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Online search tool for graphical patterns in electronic band

structures
Stanislav S. Borysov 1,5, Bart Olsthoorn1,2, M. Berk Gedik1,3, R. Matthias Geilhufe1 and Alexander V. Balatsky1,4

Many functional materials can be characterized by a specific pattern in their electronic band structure, for example, Dirac materials,

characterized by a linear crossing of bands; topological insulators, characterized by a “Mexican hat” pattern or an effectively free

electron gas, characterized by a parabolic dispersion. To find material realizations of these features, manual inspection of electronic

band structures represents a relatively easy task for a small number of materials. However, the growing amount of data contained

within modern electronic band structure databases makes this approach impracticable. To address this problem, we present an

automatic graphical pattern search tool implemented for the electronic band structures contained within the Organic Materials

Database. The tool is capable of finding user-specified graphical patterns in the collection of thousands of band structures from

high-throughput calculations in the online regime. Using this tool, it only takes a few seconds to find an arbitrary graphical pattern

within the ten electronic bands near the Fermi level for 26,739 organic crystals. The source code of the developed tool is freely

available and can be adapted to any other electronic band structure database.

npj Computational Materials            (2018) 4:46 ; doi:10.1038/s41524-018-0104-9

INTRODUCTION

Recent developments in materials informatics1,2 combined with
ever-growing computational power have opened the way towards
performing high-throughput calculations based on first-principles
(ab initio) methods.3 This approach significantly facilitates the
accelerated discovery of various materials with special functional
properties.4–9 As a result, we witness an exponentially increasing
amount of data usually organized in the form of databases like the
Materials Project,10 the Computational 2D Materials Database11 or
the Organic Materials Database (OMDB),12 to name but a few. To
keep pace with the amount of data generated, there has to be a
commensurate development of data mining and information
retrieval tools capable of answering non-trivial questions about
the data. Here, we present the online graphical pattern search tool
which is capable of finding user-specified graphical patterns in a
collection of thousands of electronic band structures (EBS).
Recently, we witness an ongoing interest in extending the

theory of electronic bands. This effort is mainly motivated by two
ideas: the search for semimetals with low-energy excitations
behaving as exotic quasi-particles13 and the recent developments
in the topological band theory.8,9,14–17 Realizations of non-trivial
EBS features comprise the massless Dirac-fermions which were
experimentally verified in graphene18 as well as the Weyl-
fermions, which were found for instance in TaAs crystals.19 With
the introduction of the so-called Weyl type-II semimetals20—Weyl
semimetals with heavily tilted energy-momentum cones—it is
claimed that elementary excitations of the crystal can even mimic
the physics of electrons close to the event horizon of black
holes.21 This interpretation suddenly opens the path to verify

theoretical statements of black hole physics within relatively easily

approachable measurements on single crystals. More exotic

quasiparticles, which were discussed in a similar manner, are, for

example, the double Dirac semimetal,22 the node-line semime-

tals,23 the hourglass fermions24 or the triple-fermion materials.25

To find material realizations of these topological band features,
manual inspection of EBSs represents a relatively easy task for a

small number of materials. However, this approach becomes

impracticable for thousands of band structures contained in

modern EBS databases. Despite providing basic search function-

ality, most of the online databases lack non-trivial online search

tools for EBS data querying and analysis. Our tool’s software

implementation based on the approximate nearest neighbor

search algorithm is designed to match the constraints of web

applications in terms of fast execution time and low memory

usage. The tool is accessible within the web interface of the OMDB

hosting thousands of EBSs for previously synthesized organic

crystals at https://omdb.diracmaterials.org/search/pattern. The

source code of the developed tool is freely available at https://

github.com/OrganicMaterialsDatabase/EBS-search and can be

adapted to any other EBS database.
The rest of the paper is organized as follows. In Results, we

describe the pattern search tool interface and its implementation.

In Discussion, application examples for the discovery of novel

functional materials are shown. Finally, technical details related to

the OMBD data and pattern-matching algorithms are provided in

Methods.
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RESULTS

Pattern search algorithm

For a three-dimensional crystalline solid, the EBS is a four-
dimensional object representing energy levels of electrons
dependent on a three-dimensional momentum vector. With the
aim to capture its most distinctive features in such cases, the EBS
is usually calculated along specific paths within the Brillouin zone,
for example, depending on the crystalline symmetry.26 Hence,
properties of the EBS can be effectively characterized by one-
dimensional patterns involving one or multiple bands.
To locate query patterns in the EBS data from the ab initio

calculations stored in the OMDB, we employ a moving window
approach. Each continuous path in the Brillouin zone is scanned
with a moving window of width w in the momentum space with
the stride s, specifying the number of data points the window
jumps at each scanning step. Since the EBS is calculated
numerically along a discrete mesh with different spacing for
different paths within the Brillouin zone, linear interpolation is
used to approximate energy values between the mesh points. For
each moving window, we uniformly select d energy values from
each band and form a vector to be compared with a query
pattern, being also represented as a vector in the same way (Fig.
1a). Thus, in the case of a query pattern consisting of n bands, the
resulting vector dimensionality is d × n (Fig. 1c). It is important to
note that the present pattern search algorithm does not take into
account the distance between bands (for instance, the distance
between the maximum value of the lower band and the minimum
value of the upper band in the n= 2 case), which needs to be
specified explicitly by the user.
To measure the similarity between a vector obtained from the

moving window and the query vector, the cosine distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2cosθ
p

is used, where θ is the angle between the normalized
vectors. The normalization makes the cosine distance equivalent
to the Euclidean (L2) distance. It also makes the distance
insensitive to energy scaling. As θ ranges from 0 (two vectors
are the same) to π (two vectors are opposite), the distance ranges
from 0.0 to 2.0, respectively. Finally, K nearest vectors to the query
vector are retrieved.
Unfortunately, finding the nearest vectors becomes computa-

tionally demanding with respect to memory and CPU usage,
especially if it comes to online applications. A straightforward
exhaustive search algorithm, which goes through every vector,
requires the number of comparisons equal to the total number of

vectors to be queried. For example, applying the moving window
approach with the realistic parameters w= 0.4, d= 16 and s= 2
for 10 bands near the Fermi surface for 26,739 materials in the
OMDB produces over 1.6 × 107 vectors to query. As performance is
crucial for online implementation, the exhaustive solution
becomes impractical.
The exhaustive search can be accelerated with a computation-

memory trade-off using a precalculated index structure based on
search space partitioning. We implemented fast data access using
the open-source ANNOY library,27 which uses the approximate
nearest neighbor search algorithm. During the indexing step, it
creates multiple binary tree structures, where each intermediate
node represents a split and each leaf node represents an area in
the search space (Fig. 2). This precalculated index helps to
significantly reduce the search time. More details about the
approximate nearest neighbor algorithm can be found in
Methods.
Since the bands near the Fermi level are usually of physical

interest, we have indexed the 9 closest pairs of bands (5 bands
above and 5 below the Fermi level). Thus, at the current stage,
only these bands are available for the online search. We started
with the implementation for the patterns consisting of two bands.
However, the approach can be extended in a similar manner to
patterns involving an arbitrary number of bands.

The tool’s interface

The developed pattern search tool is available online at https://
omdb.diracmaterials.org/search/pattern. The tool’s web interface
is shown in Fig. 3. A user can either select one of the predefined
query patterns (two crossing straight lines or two parabolas) or
use the free drawing input interface to search for an arbitrary
pattern. Also, a user can specify the band indices with respect to
the Fermi level where the search is performed, the moving
window size in the momentum space, the maximum/minimum

Fig. 1 A short summary of the pattern search algorithm. For each
moving window of size w, d points are selected from each band for
the analysis. Although the dimension of an electronic band along
some high-symmetry path in the Brillouin zone is one, the
dimension of the corresponding feature space, being represented
in a vector form, is defined by the number of points in it. For
instance, for a moving window comprising 2 bands with 3 points
each a, the dimensionality of the corresponding feature space is 3
for each band b and 6 for the final concatenated vector c. In the last
step, the distance between the normalized concatenated vector and
query pattern vector is calculated

Fig. 2 An example of the ANNOY algorithm for 100 points in a 2D
space. a First, the space is split into two subspaces. The split occurs
as the equidistant hyperplane between two randomly selected
points indicated by the dashed line. For each subspace, this step is
repeated recursively, until the number of points is below a certain
threshold. b Using the constructed binary tree, the nearest
neighbors can be found in logarithmic time. The algorithm
generalizes to higher dimensional spaces. For instance, for a pattern
consisting of 2 bands with 3 points each, the dimensionality of the
corresponding search space is 6
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distance between the bands, if zero density of states between the
bands is required, and other basic filtering options, such as space
group number or chemical composition of the materials of
interest.

Performance tests and calibration

To test and calibrate our tool, we use the EBS data contained in
the OMDB. We also provide additional synthetic data tests
together with the source code at https://github.com/
OrganicMaterialsDatabase/EBS-search.
The first parameters to be defined are the moving window size

w and the stride s. With this aim, we test the sensitivity of the
cosine distance to the various distortions of the search pattern.
The results are shown in Fig. 4. As can be verified, the distance
between the query pattern and the example increases introducing
shifts, obliques, skews, or other nonlinear distortions. While s
should be small with respect to w not to miss any possible search
results (we use s= 2 DFT mesh points), the moving window size w
is more task-specific. It should correspond to the expected
characteristic momentum scale of the pattern of interest. For
example, Fig. 5a suggests that the top search results for a linear
crossing pattern show a much better agreement for a window size
of w= 0.4 than for w= 0.8. At the same time, a similar test for two
gapped parabolas gives qualitatively acceptable results for both
moving window sizes (Fig. 5b). As w is pattern-dependent, its
value should be specified by the user. Furthermore, it is worth
noting that for smaller values of w, we are restricted by the mesh
resolution in the momentum space stemming from the ab initio
calculations. For example, for the EBSs contained in the OMDB, the
moving window for w= 0.4 contains only 14.4 mesh points per
band on average (minimum 9 and maximum 33).
It is also important to check a maximum value of the distance

for a search result to be of acceptable quality. Since similarity to a
pattern is an essentially subjective quality specific to the task in
hand, we resort to visual inspection of the search results. Figure 6
shows that this value can vary from 0.8 for a linear crossing (Fig.
6a) to 0.5 for two gapped parabolas (Fig. 6b). On the website, we
show the top search results ranked by their distance to the query
pattern and use this threshold value in a warning message only.
As mentioned before, the exact nearest neighbor search

algorithm is not applicable in the context of a web application
due to the high computational demand. To tackle this issue, we
choose the approximate nearest neighbor algorithm implemented
in the ANNOY library, which has two parameters to tune: the
number of search trees, N, and the number of points to examine,
K. Increasing both parameters gives more precise search results at
the expense of computational resources. Namely, N affects the
memory usage and K affects the search time.

Fig. 3 The web interface of the pattern search tool. A user can either
select a predefined pattern or use the free drawing input interface
to search for an arbitrary pattern (a sketch of “Mexican hat” is
shown). Also, a user can specify bands of interest, moving window
size, distance and density of states between the bands in the
pattern, along with other basic filtering options like space group
number or chemical composition of the materials of interest

Fig. 4 Sensitivity of the cosine (L2) distance (solid blue line) and the
scaled Manhattan (L1) distance (dashed gray line) to various
distortions of the Dirac crossing pattern: a shift, b oblique, c skew
and d nonlinear distortion/change of the characteristic scale. The
distorted patterns are shown for the red dots. High-frequency noise
and outliers are not included because band structures are usually
smooth objects with low variance over a characteristic scale
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To tune these parameters, we compare the performance of the
top 100 search results of the approximate nearest neighbor search
algorithm for different values of N and K to those of the exact
algorithm. As a ground truth, we use the top 100 exhaustive
search results with w= 0.4 for the linear crossing pattern in the
two bands below the Fermi level. As can be seen in Fig. 7, the
performance of the approximate nearest neighbor search is close
to the exact solution but the search time is significantly reduced.
For example, using the values N= 20 and K= 1500, the
approximate search is more than two orders of magnitude faster
in comparison to the exact algorithm by obtaining comparable
search results. The level of approximation can be always adjusted
to the computational resources available.

DISCUSSION

It has been shown by several research groups that the data mining
approach has been successful, for example, for the search of
stable nitride perovskites,28 thermoelectric materials,4 electroca-
talytic materials for hydrogen evolution,5 or lithium-ion battery
cathodes.6 Using a pattern search analysis of the data within the
Electronic Structure Project,29 Klintenberg et al. identified 17
candidates for strong topological insulators by mining for
materials exhibiting the specific “Mexican hat” shaped dispersion
relation.7 Similarly, by searching for linear crossings in band
structures, novel Dirac materials can be identified as recently
shown using the data in the OMDB8,9 and the Materials Project
database.30 Alternatively, new functional materials can be
predicted by comparison of specific features in the EBSs of known
prototype materials to the EBSs in electronic structure databases,
as shown for example in the case of potential high-temperature
superconductors.31,32 Similar statistical methods can be also used
to identify systematic trends in strongly correlated f-electron
materials.33

Here, we present a new approach to search for novel functional
materials characterized by a specific pattern in their electronic
structure, such as Dirac materials, topological insulators, and novel
semimetals with low-energy excitations behaving as exotic quasi-
particles.
A data-mining approach by means of the described pattern-

matching algorithm can be a powerful tool. As the first example,

we consider the linear crossing of two bands indicating Dirac
materials. This class of materials has been extensively studied due
to the exceptional transport and optical properties.34,35 To achieve
an isolated crossing in the energy space, the additional constraint
of having vanishing density of states at the crossing point was
applied. Since the majority of organic crystals are insulating,12 we
searched for the pattern in the first and second highest valence
bands. The maximum band distance was set to 0.01 eV and the
moving window size was restricted to 0.4. Using this conditions,
the algorithm found 51 matching results, where the best one has
the match error of 0.075 and band distance of 0 eV. The
corresponding band structure is plotted in Fig. 8a, which belongs
to the material C9H5ClN2O2 (OMDB-ID 4381, COD-ID 7155013),
crystallizing in a triclinic crystal. It is also worth mentioning that,
using an offline version of the presented tool, several novel
organic Dirac materials have been already predicted.8,9

Whereas a linear crossing of bands corresponds to a nearly free
electron gas of massless Dirac fermions, two touching parabolas
mimic the behavior of massive free electrons corresponding to the
Schrödinger equation. However, the search for two touching
parabolas did not retrieve any materials with vanishing density of
states at the touching point. Having weakened this criterion, the
search for two touching parabolas in the second and third valence
bands retrieved 1443 materials with the matching error for the top
result of 0.224. The corresponding band structure is illustrated in
Fig. 8b, which belongs to C20H20BrN3O3 (OMDB-ID 4492, COD-ID
7153203), having a monoclinic crystal structure.
Next to semimetals, materials possessing a gap can also show

specific patterns. The most relevant examples are the topological
insulators,36 where an overlap of two bands combined with a
forbidden crossing leads to the specific Mexican hat shape of
bands. This phenomenon is also referred to as band inversion.
While the bulk of a topological insulator is insulating, metallic
states on the surface can be found as a consequence of the
topological gap. Well-known examples comprise the materials
PbxSn1−xTe

37–39 or Bi2Se3.
40 The theory of topological gaps is

clearly not restricted to a band gap at the Fermi level but can be
generalized to any occurring spectral gap in the band structure. By
searching for the Mexican hat shape in the third and fourth bands
below the Fermi level, we found 290 materials using a moving
window size of 0.8. The band distance was allowed to be in the

Fig. 5 Comparison of the top 6 search results for linear crossings a and two gapped parabolas (the gap is not shown) b for two different
moving window sizes: 0.4 (first row) and 0.8 (second row). The top search results for the linear crossings have much better quality for w= 0.4
than for w= 0.8, while the search for two gapped parabolas gives qualitatively acceptable results for both moving window sizes. The titles
above the graphs indicate the OMDB-ID. The values for E and k match the values on the website
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Fig. 6 Pattern search results for a linear crossing in the two highest valence bands a and two parabolas in the highest valence and lowest
conduction bands b. Each row shows the nearest vectors (best search results) starting from a distance threshold, for threshold values 0.0, 0.5,
0.8, 0.9, 1.0 and 1.5, respectively, for the moving window size of 0.4. The distance between upper and lower bands was set to be less than
0.0001 eV for a and was not restricted for b. The titles above the graphs indicate the OMDB-ID. The values for E and k match the values on the
website
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range of 0.05–9 eV and the density of states was forced to be zero
between the bands. As an example, the material C11H17ClO2

(OMDB-ID 2308, COD-ID 4030217) was found with the match error
of 0.59 (Fig. 8c).

METHODS

Organic materials database (OMDB)

The Organic Materials Database (OMDB)12 is an online database available
at https://omdb.diracmaterials.org containing the output of ab initio
calculations based on density functional theory (DFT)41,42 for 26,739 (at the
moment of writing) previously synthesized three-dimensional organic
crystal structures taken from the Crystallography Open Database (COD).43

The DFT calculations were performed using the Vienna Ab initio Simulation
Package (VASP).44 The OMDB contains EBSs calculated along high
symmetry ~k-paths in the Brillouin zone which were automatically
generated by the Pymatgen package.45 Electronic bands for each path
were calculated on a discrete mesh consisting of 20 points independently
of its length in the momentum space. For the pattern search, we use
continuous paths suggested by Pymatgen. However, we plan to extend
the search to cover all possible combinations of calculated paths sharing
the same high-symmetry point. Although the calculations were performed
spin-polarized, we do not distinguish between spin-up and spin-down
bands for the pattern search task. More details about the DFT calculations
can be found in ref. 12.

Problem overview

The problem of locating patterns similar to a target (query) pattern in a
sequence of data points has a long interdisciplinary history. Related
approaches are typically based on scanning the sequence with a moving
window followed by the comparison of these shorter subsequences with
the query.46 This approach has several dimensions to explore. The first one
is related to the data representation. As an alternative to the raw data
points, a fitted model or a transformation, such as Fourier,47 wavelet48 or
dimensionality reduction,49 can be employed. Second, a similarity measure
between the subsequences and the query need to be defined. Most of
them are based on the Lp-norms, however, more advanced probability
measures50 have also been discussed. Finally, for practical applications, an
efficient search algorithm is necessary. Usually, it involves indexing the
subsequences obtained by a moving window with a tree-like partition
structure. The presented solution in this paper uses a cosine similarity
(equivalent to the L2 distance for normalized vectors) and binary search
trees as implemented in the open-source ANNOY library.27 No advanced
data transformations are used.

Nearest neighbor search algorithm

The main idea of the nearest neighbor search51 is to find the nearest
vectors to a query vector, given some distance measure. The most
straightforward (exact) nearest neighbor algorithm iterates through each
vector and calculates the distance to the query. This linear complexity
algorithm can be accelerated with a computation-memory trade-off using
a pre-calculated index structure based on search space partitioning.

However, the related algorithms are not exact anymore, because they can

miss some search results. Nevertheless, due to the high computational

demand of the exact search, it becomes necessary to use an approach

which returns “close enough” neighbors in order to obtain a good speed

improvement. In many cases, approximate methods perform comparably

to the exact one.52 Many open-source libraries are available where various

indexing strategies and approximation methods have been implemented,

for example, “FAISS” released by Facebook AI Research,53 “ANNOY” by

Spotify,27 and Non-Metric Space Library (NMSLIB).54

The back-end of the graphical pattern search tool is implemented using

the open-source ANNOY library27 which is based on the approximate

nearest neighbor search. During the indexing step, it creates a binary tree

Fig. 7 The quality of the top 100 search results obtained using the
ANNOY library grows with the number of trees N for fixed K= 1500 a
and the number of leaf nodes K for fixed N= 20 b. As a ground truth,
we used the top 100 search results from the exact algorithm for the
linear crossing pattern with a moving window size of w= 0.4 in the
two highest valence bands. The precision is calculated as the
fraction of coinciding search results and micro-averaged over 10
different ANNOY indices

Fig. 8 Examples of search results for the patterns which might be
interesting from a physical point of view: Dirac crossing, OMDB-ID
4381 a; two touching parabolas, OMDB-ID 4492 b; Mexican hat,
OMDB-ID 2308 c. Plotted using Highcharts library55
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structure for the data vectors where each intermediate node represents a
split and each leaf node represents an area in the search space. It keeps
splitting the space randomly using equidistant hyperplanes between two
randomly selected vectors in each node until the number of vectors in
each subspace is below a certain threshold. It can also use multiple trees N
(n_trees in the ANNOY documentation) in order to improve the quality
of search results at the expense of memory usage. When a user tries to find
closest neighbors of a query vector, the library first finds the leaf node that
the query vector would belong to and collects K vectors to test
(search_k in the ANNOY documentation) from that node as well as
nearby leaf nodes for each tree. Then, it eliminates the duplicates which
come from different trees and calculates the distance between each
selected vector and the query. Here, N and K can be tuned to find a trade-
off between the algorithm’s precision and performance.

DATA AVAILABILITY

The online graphical pattern search tool for electronic band structure data contained

in the Organic Materials Database is available at https://omdb.diracmaterials.org/

search/pattern. The source code of the developed tool is available at https://github.

com/OrganicMaterialsDatabase/EBS-search. The electronic band structure data that

support the findings of this study are available from the Organic Materials Database

https://omdb.diracmaterials.org.
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