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Abstract

We address the problem of online route discovery for a

class of graphs that can be embedded either in two or in

three dimensional space. In two dimensions we propose the

class of quasi-planar graphs and in three dimensions the

class of quasi-polyhedral graphs. In both cases we pro-

vide a routing algorithm that guarantees delivery. Our al-

gorithms need only “remember” the source and destination

nodes and one (respectively, two) reference nodes. More-

over, we show that the quasi-planar routing algorithm is

inherently flexible in its path-finding, and as an application

demonstrate computational results for a network load prob-

lem.

1. Introduction

Ad hoc networks are widely being adopted today in

many sectors of the economy in order to enhance commu-

nication capabilities. A particular case in point are sensor

networks which are employed in many sectors that bene-

fit greatly from increased surveillance (such as transporta-

tion, agriculture, personal and institutional security, radiol-

ogy, medicine, and manufacturing). Given that the nodes

of such a network are expected to spontaneously create an

impromptu connected system that dynamically adapts to de-

vice failure and degradation, manages movement of nodes,

and may even react to changes in task and network re-

quirements, it is not surprising that a predefined topological

structure is not feasible.

Since it is usually difficult to attain the required commu-

nication efficiency within complex networks, research tends

to concentrate on a “simplified” topological structure of the

unstructured ad hoc network. Such a structure not only must

span the entire network but also maintain a sufficient num-

ber of the old links in order to sustain connectivity. The

first models adapted for this purpose were planar spanners

of the ad hoc network. The planarity condition (no crossing

edges) was strong enough for developing the first routing

algorithms for ad hoc networks.

The most efficient way to accomplish communication

exchange efficiently between a given pair of nodes of an ad

hoc network is by discovering a route (i.e., a path) between

them. Path finding, or routing, is a fundamental problem

in the field of ad hoc communication networks. The inher-

ent mobility of the nodes of an ad hoc network and the lack

of a pre-designed topology imply that packets must navi-

gate the network using only local information and constant

memory. Moreover, it is vital that a route discovery strat-

egy uses only local information and is adaptable easily to

the network changes. This means that at a vertex v, a rout-

ing algorithm must base its next move on v, on its “close”

neighbourhood, and a small number of extra bits (typically

O(log n)) of stored information. Such an algorithm is said

to be local, or online.

The fundamental technique for discovering routes be-

tween two nodes in an ad hoc network is the face rout-

ing algorithm on a planar spanner of the wireless net-

work [13], [6]. There has been extensive literature related

to discovering routes in position-based, wireless ad hoc net-

works when the underlying graph is an undirected planar

geometric network, e.g., see [3, 4, 6, 9, 13, 15, 16]. In

such algorithms the emphasis is not only on minimizing the

length of the route but also on guaranteeing packet delivery.

Recent research has concentrated on extending these ideas
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from planar networks to more complex networks. In partic-

ular, [7] addresses the problem in directed planar networks,

[8] in a class of networks that have a planar backbone, while

[14] provides a general survey. We also note that related

to routing is traversal which is addressed in several papers:

Avis et al. [1], Bose et al. [5], Chavez et al. [8], Czyczow-

icz et al. [10], Gold et al. [12], Peuquet et al. [19, 20]. How-

ever, traversal is less efficient than routing for message de-

livery.

Since nodes in an ad hoc network are typically limited

by battery power, a further area of research is load-aware

routing [17, 18, 11], in which the routing algorithm attempts

to avoid nodes with high traffic. This results in an overall

increase in network load from using longer paths, but can

be instrumental in retaining network connectivity.

1.1. Results and contribution of the paper

We represent a network as a geometric graph, that is, a

graph G with vertices V in R
2 or R

3, where each vertex is

aware of its coordinates. Edges in G are line segments with

(distinct) endpoints in V .

Our goal is to continue a step towards routing in more

general networks than strictly planar graphs, cf. [2, 8]. We

address the problem of online route discovery in a class of

graphs that is richer than planar. In two dimensions the class

of these graphs is a sub-class of quasi-planar graphs defined

in [8]. We will continue using the same name for the sub-

class. Intuitively speaking, such graphs are geometrically

embedded into R
2 and have underlying planar backbones

with convex faces. However, within each face, arbitrary

edges are allowed. In three dimensions we define a new

class of graphs, quasi-polyhedral graphs, which extends the

notion of quasi-planar graphs into R
3. The backbones of

these graphs are collections of convex polyhedra, and arbi-

trary edges are allowed within each polyhedron. It is im-

portant to note that for the purposes of our algorithms only

the existence of a backbone is essential. The algorithms do

not explicitly know which edges belong to the backbone; its

existence is used only in proofs of correctness of the algo-

rithms.

We will extend the well-known right-hand rule routing

algorithm [13], [6] for planar graphs to quasi-planar. Fur-

thermore we extend our techniques to a routing algorithm

for quasi-polyhedral graphs. Our algorithm for quasi-planar

graphs needs only remember the source and destination ver-

tices and one reference vertex used to store information

about the underlying face currently being traversed. Our al-

gorithm for quasi-polyhedral graphs requires enough mem-

ory to store the source and destination vertices, and two ref-

erence vertices.

In addition to using very little memory, our quasi-planar

routing algorithm is also robust: at each node, it constructs

a set of candidates for its next local destination, and can use

any rule or heuristic to choose from this set. This provides

more flexibility than, for example, the standard Greedy al-

gorithm, which has only one option from any node. In Sec-

tion 3 we apply our algorithm as a heuristic for load-aware

routing on unit disk graphs, and compare computational re-

sults with the Greedy algorithm.

Due to the space limitation, we omit proofs as well as

the discussion about the quasi-polyhedral graphs. They will

appear in the journal version of this paper.

2. Quasi-planar routing in R
2

Let G = (V, E, F ) be a planar graph with vertex set V ,

edge set E, and face set F . A convex embedding of G is a

straight-line embedding into the plane such that the bound-

ary of every face is a convex polygon; we will associate G
with its convex embedding. For the remainder of the pa-

per we assume that such a graph G has no three collinear

vertices.

Let G = (V, E, F ) be a convex embedding, and con-

struct a new graph Q by adding chords to the faces of G
except for the outer face fO. That is Q = (V, E ∪ E′),
where each edge e ∈ E′ joins two vertices of some face

f ∈ F\{fO}. We call such a graph Q a quasi-planar graph:

there may be many crossing edges, but a facial structure re-

mains. Figure 1 illustrates an example of a quasi-planar

graph.

Figure 1. A quasi-planar graph and one of its

underlying planar graphs.

We refer to G as an underlying planar graph of Q, and

say that the faces fi ∈ F of G are underlying faces of

Q. Note that an underlying planar graph is not necessarily

unique for a given quasi-planar graph. For the purposes of

our routing algorithm it is enough to know that such a graph

G exists; the particular choice of G is irrelevant and will not

affect the behaviour of the algorithm. In fact, the existence

of the graph G is used only in proofs of correctness of the

algorithm.

Define cw(u, v) to be the first clockwise neighbour of u
starting from the direction uv. Note that uv is not required

to be an edge. Similarly, ccw(u, v) is the first counterclock-

wise neighbour of u starting from the direction uv. These

two functions can be computed locally, as long as uv ∈ E
or the location of v is known. Let u, v, w1, w2, . . . , wp ∈ V .
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Then w1, w2, . . . , wp form a clockwise sequence around u
from v if they are the first p consecutive clockwise neigh-

bours of u starting from the direction determined by v. Note

that v is not necessarily adjacent to u. A counterclockwise

sequence is defined analogously.

We denote by uv the line segment through vertices u and

v; it will be clear from context whether uv refers to an edge

or a line segment. The line segment st separates the ver-

tex set into two subsets VA and VB that we can think of as

containing vertices “above” and “below” st, respectively.

Specifically, VA = {v ∈ V : 0 < ∠tsv < π} and VB =
{v ∈ V : π < ∠tsv < 2π}, and V = {s, t} ∪ VA ∪ VB .1

Since G is represented by a convex embedding and using

the assumption that st /∈ E, it follows that both VA and

VB are non-empty. If a vertex v knows the geometric loca-

tions of s and t, it is a fast local computation to determine

whether v ∈ VA or v ∈ VB . Finally, for any vertex v of G,

N(v) denotes the set of neighbours of G.

2.1. The QUASI-PLANAR algorithm

We now describe an O(1)-memory routing algorithm

that guarantees delivery on quasi-planar graphs. The

QUASI-PLANAR algorithm traverses vertices within the un-

derlying faces intersecting st, alternately using the left- and

right-hand rules (i.e., using the functions ccw and cw) when

v ∈ VA and v ∈ VB , respectively; see Algorithm 1.

If s = t or st ∈ E, then routing from s to t is obviously

trivial. We may therefore assume that s and t are distinct

and non-adjacent; for brevity in the following algorithm we

refrain from explicitly checking for these trivial cases.

As is typical of all algorithms using the face routing tech-

nique, the QUASI-PLANAR algorithm only requires enough

memory to remember s, t, and one other reference vertex

x; this latter vertex is used to store information about the

current underlying face. Whenever the current vertex v is in

VA, x will be in VB , and vice versa.

Finally, QUASI-PLANAR requires a rule R that will de-

termine the next vertex from the neighbours of the current

vertex v. First suppose v ∈ VA, and hence x ∈ VB . Let

b1, b2, . . . , bp, a be a counterclockwise sequence around v
from x, where p ≥ 0, bi ∈ VB , and a ∈ VA. Although the

set {b1, b2, . . . , bp} may be empty (that is, p = 0 is possi-

ble), we can guarantee the existence of a. We require that

the function R(v, x) evaluate to an element from the (non-

empty) set {b1, b2, . . . , bp, a}; see Figure 2.

For sake of simplicity, we abuse notation and also refer

to R(v, x) when v ∈ VB and x ∈ VA, with the under-

standing that R is symmetric about st. That is, R(v, x) ∈

1The definitions of VA and VB depend on the choice of s, t; however,

their reference will be omitted as it can be easily understood from the con-

text.

v

s

a

x

t

b1
b2

b3

Figure 2. The current vertex is v; candidates

for the next vertex are {b1, . . . , bp, a}.

{a1, a2, . . . , aq, b} where a1, a2, . . . , aq, b is a clockwise

sequence around v from x, q ≥ 0, ai ∈ VA, and b ∈ VB .

As we will prove shortly, the particular choice of R does

not affect the correctness of the algorithm on quasi-planar

graphs. Incidentally, observe that the algorithm can emu-

late standard face-routing by choosing R(v, x) = a for all

(v, x). A more effective rule for most applications is natu-

rally R(v, x) = argmin{d(u, t) : u ∈ {b1, . . . , bp, a}},

where d(u, w) measures the Euclidean distance between

vertices u and w. More complex rules are possible if the

algorithm has access to other (non-geometric) information

at each node, such as network load.

Theorem 1 Given a quasi-planar graph Q and distinct,

non-adjacent vertices s, t ∈ V (Q), the QUASI-PLANAR al-

gorithm successfully routes from s to t.

3. Computational Results

We performed several experiments with load-aware rout-

ing on unit disk graphs in R
2, using QUASI-PLANAR as a

heuristic and compared them against GREEDY, which min-

imizes the Euclidean distance to t at every step.

The transmission of packets at nodes is one of the biggest

energy drains [11], so we measure the number of packets

load(v) sent through each node v. Assume every node

has the power to transmit M packets before dying, for

some constant M . To preserve network integrity, we there-

fore attempt to minimize the maximum load MaxLoad :=
maxv{load(v) : v ∈ V } on the network.

To this end, as a simple heuristic we use the rule

R(v, x) = argmin{load(u) : u ∈ {b1, . . . , bp, a}} for

QUASI-PLANAR; that is, it chooses the vertex with mini-

mum load from the set of candidates.

The test graphs each consist of 200 randomly-placed ver-

tices in a unit square, with an edge joining two vertices if

their Euclidean distance falls within a threshold τ . The pa-

rameter τ is chosen in each case to produce a graph with

a desired average degree. For each test we take averages

over 100 such graphs. Packets are sent between randomly-

chosen pairs, and are assumed to have the same size.
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Algorithm 1 Quasi-Planar Routing

1: procedure QUASI-PLANAR(Q,s, t,R)

2: v ← ccw(s, t)
3: x← cw(s, t)
4: while vt /∈ E do

5: if v ∈ VA then

6: Find the counterclockwise sequence

b1, b2, . . . , bp, a around v from x, where p ≥ 0, a ∈ VA and

bi ∈ VB , 1 ≤ i ≤ p.

7: ifR(v, x) = a then

8: x← bp

9: v ← a
10: else � in this caseR(v, x) = bk for some

k, 1 ≤ k ≤ p
11: x← v
12: v ← bk

13: end if

14: else � v ∈ VB

15: Find the clockwise sequence a1, a2, . . . , aq, b
around v from x, where q ≥ 0, b ∈ VB and ai ∈ VA,

1 ≤ i ≤ q.

16: ifR(v, x) = b then

17: x← aq

18: v ← b
19: else � in this caseR(v, x) = ak for some

k, 1 ≤ k ≤ q
20: x← v
21: v ← ak

22: end if

23: end if

24: end while

25: v ← t
26: end procedure

Both algorithms are terminated after 25 steps; the traffic

from unsuccessful messages still contributes to the total.

We present three sets of results. The first (see Table

1) shows the average success rates of the algorithms after

sending 1000 packets, for several choices of average degree

d. For relatively sparse graphs (d < 25), QUASI-PLANAR

does not perform as effectively as GREEDY, since there will

be large non-convex “pockets” missing in the interior of

the graphs. The success rate for both algorithms is close

to 100% for larger values of d.

For the second set (Table 2), we take M to be a very large

number (we can assume M = ∞), and measure MaxLoad
as the number of packets increases to 1000. We fix d = 20
for this test.

The last test (Table 3) is the opposite of the second: we

measure the number of packets sent before the first node

dies, for values of M up to 1000. Again d = 20.

Success rate on unit disk graphs with average degree d

d GREEDY QUASI-PLANAR

> 25 1.000 0.990

25 1.000 0.980

20 0.999 0.970

15 0.996 0.947

10 0.932 0.805

Table 1

Maximum load after sending p packets

p GREEDY QUASI-PLANAR

200 17.2 17.5

400 33.0 30.2

600 48.1 42.9

800 62.6 56.9

1000 78.0 69.7

Table 2

Packets sent, in thousands, before first node death

M GREEDY QUASI-PLANAR

200 2.76 3.02

400 5.54 6.13

600 8.32 9.27

800 11.09 12.39

1000 13.85 15.50

Table 3

Finally note that, interestingly, QUASI-PLANAR per-

formed very well on the random unit-disk graphs. Also note

that the length of the path computed by QUASI-PLANAR is

not related to the length of a shortest path joining the in-

put vertices, but it is related to the length of faces that lie

”between” the two vertices.
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