number of victims at all the critical nodes. For PWL, we only

change the objective function from makespan to weighted latency and use the similar constraints given from

(3) to (10). Using the weighted latency objective, we ensure that nodes with more victims have a higher

priority.360

5. Lower bounds on the competitive ratio of deterministic strategies for PM and PWL

In this section, we propose two lower bounds on the competitive ratio of deterministic online strategies

for both PM and PWL.

5.1. An immediate lower bound

A closely related problem to PM and PWL is the online multi-agent k-CTP with complete communication365

(Zhang et al., 2013). In this problem, an undirected connected graph is given with a source node O and a

destination node D, together with non-negative edge costs. The traveling agents who can communicate are

initially positioned at O. There are k blocked edges which are not known to the agents a priori. A blocked

edge cannot be traversed and is learned when an agent arrives at one of its end-nodes. This information is

12



immediately communicated to the other agents. The objective is to find an online strategy such that at least370

one of the agents finds a route from O to D with minimum travel cost.

Zhang et al. (2013) proved a lower bound of 2⌊ k
L
⌋+1 on the competitive ratio of deterministic strategies

for the online multi-agent k-CTP with complete communication, where k denotes the number of blocked

edges and L represents the number of traveling agents. One can verify that the online multi-agent k-CTP

with complete communication is a special case of PM and PWL with only one critical node (D), where the375

required amount of SAR effort on D is negligible in comparison to edge traveling costs.

Lemma 5.1. No deterministic strategy achieves a competitive ratio less than 2⌊ k
L
⌋+ 1 for PM and PWL.

Proof. Since the multi-agent k-CTP with complete communication is a special case of PM and PWL, the

lemma follows.

In the next section, we derive a slightly tighter lower bound on the competitive ratio of deterministic380

online strategies for PM and PWL by analyzing instances of the problems with more than one critical node.

5.2. An improved lower bound

Lemma 5.2. No deterministic strategy achieves a competitive ratio less than 2⌈ k
L
⌉ + 1 for PM and PWL,

where k denotes the number of blocked edges and L represents the number of SAR teams.

Proof. We show that for an arbitrary deterministic online strategy ALG applied to PM and PWL, there exists385

at least one instance of inputs, Γ, such that ALG cannot achieve a competitive ratio better than 2⌈ k
L
⌉ + 1

on Γ.

• Description of Γ. We consider the graph in Figure 2, where

V = {d1} ∪ {λl
i|l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., k + 1}} ∪ {v1, v2, ..., vL}

and

E = {(d1, λl
i), (λ

l
i, vl)|l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., k + 1}}.

Let the traveling time of the edges (d1, λ
l
i) be one for l = 1, 2, ..., L and i = 1, 2, ..., k + 1. Let the

traveling time of the remaining edges be ǫ. We assume that the number of critical nodes equals the

number of SAR teams. Also, we assume that S = {v1, v2, ..., vL} is the set of critical nodes and390

Λ = {λl
i|l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., k + 1}} is the set of intermediate nodes. We set the required

amount of rescue effort at critical node vs ∈ S equal to ǫ, i.e. hs = ǫ. We assume that the SAR teams

T1, T2, ..., TL are initially positioned at the depot node d1, i.e. D = {d1}. We let the SAR operation rate

of SAR team Tl be one for l = 1, 2, ..., L, i.e. rl = 1. Let P l
i be the path from d1 to vl via the intermediate

node λl
i for l = 1, 2, ..., L and i = 1, 2, ..., k + 1. Also let A = {P l

i |l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., k + 1}},395

i.e. A is the set of L(k + 1) paths from d1 to vl (l = 1, 2, ..., L). For an arbitrary deterministic online

strategy ALG, we let A
′ ⊂ A be the set of L⌊ k

L
⌋ paths (from d1 to vl) in A which are taken earlier

than the other L(K + 1)− L⌊ k
L
⌋ paths in A by the SAR teams. We assume that the k blocked edges

belong to E
′

= {(λl
i, vl)|l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., k + 1}}, i.e. B ⊂ E

′

. For ALG, we consider the

instance in which all of the paths in A
′

are blocked.400
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Figure 2: Topology of the instances of PM and PWL used for the proof of Lemma 5.2

• Computation of the makespan and the weighted total latency found by ALG on instance

Γ. Note that we consider the instance in which all of the paths in A
′

are blocked. Hence, in ALG

time of at least 2⌊ k
L
⌋ will be taken from time zero until the L number of SAR teams who are initially

at d1 traverse the L⌊ k
L
⌋ paths in A

′

, encounter L⌊ k
L
⌋ blocked edges, and arrive back at d1. To draw a

smallest competitive ratio, we assume that ALG is such that the SAR teams have found L⌊ k
L
⌋ blocked405

edges and are positioned at d1 at time 2⌊ k
L
⌋. We consider two cases.

– Case 1. ⌊ k
L
⌋ < k

L
< ⌈ k

L
⌉. Considering the instance described above, for ALG, none of the

critical nodes have been visited by time 2⌊ k
L
⌋. Since ⌊ k

L
⌋ < k

L
, there exists at least one blocked

edge in the graph at time 2⌊ k
L
⌋. For ALG, we consider the instance in which one of the SAR

teams encounters a blocked edge before visiting a critical node after time 2⌊ k
L
⌋, i.e. the SAR team410

who encounters the (L⌊ k
L
⌋ + 1)th blocked edge has to backtrack to d1 before visiting a critical

node. Thus, at least one of the critical nodes cannot be serviced earlier than time 2⌊ k
L
⌋+ 3 + 2ǫ.

We let vs∗ ∈ S be the node which cannot be serviced earlier than time 2⌊ k
L
⌋ + 3 + 2ǫ. We set

Ns = 1 for vs ∈ S − {vs∗}, and Ns∗ = M for vs∗ . Therefore, a time of at least 2⌊ k
L
⌋ + 3 + 2ǫ =

2⌈ k
L
⌉ + 1 + 2ǫ will be taken for ALG to visit and satisfy all of the critical nodes. Hence the415

makespan of ALG is at least 2⌈ k
L
⌉ + 1 + 2ǫ. Also, the total weighted latency of ALG is at least

M
M+L−1 (2⌊ k

L
⌋+3+2ǫ)+ (L−1)

M+L−1 (2⌊ k
L
⌋+1+2ǫ) = M

M+L−1 (2⌈ k
L
⌉+1+2ǫ)+ (L−1)

M+L−1 (2⌊ k
L
⌋+1+2ǫ).

– Case 2. ⌊ k
L
⌋ = k

L
= ⌈ k

L
⌉. Note that for ALG, time of at least 2⌊ k

L
⌋ = 2⌈ k

L
⌉ will be taken from

time zero until the L number of SAR teams who are initially at d1 explore the k blocked edges

in the graph and arrive back at d1. Next, it takes a time of at least 1 + 2ǫ for the SAR teams to420

arrive at the critical nodes and complete the required amount of SAR effort on them. Thus, the

makespan of ALG would be at least 2⌈ k
L
⌉ + 1 + 2ǫ. Note that, the latency of all of the critical
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nodes equals 2⌊ k
L
⌋+ 1 + 2ǫ = 2⌈ k

L
⌉+ 1 + 2ǫ. Thus, the total weighted latency of ALG is at least

2⌈ k
L
⌉+ 1 + 2ǫ.

• Computation of the makespan and the weighted total latency of the offline optimum. Since425

the number of SAR teams and the number of critical nodes are equal, in the offline optimum it takes a

time of 1+ 2ǫ for the L SAR teams to arrive at the L critical nodes and complete the required amount

of SAR effort on them. Therefore, the makespan and the total weighted latency of the offline optimum

is 1 + 2ǫ.

The lemma follows for PM when ǫ approaches zero. The lemma follows for PWL when ǫ approaches zero and430

M approaches +∞.

6. Description of the strategies

In this section, we present two deterministic online strategies for both PM and PWL.

6.1. MIP-based strategy

We propose a deterministic online strategy for both PM and PWL which utilizes the solution of an offline435

MIP model (the model in Section 4.1.1 for PM and the model in Section 4.1.2 for PWL) to partition the

critical nodes into clusters such that each cluster is assigned to exactly one SAR team. We call this strategy

the MIP-based strategy. Before we describe our strategy, we need to present the following definitions.

• An unassigned critical node. We say a critical node vs ∈ S is unassigned if the required amount

of SAR effort at vs is not observed and it does not belong to the cluster of any of the SAR teams. We440

denote the set of unassigned critical nodes by S0.

• An observed critical node. We say a critical node vs ∈ S is observed, if the required amount of

SAR effort at vs is observed but it is not determined which SAR team should perform the required

SAR effort at vs. We show the set of observed critical nodes by S1, i.e. S0 ∩ S1 = ∅.

• A planned critical node. We say a critical node vs ∈ S is planned, if the required amount of SAR445

effort at vs is observed and it is determined which SAR team should perform the required SAR effort

at vs. We show the set of observed critical nodes by S2, i.e. S0 ∩ S2 = ∅, and S1 ∩ S2 = ∅.

• An idle SAR team. We say a team Tl ∈ T is idle if it is static at its current location and does not

perform any SAR operation. We show the set of idle teams by T 1 ⊂ T , i.e. T 1 = T at the beginning.

• A directed SAR team. We say that a team Tl ∈ T is directed to a node vs ∈ S (i.e., vs 6∈ S1 ∪ S2),450

if Tl is responsible from taking the shortest path between their current location and vs to observe the

required amount of rescue effort at vs. We show the set of directed teams by T 2 ⊂ T , i.e. T 1 ∩T 2 = ∅.
When a team in T 2 observes the required amount of SAR effort at its directed node, it is removed from

T 2 and added to T 1.
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• An appointed SAR team. We say that a team Tl ∈ T is appointed to a planned node vs ∈ S2, if Tl455

is given the responsibility to take the shortest path between its current location and vs. We show the

set of appointed teams by T 3 ⊂ T , i.e. T 1 ∩ T 3 = ∅ and T 2 ∩ T 3 = ∅.

• A busy SAR team. We say that a team Tl ∈ T is busy at a planned node vs ∈ S2, if Tl is performing

SAR operation at vs. We show the set of busy teams by T 4 ⊂ T , i.e. T 1 ∩ T 4 = ∅, T 2 ∩ T 4 = ∅,
T 3 ∩ T 4 = ∅, and T 1 ∪ T 2 ∪ T 3 ∪ T 4 = T . When a team in T 3 arrives at its appointed node, it is460

removed from T 3 and added to T 4.

• The blockage factor. When a team encounters a blocked edge, the strategy for all the teams is

updated. In such cases, a directed or appointed team may change its current route and incur a higher

traveling cost. To take this into account, we consider the blockage factor (β). Note that β is defined

as a pre-determined constant which is greater than one.465

Our MIP-based strategy ALGMIP utilizes the given incomplete information on the inputs and disregards

the unknown information as follows. At the beginning, ALGMIP assumes that there is no blocked edge in

the graph and the required amount of rescue effort at all of the critical nodes is zero. Then, it solves a MIP

model (the model in Section 4.1.1 for PM and the model in Section 4.1.2 for PWL) in order to partition the

critical nodes into clusters such that each cluster is assigned to exactly one SAR team. Note that at this470

point, all the SAR teams are idle. Next, each idle team is directed to the closest critical node in its cluster.

If a blocked edge is found, ALGMIP removes the blocked edge from the graph and updates the strategy for

all the SAR teams. When a team arrives at its directed node, the team becomes idle and ALGMIP appoints

a SAR team to the node. When a team arrives at its appointed node, the team becomes busy and performs

the required amount of rescue effort at the node. When a team completes the required amount of rescue475

effort at a critical node, it becomes idle and may be directed or appointed to another critical node if possible.

Below, we formally present the MIP-based strategy.

Figure 3: An illustrative example for the MIP-based strategy

The MIP-based strategy:

• Input: Undirected graph G = (V,E) together with the edge traveling costs, set of critical nodes S ⊂ V ,

set of SAR teams T = {Tl|l = 1, 2, 3, ..., L}, rl SAR operation rate of Tl, set of depot nodes D.480
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• Initialization: Define S0 ⊂ S as the set of unassigned critical nodes and set S0 = S. Define S1 ⊂ S

as the set of observed critical nodes and set S1 = ∅. Define S2 ⊂ S as the set of planned critical nodes

and set S2 = ∅, i.e. S0 ∩ S1 = ∅, S0 ∩ S2 = ∅, and S1 ∩ S2 = ∅. Define T 1 ⊂ T as the set of idle

SAR teams and set T 1 = T at the beginning. Define T 2 ⊂ T as the set of directed SAR teams and

set T 2 = ∅, i.e. T 1 ∩ T 2 = ∅. Define T 3 ⊂ T as the set of appointed SAR teams and set T 3 = ∅, i.e.485

T 1∩T 3 = ∅ and T 2∩T 3. Define T 4 ⊂ T as the set of busy SAR teams and set T 4 = ∅, i.e. T 1∩T 4 = ∅,
T 2∩T 4 = ∅, T 3∩T 4 = ∅, and T = T 1∪T 2∪T 3∪T 4. Let β > 1 be the blockage factor (we set β = 1.5

in our implementation).

• Step 1. Set hs = 0 for vs ∈ S, i.e. set the required amount of rescue effort at critical nodes equal to

zero. If the problem is PM , solve an exact MIP model for makespan minimization which is presented in490

Section 4.1.1. If the problem is PWL, solve an exact MIP model for total weighted latency minimization

which is presented in Section 4.1.2. Set S0 = ∅ and let Ul be the set of critical nodes which are assigned

to the SAR team Tl ∈ T according to the MIP model. Go to Step 2.

• Step 2. If T 1 = ∅ or Ul ∪ S0 = ∅ for all Tl ∈ T 1, to update the strategy for all the teams go to Step

3. Otherwise, arbitrarily choose Tl∗ among the SAR teams in T 1 whose Ul ∪ S0 6= ∅. Find the nearest495

critical node vi∗ ∈ Ul∗ ∪ S0 to the current location of Tl∗ and direct Tl∗ to vi∗ . Set Ul∗ = Ul∗ − {vi∗},
S0 = S0 − {vi∗}, T 2 = T 2 ∪ {Tl∗}, and T 1 = T 1 − {Tl∗}. Then, go to the beginning of Step 2.

• Step 3. For Tl ∈ T 2 ∪ T 3 ∪ T 4:

– If Tl ∈ T 2, make Tl responsible for traversing the shortest path from its current location to its

directed critical node.500

– If Tl ∈ T 3, make Tl responsible for traversing the shortest path from its current location to its

appointed critical node.

– If Tl ∈ T 4, make Tl responsible for performing SAR operation on its appointed critical node.

Let the teams in Tl ∈ T 2 ∪ T 3 ∪ T 4 begin their assigned responsibilities simultaneously;

– If one of the teams encountered a blocked edge e, set E = E − {e}, and to update the strategy505

for all of the teams go to the beginning of Step 3.

– If a team Tl ∈ T 2 arrived at its directed node vs, observe hs (the required amount of rescue effort

at vs), set S
1 = S1 ∪{vs}, T 2 = T 2 −{Tl}, T 1 = T 1 ∪{Tl}, and to update the strategy for all the

teams go to Step 4.

– If a team Tl ∈ T 3 arrived at its appointed node vs ∈ S2, T
3 = T 3 − {Tl}, T 4 = T 4 ∪ {Tl}, and to510

update the strategy for all the teams go to the beginning of Step 3.

– If a team Tl ∈ T 4 completed the required amount of rescue effort at its planned node vs ∈ S2, set

T 4 = T 4 − {Tl}, and T 1 = T 1 ∪ {Tl}. If the required amount of rescue effort at all the critical

nodes is fulfilled, stop. Otherwise, to update the strategy for all of the teams go to the beginning

of Step 2.515
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• Step 4. Choose vi∗ ∈ S1 arbitrarily. Let ci
∗

l be the travel time of the shortest path between the

current location of Tl ∈ T and vi∗ . Compute πl =
hi∗

rl
+ β(ci

∗

l ) for Tl ∈ T 1 ∪ T 2. Let Tl∗ ∈ T 1 ∪ T 2 be

the SAR team whose πl is minimum (choose the team which is closer to vi∗ in case of tie). If Tl∗ was

previously directed to a critical node vs 6= vi∗ (if Tl∗ ∈ T 2), set S0 = S0 ∪ {vs}. Appoint Tl∗ to vi∗ , set

S1 = S1 − {vi∗}, S2 = S2 ∪ {vi∗}, T 1 = T 1 − {Tl∗}, T 2 = T 2 − {Tl∗}, T 3 = T 3 ∪ {Tl∗}. If S1 = ∅, to520

update the strategy for all the teams go to Step 2. Otherwise, go to the beginning of Step 4.

Remark 6.1. Consider a constructive version of the MIP-based strategy in which whenever a team Tl ∈ T 2

arrives at its directed critical node vs ∈ S (Step 3) it is immediately appointed to vs, i.e. in the constructive

version of the MIP-based strategy Step 4 is eliminated. We added Step 4 to the constructive version of the

MIP-based strategy to improve the quality of the solution. Hereafter, we call Step 4, the improvement step of525

the MIP-based strategy.

Remark 6.2. We tested our online strategies on various instances with up to 30 critical nodes. The MIP-

based strategy could not provide the optimal solutions of the larger instances. This is because the MIP-based

strategy requires solving the offline MIP model within the algorithm. However, this limitation is remedied in

the greedy strategy which does not require solving a MIP model at all. Rather, the main purpose of having530

the MIP-based strategy is to benchmark it with the fast greedy algorithm.

Table 2: Summarizing the illustrative example for the MIP-based strategy

Time Event T 1 T 2 T 3 T 4

0 T1 and T2 are idle {T1, T2} ∅ ∅ ∅
0 T1 is directed to v1 and T2 is directed to v2 ∅ {T1, T2} ∅ ∅
1 blocked edge (λ1, v1) is found by T1 ∅ {T1, T2} ∅ ∅
3 h2 is observed at v2 by T2 {T2} {T1} ∅ ∅
3 T1 is appointed to v2 {T2} ∅ {T1} ∅
3 T2 is directed to v1 ∅ {T2} {T1} ∅
6 h1 is observed at v1 by T2 {T2} ∅ {T1} ∅
6 T2 is appointed to v1 ∅ ∅ {T1, T2} ∅
6 T2 is busy at v1 ∅ ∅ {T1} {T2}
9 T1 is busy at v2 ∅ ∅ ∅ {T1, T2}
18 T2 finishs {T2} ∅ ∅ {T1}
19 T1 finishes {T1, T2} ∅ ∅ ∅

As an illustrative example, consider the instance given in Figure 3, where S = {v1, v2} is the set of critical

nodes, D = {d1, d2} is the set of depot nodes, Λ = {λ1, λ2} is the set of intermediate nodes, and the numbers

on the edges represent their travel times. Let T = {T1, T2} be the set of SAR teams. We assume that T1

and T2 are initially positioned at d1 and d2, respectively. Also we assume that r1 = 3 and r2 = 1, where535

rj (j ∈ {1, 2}) is the SAR operational rate of Tj . We assume that the edge (λ1, v1) is blocked and this is not

known to T1 and T2 at the beginning. When Step 2 of the MIP-based strategy is implemented, T1 and T2
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are directed to v1 and v2, respectively. At time 1, T1 arrives at λ1 and finds the edge (λ1, v1) blocked. Next,

T1 and T2 are directed to v1 and v2, respectively. At time 3, T2 arrives at v2 and h2 (the required amount of

rescue effort at v2) is revealed. Let h2 = 30. Note that at time 3, T1 is at λ2. Here, the MIP-based strategy540

enters Step 4 and computes π1 = 30
3 +1.5(6) = 19 and π2 = 30

1 +1.5(0) = 30. Since π1 < π2, T1 is appointed

to v2 and T2 is directed to v1. T2 arrives at v1 at time 6 and h1 = 12 is revealed. T2 completes the required

amount of rescue effort at v1 at time 6 + 12 = 18. Also, T1 completes the required amount of rescue effort

at v2 at time 3 + 6 + 10 = 19. Table 2 summarizes the illustrative example described above.

In the next section, we propose another strategy for PM and PWL which does not depend on solving a545

mathematical model.

6.2. Greedy strategy

In this section, we introduce another deterministic online strategy for both PM and PWL. Since the

routing choices are greedy in our strategy, we call it the Greedy strategy. Our Greedy strategy, ALGgreedy,

is similar to our MIP-based strategy with one main difference. Instead of solving a MIP model to cluster550

the critical nodes, ALGgreedy directs each SAR team to an unassigned critical node closest to its current

location. Hence, Step 1 of the MIP-based strategy is eliminated in the Greedy strategy. The further steps

of ALGgreedy are very similar to the corresponding steps in ALGMIP . Below, we formally describe our

deterministic online greedy strategy.

555

The greedy strategy:

• Input: The input of the MIP-based strategy hold.

• Initialization. The initialization of the MIP-based strategy hold.

• Step 1. If T 1 = ∅ or S0 = ∅, to update the strategy for all the teams go to Step 2. Otherwise, choose

Tl∗ ∈ T 1 arbitrarily. Find the nearest critical node vi∗ ∈ S0 to the current location of Tl∗ and direct560

Tl∗ to vi∗ . Set S
0 = S0 − {vi∗}, T 2 = T 2 ∪ {Tl∗}, and T 1 = T 1 − {Tl∗}. Then, go to the beginning of

Step 1.

• Step 2. Similar to Step 3 of the MIP-based strategy with the following difference. If a team Tl ∈ T 2

arrived at its directed node vs ∈ S0, observe hs (the required amount of rescue effort at vs), set

S1 = S1 ∪ {vs}, T 2 = T 2 − {Tl}, T 1 = T 1 ∪ {Tl}, and to update the strategy for all the teams go to565

Step 3.

• Step 3. Similar to Step 4 of the MIP-based strategy.

Remark 6.3. Similar to Step 4 of the MIP-based strategy which is called the improvement step of the

MIP-based strategy, we call Step 3 of the Greedy strategy the improvement step of the Greedy strategy.

Remark 6.4. The required amount of SAR effort at the nodes are not known a priori in online problems.570

As a result, the optimal solutions of the online problems cannot be obtained using an enumeration procedure,

even if the number of critical nodes that can be serviced within 48 hours is reasonably small. Although
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offline problems can be solved by an enumeration procedure for small instances, we chose not to implement

an enumeration procedure since the main concentration of this study is to propose efficient online solutions

for the online problems and to show their average computational performance in addition to the theoretical575

worst-case bounds. Therefore, we solved the offline problem using a MIP model instead of an enumeration

procedure.

7. Computational Results

In this section, we present the results of our experiments to investigate the performance of the proposed

online strategies for PM and PWL in comparison to the MIP models suggested for the offline problems. We580

mainly focus on run times of the strategies and how far solutions they yield compared to the offline optimal

solutions. We compare the performance of two alternative strategies.

7.1. Data Generation

Our experiments are conducted on 10 randomly generated networks and different sets of parameters. In

the instances, each generated graph is a random network in a 300 × 300 square with 500 nodes. There is585

an edge between a pair of nodes if their Euclidean distance is less than 30. This is to represent that the

maximum travel time between a pair of nodes is assumed to be 30 minutes. In these instances, the average

number of edges is slightly more than 3500. This corresponds to an average degree of 14 over the nodes.

In comparison with various road networks that are generated from real data in the literature (see (Rawls &

Turnquist, 2010), (Ajam et al., 2019), (Akbari & Salman, 2017a), and (Akbari & Salman, 2017b)) where the590

average degree of the nodes in all of the cases is less than five, these networks are relatively dense and make

the instances more challenging.

We tested each of the networks under various settings. We randomly selected blocked edges but made

sure to keep the network connected. We generated instances where 10, 25 and 40 percent of the edges are

blocked, to represent instances under different disaster impact, corresponding to minor, moderate and severe595

conditions, respectively. We refer to the percentage of edge blockage by PEB in the tables given in the

following sections.

For each of the networks, under different percentage of blocked edges mentioned above, we also tested

all of the instances with the number of critical nodes being 20, 25 and 30. Here the goal is to see how the

models and the strategies scale to the number of critical nodes, which is shown by |S| in the following tables.600

The number of victims in each critical node is a randomly generated number between 1 and 30. Moreover,

the average SAR operation time for each of these victims is assumed to be a random value between 30 and

180 minutes.

For any of the instances under different disaster severity cases and with different number of critical nodes,

we tested them with 3, 6 and 9 SAR teams. The number of SAR teams is shown by L in the following tables.605

The SAR teams are categorized into 3 groups; the more equipped group with a capacity of 30 SAR operation

units in an hour, the moderately equipped SAR team with a capacity of 20 SAR operation units in an hour

and finally the least equipped SAR team with a capacity of 10 SAR operation units in an hour. In each of

the instances, the number of SAR teams from these groups are equal to each other. That is why the number
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of teams is decided to be a multiplier of 3. Note that each of the 10 randomly generated networks is tested610

3× 3× 3 = 27 times, resulting in 270 instances in total.

Remark 7.1. The optimal offline solutions could not be obtained for the instances with more than 30 critical

nodes. Hence, the competitive ratio of the greedy strategy could not be computed on these instances, even

though the greedy strategy which does not require solving a MIP model is very fast and thus handles very large

instances.615

7.2. Computational Results

The computational experiments were conducted with Python 2.7.16 using Gurobi 8.0 on Intel Core(TM)

i5-7200U CPU @ 2.50GHz 2.71GHz (two processors) computer with 8 GB RAM, running under the Windows

10 operating system. In the following, we first give the results of the makespan minimization problem, PM

and then give the results of the weighted latency minimization problem, PWL.620

7.2.1. Results for the makespan minimization problem

At first, we tested the offline model presented in Section 4.1.1 for PM in a 30 minute time limit. Then

we tested both MIP-based and Greedy strategies on the same instances. These results are given in Table 3.

In Table 3, the column denoted by |S| shows the number of critical nodes in that instance. The PEB

column shows the impact of the disaster, which is categorized in three groups as minor, moderate and severe,625

corresponding to 10, 25 and 40 percent edge blockage in the network, respectively. The column denoted by

L gives the number of SAR teams in that instance. As it is stated above, first the offline problem was solved.

A run time limit of 1800 seconds was given to the solver and the run time reported in the tables are given in

seconds as well. As it can be seen in Table 3, run time increases as the number of critical nodes increases. For

instance, while the optimal solutions to all of the tested instances with 20 critical nodes were found within630

the time limit, none of the instances were solved optimally in the given time limit with 30 critical nodes and

6 or 9 teams. However, the average optimality gap for the unsolved instances remained under 10%. For the

instances whose offline models were not solved optimally within the time limit, we used the obtained lower

bounds (within the time limit) for the objective function values of the offline problems while calculating the

competitive ratios.635

After solving the offline problem, we tested both the MIP-based and the Greedy strategies. For each of

these strategies, three columns are reported in Table 3. The Avg runtime column shows the average time in

seconds that the solver spent on finding the solution. The Improvement % column shows the improvement

percentage resulting from adding the improvement step to each of the strategies. Since the nature of the

problem is online, there is no guarantee that either of the strategies with the improvement step obtains a640

better solution. In these experiments, we set the blockage factor as β = 1.5 based on our preliminary tests.

We note that if the value of β decreases, the possibility of having negative improvement increases and if the

value of β increases, the possibility of having positive improvement decreases and as a result, the average

improvement decreases. The CR column shows the average competitive ratio of the online strategies on the

tested instances. The underlined entries in the CR column are the better ones between the tested strategies.645

Note that the competitive ratio is different from optimality gap which is used to assess the performance
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   Offline 

Makespan 
MIP Based Strategy Greedy Strategy 

|S| PEB L Avg runtime Avg runtime Improvement? % CR Avg runtime Improvement? % CR  

20 

Minor 

3 25.42 19.89 21.81 1.23 0.72 1.63 1.22 

6 250.14 64.28 17.53 1.28 0.87 8.71 1.38 

9 464.86 12.95 26.01 1.17 1.05 12.40 1.47 

Moderate 

3 34.74 25.02 11.38 1.28 0.71 6.00 1.20 

6 814.60 37.18 17.29 1.33 0.89 7.96 1.37 

9 129.80 7.76 34.48 1.38 1.03 14.14 1.28 

Severe 

3 37.60 24.60 5.47 1.14 0.78 1.17 1.35 

6 378.00 122.60 6.25 1.45 0.92 5.05 1.38 

9 257.07 14.00 36.14 1.28 1.06 14.95 1.56 

25 

Minor 

3 148.49 90.52 24.18 1.23 0.97 2.42 1.11 

6 1521.20 767.80 4.75 1.28 1.19 13.24 1.34 

9 1795.20 50.72 34.69 1.36 1.50 6.44 1.48 

Moderate 

3 125.82 362.40 5.60 1.24 0.86 7.38 1.23 

6 1800 1303.40 24.23 1.40 1.19 13.83 1.35 

9 1651.00 270.00 23.18 1.22 1.39 14.83 1.36 

Severe 

3 107.20 169.20 10.79 1.32 1.04 -0.36 1.30 

6 1800 1143.20 12.20 1.25 1.31 6.59 1.51 

9 1671.40 56.60 26.62 1.35 1.33 -0.64 1.52 

30 

Minor 

3 548.33 808.24 23.39 1.22 1.57 1.95 1.19 

6 1800 1588.20 24.71 1.21 1.45 6.86 1.33 

9 1800 1331.00 28.74 1.28 1.62 7.97 1.40 

Moderate 

3 207.20 458.20 17.73 1.41 1.34 3.49 1.18 

6 1800 1687.20 24.31 1.33 1.52 0.23 1.36 

9 1800 1286.00 22.95 1.27 1.68 0.34 1.29 

Severe 

3 466.80 413.80 8.05 1.30 1.32 -2.87 1.25 

6 1800 1676.00 6.00 1.26 1.47 6.89 1.36 

9 1800 1110.00 5.44 1.39 1.94 9.17 1.42 

 

Table 3: Results from solving the makespan minimization problem

of heuristics in offline optimization problems. The competitive ratio of a strategy is the result of dividing

the obtained objective function value of the online strategy over the optimal objective function value of the

offline strategy.

We can see that while for the Greedy strategy the run time remains under 2 seconds on average for650

all of the tested instances, it increases significantly for the MIP-based strategy as the number of critical

nodes increases. This is a direct result of solving the MIP model to initialize the strategy and this step is

responsible for approximately 99% of the run time. The improvement step worked better for the MIP-based

strategy compared to the Greedy strategy where some of the improvements turned out to be negative. For

the MIP-based strategy, the improvement step performed better in the minor severity case with an average of655

22.87% compared to the moderate (20.13%) and severe (13.01%) cases. Finally, the comparison between the

average competitive ratios shows that on average the MIP-based strategy performed better when the number

of SAR teams increases. In most of the cases with 3 SAR teams, the Greedy strategy performed better with

an average of 1.22, while the average competitive ratio for the MIP-based strategy is 1.26. However, in the
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instances with 6 and 9 SAR teams, the MIP-based strategy performed better with an average competitive660

ratio of 1.31 for 6 and 1.30 for 9 SAR teams. The corresponding competitive ratios for the Greedy strategy

are 1.37 and 1.41 for 6 and 9 SAR teams, respectively.

Although the level of difficulty of an online problem defines what competitive ratios are acceptable for a

strategy, the obtained values of the competitive ratio for our strategies show that the introduced strategies

are performing well based on the online optimization literature. In some computational studies such as665

Zhang et al. (2019), which addresses the online minimum latency problem with up to k blocked roads that

are discovered upon arriving to a node adjacent to that edge, a strategy with a competitive ratio of below 3

is considered a good strategy.

7.2.2. Results for the weighted latency minimization problem

For PWL, similar to the makespan version, we first solved the offline problem and then tested our MIP-670

based and Greedy strategies on the same sets of instances.

   

Offline 

Latency 
MIP Based Strategy Greedy Strategy 

|S| PEB L Avg runtime Avg runtime Improvement? % CR Avg runtime Improvement? % CR 

20 

Minor 

3 3.17 3.19 7.35 1.27 0.72 0.41 1.28 

6 2.01 2.20 4.68 1.25 0.88 0.97 1.28 

9 1.96 2.32 4.76 1.24 0.96 3.35 1.29 

Moderate 

3 3.05 3.52 0.51 1.36 0.73 2.74 1.34 

6 1.76 2.31 8.82 1.37 0.89 -0.44 1.42 

9 1.83 2.11 17.17 1.25 1.03 0.27 1.28 

Severe 

3 3.70 4.91 2.72 1.38 0.80 0.73 1.39 

6 1.47 2.19 0.54 1.35 2.36 1.08 1.38 

9 1.66 1.79 6.08 1.27 1.02 3.82 1.39 

25 

Minor 

3 19.13 23.19 8.16 1.32 0.97 0.34 1.27 

6 4.91 5.58 10.45 1.34 1.17 2.10 1.38 

9 6.07 6.43 9.13 1.27 1.51 4.06 1.27 

Moderate 

3 13.40 14.45 3.91 1.39 1.00 1.22 1.39 

6 4.71 7.29 11.10 1.29 1.18 2.03 1.33 

9 4.96 8.43 8.21 1.44 1.39 2.67 1.39 

Severe 

3 12.87 20.16 3.45 1.41 1.05 -0.05 1.30 

6 5.97 7.37 6.82 1.31 1.29 -0.64 1.43 

9 4.33 5.42 6.82 1.37 1.24 2.11 1.38 

30 

Minor 

3 64.13 446.44 8.71 1.44 1.57 0.04 1.42 

6 16.80 19.13 4.09 1.35 1.53 -0.99 1.40 

9 14.00 16.80 14.99 1.35 1.62 2.60 1.31 

Moderate 

3 40.00 91.04 7.44 1.34 1.32 0.79 1.32 

6 16.96 27.20 12.58 1.34 1.52 -0.59 1.43 

9 15.00 21.50 6.38 1.33 1.68 -0.11 1.35 

Severe 

3 103.20 140.80 6.65 1.47 1.41 1.23 1.36 

6 23.37 22.69 7.16 1.32 1.47 2.56 1.34 

9 12.70 20.72 10.30 1.42 1.93 2.79 1.47 

 

Table 4: Results from solving the Weighted Latency Problem

23



Table 4 contains the same column headings as in Table 3. From Table 4 we can see that unlike PM , the

offline version of the PWL was solved for all the instances within the given time limit. This is mainly because

the formulation proposed and tested in Angel-Bello et al. (2017) was aimed to solve the latency objective

and not the makespan version. In PWL, the run time increases when the number of critical nodes increases.675

However, the number of SAR teams has a reverse impact on the run time and as the number of SAR teams

increases, the solver seems to be able to find the solutions faster.

Different from PM , for the weighted latency objective function, the average run time of the MIP-based

strategy is not very large as the initialization step which includes solving the MIP model is solved considerably

faster. Similar to the makespan results, the average run time for the Greedy strategy is low, i.e. it is under 3680

seconds in all of the cases. Looking at the performance of the improvement step, we can see that similar to

the results for the makespan minimization problem, the improvement step showed better performance on the

initial solutions obtained from the MIP-based strategy compared to those from the Greedy strategy. While

the improvement on average is 7.3% for the MIP-based strategy, it is only 1.3% for the Greedy strategy.

It is also interesting to see that the average improvement percentages for PM was considerably higher than685

the average improvement percentages for PWL. The improvment percentages are 18.6% and 6.3% for the

MIP-based strategy and the Greedy strategy, respectively. From Table 4 we also observe that there is no

significant difference on the average competitive ratio obtained from the two strategies with 1.34 for the

MIP-based and 1.35 for the Greedy strategy.

A comparison between the performance of the MIP-based strategy for the makespan and the weighted690

latency problems shows that although PM was noticeably harder to solve with an average run time of

551 seconds over all of the instances, versus the average run time of 33.41 seconds for PWL, the obtained

competitive ratio for PM was 1.29, which is lower than the average competitive ratio of 1.34 for PWL. The

same comparison for the Greedy strategy shows that the run time of this strategy is not influenced by the

problem and it is under 3 seconds in all of the tested cases, and the average competitive ratio is also very695

similar for them with being 1.33 for PM and 1.35 for PWL.

8. Conclusions

We optimized the routing of SAR teams to reach the locations where victims are trapped after a disaster

causing a large number of casualties. We also optimized the allocation of heterogeneous teams with different

operational capacities to the victim locations that may require different amount of SAR work since different700

number of victims may exist at the locations and the nature of damage may necessitate different amount of

rescue effort. A key characteristic of our work is that online strategies need to be found that will work under

uncertainty of rescue times at the locations having trapped victims (nodes of the graph) and the uncertainty

of which connections (edges of the graph) may be untraversable. As the strategy runs following a predefined

online strategy, uncertainty about these elements are revealed according to the actions of the SAR teams.705

We believe that this problem characteristic captures the nature of the environment after a disaster. The

defined problems are also a new addition to the online optimization literature, since a multi-agent navigation

problem on a graph with uncertain edge blockages and having multiple origins and multiple destinations has

not been addressed before.
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We analyzed the online problem that we proposed by means of two objectives, namely minimization of710

the time when all rescue operations are completed (makespan) and minimization of the weighted latency of

the victims, which is defined to represent the average waiting time of a victim. For these two problems, we

provided two lower bounds on the competitive ratio of online deterministic strategies; hence quantifying in

terms of problem parameters how much it can be possible in the worst-case to approach the optimal solution

when all input data are known at the time of planning.715

We devised two online strategies that are valid for both problems; one based on the solution of an offline

MIP model, and the other on greedy choices. By extensive computational experiments on randomly generated

data, we showed that the Greedy strategy works in a few seconds on large-scale instances with 500 nodes and

up to 9 SAR teams but solving the offline makespan model takes more time in some large-sized instances.

On the other hand, solving the offline latency problem takes at most a few minutes in large instances.720

An open question that remains to be analyzed from a theoretical point of view is deriving the competitive

ratio of the proposed strategies as well as the tightness of the proposed lower bounds. From a practical point

of view, an analysis of our online strategies on real-life data would be interesting.
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